2013年中考数学复习全套学案34--- 圆的有关概念和性质
中考数学专题复习教案圆
中考数学专题复习教案圆公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-圆综合复习教学目标】1、回顾、思考本章所学的知识及思想方法,并能用自己的方式进行梳理,使所学知识系统化2、进一步丰富对圆及相关结论的认识,并能有条理地、清晰地阐明自己的观点3、通过复习课的教学,感受归纳的思想方法,养成反思的习惯【重点难点】圆的有关概念和性质的应用【课堂活动】一、圆的有关概念和性质二知识点详解(一)、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
(二)、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;(三)、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; (四)、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; (五)、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
新课标人教版《数学》九年级上册 圆的概念和性质的复习导学案
圆的概念和性质的复习导学案一、圆的有关概念和性质考点一圆的有关概念和性质1.圆的定义动态:在同一平面内,一条线段OA绕着它固定的一个端点O旋转____,另一个端点A所形成的封闭图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.静态:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点的集合.2.圆的有关的概念3.圆的性质(1)圆的对称性:圆既是轴对称图形,又是中心对称图形,任意一条____所在的直线都是它的对称轴,圆心是它的对称中心.(2)圆的确定:不在同一直线上的____个点确定一个圆.三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的______.(3)圆的旋转不变性:圆绕圆心任意旋转一个角度都和自身重合.考点二垂径定理及其推论(高频)考点三圆心角、弧、弦之间的关系1.圆心角:顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的____相等,所对的____相等. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中,有一组量相等,那么其余的各组量也都____ .考点四圆周角定理及其推论(高频)考点五圆与多边形1.圆的内接多边形(1)如果一个多边形的每一个顶点都在同一个圆上,这个多边形叫做这个圆的__________,这个圆叫做这个多边形的__________.(2)圆内接四边形的性质:圆的内接四边形的对角_____.2.正多边形与圆(见第24课时)二、例题教学命题点1圆周角定理及其推论例1.(2019·安徽,10,4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4.P是△ABC内部的一个动点,且满足∠P AB=∠PBC.则线段CP长的最小值为( ) A.32B.2C.81313D.121313例2.(2019·安徽,19,10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.例3.(2019·安徽,13,5分)如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_____°.命题点4圆的性质例4.(2019·安徽,20,10分)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.三、巩固练习考法1圆周角定理及其推论1.(2019·四川乐山)如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB=()A.10°B.20°C.30°D.40°考法2垂径定理及其推论2.(1)(2019·湖南长沙)如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为____.(2)(2019·江苏宿迁)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为____.考法3圆心角、弧、弦之间的关系3.(2019·山东济宁)如图,在⊙O中, 弧AB=弧AC,∠AOB=40°,则∠ADC的度数是( )A.40°B.30°C.20°D.15°考法4圆内接四边形4.(2019·宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;课后作业:1.(2019·海南)如图,AB是⊙O的直径,AC,BC是⊙O的弦,直径DE⊥AC于点P,若点D在优弧ABC上,AB=8,BC=3,则DP=_____.2.(2019·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( )A.140°B.70°C.60°D.40°3.(2019·浙江舟山改编)把一张圆形纸片按照如图所示的方式折叠两次后展开,图中的虚线表示折痕,则∠BOC的度数是( )A.120°B.135°C.150°D.165°4.(2019·甘肃兰州)如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC=()A.45°B.50°C.60°D.75°∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°6.(2019·湖南岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=____°.。
2013中考数学圆的重要性质复习提纲
2013中考数学圆的重要性质复习提纲中考数学考什么,这是考生和家长最关心的问题。
以往的中考考题主要体现在对知识点的考查上,强调知识点的覆盖面,对能力的考查没有放在一个突出的位置上。
近几年的中考命题发生了明显的变化,既强调了由知识层面向能力层面的转化,又强调了基础知识与能力并重。
注重在知识的交汇处设计命题,对学生能力的考查也提出了较高的要求。
中考数学重点考查学生的数学思维能力已经成为趋势和共识。
初三学生可利用寒假时间对数学思想方法进行梳理、总结,逐个认识它们的本质特征、思维程序和操作程序。
有针对性地通过典型题目进行训练,能够真正适应中考命题。
第十章圆重点:①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
内容提要一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:内角的一半:(右图)(解Rt△OAM可求出相关元素,、等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。
初三数学总复习教案——圆的有关性质
初三数学总复习教案-圆的有关性质教学目标知识目标:1、理解圆、等圆、等弧等概念及圆的对称性,掌握点和圆的位置关系;2、掌握垂径定理及其逆定理和圆心角,弧,弦,弦心距及圆周角之间的主要关系;掌握圆周角定理并会用它们进行计算;3、掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。
4、会用尺规作三角形的外接圆;了解三角形的外心的概念能力目标:通过知识点和典型题的讲练,使学生熟练掌握本节课的知识点,再用题图变形与题组训练来培养学生综合运用知识的能力以及思维的灵活性和广阔性。
情感目标:通过题图变形与题组训练来激发学生学习数学的兴趣;同时将课本的题目与中考题结合在教学当中以进一步向学生强调“依纲靠本”的复习指导思想,强化学生的中考意识。
教学重点、热点1、垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理2、运用圆内接四边形的性质解有关计算和证明题教学过程:一、知识结构回顾三、直击中考考点1圆周角定理1.(2013•徐州)如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB 的度数为﹏.分析:根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得:∠AOB=2∠C,进而可得答案.解:∵⊙O是△ABC的外接圆,∠C=30°∴∠AOB=2∠C=2×30°=60°.故答案为:60°.点评:此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.考点2:一次函数综合题2.(13•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为____ .分析:根据直线y=kx﹣3k+4=K(X-3)+4必过点D(3,4),求出最短的弦BC是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.解:∵直线y=kx﹣3k+4必过点D(3,4),∴最短的弦BC是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.点评:此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置考点3:圆周角定理,垂径定理,三角形内角和定理3.(12.泰州)如图,△ABC内接于⊙O,OD⊥ BC于D,∠A=50°,则∠OCD的度数是【】A.40° B.45° C.50° D.60°【分析】连接OB,∵∠A和∠BOC是弧BC所对的圆周角和圆心角,且∠A=50°,∴∠BOC=2∠A=100°。
教案 初三 圆的概念及性质
教师教案学生教师班主任学科日期课时教学内容圆的概念与性质教学重难点圆的相关概念,圆心角定理的应用,垂径定理及应用2.1圆知识点1:圆的概念及与圆的相关概念1.圆的概念2.与圆有关的概念典型例题考点1:命题判定例1以下命题:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④长度相等的两条弧是等弧;⑤圆心相同的圆是同心圆.其中正确的命题有( )A.1个B.2个C.3个D.4个例2下列命题中是真命题的有 ( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.A.3个B.4个C.5个D.6个考点2:圆的性质应用例1 如图,CD是⊙O的直径,BE是⊙O的弦,DC、EB的延长线相交于点A.若∠A=20°,AB=OC,求∠EOD 的度数.考点3:利用圆的性质进行证明例1 如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.试说明∠OEF与∠OFE的关系.例2 如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE点C为AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.知识点2:点与圆的位置关系点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外。
设⊙o的半径为r,点P到圆心O的距离为d,用图形表示点与圆的位置关系如图所示。
典型例题考点1:利用数量关系判断点与圆的位置关系例1 在矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心、PD为半径的圆,那么下列判断正确的是( )A.点B,C均在圆P外B.点B在圆P外,点C在圆P内C.点B在圆P内,点C在圆P外D.点B,C均在圆P内考点2:利用点与圆的位置关系求圆的半径范围例1已知矩形ABCD的边AB=15,BC=20,若以点B为圆心作圆,使A,C,D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是( )A.r>15 B.15<r<20 C.15<r<25 D.20<r<25能力提优题型1:圆的性质和矩形性质综合例1 如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO为矩形,设BC=a,EF=b,NH=c.则下列各式正确的是( )A.a>b>c B.a=b=c C.c>a>b D.b>c>a题型2:点与圆的位置关系中分类讨论思想例1 若⊙O所在平面上的一点P到⊙O上的点的最大距离是10,最小距离是2,则此圆的半径为题型3:利用圆的定义与直角三角形的性质综合进行证明例1已知:如图,BD、CE是△ABC的高,M为BC的中点,试说明点B、C、D、E在以点M为圆心的同一个圆上.例2如图,在□ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.求证:A、E、C、F四点共圆;2.2圆的对称性知识点1:圆的对称性圆是中心对称图形,对称中心是圆心;圆也是轴对称图形,对称轴是经过圆心的任意一条直线。
圆的概念与性质教案
圆的概念及性质教学目标1.认识圆,理解圆的本质属性.2.理解弦、弧、直径、半圆、优弧、劣弧、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.教学重难点重点:理解圆、弦和弧的概念.难点:能根据条件画出符合条件的点或图形,初步形成集合的观念.教学过程导入新课多媒体展示第一组图片,观察下列图片,找出共同的图形来.学生观察图片后,会发现图中都有圆,让学生再举出一些生活中类似的图形.多媒体展示第二组图片.让学生思考:车轮为什么做成圆形? 做成三角形、正方形可以吗?设计意图:通过多媒体展示现实生活中有关圆的物体图片引起学生的注意,使他们感受数学与现实生活的密切联系,增强学生的数学应用意识,激发学生学习的兴趣,从而引入课题.探究新知观察与思考小惠与小亮合作,按下面的方法画圆.首先,小惠把绳子的一端固定在操场上的某一点O处,小亮在绳子的另一端拴教学反思教学反思上一小段竹签,然后,小亮将绳子拉紧,再绕点O转一圈,竹签划出的痕迹就是圆.教师点评:平面上,到定点的距离等于定长的所有点组成的图形,叫做圆,这个定点叫做圆心,这条定长叫做圆的半径.如图1所示,它是以点O为圆心,OA的长为半径的圆,记作“☉O”,读作“圆O”.线段OA也称为☉O的半径.圆可以看成是平面上到定点的距离等于定长的所有点组成的图形,定点就是圆心,定长就是半径.以点O为圆心的圆记作☉O,读作“圆O”.教师要求学生利用圆规画一个圆.有的学生提出了疑问:在哪画圆?画多大的圆?教师借机引导学生发现问题:要确定一个圆,需要满足什么条件呢?教师强调:确定一个圆需要两个要素,一是位置,二是大小,圆心确定其位置,半径确定其大小,只有圆心和半径都固定,圆才被唯一确定.设计意图:在原有圆的基础上,提高了学生对圆的其他特征的初步认识.探究活动:思考下面的问题1.什么是轴对称图形、中心对称图形?2.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?3.圆是中心对称图形吗?如果是,它的对称中心是什么?4.圆绕着它的圆心旋转任意角度后和自身重合吗?5.直径是圆的对称轴,正确吗?学生小组交流,老师引导归纳:圆是轴对称图形,过圆心的每一条直线都是它的对称轴.圆也是中心对称图形,圆心是它的对称中心.实际上,圆绕圆心旋转任意角度后都与自身重合.出示教材第147页内容要求学生通过自学的方式,学习圆中相关的概念,然后小组互相交流.1.弦、直径:圆上任意两点间的线段叫做这个圆的一条弦.过圆心的弦叫做这个圆的直径.让学生指出图中的弦和直径.图2中的弦是AB,CD ;直径是CD.注意:(1)弦和直径都是线段.(2)直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.(3)同一圆中的半径相等.教学反思图1图22.弧、半圆圆上任意两点间的部分叫做圆弧,简称弧.圆的直径将这个圆分成能够完全重合的两条弧,这样的一条弧叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.如图3,点A,B,C,D在☉O上.线段AB为☉O的一条弦,AC为☉O的直径.直径AC所分的两个半圆分别为半圆ADC和半圆ABC.以AB为端点的弧有两条,其中劣弧用AB来表示,读作“弧AB”,优弧用ADB来表示,读作“弧ADB”.3.等圆、等弧:能够完全重合的两个圆叫做等圆.能够完全重合的两条弧叫做等弧.半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.推出:等圆是两个半径相等的圆.在同圆或等圆中,能够互相重合的弧叫做等弧.最后教师点评各个概念,强调等弧的前提是在同圆或等圆中.典型例题例1A、B是半径为5的☉O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10【问题探索】连接圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连接圆上任意两点构成的最长线段和最短线段分别是什么.答案:D【总结】圆上最长的弦是直径,则圆上不同两点构成的弦长大于零且小于或等于直径长.例2如图4.(1)请写出以点B为端点的劣弧及优弧;(2)请写出以点B为端点的弦及直径;(3)请任选一条弦,写出这条弦所对的弧.解:(1)劣弧:,,,BF BD BC BE.优弧:BFE,BFC,BCD,BCF.(2)弦:BD,AB,BE.其中弦AB又是直径.(3)答案不唯一,如:弦DF,它所对的弧是DF和DCF.课堂练习1.下列说法中,正确的是()A.弦是直径B.半圆是弧C.过圆心的线段是直径D.圆心相同半径相同的两个圆是同心圆2.圆内最长的弦长为10 cm,则圆的半径()A.小于5 cmB.大于5 cmC.等于5 cmD.不能确定3.一点和☉O上的点的最近距离为6 cm,最远距离为12 cm, 则这个圆的半径是.4.如图5,在☉O中,点A,O,D和点B,O,C分别在一条直线上,图中共教学反思图3图4有条弦,它们分别是.图5 图65.如图6所示,AB是☉O的直径,点C,D在☉O上,∠BOC=110°,AD∥OC,则∠AOD=.6.一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?如果不公平,你认为他们应排成什么样的队形才公平?7. 一根5 m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.图7参考答案1.B2.C3.9 cm或3 cm4.3 AE,DC,AD5.40°6.不公平,应该站成圆形.7.解:示意图如图8所示.图8课堂小结(学生总结,老师点评)布置作业教材第148页习题教学反思板书设计28.1圆的概念及性质一、圆的概念及性质二、圆的有关概念1.弦、直径2.弧与半圆3.等圆、等弧。
中考复习教案圆
圆教学目标:1.立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.2.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3.通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点与难点重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.难点:把数学知识转化为自身素质. 增强用数学的意识.教学时间:6课时【课时分布】圆的部分在第一轮复习时大约需要6个课时,其中包括单元测试.下表为内容及课时安排.2、基础知识(1)掌握圆的有关性质和计算① 弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.② 垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③ 在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.④ 圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角.(2)点与圆的位置关系① 设点与圆心的距离为d ,圆的半径为r ,则点在圆外d r ⇔>; 点在圆上d r ⇔=; 点在圆内d r ⇔<.② 过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆.③ 三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系① 设圆心到直线l 的距离为d ,圆的半径为r ,则直线与圆相离d r ⇔>;直线与圆相切d r ⇔=;直线与圆相交d r ⇔<.② 切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径.③ 切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线.到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④ 三角形的内心是三角形三条内角平分线的交点.三角形的内心到三角形三边的距离相等.⑤ 切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.⑥ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)圆与圆的位置关系① 圆与圆的位置关系有五种:外离、外切、相交、内切、内含.设两圆心的距离为d ,两圆的半径为12r r 、,则两圆外离12d r r ⇔>+两圆外切12d r r ⇔=+两圆相交1212r r d r r ⇔-<<+两圆内切12d r r ⇔=-两圆内含12d r r ⇔<- ② 两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴.由对称性知:两圆相切,连心线经过切点. 两圆相交,连心线垂直平分公共弦.③ 两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线.两个圆在公切线两旁时,这样的公切线叫做内公切线.④ 公切线上两个切点的距离叫做公切线的长.(5)与圆有关的计算① 弧长公式:180n r l π= 扇形面积公式:213602n r S lr π==扇形 (其中为n 圆心角的度数,r 为半径)② 圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体.圆柱的侧面积=底面周长×高圆柱的全面积=侧面积+2×底面积③ 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体.④ 圆锥的侧面积=12×底面周长×母线;圆锥的全面积=侧面积+底面积 3、能力要求例1 如图,AC 为⊙O 的直径,B 、D 、E 都是⊙O 上的点,求∠A +∠B +∠C 的度数.【分析】由AC 为直径,可以得出它所对的圆周角是直角,所以连结AE ,这样将∠CAD (∠A )、∠C 放在了△AEC 中,而∠B 与∠EAD 是同弧所对的圆周角相等,这样问题迎刃而解.【解】 连结AE∵AC 是⊙O 的直径 ∴∠AEC =90O∴∠CAD +∠EAD +∠C =90O∵ED ED =⌒⌒∴∠B =∠EAD ∴∠CAD +∠B +∠C =90O【说明】这里通过将∠B 转化为∠EAD ,从而使原本没有联系的∠A 、∠B 、∠C 都在 △AEC 中,又利用“直径对直角”得到它们的和是90O .解题中一方面注意到了隐含条件“同弧所对的圆周角相等”,另一方面也注意到了将“特殊的弦”(直径)转化为“特殊的角”(直角),很好地体现了“转化”的思想方法.例2 △ABC 中,AC =6,BC =8,∠C =90O ,以点C 为圆心,CA 为半径的圆与AB 交于点D ,求AD 的长.【分析】圆中有关弦的计算问题通常利用垂径定理构造直角三角形求解,所以作CH ⊥AB ,这只要求出AH 的长就能得出AD 的长.【解】 作CH ⊥AB ,垂足为H∵∠C =90O ,AC =6,BC =8 ∴AB =10∵∠C =90O , CH ⊥AB∴2AC AH AB = 又∵AC =6, AB =10 ∴ AH =3.6∵CH ⊥AB ∴AD =2AH ∴AD =7.2C A答:AD 的长为7.2.【说明】解决与弦有关的问题,往往需要构造垂径定理的基本图形——由半径、弦心距、弦的一半构成的直角三角形,它是解决此类问题的关键.定理的应用必须与所对应的基本图形相结合,教师在复习时要特别注重基本图形的掌握.例3 (1)如图,△ABC 内接于⊙O ,AB 为直径,∠CAE =∠B ,试说明AE 与⊙O 相切于点A .(2)在(1)中,若AB 为非直径的弦,∠CAE =∠B ,AE 还与⊙O 相切于点A 吗?请说明理由.(1) (2)【分析】第(1)小题中,因为AB 为直径,只要再说明∠BAE 为直角即可.第(2)小题中,AB 为非直径的弦,但可以转化为第(1)小题的情形.【解】 (1)∵AB 是⊙O 的直径 ∴∠C =90O∴∠BAC +∠B =90O又∵∠CAE =∠B ∴∠BAC +∠CAE =90O即∠BAE =90O ∴AE 与⊙O 相切于点A .(2)连结AO 并延长交⊙O 于D ,连结CD .∵AD 是⊙O 的直径 ∴∠ACD =90O∴∠D +∠CAD =90O又∵∠D =∠B ∴∠B +∠CAD =90O又∵∠CAE =∠B ∴∠CAE +∠CAD =90O即∠EAD =90O ∴AE 仍然与⊙O 相切于点A .【说明】本题主要考查切线的识别方法.这里可以引导学生依据第(1)小题的特殊情况,大胆提出猜想,渗透“由特殊到一般”的数学思想方法,这对于学生的探索能力培养非常重要.E B A D EAB例4 如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5.(1)若,求CD 的长. (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留).【分析】图形中有 “直径对直角”,这样就出现了“直角三角形及斜边上的高”的基本图形,求CD 的长就转化为求DE 的长.第(2)小题求扇形OAC 的面积其关键是求∠AOD 的度数,从而转化为求∠AOD 的大小.【解】(1) ∵AB 是⊙O 的直径,OD =5∴∠ADB =90°,AB =10又∵在Rt △ABD 中,3sin 5BD BAD AB ==∠ ∴∵∠ADB =90°,AB ⊥CD ∴ BD 2=BE ·AB CD = 2DE∵AB =10∴BE =185在Rt △EBD 中,由勾股定理得 ∴答:CD 的长为485. (2)∵AB 是⊙O 的直径,AB ⊥CD∴∴∠BAD =∠CDB ,∠AOC =∠AOD∵AO =DO ∴∠BAD =∠ADO∴∠CDB =∠ADO设∠ADO =4k ,则∠CDB =4k由∠ADO :∠EDO =4:1,则∠EDO =k∵∠ADO +∠EDO +∠EDB =90° ∴4490k k k ++=︒ 得k =10°∴∠AOD=180°-(∠OAD+∠ADO)=100°∴∠AOC=∠AOD=100°则答:扇形OAC的面积为125 18π【说明】本题涉及到了圆中的重要定理、直角三角形的边角关系、扇形面积公式等知识点的综合,考查了学生对基本图形、基本定理的掌握程度.求DE长的方法很多,可以用射影定理、勾股定理,也可以运用面积关系来求,但都离不开“直角三角形及斜边上的高”这个基本图形.解题中也运用了比例问题中的设k法,同时也渗透了“转化”的思想方法.例5 半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4 : 3,点P在半圆AB上运动(不与A、B两点重合),过点C作CP的垂线,与PB的延长线交于点Q.(l)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到半圆AB的中点时,求CQ的长;(3) 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.【分析】当点P与点C关于AB对称时,CP被直径垂直平分,由垂径定理求出CP的长,再由Rt△ACB∽Rt△PCQ,可求得CQ的长.当点P在半圆AB上运动时,虽然P、Q点的位置在变,但△PCQ始终与△ACB相似,点P运动到半圆AB的中点时,∠PCB=45O,作BE⊥PC于点E,CP=PE+EC.由于CP与CQ的比值不变,所以CP取得最大值时CQ也最大.【解】(l)当点P与点C关于AB对称时,CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=900.∴AB=5,AC:CA=4:3∴BC=4,AC=3S Rt△ACB=12AC·BC=12AB·CD∴1224,.55 CD PC==∵在Rt△ACB和Rt△PCQ中,∠ACB=∠PCQ=900, ∠CAB=∠CPQ,∴ Rt △ACB ∽Rt △PCQ∴ AC BC PC CQ = ∴ 43235BC PC CQ PC AC === (2)当点P 运动到弧AB 的中点时,过点B 作BE ⊥PC 于点E (如图).∵P 是弧AB 的中点,∴045,PCB CE BE BC ∠==== 又∠CPB =∠CAB∴∠CPB = tan ∠CAB =43∴ 3tan 4BE PEBE CPB ===∠ 从而2PC PE EC =+= 由(l )得,433CQ PC == (3)点P 在弧AB 上运动时,恒有43BC PC CQ PC AC == 故PC 最大时,CQ 取到最大值. 当PC 过圆心O ,即PC 取最大值5时,CQ 最大值为203 【说明】本题从点P 在半圆AB 上运动时的两个特殊位置的计算问题引申到求CQ 的最大值,一方面渗透了“由特殊到一般”的思想方法,另一方面运用“运动变化”观点解决问题时,寻求变化中的不变性(题中的Rt △ACB ∽Rt △PCQ )往往是解题的关键.P。
初三数学复习教案圆的性质与判定
初三数学复习教案圆的性质与判定初三数学复习教案圆的性质与判定一、导言数学中的几何部分涉及到很多基本概念和性质,其中圆是一个重要的概念。
本教案将从圆的性质与判定入手,为初三学生进行数学复习提供指导。
二、圆的定义圆是平面上的一个几何图形,它的每一点到一个固定点的距离都相等。
这个固定点叫做圆心,圆心到圆上任意一点的距离称为半径。
三、圆的性质1. 圆周上的点到圆心的距离相等;2. 圆的直径是通过圆心的两点之间的线段,直径的长度是半径的两倍;3. 圆的任意弦都可以看作是一个直径所对应的角;4. 圆的内切正多边形的每条边都刚好与圆相切;5. 圆与直线的相交情况有三种:相离、相切、相交;6. 位于圆内的点到圆心的距离小于半径;7. 位于圆外的点到圆心的距离大于半径;8. 圆上的所有点到圆心的距离都等于半径。
四、判定圆的性质1. 判定一个图形是否为圆:如果一个图形的每一个点到固定点的距离都相等,那么这个图形就是圆。
2. 判定两个圆是否相交:如果两个圆的圆心距离小于两个圆的半径之和,那么这两个圆就相交。
3. 判定两个圆是否相切:如果两个圆的圆心距离等于两个圆的半径之和,那么这两个圆就相切。
4. 判定一个点是否在圆上:如果一个点到圆心的距离等于圆的半径,那么这个点就在圆上。
5. 判定一个点是否在圆内:如果一个点到圆心的距离小于圆的半径,那么这个点就在圆内。
6. 判定一个点是否在圆外:如果一个点到圆心的距离大于圆的半径,那么这个点就在圆外。
五、实例演练1. 已知圆A的半径为5cm,圆B的半径为3cm,求它们的圆心距离。
解:两个圆的圆心距离可以通过勾股定理求得,即圆心距离的平方等于两个圆心连线的长度减去两个圆的半径之和的平方。
代入数据进行计算,得到圆心距离为4cm。
2. 已知点P(-2, 3)距圆O(0, 0)的距离为5cm,判断点P和圆O的位置关系。
解:计算点P到圆心O的距离,即点P与圆心O的连线的长度。
通过勾股定理求得距离为√((-2-0)^2+(3-0)^2)=√(4+9)=√13约等于3.61cm。
中考总复习圆的导学案
圆 基础知识点一、圆的有关概念 1. 圆的定义:圆上各点到圆心的距离都等于 .2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.3. 垂径定理:垂直于弦的直径平分 ,并且平分 ; 推论:平分弦(不是直径)的 垂直于弦,并且平分 .4. 圆心角、弧、弦、弦心距间的关系定理:在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距中有一组量 ,那么它们所对应的其余各组量都分别 .DB '''BA A '5. 圆周角定理:同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 . 推论: 直径所对的圆周角是 ,90°所对的弦是 .二、与圆有关的位置关系1.点与圆的位置关系共有三种:①,②,③;若点到圆心的距离为d和半径r,则它们之间的数量关系分别为:点在圆上→d r,点在圆外→d r,点在圆内→d r2. 直线与圆的位置关系共有三种:①,②,③ .若圆心到直线的距离为d和圆的半径r,则它们之间的数量关系分别为:直线与圆相离→d r,直线与圆相切→d r,直线与圆相交→d r,3. 圆与圆的位置关系共有五种:①,②,③,④,⑤;若两圆的圆心距d和两圆的半径为R、r(R≥r)则它们之间的数量关系分别为:①两圆外离→d R-r;②两圆外切→d R-r;③两圆相交→R-r d R+r;④两圆内切→d R+r;⑤两圆内含→d R+r.4.切线的性质定理:圆的切线过切点的半径;切线的判定定理:经过 的一端,并且 这条 的直线是圆的切线.5.切线长定理: 从圆外一点引圆的两条切线, 相等,这点与圆心的连线平分两切线的夹角。
6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的 ,三角形的外接圆的圆心叫 心,是三角形 的交点,它到 相等。
7. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形 的交点,叫做三角形的 ,它到 相等.三、与圆有关的计算1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n°的圆心角所对的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n°的圆心角所在的扇形面积为S= 2R π⨯ = = .3. 圆柱的侧面积公式:S=2rlπ.(其中r为的半径,l为的高)。
中考数学圆的基本性质专题复习学案设计
中考数学圆的基本性质专题复习一、知识点讲解1.圆的概念圆是平面上到一个定点的距离等于定长的点的集合.定点就是圆心,定长就是半径的长,通常也称为半径.以定点O 为圆心的圆称为圆O ,记作O Θ. 2.点和圆的位置关系设圆的半径为R ,点P 到圆心的距离为d ,则(1)点P 在圆外⇔R d >; (2)点P 在圆上⇔;(3)点P 在圆内⇔R d <≤0. 3.圆的确定不在同一条直线上的三点确定一个圆.经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.外接圆的圆心叫三 角形的外心,这个三角形叫这个圆的内接三角形.三角形的外心就是三角形三边垂直平分线的交点.4.圆心角、弧、弦、弦心距之间的关系定理及其推论(“知一推三”,强调特殊情况不成立) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距 也相等;推论:在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦、两条弦的弦心 距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等. 5.垂径定理及其推论(“知二推二”, 强调特殊情况不成立)如果圆的一条直径垂直于圆的一条弦,那么这条直径平分这条弦,并平分弦所对的两条弧.二、知识点相关练习例1.在平面上,经过给定的两点的圆有____个,这些圆的圆心一定在连结这两点的线段的_______上.例2.平面上有一个点到⊙O 的圆周上的最小距离为6cm ,最大距离为8cm ,则⊙O 的半径为_______.例3.在矩形ABCD 中,AB =8,AD =6,以点A 为圆心,若B ,C ,D 三点中至少有一点在圆内,且至少有一点在圆外,则圆A 的半径R 的取值范围为 __________.例4.下列说法:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④长度相等的两条弧是等弧,其中正确的命题有( )个.A. 1B. 2C. 3D. 4例5.已知,如图,在⊙O 中,AB OE ⊥于E ,CD OF ⊥于F ,OE=OF . 求证:弧AC=弧BD .例6.如图,OB ,OC 的⊙O 上一点,且∠B=200,∠C=300,求∠A 的度数.OBCA例7.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中是真命题的是( ). A. ①②③ B. ②③ C. ①③ D. ①②③例8.已知⊙O 的半径是5cm ,点P 满足PO=3cm ,则过P 的最大弦长为_________ 最小弦长为_________例9.已知⊙O 的半径是5㎝,圆心到弦AB 的距离是3㎝,则弦AB= ㎝.例10.等腰ABC ∆内接于半径为10cm 的圆内,其底边BC 的长为16cm ,则ABC S ∆( )A .322cmB .1282cmC .322cm 或802cmD .322cm 或1282cm例11.⊙O 的半径为13 cm ,弦AB ∥CD ,AB=24cm ,CD=10cm ,求AB 和CD 的距离.专项练习1.下列四边形:①平行四边形,②菱形;③矩形;④正方形.其中四个顶点一定能在同一个圆上的有( ).A .①②③④B .②③④C .②③D .③④2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ). A .第①块 B .第②块 C .第③块 D .第④块3.下列命题中,正确的是( ) A. 平分一条直径的弦必垂直于这条直径 B. 平分一条弧的直线垂直于这条弧所对的弦 C. 弦的垂线必经过这条弦所在圆的圆心D. 在一个圆内平分一条弧和弧所对弦的直线必经过这个圆的圆心4.已知ABC ∆,090C ∠=,AC=3,BC=4,以点C 为圆心作圆C ,半径为r . (1) 当r 取什么值时,点A 、B 在圆C 外;(2) 当r 在什么范围时,点A 在圆C 内,点B 在圆C 外.5.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧,其中正确的命题有( )个.A. 4B. 3C. 2D. 16.下列命题中的假命题是( )A. 在等圆中,如果弦相等,那么它们所对的优弧也相等B.在等圆中,如果弧相等,那么它所对的弦的弦心距也相等 C .在等圆中,如果弦心距相等,那么它们所对的弦也相等 D .相等的圆心角所对的两条弦相等7.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于CD 两点,若AB =12cm, CD =8cm, 则AC 的长为( )A. 1cmB. 1.5cmC. 2cmD. 2.5cm8.下列命题中,正确的是( ).A .平分一条弧的直径垂直平分这条弧所对的弦;B .平分弦的直径垂直于弦,并且平分弦所对的弧;C .AB ,CD 是⊙O 的弦,若»»AB CD ,则AB ∥CD ; D .圆是轴对称图形,对称轴是圆的每一条直径.9.在△ABC 中,∠C =90°,AC =2,BC =4,CD 是高,CM 是中线,以C 为圆心,以5长为半径画圆,那么A 、B 、C 、D 、M 五个点中,在圆外的点是 __________;在圆上的点是 __________;在圆内的点是 __________.10.如图,一圆拱桥跨度为AB =8米,拱高CD =2米,则圆拱半径为 __________ 米.11.在ABC ∆中,090C ∠=,AC=4,BC=3,以点B 为圆心,以3.5为半径作圆,那么:(1)点C 在圆B____;(2)点A 在圆B____;(3)当半径=_____时,点A 在圆B 上. 12.AB 是圆O 的直径,2=AB ,弦3=AC ,若D 为圆上一点,且1=AD , 则=∠DAC 度.13. 已知等腰三角形的底边长为6,它内接于半径为5的o e 中,那么这个三角形的腰长 为 .14. P 是⊙O 外一点,过点P 的两条直线分别交⊙O 于A 、B 和C 、D ,又E 、F 分别是AB 弧、CD 弧的中点,联结EF ,交AB 、CD 于点M 、N ,请判断△PMN 的形状,并证明你的结论.P15.△ABC 内接于⊙O,AB=AC.已知⊙O的半径为7,且圆心O到BC的距离为3.求腰AB的长.16.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,求AB和CD的距离.17.在△ABC中,∠ACB=90°,CD⊥AB,D是垂足,∠A=30°,AC=3cm,以C为圆心,3cm为半径作圆C.(1)指出A、B、D与⊙C的位置关系;(2)如果要使⊙C经过点D,那么这个圆的半径应为多长?(3)设⊙C的半径为R,要使点B在⊙C内,点A在⊙C外,求出⊙C的半径R的取值范围.18.机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.(1)求弦BC的长;(2)求圆O的半径长.(本题参考数据:sin 67.4° = 1213,cos 67.4° =513,tan 67.4° =125)BD。
中考数学复习圆专题复习教案
中考数学复习-圆专题复习-教案一、教学目标1. 知识与技能:(1)掌握圆的定义、性质、公式等基本知识;(2)学会运用圆的相关知识解决实际问题。
2. 过程与方法:(1)通过复习,巩固已学过的圆的相关知识;(2)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作、积极进取的精神。
二、教学内容1. 圆的定义与性质(1)圆的定义;(2)圆的性质:圆心到圆上任意一点的距离相等,圆上任意一点到圆心的连线与圆的切线垂直。
2. 圆的直径与半径(1)直径与半径的定义;(2)直径与半径的关系。
3. 圆的周长与面积(1)周长的计算公式:C = 2πr;(2)面积的计算公式:S = πr²。
4. 圆的方程(1)圆的标准方程:(x h)²+ (y k)²= r²(2)圆的一般方程:x²+ y²+ Dx + Ey + F = 05. 圆与圆的位置关系(1)外切;(2)内切;(3)相离;(4)相交;(5)内含。
三、教学重点与难点1. 重点:圆的定义、性质、公式、方程及位置关系的理解与应用。
2. 难点:圆的方程求解及圆与圆的位置关系的判断。
四、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生掌握圆的相关知识;2. 通过例题、习题,培养学生的实际应用能力;3. 组织学生进行小组讨论,提高学生的合作能力。
五、教学过程1. 导入:回顾已学过的圆的相关知识,引导学生进入复习状态;2. 讲解:讲解圆的定义、性质、公式、方程及位置关系,重点讲解圆的方程求解及圆与圆的位置关系的判断;3. 示范:通过示例,展示圆的相关知识的应用;4. 练习:布置练习题,让学生巩固所学知识;5. 讨论:组织学生进行小组讨论,分享解题心得;6. 总结:对本节课的内容进行总结,强调重点知识;7. 作业:布置课后作业,巩固所学知识。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
圆的有关概念和性质教案
圆的有关概念和性质教案一、教学目标1. 知识与技能:(1)能够理解圆的概念及其相关术语(如圆心、半径、直径等);(2)能够运用圆的性质解决一些实际问题。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力和直观表达能力;(2)学会用圆规和直尺画圆,掌握圆的基本画法。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;二、教学重点与难点1. 教学重点:(1)圆的概念及其相关术语的理解;(2)圆的性质及运用。
2. 教学难点:(1)圆的性质的理解和运用;(2)圆的基本画法的掌握。
三、教学准备1. 教具准备:(1)黑板、粉笔;(2)圆规、直尺、圆形的实物等。
2. 学具准备:(1)每个学生准备一套圆规和直尺;(2)准备一些圆形的实物,如圆纸片、硬币等。
四、教学过程1. 导入新课(1)利用实物展示,引导学生观察和描述圆的特征;(2)提问:你们在生活中哪里见过圆形?圆有什么特点?2. 自主探究(1)让学生用圆规和直尺尝试画圆,并观察圆的性质;(2)引导学生发现圆的性质,如直径、半径等。
3. 课堂讲解(1)讲解圆的概念及其相关术语;(2)讲解圆的性质,如圆的对称性、周长和面积的计算等。
4. 巩固练习(1)让学生运用圆的性质解决一些实际问题;(2)进行一些有关圆的练习题,检查学生的掌握情况。
五、作业布置1. 完成课后练习题,巩固圆的概念和性质;2. 收集生活中的圆形物品,下节课进行展示和交流。
六、教学策略1. 采用问题驱动法,引导学生主动探究圆的性质;2. 利用直观教具,帮助学生形象地理解圆的概念;3. 运用实例分析,使学生能够将圆的性质应用于实际问题。
七、教学评价1. 课堂讲解评价:观察学生在课堂上的参与程度、提问回答情况等;2. 练习题评价:检查学生在练习题中的解答情况,以检验其对圆的性质的掌握程度;3. 作业评价:查看学生作业的完成质量,了解其对圆的概念和性质的掌握情况。
八、教学拓展1. 引导学生进一步研究圆与其他几何图形的联系和区别;2. 鼓励学生探索圆在自然界和生活中的应用;3. 推荐学生阅读有关圆的数学故事或科普书籍,增强其对圆的兴趣。
数学中考一轮复习学案 第24节 圆的有关概念与性质(含解析)
第四章图形的性质第24节圆的有关概念与性质■知识点一:圆的有关概念(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.(2)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(3)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(4)相关概念:同心圆、弓形、等圆、等弧.(5)圆心角:顶点在圆心的角叫做圆心角.(6)圆周角:顶点在圆上,并且两边和圆相交的角是圆周角.(7)确定圆的条件:过已知一点可作无数个圆,过已知两点可作无数个圆,过不在同一条直线上的三点可作一个圆.(8)圆的对称性:圆是轴对称图形,其对称轴是直径所在的直线;圆是中对称图形,对称中心为圆心,并且圆具有旋转不变性.■知识点二:垂径定理及推论:①垂直于弦的直径平分弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,③弦的垂直平分线经过圆心,并且平分弦所对的两条弧.④平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.⑤圆的两条平行弦所夹的弧相等.■知识点三:圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.■知识点四:圆周角定理及推论①圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.推论2:直径所对的网周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.②圆内接四边形的任意一组对角互补.■考点1.圆的有关概念◇典例:(2017年黑龙江大庆)如图,点M,N在半圆的直径AB上,点P,Q在上,四边形MNPQ 为正方形.若半圆的半径为,则正方形的边长为.【考点】正方形的性质;勾股定理;圆的认识.【分析】连接OP,设正方形的边长为a,则ON=,PN=a,再由勾股定理求出a的值即可.解:连接OP,设正方形的边长为a,则ON=,PN=a,在Rt△OPN中,ON2+PN2=OP2,即()2+a2=()2,解得a=2.故答案为:2.【点评】本题考查的是正方形的性质,勾股定理;圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.◆变式训练(2017•宁夏)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 __________【考点】确定圆的条件.【分析】根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.【点评】本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.■考点2.垂径定理及其推论◇典例:(2018年黑龙江省龙东、七台河、佳木斯、鸡西、伊春、鹤岗、双鸭山)如图,AB为⊙O 的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.【考点】垂径定理,勾股定理【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.◆变式训练1.(2018年山东省烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为.【考点】垂径定理,勾股定理【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.2.(2018年浙江省绍兴市)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)【考点】勾股定理的应用;垂径定理的应用,弧长公式【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少走了 15步.故答案为15.【点评】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.■考点3. 圆心角、弧、弦的关系◇典例(2017•牡丹江)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.【考点】圆心角、弧、弦的关系;垂径定理.【分析】连接OC,先根据=得出∠AOC=∠BOC,再由已知条件根据AAS定理得出△COD≌△COE,由此可得出结论.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.◆变式训练(2017•宜昌)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C. D.∠BCA=∠DCA【考点】圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.■考点4. 圆周角定理及其推论◇典例:1.(2018 年广西梧州市)如图,已知在⊙O 中,半径 OA=2,弦 AB=2,∠BAD=18°,OD 与AB 交于点 C,则∠ACO=__________度.【考点】圆周角定理,勾股定理的逆定理,等腰三角形的性质【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.解:∵OA=2,OB=2,AB=2,∴OA 2+OB2=AB2,OA=OB,∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.◆变式训练1.(2018年四川省南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B 的度数是()A.58° B.60° C.64° D.68°【考点】圆周角定理,等腰三角形的性质【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.2.(2017•锦州)如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()A.55°B.50°C.45°D.40°【考点】圆内接四边形的性质;圆周角定理.【分析】根据三角形的外角的性质求出∠B,根据圆内接四边形的性质和三角形内角和定理计算即可.解:∠B=∠DCE-∠F=55°,∵四边形ABCD是⊙O的内接四边形,∴∠EDC=∠B=55°,∴∠E=180°-∠DCE-∠EDC=45°,故选:C.【点评】本题考查的是圆内接四边形的性质和三角形内角和定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.一、选择题1.(2018年广西柳州市)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°【考点】圆周角定理【分析】直接利用圆周角定理即可得出答案.解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.(2018年内蒙古赤峰市)如图,AB是⊙O的直线,C是⊙O上一点(A.B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°【考点】圆周角定理【分析】根据圆周角定理进行解答即可.解:∵∠AOD=130°,∴∠C=90°﹣,故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.3.(2018年浙江省衢州市)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°【考点】圆周角定理.【分析】直接根据圆周角定理求解.解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2018年湖北省襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C. D.2【考点】垂径定理;圆周角定理;圆内接四边形的性质【分析】根据垂径定理得到CH=BH,=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.解:∵OA⊥BC,∴CH=BH,=,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.【点评】本题考查的是垂径定理、圆周角定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.5.(2018年四川省甘孜州)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD【考点】垂径定理;圆周角定理【分析】根据垂径定理得出=,=,根据以上结论判断即可.解:A.根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B.【点评】本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.二、填空题6.(2018年广东省)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.【考点】圆周角定理.【分析】直接利用圆周角定理求解.解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2018年青海省)如图,A.B、C是上的三个点,若∠AOC=1100,则∠ABC=______.【考点】圆周角定理,圆的内接四边形的性质【分析】首先在优弧AC上取点D,连接AD,CD,由由圆周角定理,可求得的度数,又由圆的内接四边形的性质,求得的度数.解:如图,在优弧AC上取点D,连接AD,CD,,,.故答案为:.【点评】此题考查了圆周角定理以及圆的内接四边形的性质此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.(2018年云南省曲靖市)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= °.【考点】圆内接四边形的性质【分析】利用圆内接四边形的对角互补和邻补角的性质求解.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n【点评】本题考查了圆内接四边形的性质.解决本题的关键是掌握:圆内接四边形的对角互补.9.(2018年浙江省杭州市)如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O于D,E两点,过点D作直径DF,连结AF,则∠DFA= .【考点】圆周角定理,垂径定理【分析】利用垂径定理和三角函数得出∠CDO=30°,进而得出∠DOA=60°,利用圆周角定理得出∠DFA=30°即可.解:∵点C是半径OA的中点,∴OC=OD,∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=30°,故答案为:30°【点评】此题考查圆周角定理,关键是利用垂径定理和三角函数得出∠CDO=30°.三、解答题10.(2018年黑龙江省牡丹江市)如图,在⊙O中,=2,AD⊥OC于D.求证:AB=2AD.【考点】垂径定理;圆心角、弧、弦的关系【分析】延长AD交⊙O于E,利用圆心角、弧、弦的关系证明即可.证明:延长AD交⊙O于E,∵OC⊥AD,∴,AE=2AD,∵,∴,∴AB=AE,∴AB=2AD.【点评】此题考查圆心角、弧、弦的关系,关键是根据圆心角、弧、弦的关系解答.一、选择题1.(2018年湖南省邵阳市)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°【考点】圆内接四边形的性质【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.2.(2018年江苏省淮安市)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5°C.30°D.35°【考点】圆周角定理,三角形内角和定理【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3.(2018年广西贵港市)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28° C.33°D.48°【考点】圆周角定理,等腰三角形的性质【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.4.(2018年广东省广州市)如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【考点】垂径定理,圆周角定理【分析】根据同弧所对的圆心角等于圆周角的两倍得∠AOC度数,再由垂径定理得OC 平分∠AOB,由角平分线定义得∠AOB=2∠AOC.解:∵∠ABC=20°,∴∠AOC=40°,又∵OC⊥AB,∴OC平分∠AOB,∴∠AOB=2∠AOC=80°.故答案为:D.5.(2018年浙江省杭州市临安市)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.【考点】勾股定理;垂径定理【分析】根据垂径定理先求BC一半的长,再求BC的长.解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.【点评】本题的关键是利用垂径定理和勾股定理.6.(2018年四川省乐山市)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸【考点】垂径定理的应用【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可;解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.7.(2018年湖北省咸宁市)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.5【考点】圆心角、弧、弦的关系;圆周角定理【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.【点评】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.二、、填空题8.(2018年广西玉林市)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.【考点】垂径定理,勾股定理【分析】先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.9.(2018年北京市)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB= .【考点】圆周角定理,三角形内角和定理【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.10.(2018年江苏省南通市)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.【考点】圆周角定理,垂径定理,勾股定理,三角形中位线【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.11.(2018年浙江省丽水义乌金华市)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.【考点】勾股定理的应用;垂径定理的应用【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.12.(2018年四川省甘孜州)如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为.【考点】勾股定理的应用;圆心角、弧、弦的关系;圆周角定理【分析】连接OD,AD,根据OC平分∠BCD,BC=DC,即可得到BD⊥CO,依据AB是直径,可得AD⊥BD,进而得出AD=CO=1,再根据Rt△ABD,利用勾股定理可得BD=.解:如图,连接OD,AD,∵BC=DC,BO=DO,∴∠BDC=∠DBC,∠BDO=∠DBO,∴∠CDO=∠CBO,又∵OC=OB=OD,∴∠BCO=∠DCO,即OC平分∠BCD,又∵BC=DC,∴BD⊥CO,又∵AB是直径,∴AD⊥BD,∴AD∥CO,又∵AE=AO=2,∴AD=CO=1,∴Rt△ABD中,BD===.故答案为:.【点评】本题主要考查了圆周角定理以及勾股定理的综合运用,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.13.(2018年湖北省孝感市)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.【考点】勾股定理;垂径定理【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.14.(2018年江苏省南通市)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是.【考点】圆周角定理【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题15.(2018年湖北省宜昌市)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【考点】等腰三角形的性质;勾股定理;菱形的判定与性质;圆周角定理【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.。
中考人教版数学一轮复习学案:圆的有关概念和性质
章节第八章课题圆的有关概念和性质课型复习课教法讲练结合教学目标(知识、能力、教育)1.了解圆及其相关结论概念, 认识圆的轴对称性和中心对称性.2.掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.3.进一步认识和理解研究图形性质的各种方法.教学重点掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.教学难点理解体会研究图形性质的各种方法.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
2013中考圆复习学案.doc
圆2013年中考将继续考查圆的有关性质,其中圆与三角形相似(全等)。
三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置关系的开放题、探究题是考查重点;继续考查圆与圆的位置五种关系。
对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。
应试对策考查目标一、主要是指圆的基础知识,包括圆的对称性,圆心角与弧、弦之间的相等关系,圆周角与圆心角之间的关系,直径所对的圆周角是直角,以及垂径定理等内容。
例1、如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交⋂BC 于D . (1)请写出五个不同类型的正确结论; (2)若BC =8,ED =2,求⊙O 的半径.例2.已知:如图等边ABC △内接于⊙O ,点P 是劣弧PC 上的一点(端点除外),延长BP 至D ,使BD AP =,连结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?图图②例3.(1)如图OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点:过点C作CD切⊙O于点D,连结AD交DC于点E.求证:CD=CE(2)若将图中的半径OB所在直线向上平行移动交OA于F,交⊙O于B’,其他条件不变,那么上述结论CD=CE还成立吗?为什么?(3)若将图中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变,那么上述结论CD=CE还成立吗?为什么考查目标二、主要是指点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系的相关内容。
学生要学会用动态的观点理解和解决与圆有关的位置关系的问题。
例1、AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若30P∠=,求B∠的度数.P例2.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.考查目标三、主要是指圆中的计算问题,包括弧长、扇形面积,以及圆柱与圆锥的侧面积和全面积的计算,这部分内容也是历年中考的必考内容之一。
第34课时 圆的有关概念和性质(1)
E OABCD九年级数学第一轮复习教、学案(共47课时)第四章 图形的认识——圆 (共5课时,第1课时)第34课时 圆的有关概念与性质一、知识要点: 1.圆的有关概念:(1) 圆:平面上到 等于 的所有点组成的图形叫做圆,其中, 为圆心,为半径. 圆心确定圆的 ,半径确定圆的 ,圆可以看作是平面内到 等于 的 的集合. (2) 圆心角:顶点在 的角叫做圆心角.(3) 圆周角:顶点在 ,两边分别 的角叫做圆周角.(4) 弧:圆上任意 叫做圆弧,简称弧,大于半圆的弧称为 弧,小于半圆的弧称为 弧.圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做 .(5) 弦:连接圆上任意 叫做弦,经过圆心的弦叫做 . 2.圆的有关性质:(1) 圆是轴对称图形,其对称轴是任意一条过 的直线;圆是中心对称图形,对称中心为 .(2) 圆的旋转不变性:圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. (3) 垂径定理:垂直于弦的直径 这条弦,并且 弦所对的弧. 推论:平分弦(不是直径)的直径 于弦,并且 弦所对的弧.垂径定理的推广延伸:如图,基于圆的轴对称性,下列五个结论: ①AC = BC ②AD= BD ③AE=BE ④AB ⊥CD ⑤CD 是直径, 只要满足其中的两个,另外三个结论一定成立.(即知二推三) (4) 弧、弦、圆心角、弦心距之间的关系 圆心角的度数等于它所对的弧的度数定理:在 中,相等的圆心角所对的弧长相等,所对的弦长相等,所对的弦心距相等.推论:在同圆或等圆中,如果两个 、 、 或两条弦的弦心距这四组量中有一组量相等,那么它们所对应的其余各组量都分别相等. 二、典型例题例1.如图,⊙O 的直径AB =12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP =1:5,则CD 的长为( ).A .24B .28C .52D .54例2.如图,MN 所在的直线垂直平分弦A B ,利用这样的工具最少使用__________次,就可找到圆形工件的圆心.例3.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,且AB =8cm,AB ⊥CD ,垂足为M ,则AC 的长为 。
2013年中考数学总复习教案
圆的有关概念及性质一、圆的有关概念和性质1、知识梳理1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在国上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.2、课前练习1.如图,A、B、C是⊙O上的三点,∠BAC=30°则∠BOC的大小是()A.60○B.45○ C.30○D.15○2.如图,MN所在的直线垂直平分弦A B,利用这样的工具最少使用__________次,就可找到圆形工件的圆心.3.如图,A、B、C是⊙O上三个点,当 BC平分∠ABO时,能得出结论_______(任写一个).4.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180° B.15 0° C.135° D.120°5.如图,PA、PB是⊙O的切线,切点分别为A 、B,点C在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○ B.50○C.65○D.130○3、经典考题剖析1.如图,在⊙O 中,已知∠A CB =∠CDB =60○,AC =3,则△ABC 的周长是____________.2.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB=10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸3.如图,已知AB 是半圆O 的直径,弦AD 和BC 相交于点P ,那么CD AB等于( ) A .sin ∠BPD B .cos ∠BPD C .tan ∠BPD D .cot ∠BPD4.⊙O 的半径是5,AB 、CD 为⊙O 的两条弦,且AB ∥CD ,AB=6,CD=8,求 AB 与CD 之间的距离.5.如图,在⊙M 中,弧AB 所对的圆心角为1200,已知圆的半径为2cm ,并建立如图所示的直角坐标系,点C 是y 轴与弧AB 的交点。
2013中考复习圆教案
课题:圆的有关概念及性质 李学兵学习目标:利用垂径定理进行证明和计算,利用弧、弦、圆心角之间的关系证明线段、角相等 利用圆周角定理及推论的应用,以及圆的性质的综合运用。
学习重点:利用垂径定理进行证明和计算,利用弧、弦、圆心角之间的关系证明线段、角相等 。
利用圆周角定理及推论的应用学习难点:综合应用以上知识学习过程:第一学习时间:基础梳理,知识回顾:圆的概念:在同一平面内,线段OA 绕它固定的一个端点O旋转一周,另一端点A 所形成的图形,叫做圆(1)圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,圆又是中心对称图形(2)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧推论:平分(不是直径)的直径垂直于弦,并且平分弦所对的两条弧圆的性质(3)同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其他各组量也相等(4)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角是直角,90 的圆周角所对的弦是直径(5)圆内接四边形对角互补第二学习时间:考点分析 对应训练考点一:垂径定理例1 (2012•绍兴)如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:甲:1、作OD 的中垂线,交⊙O 于B ,C 两点,2、连接AB ,AC ,△ABC 即为所求的三角形 乙:1、以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点. 2、连接AB ,BC ,CA .△ABC 即为所求的三角形. 对于甲、乙两人的作法,可判断( ) A .甲、乙均正确 B .甲、乙均错误 C .甲正确、乙错误 D .甲错误,乙正确考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.对应训练(2012•黄冈)如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=2,则⊙O 的直径为( ) A .8 B .10 C .16 D .20考点二:圆周角定理例2 (2012•青海)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点N ,点M 在⊙O 上,∠1=∠C(1)求证:CB ∥MD ;A .6B .5C .3D .考点:圆内接四边形的性质;坐标与图形性质;含30度角的直角三角形.对应训练 3.(2012•肇庆)如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( ) A .115° B .l05° C .100° D .95° 考点:圆内接四边形的性质. 考点四:性质的综合运用1.(2012-2013武珞路月考试题)小聪在学习圆的性质时发现一个结论,△ABC 内接于⊙O ,AD ⊥BC ,则∠BAD=∠OAC(1)请帮小聪证明这个结论(2)运用以上结论解决问题:H 为△ABC 的垂心,若∠ABC 的平分线BE ⊥HO ,⊙O 的半径为10,求弦AC 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的有关概念和性质
一:【课前预习】
(一):【知识梳理】
1.圆的有关概念和性质
(1) 圆的有关概念
①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,
定长为半径.
②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆
的弧称为劣弧.
③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.
(2)圆的有关性质
①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中
心为圆心.
②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有
一组量相等,那么它们所对应的其余各组量都分别相等.
推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;
90”的圆周角所对的弦是直径.
④三角形的内心和外心
ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.
ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心
2.与圆有关的角
(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.
(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.
(3)圆心角与圆周角的关系:
同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(二):【课前练习】
1.如图,A、B、C是⊙O上的三点,∠BAC=30°
则∠BOC的大小是()
A.60○B.45○ C.30○D.15○
2.如图,MN所在的直线垂直平分弦A B,利用这样的工
具最少使用__________次,就可找到圆形工件的圆心.
3.如图,A、B、C是⊙O上三个点,当 BC平分∠ABO时,
能得出结论_______(任写一个).
4.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,
则∠A+∠B+∠C+∠D+∠E的度数是()
A.180° B.15 0° C.135° D.120°
5.如图,PA、PB是⊙O的切线,切点分别为A 、B,点C在
⊙O上.如果∠P=50○,那么∠ACB等于()
A.40○ B.50○
C.65○D.130○
二:【经典考题剖析】
1.如图,在⊙O中,已知∠A CB=∠CDB=60○,AC=3,
则△ABC的周长是____________.
2.“圆材埋壁”是我国古代《九章算术》中的问题:“今有
圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图,CD为⊙O的直径,弦
AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为() A.12.5寸 B.13寸 C.25寸 D.26寸
3.如图,已知AB是半圆O的直径,弦AD和BC相交于点P,
那么CD
AB
等于()
A.sin∠BPD B.cos∠BPD C.tan∠BPD D.cot∠BPD
4.⊙O的半径是5,AB、CD为⊙O的两条弦,且AB∥CD,AB=6,CD=8,求 AB与CD之间的距离.
5.如图,在⊙M中,弧AB所对的圆心角为1200,已知圆的半径为2cm,并建立如图所示的
直角坐标系,点C是y轴与弧AB的交点。
(1)求圆心M的坐标;
(2)若点D是弦AB所对优弧上一动点,求四边形ACBD的最大面积
三:【课后训练】
1.如图,在⊙O中,弦AB=1.8。
m,圆周角∠ACB=30○,
则⊙O的直径等于_________cm.
2.如图,C是⊙O上一点,O是圆心.若∠=35°,
则∠AOB的度数为()
A.35○B.70○ C.105○D.150○
3.如图,⊙O内接四边形ABCD中,AB=CD,则图中和∠1相等的角有______
4.在半径为1的圆中,弦AB、AC
则∠BAC的度数为多少?
5.如图,弦AB的长等于⊙O的半径,点C在 AMB上,
则∠C的度数是_______.
6.如图,四边形 ABCD内接于⊙O,若∠BOD=100°,
则∠DAB的度数为()
A.50° B.80° C.100° D.130°
7.如图,四边形ABCD 为⊙O 的内接四边形,点E 在CD 的延长线上,
如果∠BOD=120°,那么∠BCE 等于( )
A .30°
B .60°
C .90°
D .120°
8.用直角钢尺检查某一工件是否恰好是半圆环形,
根据图所表示的情形,四个工件哪一个肯定是半圆环形( )
9.如图,⊙O 的直径AB=10,DE ⊥AB 于点H ,AH=2.
(1)求DE 的长;
(2)延长ED 到P ,过P 作⊙O 的切线,切点为C ,
若
PD 的长.
10.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的
半径,如图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4,求这个圆形截
面的半径.
四:【课后小结】
B。