六年级典型的比例解答的应用题
六年级比例应用题
六年级比例应用题一、比例的基本性质相关应用题1. 题目:已知比例公式,求公式的值。
- 解析:根据比例的基本性质,两个外项的积等于两个内项的积。
在比例公式中,公式,即公式,然后等式两边同时除以公式,得到公式。
2. 题目:如果公式,公式,求公式。
- 解析:因为公式,公式,要统一公式的值。
公式,所以公式。
二、正比例应用题1. 题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 首先判断路程和时间成正比例关系,因为速度一定(速度 = 路程÷时间)。
- 设公式小时行驶公式千米。
根据正比例关系可得公式。
- 交叉相乘得到公式,即公式,解得公式千米。
2. 题目:小明买公式本笔记本花了公式元,照这样计算,买公式本笔记本需要多少钱?- 解析:- 因为笔记本的单价是一定的,所以总价和数量成正比例关系。
- 设买公式本笔记本需要公式元。
可得公式。
- 交叉相乘得公式,即公式,解得公式元。
三、反比例应用题1. 题目:一辆汽车从甲地开往乙地,如果每小时行公式千米,公式小时到达。
如果要公式小时到达,每小时应行多少千米?- 解析:- 路程是一定的(路程 = 速度×时间),速度和时间成反比例关系。
- 设每小时应行公式千米。
根据反比例关系可得公式。
- 即公式,解得公式千米。
2. 题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。
如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的(面积 = 方砖面积×方砖块数),方砖面积和方砖块数成反比例关系。
- 边长为公式分米的方砖面积是公式平方分米,边长为公式分米的方砖面积是公式平方分米。
- 设需要公式块边长为公式分米的方砖。
可得公式。
- 即公式,解得公式块。
六年级数学上册按比例分配应用题
六年级数学上册按比例分配应用题1.甲、乙两人每天共做56个机器零件,甲、乙工作效率的比是3:5,问甲、乙两人每天各做多少个零件?解析:设甲每天做3x个零件,乙每天做5x个零件,则3x+5x=56,解得x=8,因此甲每天做24个零件,乙每天做40个零件。
2.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需要石灰多少千克?解析:石灰和水的比是1:100,因此需要的水量是4545千克/100=45.45千克,石灰的重量也是45.45千克。
3.体育室有60根跳绳,按人数分配给甲乙两班,甲班有42人,乙班有48人,两个班各分得跳绳多少根?解析:甲班分得的跳绳数量是60×(42/90)=28根,乙班分得的跳绳数量是60×(48/90)=32根。
4.一个分数,它的分子和分母的和是80,分子和分母的比是3:7,求这个分数?解析:设分子为3x,分母为7x,则3x+7x=80,解得x=8,因此分子是24,分母是56,这个分数是24/56.5.一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?解析:设长为3x,宽为2x,则周长为2(3x+2x)=10x,解得x=20,因此长为60米,宽为40米,面积是2400平方米。
6.甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?解析:设甲车间的人数为5x,乙车间的人数为7x,则5x+7x=2×36,解得x=3.6,因此甲车间有18人,乙车间有25.2人,约为25人。
7.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?解析:设水泥、沙子、石子的比为2x:3x:5x,则2x+3x+5x=96,解得x=8,因此水泥需要16吨,沙子需要24吨,石子需要40吨。
8.一种药水是用药物和水按3:400配制成的。
1)要配制这种药水1612千克,需要药粉多少千克?2)用水60千克,需要药粉多少千克?3)用48千克药粉,可配制成多少千克的药水?解析:(1)药物和水的比是3:400,因此需要的药物重量是1612千克×(3/403)=12千克。
六年级比的典型应用题
六年级比的典型应用题1、三角形的内角度数比为5:3:2,这是一个锐角三角形。
如果比为4:4:4,那么这是一个等边三角形。
如果比为8:8:4,那么这是一个等腰直角三角形。
2、一个长方形的周长为18米,长和宽的比为5:4,这个长方形的面积为20平方米。
3、某校六年级三个班的人数在100-150之间。
在学校运动会上,六一班运动员占全年级人数的1/6,六二班占1/8,六三班占1/9.因此,六年级共有120个学生。
4、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比为3:2.因此,商店运来了30台电冰箱。
5、学校有足球和篮球共65个,其中足球和篮球数量比为1:4.今年又买回一些足球,这时足球和篮球数量比为3:4.因此,今年买回了15个足球。
6、大母鸡和小母鸡的生蛋数量比为10:9,大母鸡比小母鸡多生2个鸡蛋。
因此,大母鸡生了20个蛋,小母鸡生了18个蛋。
7、甲乙两人下班回家,甲走的路程比乙多1/5,乙用的时间比甲多1/8.因此,甲乙两人的速度比为15:14.8、建筑工地用2份水泥,3份沙子和5份石子配制一种混凝土。
要配12吨这种混凝土需要4吨水泥,6吨沙子和10吨石子。
9、一种混凝土的水泥、黄沙和石子的比为2:3:5.如果有2/5吨的水泥搅拌混凝土,需要3吨黄沙和5吨石子。
10、三个同学跑步,甲、乙、丙的速度比为4:3:2.甲跑了600米,乙比丙多跑了300米。
11、工地用100千克水泥、150千克沙子、250千克石子配制一种混凝土。
如果按同样的比例配制8000千克混凝土,需要2000千克水泥、3000千克沙子和5000千克石子。
12、学校要把150本课外书,按六年级的人数分配给三个班。
一班48人,二班32人,三班40人。
因此,一班应该分配60本书,二班应该分配40本书,三班应该分配50本书。
13、一个农民要把17头牛分给三个儿子。
大儿子分得8头牛,二儿子分得5头牛,小儿子分得2头牛。
14、甲乙两数的比为6:5,甲丙两数的比为4:9,甲、乙、丙三数之比为24:20:45.15、三筐苹果共重140千克,甲筐苹果和乙筐苹果重量之比为3:4,乙筐苹果和丙筐苹果重量之比为6:7.因此,甲筐苹果重30千克,乙筐苹果重40千克,丙筐苹果重70千克。
6年级比例应用题
6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。
汽车3小时行驶180千米,速度为公式千米/小时。
然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。
设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。
2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。
现有水6000千克,那么药粉的重量为公式千克。
设需要药粉公式千克,根据比例关系公式,解得公式。
3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。
思路是根据两种书数量的比例关系列方程求解。
4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。
利用长和宽的比例关系来建立方程求解宽的长度。
5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。
依据给定的人数比例关系列方程求解女职工人数。
6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。
现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。
水泥占公式,沙子占公式,石子占公式。
水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。
先求出各成分占总量的比例,再根据总量求出各成分的量。
7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。
小学六年级数学比例应用题及答案
小学六年级数学比例应用题及答案
小学六年级数学比例是孩子学习数学的重要内容。
学好比例能够有效提高孩子的逻辑思维能力,把数学应用到日常生活中去。
下面我们就一起来学习小学六年级数学比例应用题及答案。
一、数学比例题
1、小明参加了一次知识竞赛,但他总分为180分,卷面分为150分,考官给予他的附加分是多少?
答案:附加分为30分。
2、某体育比赛,红队赢了4场,黑队赢了2场,平局2场,则红队胜率是多少?
答案:红队胜率为66.7%,即2/3。
3、在一个购物店中,某件洋原价160元,现在7折,则打折后的价格是多少?
答案:打折后的价格为112元。
二、比例的实际应用
1、在布料的购买中,购买的是一种卷布,它的长度是20米,宽度是3米,那么卷布的面积是多少?
答案:卷布的面积为60平方米。
2、在变形金刚的动画片中,Optimus Prime的比例是25:42,那么它的真实尺寸应该是多少?
答案:Optimus Prime的真实尺寸应该是25米高,42米长。
3、某一礼品盒中共有若干个玩具,其中一共有9枚小汽车,18
个小船,6个小飞机,那么汽车在所有玩具中占的比例是多少?
答案:汽车占的比例是 9: 33,即9/33。
以上就是小学六年级数学比例应用题及答案的内容。
总而言之,比例是学习数学的重要内容,是培养孩子逻辑思维能力的基础。
家长要注意重视孩子数学学习,让孩子能够熟练掌握数学比例,有效利用比例应用在日常生活中去。
比例的应用题六年级
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
小学六年级数学质量检测用比例解应用题练习153道
小学六年级数学质量检测用比例解应用题练习153道学校名称:班级:学号:姓名:1.小红看一本故事书,3天看了54页,照这样计算,要看完162页的这本书,还需几天?2.服装厂用一批布料做服装,计划每套用料3.2米,可以做120套.如果改做儿童服装,每套用料2.4米,这批布料可以做多少套?3.修路队修一段路,3天修了全长的40%,照这样算,修完这段路共要多少天?4.某厂装配一批小汽车,计划每天装配20辆,15天可以完成,实际用了12天,实际每天装配多少辆?5.建一座厂房,长120米,在图纸上量得长40厘米,宽15厘米,这座厂房占地多少平方米?6.一项工程,原计划15个工人工作,18天可以完成,现在要求提前3天完成,需增加几个工人?7.把一根长2米的竹竿直立地面,量得影长0.8米,同时量得一根旗杆的影长4.8米,这根旗杆高多少米?8.用方砖铺教室地板,原计划用9平方米的方砖铺,需要800块,现用面积大的方砖铺,需要多少块?9.测量小组的同学们测得一烟囱的影长为22.5米,同时把2米长的竹竿立在地上,测得影长1.8米。
那么烟囱有多高?10.榨油厂用100千克黄豆可以榨出13千克豆油。
照这样计算,用3吨黄豆可以榨出多少吨豆油?11.化肥厂把一批化肥运往农村,原计划用载重量4.5吨的汽车运,需要10辆;如果改用载重量是3吨的汽车运,需要多少辆汽车?12.一间房子用边长3分米的方砖铺底,需要96块。
如果改用边长2分米的方砖铺地,需要多少块?13.用边长2分米的方砖铺一块地面,需要砖块。
如果改用面积为9平方分米的方砖铺这块地面,需要多少块?14.一个筑路队修一条公路,原计划每天修1.5千米,28天完成,实际每天修2.1千米。
实际修了多少天?15.学校搞维修,准备用方砖铺走廊,如用面积是9平方分米的方砖,则需480块;如改用面积16平方分米的方砖,则至少需要多少块?16.在一幅地图上量得A到B的铁路长10厘米,地图的比例尺上1:17000000,A到B的铁路长实际是多少千米?17.修一条公路,前6天修了468米,照这样的速度,25天能修多少米?18.甲齿轮有120个齿,它带动的乙齿轮有45个齿,甲齿轮每分钟转90转,乙齿轮每分钟转多少转?19.一辆汽车6小时行驶了360千米,照这样计算,从甲地到乙地900千米,需要行驶多少小时?20.甲乙两地的实际距离是1120千米,把它画在比例尺是1:4000000的地图上,应画多少厘米?21.某工地运来一批水泥,每天用75吨,可以用8天。
六年级解比例练习题三道
六年级解比例练习题三道1. 某校的学生有男生和女生两个团体,其中男生团体有30人,女生团体有40人。
如果男生团体的人数增加了20%,女生团体的人数增加了30%,那么两个团体的人数比是多少?解答:首先,计算男生团体增加后的人数:男生团体增加了20%,所以增加的人数为 30 × 20% = 30 × 0.2 = 6 人。
增加之后男生团体的人数为 30 + 6 = 36 人。
接下来,计算女生团体增加后的人数:女生团体增加了30%,所以增加的人数为 40 × 30% = 40 × 0.3 = 12 人。
增加之后女生团体的人数为 40 + 12 = 52 人。
最后,计算两个团体的人数比:男生团体人数:女生团体人数 = 36 : 52。
2. 一辆车行驶了300公里所需要的时间是4小时。
如果以相同的速度行驶,行驶600公里需要多少时间?解答:首先,计算每小时的行驶公里数:车行驶了300公里所需时间为4小时,所以每小时行驶的公里数为300 / 4 = 75 公里/小时。
接下来,计算行驶600公里所需的时间:行驶600公里所需时间为 600 / 75 = 8 小时。
所以,以相同的速度行驶600公里需要8小时。
3. 一个长方形花坛的长和宽的比是3:2,如果长方形的周长是30米,那么长方形花坛的面积是多少平方米?解答:首先,根据长和宽的比值,设长方形花坛的长为3x,宽为2x。
根据周长的定义,周长 = 2(长 + 宽)。
根据题目中给出的周长是30米,可以得到方程:2(3x + 2x) = 30。
解方程得到:2(5x) = 30,化简为 10x = 30,再化简为 x = 3。
代入长方形花坛的长和宽的表达式,可以得到长为3x = 3 × 3 = 9米,宽为2x = 2 × 3 = 6米。
最后,计算长方形花坛的面积:面积 = 长 ×宽 = 9 × 6 = 54 平方米。
小学六年级比例问题应用题
小学六年级比例问题应用题
(一)问题描述:
某小学六年级有400名学生,其中男生占比3:2,班级中有5个小组,每个小组有20名学生,请根据要求,计算每个小组中男女学生的数量。
(二)问题分析:
根据题意,某小学六年级有400名学生,其中男生3:2的比例,班级
中有5个小组,每个小组有20名学生。
需要计算每个小组中男女学生
的数量。
(三)解题方法:
1、确定总的男女学生的数量:
由于某小学六年级有400名学生,男生占比3:2,可以得出男生数量
为300名,女生数量为100名。
2、确定单个小组中男女学生的人数:
由于班级中有5个小组,每个小组有20名学生,则每个小组中男女学
生的人数分别为15名和5名。
(四)结论:
某小学六年级有400名学生,其中男生占比3:2,班级中有5个小组,每个小组有20名学生。
因此,每个小组中男生数量为15名,女生数
量为5名。
六年级比例练习题带答案
六年级比例练习题带答案1. 题目:小明拥有5本英语书和3本数学书,求其英语书与数学书的比例。
解答:英语书与数学书的数量比为5:3,即英语书数 ÷数学书数 = 5 ÷ 3。
约分后得到英语书与数学书的比值为5:3。
2. 题目:某班级有60名男生和40名女生,请问男生和女生的比例是多少?解答:男生与女生的数量比为60:40,即男生数 ÷女生数 = 60 ÷ 40。
约分后得到男生和女生的比值为3:2。
3. 题目:一辆汽车经过一段路程用时6小时,如果速度提高一倍,则经过同样路程需要多少时间?解答:原速度为1单位路程/1小时,提高一倍后速度为2单位路程/1小时。
根据比例关系,原用时 ÷提高后用时 = 原速度 ÷提高后速度。
代入数值计算得到 6 ÷ x = 1 ÷ 2,求得 x = 12。
因此,提高后的速度下经过同样路程需要12小时。
4. 题目:在一家商店中,某商品售价为100元,若商家打八折出售,求打折后的售价。
解答:打八折意味着商品售价的80%,即打折后售价 = 商品售价 ×打折比例 = 100 × 80% = 80元。
5. 题目:某商品原价为120元,经过折扣出售后,售价为96元,求折扣比例。
解答:折扣比例 = 折扣金额 ÷商品原价 = (商品原价 - 折后售价) ÷商品原价 = (120 - 96) ÷ 120 = 24 ÷ 120 = 0.2。
因此,折扣比例为20%。
6. 题目:甲、乙两人分别走了12公里和15公里的路程,求他们的路程比。
解答:甲、乙两人的路程比为12:15,即甲走的路程 ÷乙走的路程= 12 ÷ 15。
约分后得到甲、乙两人的路程比为4:5。
7. 题目:一桶油漆可以涂刷80平方米的墙面,求涂刷100平方米墙面需要多少桶油漆?解答:1桶油漆可以涂刷80平方米的墙面,因此涂刷100平方米墙面需要的油漆桶数为 100 ÷ 80 = 1.25(桶)。
小学六年级比例应用题例题精选(二)十五道
比例应用题经典例题二1.甲、乙两班人数之比为2:3,新学期乙班新增2名学生,甲班人数没变,甲、乙两班人数之比变为5:8,那么甲班有名学生。
2.今年小明与小红的年龄比是3:5,3年后小明与小红的年龄比是5:8,那么小明今年岁。
3.两根粗细相同、材料相同的蜡烛,长度比为29:26,燃烧25分钟后,长度比变为11:9,那么较长的那根蜡烛还能燃烧分钟。
(填小数)4.阿瓜和阿呆的钱数比为2:3,阿呆给阿瓜60元后,阿瓜和阿呆的钱数比变为4:3,那么阿瓜原来有元钱。
5.姐姐和妹妹拥有的糖果数量比为3:2,姐姐给了妹妹22颗糖后,姐姐与妹妹的糖数比变为2:5,那么姐姐原来有颗糖。
6.一根冰糕售价3元,如果阿童木买这根冰糕,那么阿童木和机器猫剩余的钱数之比为2:5,如果机器猫买了这根冰糕,那么两人的剩余钱数之比为8:13,原来阿童木有元钱。
7.一瓶盐水,盐和水的重量比是1:24,如果再放入75克水,这时盐与水的重量比是1:27,原来瓶内盐水重克。
8.甲、乙两包糖果的重量比是3:1,如果从甲中取出25克放入乙,甲、乙的重量比变为7:5,那么两包糖果的重量和为克。
9.某小学男、女生人数比为16:13,有几名女生转学来到这所学校后,男、女生人数比变为6:5,这时全校共有学生880名,那么转学的女生共有名。
10.亮亮读一本书,已读和未读的页数比是1:5,如果再读30页,已读和未读的页数比为3:5,那么这本书共有页。
11.隔壁班的男、女生人数比为6:5,后来转走了5名男生,班上的男、女生人数比变成了1:1,那么班里一共有女生名。
12.姐姐和妹妹微信钱包里的钱数比为4:3,后来妹妹给姐姐发了两元红包后,姐姐和妹妹的钱数比变为了25:17,那么原来姐姐有元钱。
13.5年前,高高和思思的年龄比是3:4,3年后,高高和思思的年龄比变成了5:6,那么今年高高和思思的年龄和是岁。
14.一杯糖水,糖和水的重量比为1:5,加了100克水后,糖和水的重量比变成了1:10,现在这杯糖水的总重量为克。
小学数学六年级比和比例应用题
1、房产博览会上,某楼盘的模型是按照1:500的比例尺制作的,该楼盘1号楼模型高7厘米,它的实际高度是多少?
2、兰州到乌鲁木齐的铁路长约1900千米,在比例尺是1:40000000的地图上,它的长是多少?
3、修一条长12千米的公路,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?(用比例解答)
4、专业户刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1。
刘大伯家养鸡、鸭、鹅各多少只?
5、把一批书按4:5:6的比例分给甲、乙、丙三个班,已知甲班比丙班少分到24本,三个班各分到多少本书?
6、亮亮家造了新房,准备用边长是0.4米的正方形地砖装饰客厅地面,这样需要180块,装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?(用比例解答)?
7、甲仓库存粮比乙仓存粮多100吨,而甲仓库存粮的 3/4 与乙仓库存粮的 4/5 相等。
原来甲、乙两仓库各存粮多少吨?。
小学数学比例应用题(共6篇)
小学数学比例应用题〔共6篇〕篇1:六年级数学比例应用题练习题六年级数学比例应用题练习题(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开场装配,每天装配40台,完成这批任务时,甲组做了多少天?(6)修筑一条公路,完成了全长的2/3后,离中点16。
5千米,这条公路全长多少千米?(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。
假如两队合修2天后,其余由乙队独修,还要几天完成?(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?(10)前轮在720米的间隔里比后轮多转40周,假如后轮的周长是2米,求前轮的周长。
11、为创立海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?12、甲乙两地相距360千米,一辆汽车从甲地到乙地方案7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)13、在比例尺是的地图上,量得甲乙两地的间隔为4.5厘米,假如一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。
客车每小时行65千米,那么这辆货车每小时行多少千米?14、在比例尺是1:3000000的地图上,量得A、B两城之间的间隔是2.4厘米。
六年级比例的应用题及答案
六年级比例的应用题及答案篇一:六年级数学按比分配应用题及答案】>1、把300 本作业按4∶5∶6 分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15答:四年级得80 本,五年级得100 本,六年级得120 本。
2、一种生理盐水是把盐水和水按照1∶ 100 配制而成,要配制这种生理盐水5050 千克,需要盐水多少千克?解:1+100=101答:需要盐水50 千克。
答:山羊和绵羊一共有140 头。
4、一种石灰水是用石灰和水按1∶ 100 配成的,要配制5656 千克的石灰水,需石灰多少千克?解:1+100=101 答:需石灰56 千克。
5、体育室有200 根跳绳,按人数分配给六年级一、二两个班,一班有52 人,二班有48 人,两个班各得跳绳多少根?解:52 +48=100 (人)答:一班可得跳绳104 根,二班可得跳绳96 根。
6、一个分数,它的分子和分母的和是40, 分子和分母的比是4∶ 6 ,这个分数是几分之几?解:4+6=10 答:这个分数是24 分之16。
7、一种药水是用药粉和水按 1 ∶80 配制成的。
⑴、40 千克药粉,可配制成多少千克的药水?3200 +40=3240 (千克)答:40 千克药粉,可配制成3240 千克的药水。
⑵、60 千克水,需要药粉多少千克?答:60 千克水,需要药粉0.75 千克。
⑶、配制这种药水1620 千克,需要药粉多少千克?解:1+80=81答:配制这种药水1620 千克,需要药粉20 千克。
8、把96 分米长的铁丝焊成一个长方体框架,长、宽、和高的比是3∶2∶1,这个长方体的体积和表面各是多少?3+2+1=6答:这个长方体的体积是384 立方分米,表面是352 平方分米。
9、五年级有140 人,六年级有130 人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140 +130 =270 (人)5+1=6130 -45=85(人)答:从六年级调85 人到五年级。
六年级比例的应用题及答案
六年级比例的应用题及答案【篇一:六年级数学按比分配应用题及答案】>1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15答:四年级得80本,五年级得100本,六年级得120本。
2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101答:需要盐水50千克。
答:山羊和绵羊一共有140头。
4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=101答:需石灰56千克。
5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)答:一班可得跳绳104根,二班可得跳绳96根。
6、一个分数,它的分子和分母的和是40,分子和分母的比是4∶6,这个分数是几分之几?解:4+6=10答:这个分数是24分之16。
7、一种药水是用药粉和水按1∶80配制成的。
⑴、40千克药粉,可配制成多少千克的药水?3200+40=3240(千克)答:40千克药粉,可配制成3240千克的药水。
⑵、60千克水,需要药粉多少千克?答:60千克水,需要药粉0.75千克。
⑶、配制这种药水1620千克,需要药粉多少千克?解:1+80=81答:配制这种药水1620千克,需要药粉20千克。
8、把96分米长的铁丝焊成一个长方体框架,长、宽、和高的比是3∶2∶1,这个长方体的体积和表面各是多少?3+2+1=6答:这个长方体的体积是384立方分米,表面是352平方分米。
9、五年级有140人,六年级有130人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140+130=270(人)5+1=6130-45=85(人)答:从六年级调85人到五年级。
10、甲做3000个零件比乙做2400个零件多用1小时,甲、乙的工作效率的比是6∶5。
六年级比例练习题及答案
六年级比例练习题及答案1. 小明每天骑自行车上学,他每小时骑行12公里。
如果他一共需要骑行2个小时,他总共要骑行多远?答案:小明总共要骑行24公里。
2. 一桶果汁中有3升,小红将桶里的果汁倒进了三个杯子中。
如果每个杯子都装满,每个杯子里有多少升果汁?答案:每个杯子里有1升果汁。
3. 校园里有500名学生,其中男生和女生的比例是3:5。
校园里有多少名男生?答案:校园里有150名男生。
4. 玩具店一套积木由240块积木组成,其中红色积木的数量是黄色积木数量的2倍,绿色积木的数量是红色积木数量的3倍。
红色积木和绿色积木的数量加起来是多少?答案:红色积木有80块,绿色积木有240块,红色积木和绿色积木的数量加起来是320块。
5. 某项工程耗时15天,甲组和乙组合作完成。
如果甲组每天完成工程量的1/3,乙组每天完成工程量的2/3,甲组需要多少天完成该工程?答案:甲组需要45天完成该工程。
6. 一辆车以每小时70公里的速度行驶,需要行驶700公里才能到达目的地。
车辆行驶多久才能到达目的地?答案:车辆需要行驶10小时才能到达目的地。
7. 小明用了120元去超市购买文具。
如果他买了笔和纸张,而纸张的价格是笔的价格的2倍。
他用了多少钱买了笔?答案:小明用了80元买了笔。
8. 一辆火车以每小时80公里的速度行驶,经过5个小时后行驶了多远?答案:火车行驶了400公里。
9. 甲组和乙组共同完成一个工程,两组所用的时间比是3:5。
如果甲组耗时15天,那么乙组耗时多久?答案:乙组耗时25天。
10. 某公司的员工总数是120人,其中男性员工的数量是女性员工数量的3倍,那么公司中女性员工有多少人?答案:公司中女性员工有30人。
总结:通过上述六年级比例练习题,我们可以看到比例概念在日常生活中的应用。
了解和掌握比例的概念对于解决实际问题非常重要。
通过练习题的答案,我们可以巩固对比例的理解,并提高解决问题的能力。
希望同学们通过这些练习题的训练,能够更好地应用比例知识解决实际问题。
六年级数学 比例方程解应用题
比例的应用(列出含有未知数x的比例解应用题)1、工程队修一条水渠,原计划每天修360米,30天修完。
修10天后,每天多修40米,再修多少天就能完成任务?2、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。
这条水渠全长多少米?3、一列火车从甲地开往乙地,5小时行了350千米,照这样计算,共要行9小时。
甲乙两地相距多少千米?4、40千克小麦能磨面粉32千克,照这样计算,7吨小麦能磨面粉多少千克?5、机床厂4天能生产小机床32台,照这样计算,要生产120台小机床需几天?6、测量小组把一米长的竹竿直立在地面上,测得它的影子长度是1.6米,同时测得电线杆的影子长度是4米,求电线杆高多少米?7、要测量一棵树的高度,量得树的影子长度是8.4米,同时用一根2米长的标杆直立在地面上,量得影子长度是1.2米,这棵树高是多少米?8、修路队修一段路,头3天修了135米,照这样速度,又修了8天才修完这段路,这段路长多少米?9、一辆汽车从甲地开往乙地,甲乙两地相距405千米,头4小时行驶了180千米,剩下的路程还要行多少小时?10、用5辆同样汽车运粮食一次能运22.5吨,照这样计算,要把36吨粮食一次运完,需要增加多少辆这样的汽车?11、某印刷厂计划三月份印刷课本20000本,结果上旬就印刷7000本,照这样速度,三月份可以多印刷多少本?12、服装厂生产制服,前3个月生产0.48万套,照这样计算,今年可以生产制服多少万套?13、农场用3辆拖拉机耕地,每天共耕225公顷,如果用5辆同样的拖拉机,每天共耕在多少公顷?14、一艘轮船,从甲地开往乙地,每小时行20千米,12小时到达,从乙地返回甲地时,每小时航行4千米,几小时可以到达?15、一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?。
六年级用比例解决问题
六年级比例知识应用题1、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?2、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)3、一台织补袜机2小时织袜26双,照这样计算,7小时可以织补多少双?4、一种铁丝长30米,重量是7 千克,现有这种铁丝950千克,长多少米?5.用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?6、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入585000吨海水,可以晒出多少吨盐?7、一篮苹果,如果8个人分,每人正好分6个,如果12个人来分,每人可以分几个?8、同学们排队做操,每行站20人,正好站8行,如果每行站24人,可以站多少行?9、一间房子要用砖铺地,用面积是9平方分米的方砖,需要96块,如果用面积是6平方分米的方砖,需要多少块?10、一艘轮船3小时航行80千米,照这样的速度航行200千米需要多少小时?11、一间房五铺地砖,用面只是9平方分米的方砖需要96块,如果改用面积是4平方分米的方砖,需要多少块?12、农场收小麦,前3天收割了16公顷,照这样计算,8天可以收割多少公顷小麦?13、一辆汽车2小时行驶64千米,用这样的速度从甲地到乙地行驶5小时,甲、乙两地之间的公路长多少千米?14、一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?15.同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?(用比例方法解)16.飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4小时的路程,汽车要行多少小时?(用比例方法解)17.修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可修完?(用比例方法解)18.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)19.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)20.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)21.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本? (用比例方法解)22.配制一种农药,药粉和水的比是1:500(1) 现有水6000千克,配制这种农药需要药粉多少千克?(2) 现有药粉3.6千克,配制这种农药需要水多少千克?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级用比例知识解答的典型应用题
例题、一辆汽车从甲地开往乙地,每小时行驶70千米,6小时到达,如果要4小时到达,每小
时要行驶多少千米?
【点拨】用比例知识解答,就要确定题中的两种量成什么比例,题中的不变量是甲乙两地的之间的路程一定,时间和速度成反比例,所以两次行驶的速度和时间的积相等,从而列出比例式进行解答
【解答】设每小时要行驶X千米
4x=70
x=105
【练习】1、一根圆柱,如果锯成5段,要8分钟,如果锯成10段,要多少小时?
2、把一根长3米的圆柱木棒每50厘米锯成一段,共要10分钟,如果每60厘米锯成一段,共要多少分钟?
例题、用边长4分米的方砖给教室铺地,要450块,如果改用边长6分米的方砖铺地,要多少块?
【点拨】先弄清哪两个量成比例,成什么比例。
根据题意,房间的面积一定,则每块方砖的面积和方砖的块数成反比例。
【解答】设要X块
4²×450=6²X
X=200
【练习】1、用同样的方砖给教室铺地,铺18平方米要用400块砖,如果铺36平方米,要多少块砖?
2、同学们做广播操,每行站15人,站了12行,如果每行站18人,要站多少行?
3、马东风电子车间要加工一批电子产品,计划每天加工50件,24天可以完成,实际每天比原计划多加工1/5,实际几天完成?
4、一台织布机4小时织布32米,照这样计算,15小时织布多少米?、
.5、修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。