二轮复习系列数列1
高考数学二轮复习第一部分微专题强化练习题:数列求和及综合应用含解析
第一部分 一 10一、选择题1.(文)(2015·新课标Ⅱ文,5)设S n 是等差数列{}a n 的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11[答案] A[解析] 考查等差数列的性质及求和公式.a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.故选A.(理)(2015·新课标Ⅰ文,7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192 C .10 D .12 [答案] B[解析] 本题主要考查等差数列的通项及求和公式.由题可知:等差数列{a n }的公差d =1,因为等差数列S n =a 1n +n (n -1)d2,且S 8=4S 4,代入计算可得a 1=12;等差数列的通项公式为a n =a 1+(n -1)d ,则a 10=12+(10-1)×1=192.故本题正确答案为B.[方法点拨] 数列求和的类型及方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和. (2)错位相减法这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. (3)倒序相加法这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.(文)设{a n }是等比数列,函数y =x 2-x -2013的两个零点是a 2、a 3,则a 1a 4=( ) A .2013 B .1 C .-1 D .-2013[答案] D[解析] 由条件得,a 1a 4=a 2a 3=-2013.(理)已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1 [答案] C[解析] 据已知得2a n +1=a n +a n +2,即数列{a n }为等差数列,又f (x )=sin2x +2×1+cos x2=sin2x +1+cos x ,因为a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0,又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin2a 1+sin2a 9=sin2a 2+sin2a 8=…=sin2a 5=0,故数列{y n }的前9项之和为9,故选C.3.(2014·辽宁协作联校三模)已知数列{a n }的通项公式a n =2014sin n π2,则a 1+a 2+…+a 2014=( )A .2012B .2013C .2014D .2015 [答案] C[解析] 数列{a n }的周期为4,且a 1+a 2+a 3+a 4=2014(sin π2+sinπ+sin 3π2+sin2π)=0,又∵2014=4×503+2,∴a 1+a 2+…+a 2014=a 1+a 2=2014sin π2+2014sinπ=2014.4.(文)已知函数f (x )满足f (x +1)=32+f (x )(x ∈R ),且f (1)=52,则数列{f (n )}(n ∈N *)前20项的和为( )A .305B .315C .325D .335[答案] D[解析] ∵f (1)=52,f (2)=32+52,f (3)=32+32+52,…,f (n )=32+f (n -1),∴{f (n )}是以52为首项,32为公差的等差数列.∴S 20=20×52+20(20-1)2×32=335.(理)设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)[答案] A[解析] 设f (x )=kx +1(k ≠0),则(4k +1)2=(k +1)×(13k +1)⇒k =2,f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+(2×6×1)+…+(2×2n +1)=2n 2+3n . [方法点拨] 解决数列与函数知识结合的题目时,要明确数列是特殊的函数,它的图象是群孤立的点,注意函数的定义域等限制条件,准确的进行条件的转化,数列与三角函数交汇时,数列通常作为条件出现,去除数列外衣后,本质是三角问题.5.(文)已知数列{a n }是等比数列,且每一项都是正数,若a 1、a 49是2x 2-7x +6=0的两个根,则a 1·a 2·a 25·a 48·a 49的值为( )A.212 B .93 C .±9 3 D .35[答案] B[解析] ∵{a n }是等比数列,且a 1,a 49是方程2x 2-7x +6=0的两根, ∴a 1·a 49=a 225=3.而a n >0,∴a 25= 3.∴a 1·a 2·a 25·a 48·a 49=a 525=(3)5=93,故选B.(理)(2015·江西质检)如果数列{a n }中,相邻两项a n 和a n +1是二次方程x 2n +2nx n +c n =0(n =1,2,3,…)的两个根,当a 1=2时,c 100的值为( )A .-9984B .9984C .9996D .-9996[答案] C[解析] 由根与系数关系,a n +a n +1=-2n ,则(a n +1+a n +2)-(a n +a n +1)=-2.即a n +2-a n =-2,∴a 1,a 3,a 5,…和a 2,a 4,a 6,…都是公差为-2的等差数列,∵a 1=2,a 1+a 2=-2,∴a 2=-4,即a 2k =-2k -2,∴a 100=-102,a 2k -1=-2k +4,∴a 101=-98.∴c 100=a 100·a 101=9996.6.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( )[答案] C[解析] ∵S n =na 1+n (n -1)2d ,∴S n =d 2n 2+(a 1-d 2)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.[点评] 可取特殊数列验证排除,如a n =3-n .7.(2015·南昌市一模)已知无穷数列{a n },如果存在常数A ,对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -A |<ε成立,就称数列{a n }的极限为A ,则四个无穷数列:①{(-1)n ×2};②{n };③⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1;④{2n +1n },其极限为2的共有( )A .4个B .3个C .2个D .1个[答案] C[解析] 对于①,|a n -2|=|(-1)n ×2-2|=2×|(-1)n -1|,当n 是偶数时,|a n -2|=0,当n 是奇数时,|a n -2|=4,所以不符合数列{a n }的极限的定义,即2不是数列{(-1)n ×2}的极限;对于②,由|a n -2|=|n -2|<ε,得2-ε<n <2+ε,所以对于任意给定的正数ε(无论多小),不存在正整数N ,使得n >N 时,恒有|a n -2|<ε,即2不是数列{n }的极限;对于③,由|a n -2|=|1+12+122+123+…+12n -1-2|=⎪⎪⎪⎪⎪⎪1×⎝⎛⎭⎫1-12n 1-12-2=22n<ε,得n >1-log 2ε,即对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -2|<ε成立,所以2是数列⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1的极限;对于④,由|a n -2|=⎪⎪⎪⎪2n +1n -2=1n <ε,得n >1ε,即对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -2|<ε成立,所以2是数列⎩⎨⎧⎭⎬⎫2n +1n 的极限.综上所述,极限为2的共有2个,即③④. 二、填空题8.(文)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”.已知正项数列{1b n}为“调和数列”,且b 1+b 2+…+b 9=90,则b 4·b 6的最大值是________.[答案] 100[解析] 由调和数列的定义知{b n }为等差数列,由b 1+b 2+…+b 9=9b 5=90知b 5=10, ∵b n >0,∴b 4b 6≤(b 4+b 62)2=b 25=100.(理)(2014·河南十所名校联考)对于各项均为整数的数列{a n },如果a i +i (i =1,2,3,…)为完全平方数,则称数列{a n }具有“P 性质”,不论数列{a n }是否具有“P 性质”,如果存在与{a n }不是同一数列的{b n },且{b n }同时满足下面两个条件:①b 1,b 2,b 3,…,b n 是a 1,a 2,a 3,…,a n 的一个排列;②数列{b n }具有“P 性质”,则称数列{a n }具有“变换P 性质”,下面三个数列:①数列{a n }的前n 项和为S n =n3(n 2-1);②数列1,2,3,4,5;③数列1,2,3,…,11.其中具有“P 性质”或“变换P 性质”的有________(填序号).[答案] ①②[解析] S n =n 3(n 2-1),S n -1=n -13[(n -1)2-1](n ≥2),∴a n =S n -S n -1=n3(n -1)(n +1)-n -13(n 2-2n )=n3(n -1)(n +1-n +2)=n (n -1)(n ≥2),又a 1=S 1=0,∴a 1+1=1=12,a 2+2=4=22,a 3+3=9=32,…,a n +n =n 2,∴数列{a n }具有“P 性质”;数列1,2,3,4,5排为3,2,1,5,4,则a 1+1=4=22,a 2+2=4=22,a 3+3=4=22,a 4+4=9=32,a 5+5=9=32,∴数列1,2,3,4,5具有“变换P 性质”,同理可验证数列1,2,3,…,11不具有“P 性质”和“变换P 性质”.[方法点拨] 脱去新定义的外衣,将问题化为基本数学模型,用相应的知识方法解答是解决此类问题的基本方法.9.(2015·安徽文,13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 考查1.等差数列的定义;2.等差数列的前n 项和. ∵n ≥2时,a n =a n -1+12,且a 1=1,∴{a n }是以1为首项,12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.10.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a ⊥b ,则数列{a na n +1a n +4}的最大项的值为________.[答案] 19[解析] ∵a ⊥b ,∴a ·b =2S n -n (n +1)=0, ∴S n =n (n +1)2,∴a n =n ,∴a n a n +1·a n +4=n(n +1)(n +4)=1n +4n+5,当n =2时,n +4n 取最小值4,此时a na n +1a n +4取到最大值19.三、解答题11.(文)(2015·云南省检测)已知等比数列{a n }的前n 项和是S n ,S 18S 9=78. (1)求证:S 3,S 9,S 6依次成等差数列;(2)a 7与a 10的等差中项是否是数列{a n }中的项?如果是,是{a n }中的第几项?如果不是,请说明理由.[解析] (1)证明:设等比数列{a n }的公比为q ,若q =1,则S 18=18a 1,S 9=9a 1, S 18S 9=21≠78.∴q ≠1.∴S 18=a 11-q (1-q 18),S 9=a 11-q (1-q 9),S 18S 9=1+q 9.∴1+q 9=78,解得q =-2-13.∴S 3=a 1(1-q 3)1-q =32×a 11-q ,S 6=a 1(1-q 6)1-q=34×a 11-q. S 9=a 11-q(1-q 9)=98×a 11-q .∵S 9-S 3=-38×a 11-q ,S 6-S 9=-38×a 11-q ,∴S 9-S 3=S 3-S 9.∴S 3,S 9,S 6依次成等差数列.(2)a 7与a 10的等差中项等于a 7+a 102=14a 1-18a 12=a 116.设a 7与a 10的等差中项是数列{a n }中的第n 项,则 a 1(-2-13)n -1=a 116,化简得(-2)-n -13=(-2)-4,则-n -13=-4,解得n =13.∴a 7与a 10的等差中项是数列{a n }中的第13项.(理)(2015·唐山一模)设数列{a n }的前n 项和为S n ,满足(1-q )S n +qa n =1,且q (q -1)≠0. (1)求{a n }的通项公式;(2)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列. [解析] (1)当n =1时,由(1-q )S 1+qa 1=1,∴a 1=1,当n ≥2时,由(1-q )S n +qa n =1,得(1-q )S n -1+qa n -1=1,两式相减得 (1-q )a n +q (a n -a n -1)=0,∴a n =qa n -1,∵a 1=1,q (q -1)≠0,∴a n =q n -1, 综上a n =q n -1. (2)由(1)可知a na n -1=q ,所以{a n }是以1为首项,q 为公比的等比数列. 所以S n =1-a n q 1-q ,又S 3+S 6=2S 9,得1-a 3q 1-q +1-a 6q 1-q =2(1-a 9q )1-q ,化简得a 3+a 6=2a 9,两边同除以q 得a 2+a 5=2a 8. 故a 2,a 8,a 5成等差数列.[方法点拨] 1.在处理数列求和问题时,一定要先读懂题意,分清题型,区分等差数列与等比数列,不是基本数列模型的注意运用转化思想化归为等差、等比数列,在利用分组求和时,要特别注意项数.2.在处理等差与等比数列的综合问题时,先要看所给数列是等差数列还是等比数列,再依据条件建立方程求解.12.(文)已知函数f (x )在(-1,1)上有定义,f ⎝⎛⎭⎫12=-1,且满足对任意x 、y ∈(-1,1),有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ,数列{x n }中,x 1=12,x n +1=2x n 1+x 2n.(1)证明:f (x )在(-1,1)上为奇函数; (2)求数列{f (x n )}的通项公式; (3)求证:1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2. [分析] (1)要证f (x )为奇函数,只需证明f (-x )+f (x )=0,只需在条件式中令y =-x ,为了求f (0),令x =y =0即可获解.(2)利用f (x )+f (y )=f (x +y1+xy)可找出f (x n +1)与f (x n )的递推关系,从而求得通项.(3)由f (x n )的通项公式确定数列{1f (x n )}的求和方法,求和后利用放缩法可证明.[解析] (1)证明:令x =y =0,∴2f (0)=f (0), ∴f (0)=0.令y =-x ,则f (x )+f (-x )=f (0)=0, ∴f (-x )=-f (x ),∴f (x )在(-1,1)上为奇函数. (2)f (x 1)=f ⎝⎛⎭⎫12=-1,f (x n +1)=f ⎝⎛⎭⎫2x n 1+x 2n =f ⎝ ⎛⎭⎪⎫x n +x n 1+x n ·x n =2f (x n), ∴f (x n +1)f (x n )=2,即{f (x n )}是以-1为首项,2为公比的等比数列,∴f (x n )=-2n -1. (3)1f (x 1)+1f (x 2)+…+1f (x n ) =-⎝⎛⎭⎫1+12+122+…+12n -1=-1-12n1-12=-⎝⎛⎭⎫2-12n -1=-2+12n -1>-2,而-2n +5n +2=-⎝⎛⎭⎫2+1n +2=-2-1n +2<-2. ∴1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2. (理)在直角坐标平面上有一点列P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,对于每个正整数n ,点P n 均位于一次函数y =x +54的图象上,且P n 的横坐标构成以-32为首项,-1为公差的等差数列{x n }.(1)求点P n 的坐标;(2)设二次函数f n (x )的图象C n 以P n 为顶点,且过点D n (0,n 2+1),若过D n 且斜率为k n 的直线l n 与C n 只有一个公共点,求T n =1k 1k 2+1k 2k 3+…+1k n -1k n的表达式;(3)设S ={x |x =2x n ,n 为正整数},T ={y |y =12y n ,n 为正整数},等差数列{a n }中的任一项a n ∈(S ∩T ),且a 1是S ∩T 中最大的数,-225<a 10<-115,求数列{a n }的通项公式.[解析] (1)由题意知x n =-32-(n -1)=-n -12,y n =-n -12+54=-n +34,∴P n ⎝⎛⎭⎫-n -12,-n +34.(2)由题意可设二次函数f n (x )=a ⎝⎛⎭⎫x +n +122-n +34,因为f n (x )的图象过点D n (0,n 2+1), 所以a ⎝⎛⎭⎫n +122-n +34=n 2+1,解得a =1, 所以f n (x )=x 2+(2n +1)x +n 2+1.由题意可知,k n =f ′n (0)=2n +1,(n ∈N *).所以T n =1k 1k 2+1k 2k 3+…+1k n -1k n =13×5+15×7+…+1(2n -1)(2n +1)=1213-15+15-17+…+12n -1-12n +1=12⎝⎛⎭⎫13-12n +1=16-14n +2. (3)由题意得S ={x |x =-2n -1,n 为正整数},T ={y |y =-12n +9,n 为正整数}, 所以S ∩T 中的元素组成以-3为首项,-12为公差的等差数列, 所以a 1=-3,则数列{a n }的公差为-12k (k ∈N *), 若k =1,则a n =-12n +9,a 10=-111∉(-225,-115); 若k =2,则a n =-24n +21,a 10=-219∈(-225,-115); 若k ≥3,则a 10≤-327,即a 10∉(-225,-115).综上所述,数列{a n }的通项公式为a n =-24n +21(n 为正整数).[方法点拨] 1.数列与函数的综合性试题通常用到函数与方程、化归与转化、分类与整合等思想.注意数列是特殊的函数、等差、等比数列更是如此,因此求解数列与函数的综合性题目时,注意数列与函数的内在联系,将所给条件向a n 与n 的关系转化.2.数列还常与不等式交汇命题,不等式常作为条件或证明、求解的一问呈现,解答时先将数列的基本问题解决,再集中解决不等式问题,注意放缩法、基本不等式、裂项、累加法的运用.13.(文)(2015·山东文,19)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .[解析] 考查1.等差数列的通项公式;2.“错位相减法”求和及运算求解能力. (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,得到a 1a 2=3.令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.解得a 1=1,d =2,所以a n =2n -1.(2)由(1)知b n =2n ·22n -1=n ·4n ,所以T n =1·41+2·42+…+n ·4n ,所以4T n =1·42+2·43+…+(n -1)·4n +n ·4n +1, 两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43,所以T n =3n -19×4n +1+49=4+(3n -1)·4n +19.(理)(2015·河南八市质检)已知数列{a n }的前n 项和为S n ,对于任意的正整数n ,直线x +y =2n 总是把圆(x -n )2+(y -S n )2=2n 2平均分为两部分,各项均为正数的等比数列{b n }中,b 6=b 3b 4,且b 3和b 5的等差中项是2a 3.(1)求数列{a n },{b n }的通项公式; (2)若c n =a n b n ,求数列{c n }的前n 项和T n .[解析] (1)由于x +y =2n 总是把圆(x -n )2+(y -S n )2=2n 2平均分为两部分,所以直线过圆心,所以n +S n =2n ,即S n =n 2, 所以a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,经检验n =1时也成立,所以a n =2n -1.等比数列{b n }中,由于b 6=b 3b 4,所以b 1q 5=b 21q 5, 因为b 1>0,q >0,所以b 1=1,因为b 3和b 5的等差中项是2a 3,且2a 3=10,所以b 3+b 5=20, 所以q 2+q 4=20,解得q =2,所以b n =2n -1. (2)由于c n =a n b n ,所以T n =a 1b 1+a 2b 2+…+a n b n . T n =1+3×2+5×22+…+(2n -1)2n -1 ① 2T n =2+3×22+5×23+…+(2n -1)2n ② 所以-T n =1+2(2+22+…+2n -1)-(2n -1)2n =1+2×2(1-2n -1)1-2-(2n -1)2n=-3+2×2n -(2n -1)2n =-3+(3-2n )2n , T n =3+(2n -3)2n .14.(文)政府决定用“对社会的有效贡献率”对企业进行评价,用a n 表示某企业第n 年投入的治理污染的环保费用,用b n 表示该企业第n 年的产值.设a 1=a (万元),且以后治理污染的环保费用每年都比上一年增加2a 万元;又设b 1=b (万元),且企业的产值每年比上一年的平均增长率为10%.用P n =a n b n100ab表示企业第n 年“对社会的有效贡献率”.(1)求该企业第一年和第二年的“对社会的有效贡献率”; (2)试问从第几年起该企业“对社会的有效贡献率”不低于20%?[解析] (1)∵a 1=a ,b 1=b ,P n =a n b n 100ab, ∴P 1=a 1b 1100ab=1%, P 2=a 2b 2100ab =3a ×1.1b 100ab=3.3%. 故该企业第一年和第二年的“对社会的有效贡献率”分别为1%和3.3%.(2)由题意,得数列{a n }是以a 为首项,以2a 为公差的等差数列,数列b n 是以b 为首项,以1.1为公比的等比数列,∴a n =a 1+(n -1)d =a +(n -1)·2a =(2n -1)a ,b n =b 1(1+10%)n -1=1.1n -1b .又∵P n =a n b n 100ab, ∴P n =(2n -1)a ×1.1n -1b 100ab=(2n -1)×1.1n -1100. ∵P n +1P n =2n +12n -1×1.1=⎝⎛⎭⎫1+22n -1×1.1>1, ∴P n +1>P n ,即P n =(2n -1)×1.1n -1100单调递增. 又∵P 6=11×1.15100≈17.72%<20%, P 7=13×1.16100≈23.03%>20%. 故从第七年起该企业“对社会的有效贡献率”不低于20%.(理)甲、乙两大超市同时开业,第一年的全年销售额都为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年的销售额多(23)n -1a 万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年.[解析] (1)设甲、乙两超市第n 年销售额分别为a n 、b n ,又设甲超市前n 年总销售额为S n ,则S n =a 2(n 2-n +2)(n ≥2),因n =1时,a 1=a , 则n ≥2时,a n =S n -S n -1=a 2(n 2-n +2)-a 2[(n -1)2-(n -1)+2]=a (n -1),故a n =⎩⎪⎨⎪⎧a ,n =1,(n -1)a ,n ≥2, 又因b 1=a ,n ≥2时,b n -b n -1=(23)n -1a , 故b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=a +23a +(23)2a +…+(23)n -1a =[1+23+(23)2+…+(23)n -1]a =1-(23)n 1-23a =[3-2·(23)n -1]a , 显然n =1也适合,故b n =[3-2·(23)n -1]a (n ∈N *) (2)当n =2时,a 2=a ,b 2=53a ,有a 2>12b 2; n =3时,a 3=2a ,b 3=199a ,有a 3>12b 3; 当n ≥4时,a n ≥3a ,而b n <3a ,故乙超市有可能被收购.当n ≥4时,令12a n >b n , 则12(n -1)a >[3-2·(23)n -1]a ⇒n -1>6-4·(23)n -1, 即n >7-4·(23)n -1. 又当n ≥7时,0<4·(23)n -1<1, 故当n ∈N *且n ≥7时,必有n >7-4·(23)n -1. 即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.[方法点拨] 1.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是一个解方程问题,还是解不等式问题,还是一个最值问题,然后进行合理推算,得出实际问题的结果.2.数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.3.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n 项和.15.(文)定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数.(1)证明:数列{2a n +1}是“平方递推数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项之积为T n ,即T n =(2a 1+1)(2a 2+1)…(2a n +1),求T n 关于n 的表达式;(3)记b n =log2a n +1T n ,求数列{b n }的前n 项之和S n ,并求使S n >2012成立的n 的最小值.[解析] (1)证明:由题意得a n +1=2a 2n +2a n ,∴2a n +1+1=4a 2n +4a n +1=(2a n+1)2. 所以数列{2a n +1}是“平方递推数列”.令c n =2a n +1,所以lg c n +1=2lg c n .因为lg(2a 1+1)=lg5≠0,所以lg (2a n +1+1)lg (2a n +1)=2. 所以数列{lg(2a n +1)}为等比数列.(2)由(1)知lg(2a n +1)=(lg5)×2n -1,∴2a n +1=10(lg5)×2n -1=52n -1,∴T n =520×521×522×…×52n -1=520+21+…+2n -1=52n -1.(3)∵b n =log2a n +1T n =2n -12n -1=2-(12)n -1, ∴S n =b 1+b 2+…+b n =2n -1×(1-12n )1-12=2n -2+12n -1, 由2n -2=2012得n =1007,∴S 1006=2×1006-2+121005∈(2010,2011),S 1007=2×1007-2+121006∈(2012,2013). 故使S n >2012成立的n 的最小值为1007.(理)已知曲线C :xy =1,过C 上一点A n (x n ,y n )作一斜率为k n =-1x n +2的直线交曲线C 于另一点A n +1(x n +1,y n +1),点列{A n }的横坐标构成数列{x n },其中x 1=117. (1)求x n 与x n +1的关系式;(2)令b n =1x n -2+13,求证:数列{b n }是等比数列; (3)若c n =3n -λb n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[分析] (1)由直线方程点斜式建立x n 与y n 关系,而(x n ,y n )在曲线xy =1上,有x n y n =1,消去y n 得x n 与x n +1的关系;(2)由定义证b n +1b n为常数;(3)转化为恒成立的问题解决. [解析] (1)过点A n (x n ,y n )的直线方程为y -y n =-1x n +2(x -x n ), 联立方程⎩⎪⎨⎪⎧ y -y n =-1x n +2(x -x n )xy =1,消去y 得 1x n +2x 2-⎝⎛⎭⎫y n +x n x n +2x +1=0. 解得x =x n 或x =x n +2x n. 由题设条件知x n +1=x n +2x n. (2)证明:b n +1b n =1x n +1-2+131x n -2+13=1x n +2x n -2+131x n -2+13=x n 2-x n +131x n -2+13=3x n +2-x n 3(2-x n )3+x n -23(x n -2)=-2. ∵b 1=1x 1-2+13=-2≠0,∴数列{b n }是等比数列. (3)由(2)知,b n =(-2)n ,要使c n +1>c n 恒成立,由c n +1-c n =[3n +1-λ(-2)n +1]-[3n -λ(-2)n ]=2·3n +3λ(-2)n >0恒成立,即(-1)n λ>-⎝⎛⎭⎫32n -1恒成立.①当n 为奇数时,即λ<⎝⎛⎭⎫32n -1恒成立.又⎝⎛⎭⎫32n -1的最小值为1,∴λ<1.②当n 为偶数时,即λ>-⎝⎛⎭⎫32n -1恒成立,又-⎝⎛⎭⎫32n -1的最大值为-32,∴λ>-32, 即-32<λ<1.又λ为非零整数, ∴λ=-1,使得对任意n ∈N *,都有c n +1>c n .。
小题压轴题专练14—数列(1)-2021届高三数学二轮复习
小题压轴题专练14—数列(1)一、单选题1.已知等差数列{a n }的前n 项和为S n ,满足sin (a 4﹣1)+2a 4﹣5=0,sin (a 8﹣1)+2a 8+1=0,则下列结论正确的是( ) A .S 11=11,a 4<a 8 B .S 11=11,a 4>a 8 C .S 11=22,a 4<a 8D .S 11=22,a 4>a 8解:sin (a 4﹣1)+2a 4﹣5=0,sin (a 8﹣1)+2a 8+1=0,∴sin (a 4﹣1)+2(a 4﹣1)﹣3=0,sin (1﹣a 8)+2(1﹣a 8)﹣3=0, 令f (x )=sin x +2x ﹣3,可得f ′(x )=cos x +2>0, 因此函数f (x )在R 上单调递增.又f (1)=sin1﹣1<0,f (2)=sin2+1>0, 因此函数f (x )在(1,2)内存在唯一零点. ∴a 4﹣1=1﹣a 8,1<a 4﹣1<2,1<1﹣a 8<2, ∴a 4+a 8=2,2<a 4<3,﹣1<a 8<0, ∴S 11===11,a 4>a 8,故选:B .2.非负实数列{}n a 前n 项和为(0)n n S S >.若分别记2{}n n a 与2{}na n 前n 项和为n T 与n R ,则5525T R S 的最大值与最小值的差为t ,则||(t = ) A .2 B .125C .3D .165解:由题设和柯西不等式可得:2222223524551234511234552222(2345)()()2345a a a a T R a a a a a a a a a a a S =++++++++++++=,当且仅当10a >且23450a a a a ====时取“= “,∴5525T R S 的最小值为1, 又22223524551234512222(2345)()2345a a a a T R a a a a a a =++++++++ 22222222324123451522221(2345)(5555)5234a a a a a a a a a a =+++++⋅+⋅+⋅+ 2222222222222234112234551234552222255115(51)13(52345)(()()54234105a a a a a a a a a a a a a a a S +⋅+++++++++++++=,当且仅当150a a =>且2340a a a ===时取“= “,∴5525T R S 的最大值为213()5,∴125=,故选:B .A .100102a ln >B .99100a ln >C .99100a ln <D .10099a ln <解:*1111,()1n n a a a n N n +=->∈+, 11n n a a n -∴->,1211n n a a n --->-,⋯,2112a a ->,将上面的式子相加得到:1111(2)23n a a n n ->++⋯+,即111123n a n>+++⋯+,2n , 令()(1)(1)f x ln x x x =+->-,当0x >时,1()101f x x '=-<+,故当0x >时,()(0)0f x f <=,即(1)ln x x +<, 111(1)n lnln n n n +∴=+<,又12(1)11n n ln n ln ln ln n n ++=++⋯+-, 11111112(1)(1)(1)(1)2323n a ln ln ln ln ln n n n∴>+++⋯+>+++++⋯++=+,即(1)n a ln n >+,2n ,99100a ln ∴>,故选:B .172n nt +-恒成立,则实数解:由22n S n n =+,可得212(1)(1)(2)n S n n n -=-+-, 所以12222n n n a S S n -=-=,所以(2)n a n n =, 当1n =时,11222S a ==,所以11a =,满足上式, 所以n a n =,*n N ∈, 所以231232222n n n T =+++⋯+,234111*********n n n n n T +-=+++⋯++, 两式相减得,2311111111122222222n n n n n n n T ++=+++⋯+-=--,所以222n nn T +=-, 所以11137|2|22n n n n nn T t n t++++--=⨯-, 所以2142n n n t +-,令214()2n n n f n +-=,222212(1)4(1)46(3)(1)()222n n n n n n n n f n f n ++++-+---+-=-=, 故当15n 时,(1)()f n f n +>,()f n 单调递增, 当6n 时,(1)()f n f n +<,()f n 单调递减, 所以3(6)32max f f ==,所以332t ,t 的最小值为332.故选:B .5.已知数列{}n a 满足对任意的*n N ∈,总存在*m N ∈,使得n m S a =,则n a 可能等于()A .2020nB .2020nC .22020nD .2nn C解:数列{}n a 满足对任意的*n N ∈,总存在*m N ∈,利用特值法检验n m S a =,对于选项A :当2020nn a =时,n m S a =,则2020(20201)20202019n m -=,令2n =时,m 不存在;对于选项B :当2020n a n =时,n m S a =, 则(1)20201010(1)20202n n n S n n m +=⨯=+=,取(1)2n n m +=,即可; 对于选项C :当22020n a n =时,n m S a =, 则2222(1)(21)2020(12)202020206n n n n S n m ++=⨯++⋯+=⨯=,令2n =时,m 不存在;对于选项2:n n n D a C =当时,n m S a =,当2n =时,12212248S a a C C =+=+=,不存在m ,使得28mm C =,所以不存在,故选:B .6.已知数列{}n x ,满足11x =,*12(1)()n n x ln x n N +=+∈,设数列{}n x 的前n 项和为n S ,则以下结论正确的是( )A .1n n x x +>B .112n n n n x x x x ++-<解:*12(1)()n n x ln x n N +=+∈,把11x =代入递推可得:0n x >, 令()(1)f x x ln x =-+,0x >,则()01xf x x '=>+,()f x 在(0,)+∞单调递增, ()(0)f x f ∴>,即当0x >时,恒有(1)ln x x +<成立,0n x >,12(1)n n n x ln x x +∴=+<,112n n n x x x ++∴>>,故选项A 错误;又2121n n x x ++<+,∴选项C 错误; 11(1)2(2)(1)22(2)(1)[(1)]2222n n n n n n nn n n n n n n nx ln x x x ln x x x x x x x x ln x ln x x +++-+++--=-+-==-++,01n x <,令2(1)2x y ln x x =-++,01x <,则220(2)(1)x y x x '=-<++,∴函数2(1)2xy ln x x =-++在(0,1]上递减,(0)0y y ∴<=,11(2)0n n n n x x x x ++∴--<,故选项B 正确;又由12n n x x +>可得12nn x x +<,11x =,112nn x -∴(当且仅当1n =时取“= “),可得1111112()2222n n n S --++⋯+=-<, 52n S +∴<,故选项D 错误,故选:B .7.正整数3n 称为理想的,若存在正整数11kn -使得1k n C -,k n C ,1k n C +构成等差数列,A .40B .41C .42D .前三个答案都不对解:由题意可得11,,k k k n n n C C C -+ 构成等差数列,则112k k k n n n C C C -+=+,化简可得22(41)420n k n k -++-=,以k 为主元整理224420k nk n n -+--=,则k ,题意转化为存在正整数11k n -使得k 成立, 于是2n + 为完全平方数,设22n m +=,7n , 令22()442f k k nk n n =-+--, 因为f (1)2(1)520f n n n =-=-+>,故[1,1]k n =-, 因为2020n ,则443m .若22(2)(1)22m m m m k ---+===, 因为2m -,1m + 奇偶性相反, 故对于任意443m 都满足题意. 综上,满足题意的有 42 个, 故选:C .8.在正项数列{}n a 中,2113312(*)n n a a n N +=-∈,则下列说法正确的是( )A .若17a <,则1n n a a +<B .若17a >,则1n n a a +<C .若1111a ,则22114n n a a -+D .若1111a ,则22112n n a a -+解:由2113312n n a a +=-,可得222111()()13312(7)(19)n n n n n n n n n n a a a a a a a a a a +++-=-+=--=--+,因为0n a >,可得7n a >,1n n a a +<;或7n a <,1n n a a +>; 故A ,B 均不正确;若1111a ,由数学归纳法假设(*)n k k N =∈时,111k a ,1n k =+时,2113312[1k k a a +=-∈,121],即有1[1k a +∈,11],综上可得,111n a ,*n N ∈, 则2111n a ,2221222211331169(6)12121212n n n n n a a a a a -+=-++=--+, 则21212n n a a -+,上式当21n a =或11时,取得等号, 故选:D .10;③n S n T n ,则()A .①③正确B .①④正确C .②③正确D .②④正确解:211n nn a a a +=-+,22121(1)0n n n n n a a a a a +∴-=-+=-, 112a =,∴12n a ,11(1)n n n a a a +-=-,∴111111n n na a a +=---, ∴111111n n n a a a +=---,∴12111111111n n a a a a a +++⋯+=---, 11(1)n n n a a a +-=-,2110n nn a a a +=-+>, 11n a +∴-,1n a -同号,1n a ∴<,∴112n a <, 11211111122211n n n n a a a a a +∴+=++⋯+-+--, 即1111222n a n n +-++, ∴1112n a n +-+,11516n a +∴<不恒成立,故①错误;112n a <,2121231(1)(21)0n n n n n n a a a a a a +∴--=-+=--,故②正确; 1112n a n +-+,∴111()231n S n n -++⋯++, 若56n S n <,则1111231(1)623112n n ln ln ln ln n n n +<++⋯+<++⋯+=++,1(1)6n ln n <+不可能恒成立,56n S n ∴<不能恒成立,故③错误; 211n n n a a a +=-+,211n n n a a a +∴=+-,122212111121122n n nn nk k k n n n k k k T a a a a a n a a a n S a a n +++===∴=++⋯+=+-=+--=+--∑∑∑,112n n n S T a n a n +∴-=+-<,故④正确.故选:D .10.已知数列{}n a 满足:10a =,*1(1)()n a n n a ln e a n N +=+-∈,前n 项和为n S ,则下列选项错误的是( )(参考数据:20.693ln ≈,3 1.099)ln ≈ A .21{}n a -是单调递增数列,2{}n a 是单调递减数列B .13n n a a ln ++C .2020670S <D .212n n a a -解:由1(1)n a n n a ln e a +=+-,得1(1)n n a a n a ln e lne +=+-,∴111n na a e e +=+, 令n a n b e =,即n n a lnb =,则111n nb b +=+,10a =,11b =. 作图如下:由图可得:A .21{}n a -是单调递增数列,2{}n a 是单调递减数列,因此A 正确;B .[1n b ∈,2],11(1)1[2n n n n nb b b b b +∴=+=+∈,3], 11[2n n a a n n b b e e ++∴=⋅∈,3],1[2n n a a ln +∴+∈,3]ln ,因此B 正确;C .12n n a a ln ++,2020123420192020()()()10102693S a a a a a a ln ∴=++++⋯⋯++>,因此C 不正确;D .由不动点51(+,51)+,得2125112n n b b -+<<,可得:212n n b b -<,221n n a a -∴>,因此D 正确. 故选:C .二、多选题11.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0c =D .若70a =,则方程0n S =有唯一的根13n =解:A 、设等差数列的首项为1a ,公差0d >,则11(1)n a a n d dn a d =+-=+-, 所以数列{}n a 是递增数列,故A 选项符合题意;B 、11111111[(1)](1)22222n n S d a a a a n d a n n =+=++-=+-⋅, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以1a 为首项,2d 为公差的等差数列.02d >,该数列是递增的等差数列,故B 选项符合题意; C 、由n a n =得到:(1)2n n n S +=. 由n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可设:n S kn b n c =++.即2(1)()()()2n n n S n c kn b kn kc b n bc +==++=+++. 所以当22(1)22()n n n n kn kc b n bc +=+=+++恒成立时,21k =,2()1kc b +=,0bc =. 所以12k =,0b =或0c =. 当0b =时,1c =.当0c =时,12b =.综上所述,1c =或0c =.故C 选项不符合题意; D 、由70a =,得67S S =,又因为数列{}n a 递增,所以当6n 时,n S 递增,当7n 时,n S 递增.所以n S 最小值是6S 或7S ,所以12110S S a ==<. 由当6n 时,0n S <.故当且仅当13n =时,11313713()1302a a S a +===,故D 选项符合题意.故选:ABD .12.已知数列{}n a 满足:101a <<,1(4)n n n a a ln a +-=-.则下列说法正确的是( ) A .数列{}n a 先增后减 B .数列{}n a 为单调递增数列 C .3n a <D .202052a >解:因为1(4)n n n a a ln a +-=-,所以1(4)n n n a a ln a +=+-, 令()(4)f x x ln x =+-,则13()144xf x x x-'=-=--, ()(4)f x x ln x ∴=+-在(0,3)上单调递增,在(3,4)上单调递减, ()f x f ∴<(3)3=可得:3n a <,则1(4)10n n n a a ln a ln +-=->=,故数列是单调递增数列,101a <<,211(4)41a a ln a ln ∴=+->>, 322(4)4(44)132a a ln a ln ln ln ln =+->+->+>,4335(4)2(42)222a a ln a ln ln =+->+->+>, 2020452a a ∴>>,故选:BCD .13.如图,已知点E 是平行四边形ABCD 的边AB 的中点,*()n F n N ∈为边BC 上的一列点,连接n AF 交BD 于n G ,点*()n G n N ∈满足12(23)n n n n n G D a G A a G E +=-+,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{3}n a +是等比数列C .43n a n =-D .122n n S n +=--解E 为AB 中点,∴2n n n G E G A G B =+,∴2n n n G B G A G E =-+,又D 、n G 、B 三点共线,∴2n n n n G D G B G A G E λλλ==-+,又12(23)n n n n n G D a G A a G E +=-+,∴122(23)n n a a λλ+-=⎧⎨=-+⎩,化简可得123n n a a +=+,132(3)n n a a +∴+=+,∴数列{3}n a +是等比数列.又11a =,∴113(3)2n n a a -+=+,∴123n n a +=-,313a ∴=,∴24(12)323412n n n S n n +-=-=---.故选:AB .14.设[]x 为不超过x 的最大整数,n a 为[[]]([0,))x x x n ∈可能取到所有值的个数,n S是数列A .34a = B .190是数列{}n a 中的项解:当1n =时,[0x ∈,1),[]0x =,[]0x x =,故[[]]0x x =,即11a =,当2n =时,[0x ∈,2),[]{0x =,1},[]{0}[1x x ∈,2),故[[]]{0x x =,1},即22a =, 当3n =时,[0x ∈,3),[]{0x =,1,2},[]{0}[1x x ∈,2)[4,6),故[[]]{0x x =,1,4,5},即34a =,以此类推,当2n ,[0x ∈,)n 时,[]{0x =,1,2,⋯⋯,}n ,[]{0}[1x x ∈,2)[4,26)[(1)n ⋯⋯-,(1))n n -,故[[]]x x 可以取的个数为22112312n n n -+++++⋯⋯+-=, 即22,22n n n a n -+=,当1n =时也满足上式,故22,2n n n a n N -+=∈,对A ,34a =,故A 正确;对B ,令221902n n n a -+==,即23780n n --=无整数解,故B 错误;对C,12112()2(1)(2)12n a n n n n n ==-+++++,则11111122()12334122n S n n n =-+-+⋯⋯+-=--++, ∴10251126S =-=,故C 正确; 对D,212212211222222n a n n n n n +=+--=,当且仅当(6,7)n =时取等号, n N ∈,当6n =时,21166n a n +=+,当7n =时,21167n a n +=+, 故当7n =时,21n a n+取最小值,故D 正确. 故选:ACD . 三、填空题15.已知数列{}n a ,{}n b 均为正项等比数列,n P ,n Q 分别为数列{}n a ,{}n b的前n 项积,解:数列{}n a ,{}n b 均为正项等比数列,它们的公比分别为q 、m , n P ,n Q 分别为数列{}n a ,{}n b 的前n 项积,(1)]211121(1)122111(1)1()[5722(1)1()2[]22n n nn n n n n n n n n n nlna lnq lna lnqlnP ln a a a ln a q n n n n lnQ ln b b b n nlnb lnm lnb lnm ln b m ----++⋅⋅⋅⋅⋅⋅-====--⋅⋅⋅⋅++⋅⋅, 1102lnb lnm ∴-=,122lnm =,解得4m e =,21b e =;由1172lna lnq -=-,152lnq =,解得21a e -=,10q e =;2102183()a e e e -∴=⋅=,28103b e e e =⋅= 则33189105lna lnb ==, 故答案为:9516.已知正项递增数列{}n a 的前n 项和为n S ,若11a =,2211126n n n n n n a a a a a a ---++=++,设解:由2211126n n n n n n a a a a a a ---++=++,化为:211()()60n n n n a a a a ---+--=,解得12n n a a --=或3-, 数列{}n a 是正项递增数列, 取12n n a a --=,∴数列{}n a 是等差数列,首项为1,公差为2,12(1)21n a n n ∴=+-=-,2(121)2n n n S n +-==. ∴2221411111(2)12121n n a n S n n n +-+==+---+, 则1682242468211111(1)11111n nn n a a a a a T S S S S S -+++++=-+-+⋯+-⋅----- 11111111(1)()()(1)()335572121n n n -=+-+++-⋯⋯+-+-+当*2()n k k N =∈时,21141k T k =-+; 当*21()n k k N =-∈时,211141k T k -=+-. 11,2111,21n n n T n n ⎧-⎪⎪+∴=⎨⎪+⎪+⎩为偶数为奇数.故答案为:11,2111,21n n n T n n ⎧-⎪⎪+=⎨⎪+⎪+⎩为偶数为奇数.2n 时,2n a 2)m 且t m -解:当2n =时,有222121a S S +=,即2222(1)1a a ++=,解得:21a =-, 又当2n 时,1n n n a S S -=-,∴由2121n n n a S S n -+=-可得:2211n n S S n -+=-,又221n n S S n ++=,22111n n S S +-∴-=,2n ,又11S =,20S =,∴数列221{}n S -是首项为1,公差为1的等差数列;数列22{}n S 是首项为0,公差为1的等差数列,221n S n -∴=,221n S n =-,1111m m t t t m a a a a S S +--++⋯++==-,且21t m -=,2111m m S S +-∴-=,易知21m +与1m -奇偶性相同,∴当m为奇数时,有153m =; 当m为偶数时,有1=,解得:50m =, 综上,53m =或50,故答案为:1-;53或50.解:因为12n n na a n +⋅=+, 所以123222121352113572121n n n n a a a a a a n n ---⋅⋅⋅⋯⋅⋅⋅=⋅⋅⋯=++; 由12n n n a a n +⋅=+,可得1213n n n a a n +++⋅=+, 即有2(1)(2)(3)n na n n a n n +++=+, 由11a =,312314a a ⨯=⨯,534536a a ⨯=⨯,756758a a ⨯=⨯,⋯,2123(22)(21)(23)2k k a k k a k k----=-⋅, 所以当21n k =-,*k N ∈, 上式相乘可得,212(21)2k k a k --=,即为21n na n =+; 当21n k =-,*k N ∈时,2122121k k k a a k --=+, 可得22122212(21)2(21)k k k ka k k k -=⋅=+-+, 所以,当2n k =,*k N ∈时,22n na n =+. 故答案为:121n +,2,211(*),222nn k n k N n n kn ⎧=-⎪⎪+∈⎨⎪=⎪+⎩.。
2025年高考数学二轮复习模块1数列专题-特技大招1-特殊值秒解数列选填【含解析】
2025年高考数学二轮复习模块1数列专题-特技大招1-特殊值秒解数列选填大招总结当数列的选择填空题中只有一个条件时,在不违背题意的条件下,我们可以直接利用特殊值,令其公差为0或者公比为1,即令数列为常数列,每一项设为x ,只需5秒搞定一道题.题目本身难度其实也不大,但用此方法更快.注意:一定检验是否符合题意,题目中如果出现公差不为0或者公比不为1,则慎用此法.另外,如果问题是求取值范围,则此方法失效.如果问题是求固定值,则可放心使用,详细用法,我们通过例题讲解.典型例题例1.设等差数列{}n a 前n 项和为n S ,若972S =,则249a a a ++=()A.12B.18C.24D.36解方法1:等差数列{}n a 前n 项和为n S ,()199597292a a S a +===,58a ∴=.故24915312324a a a a d a ++=+==,故选C.方法2:令每一项为x ,972S =,即972x =,8x =,249324a a a x ++==,故选C.例2.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =()A.24B.48C.66D.132解方法1:数列{}n a 为等差数列,设其公差为d ,912162a a =+,()11181162a d a d ∴+=++,1512a d ∴+=,即612a =.∴数列{}n a 的前11项和111211S a a a =+++()()()111210576611132a a a a a a a a =+++++++==.故选D.方法2:令每一项为x ,912162a a =+,162x x =+,12x =,1111132S x ==,故选D.已知数列{}n a 是等差数列,且1472a a a π++=,则()35tan a a +的值为()A.3B.C.D.33-方法1:数列{}n a 是等差数列,且1472a a a π++=,147432a a a a π∴++==,423a π∴=,()()3544tan tan 2tantan 33a a a ππ∴+====,故选C.方法2:令每一项为x ,14732a a a x π++==,23x π=,()()354tan tan 2tantan 33a a x ππ∴+====,故选C.例4.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,269S a +=,则5S 的值为()A.10B.15C.30D.3解方法1:设等差数列{}n a 的公差为d ,269S a +=,1369a d ∴+=,化为:1323a d a +==,则()155355152a a S a +===.故选B.方法2:令每一项为x ,2629S a x x +=+=,3x =,515S =,故选B.例5.已知{}n a 为等差数列,且6154a a +=,若数列{}n a 的前m 项的和为40,则正整数m 的值为()A.10B.20C.30D.40解方法1:由题意可得,()()120206152010402a a S a a +==+=,所以20m =.故选B.方法2:令每一项为x ,61524a a x +==,2x =,240m S m ==,所以20m =.故选B.例6.已知数列{}n a 为正项等比数列,且13355724a a a a a a ++=,则24a a +=()A.1B.2C.3D.4方法1:数列{}n a 为正项等比数列,且13355724a a a a a a ++=,数列{}n a 为正项等比数列,262a a ∴+=.故选B.()222133557226626224a a a a a a a a a a a a ∴++=++=+=,方法2:令每一项为x ,则222133557224a a a a a a x x x ++=++=, 1.x =2622a a x +==,故选B.例7.已知等比数列{}n a 的各项圴为正数,且39a =,则313233log log log a a a +++3435log log a a +=()A.52B.53C.10D.15方法1:()553138333415312345333log log log log log log log log 910a a a a a a a a a a a ++++====,故选C.方法2:不妨令数列为常数项,每一项n 39a a ==,3132333435log log log log log 2a a a a a ++++=+222210+++=,故选C.例8.已知等比数列{}n a 的各项均为正数,且212227log log log a a a +++=7,则2635a a a a +=()A.16B.14C.8D.4解方法1:等比数列{}n a 的各项均为正数,且212227log log log 7a a a +++=,(212log a a ⋅)77a =,71272a a a ∴⋅=,7742a ∴=,42a ∴=,22635428a a a a a ∴+==,故选C.方法2:令每一项为x ,则2122272log log log 7log 7a a a x ++==,2x =,222635a a a a x x +=+=8,故选C.例9.已知{}n a 为等差数列,公差2d =,24618a a a ++=,则57a a +=()A.8B.12C.16D.20解方法1:根据题意知,4262a a a =+,57424a a a d +=+,24618a a a ++=,4318a ∴=,4 6.a ∴=∴57424264220a a a d +=+=⨯+⨯=.故选D.方法2:此题为反例,题干中明确说了公差2d =,所以不能用特殊值的方法,令公差为0,故不能用大招.例10.在等比数列{}n a 中,若3212a a a =+,则2538a a a 的值为()A.12或1-B.12-或1C.2或1-D.12解方法1:根据题意,设等比数列{}n a 的公比为q ,若3212a a a =+,则220q q --=,解可得2q =或1-,若2q =,则22851273811112a a q a a a q a q q ===,若1q =-,则2285127381111a a q a a a q a q q ===-,故2538a a a 的值为12或1-,故选A .方法2:此题为反例,若令每一项为x ,则3212a a a =+变为2x x x =+,0x =,等比数列中0n a ≠,故不能用大招.例11.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是()A.25B.254C.5D.25解方法1:等比数列{}n a 的各项都为正数,()2222265986688682225a a a a a a a a a a ∴++=++=+=,6a ∴85a +=,268113682524a a a a a a +⎛⎫∴==⎪⎝⎭,当且仅当6852a a ==时取等号,113a a ∴的最大值是254.故选B.方法2:此题为反例,题目问的是“最大值”,而不是定值,故不能用特殊值这种大招.例12.已知数列{}{},n n a b 满足n 2n b =log a ,n N +∈,其中{}n b 是等差数列,1020112a a =,则122020b b b +++=________.解方法1:数列{}{},n n a b 满足2log n n b a =,n N +∈,其中{}n b 是等差数列,2bn n a ∴=是等比数列,1020112a a =,122020212222020log log log b b b a a a ∴+++=+++()2122020log a a a =⨯⨯⨯=方法2:令数列{}n a 每一项为x ,则21020112a a x ==,n a x ==,21log 2n n b a ==,1220201202010102b b b +++=⨯=.自我检测1.已知等差数列{}n a 的前n 项和n S ,若23109a a a ++=,则9S =()A.27B.18C.9D.3【解析】方法1:设公差为d ,则13129a d +=,1543a d a ∴+==,95927S a ∴==,故选A.方法2:令每一项为x ,则23109a a a x x x ++=++=,3x =,927S =.故选A.2.在等差数列{}n a 中,18153120a a a ++=,则9102a a -的值为()A.20B.22C.24D.8-【解析】方法1:在等差数列{}n a 中,18153120a a a ++=,85120a ∴=,824a ∴=,910182724a a a d a -=+==.故选C.方法2:令每一项为x ,181535120a a a x ++==,24x =,故选C.3.等差数列{}n a 中,若81126a a =+,则19a a +等于()A.54C.10D.6【解析】方法1:设等差数列{}n a 的公差为d ,等差数列{}n a 中,81126a a =+,()1127610a d a d ∴+=++,解得146a d +=.191182612a a a a d ∴+=++=⨯=.故选B.方法2:令每一项为x ,81126a a =+,26x x =+,6x =,19212a a x +==,故选B.4.已知数列{}n a 是等差数列,且23451a a a a +++=,则16a a +=()A.14B.12D.2【解析】方法1:数列{}n a 是等差数列,且23451a a a a +++=,()23451621a a a a a a ∴+++=+=,解得16a a +12=.故选B.方法2:令每一项为x ,234541a a a a x +++==,14x =,16122a a x +==,故选B.5.已知数列{}n a 是等差数列,且31120a a +=,则11152a a -=()A.10B.9C.8D.7【解析】方法1:数列{}n a 是等差数列,且31120a a +=,则1121020a d a d +++=,即1610a d +=,则11152a a -=11122014610a d a d a d +--=+=,故选A.方法2:令每一项为x ,311220a a x +==,10x =,则11152210a a x x x -=-==,故选A.6.在等差数列{}n a 中,3456a a a ++=,则()17 a a +=A.2B.3C.4D.5【解析】方法1:由等差数列的性质,得345436a a a a ++==,解得42a =,17424a a a ∴+==,故选C.方法2:令每一项为x ,34536a a a x ++==,2x =,则1724a a x +==,故选C.7.等差数列{}n a 中,5101530a a a ++=,则22162a a -的值为()A.10-B.20-C.10D.20【解析】方法1:设等差数列{}n a 的公差为d ,5101530a a a ++=,10330a ∴=,1010a ∴=,221610212a a a d ∴-=+()10102610a d a -+=-=-,故选A.方法2:令每一项为x ,51015330a a a x ++==,10x =,则22162210a a x x x -=-=-=-,故选A.8.设n S 是等差数列{}n a 的前n 项和,若152a a +=,则5S =()A.5B.7C.9D.11【解析】方法1:因为数列{}n a 为等差数列,设其公差为d ,前n 项和为n S ,则()2121n n S n a -=-.所以535S a =,又152a a +=,所以31a =,所以5355S a ==,故选A.方法2:令每一项为x ,1522a a x +==,1x =,则555S x ==,故选A .9.已知数列{}n a 是等差数列,57918a a a ++=,则其前13项的和是()A.45B.56C.65D.78【解析】方法1:在等差数列{}n a 中,57918a a a ++=,5797318a a a a ∴++==,解得76a =,∴该数列的前13项之和:()1311371313136782S a a a =⨯+==⨯=,故选D.方法2:令每一项为x ,579318a a a x ++==,6x =,则131378S x ==,故选D.10.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则5a =()A.4B.2C.1D.8【解析】方法1:公比为2的等比数列{}n a 的各项都是正数,且31116a a =,210112216a a ∴⋅⋅⋅=,且10a >,解得1412a =,4541212a ∴=⋅=.故选C .方法2:题目中提到公比为2,所以不能用大招.11.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为()A.12C.24D.32【解析】方法1:由题意知等比数列{}n a 中0n a >,则公比0q >,因为543264328a a a a +--=,所以432111164328a q a q a q a q ⋅+⋅-⋅-⋅=,即()432164328a q q q q +--=,所以()()2132218a q q q +-=,所以1(3a q q 282)21q +=-,所以()654476111224824969633232121a a a q a q q a q q q q q q+=⋅+⋅=⋅+=⋅=--,设x =21q,则0x >,22242121(1)1y x x x q q =-=-=-- ,所以2421q q -取最大值1时,7696a a +取到最小值24.故选C.方法2:此题为反例,题目问的是“最小值”,而不是定值,故不能用特殊值这种大招.12.已知正项等比数列{}n a ,满足21232527log log log log 4a a a a +++=,则(226log ) a a +的最小值为()A.1B.2D.4【解析】由对数的运算性质可得,()2123252721357log log log log log 4a a a a a a a a +++==,135716a a a a ∴=,由等比数列的性质可知,413574a a a a a =且40a >,42a ∴=,()226224log log log 22a a a ∴+= ,故(22log a )6a +的最小值为2,故选B.方法2:此题为反例,题目问的是“最小值”,而不是定值,故不能用特殊值这种大招.13.在等差数列{}n a 中,已知3810a a +=,则573a a +=__________.【解析】方法1:由等差数列的性质得:()()()()5755756563832222220a a a a a a a a a a a +=++=+=+=+=,故答案为:20.方法2:令每一项为x ,3810a a +=,5x =,57320a a +=,故答案为:20.14.等比数列{}n a 的各项均为正数,且1516a a =,则2122232425log log log log log a a a a a ++++=__________.【解析】方法1:等比数列{}n a 的各项均为正数,且1516a a =,2122232425log log log log log a a a a a ∴++++=()521252log log 410a a a ⨯⨯⨯==.故答案为:10.方法2:令每一项为x ,1516a a =,4x =,2122232425log log log log log 10a a a a a ++++=,故答案为:10.15.在前n 项和为n S 的等差数列{}n a 中,若()()1536932a a a a a ++++18=,则8__________.S =【解析】解:方法1:由等差数列的性质有366618a a +=,有363a a +=,则()()1883684122a a S a a +==+=.故答案为:12.方法2:令每一项为x ,()()()()153********a a a a a x x x x x ++++=++++=,1218x =,32x =,所以83812.2S =⨯=。
高三数学二轮复习数列[1]
高三数学二轮复习教学案——等差数列与等比数列一、【填空】1.已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=_______.2. 在等差数列{a n }中,若a 1,a 2 011为方程x 2-10x +16=0的两根,则a 2+a 1 006+a 2 010=__________________.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=______________. 4.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为---------------5.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =____________.6. 已知等比数列{}n a 中,214S ,23a 33==,则1a =_____________________. 二、【解答】7. 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.8.设{}n a 数列为等比数列,{}n b 数列为等差数列,且10b =,n n n c a b =+,若{}n c 是1,1,2,, 求{}n c 的前10项和.9. 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.10. 已知数列{a n}满足如下图所示的程序框图.(1)写出数列{a n}的一个递推关系式;(2)证明:{a n+1-3a n}是等比数列,并求{a n}的通项公式;(3)求数列{n(a n+3n-1)}的前n项和T n.。
高考数学第二轮复习专题课件:数列
∑n 1 =________. k=1 Sk 解析 设{an}首项为 a1,公差为 d,则
由aS34= =a41a+1+24d= ×2 33, d=10,得ad1==11.,∴Sn=n(n+ 2 1),
n
∑
k=1
S1k=1×2 2+2×2 3+…+n(n2-1)+n(n2+1)
=21-12+12-13+…+n-1 1-1n+1n-n+1 1=21-n+1 1=n2+n1.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
探究提高 1.第(2)题求解的思路是:先利用等比数列的通项 公式构建首项a1与公比q的方程组,求出a1,q,得到{an}的 通项公式,再将a1a2·…·an表示为n的函数,进而求最大值. 2.等差(比)数列基本运算的解题途径: (1)设基本量a1和公差d(公比q). (2)列、解方程组:把条件转化为关于a1和d(q)的方程(组),然 后求解,注意整体计算,以减少运算量.
热点聚焦·题型突破
归纳总结·思维升华
【训练2】 (1)设等差数列{an}的公差为d,若数列{2a1an}为递 减数列,则( )
A.d>0
B.d<0
C.a1d>0
D.a1d<0
(2)(开封质检)设等比数列{an}的前n项和为Sn,若Sm-1=5,
Sm=-11,Sm+1=21,则m等于( )
A.3
B.4
解析 (1)由log2a2+log2a8=2,得log2(a2a8)=2,所以a2a8=4, 则a5=±2, 等比数列{an}的前9项积为T9=a1a2…a8a9=(a5)9=±512.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
高三二轮复习--数列
高三二轮复习-数列【例1】S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.‘【例2】已知数列{a n}的前n项和为S n,且有a1=2,3S n=5a n-a n-1+3S n-1(n≥2).(1)求数列{a n}的通项公式;(2)若b n=(2n-1)a n,求数列{b n}的前n项和T n.【例3】等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.【例4】设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =2a n a n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有8T n <2λ2+5λ成立,求实数λ的取值范围.【例5】数列的综合问题已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.【例6】数列与其他的综合问题设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛320,内有且仅有一个零点(记为a n ),且0<a n -12<13(32)n .【例2】已知等差数列{a n}的公差d>0,其前n项和为S n,若S3=12,且2a1,a2,1+a3成等比数列.(1)求数列{a n}的通项公式;(2)记b n=1a n a n+1(n∈N*),且数列{b n}的前n项和为T n,证明:14≤T n<13.【例3】设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=x21x23…x22n-1,证明:T n≥1 4n.【例4】自从祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商第一年年初到大陆就创办了一座120万元的蔬菜加工厂M,M的价值在使用过程中逐年减少,从第二年到第六年,每年年初M的价值比上年年初减少10万元,从第七年开始,每年年初M的价值为上年年初的75%.(1)求第n年年初M的价值a n的表达式;(2)设A n=a1+a2+…+a nn,若A n大于80万元,则M继续使用,否则须在第n年年初对M更新,证明:必须在第九年年初对M更新.练习1.设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *. (1)证明:a n +2=3a n ; (2)求S n .2.已知正项数列{a n }的前n 项和S n 满足:4S n =(a n -1)(a n +3)(n ∈N *). (1)求a n ;(2)若b n =2n ·a n ,求数列{b n }的前n 项和T n .3.已知数列{a n }的前n 项和S n 满足S n =a (S n -a n +1)(a 为常数,且a >0),且4a 3是a 1与2a 2的等差中项. (1)求{a n }的通项公式;(2)设b n =2n +1a n ,求数列{b n }的前n 项和T n .4.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式; (2)设数列{b n }满足13()2n na b n a ⋅+=,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.5.已知数列{a n }是等比数列,并且a 1,a 2+1,a 3是公差为-3的等差数列. (1)求数列{a n }的通项公式;(2)设b n =a 2n ,记S n 为数列{b n }的前n 项和,证明:S n <163.6.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式; (2)记数列}1{na 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.7.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.7.已知数列{a n }的前n 项和为S n ,且(a -1)S n =a (a n -1)(a >0)(n ∈N *). (1)求证数列{a n }是等比数列,并求其通项公式;(2)已知集合A ={x |x 2+a ≤(a +1)x },问是否存在实数a ,使得对于任意的n ∈N *,都有S n ∈A ?若存在,求出a 的取值范围;若不存在,说明理由.8.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.9.已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =∑2nk =1 (-1)k b 2k ,n ∈N *,求证:∑nk =11T k <12d 2.10.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .11.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.12.已知数列{a n }的前n 项和S n =a n +n 2-1,数列{b n }满足3n b n +1=(n +1)a n +1-na n ,且b 1=3. (1)求a n ,b n ;(2)设T n 为数列{b n }的前n 项和,求T n ,并求满足T n <7时n 的最大值.13.(17年高考真题文)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题3 微重点10 子数列问题
跟踪演练1 (2022·山东学期联考)已知数列{an}满足an-1-an=an-an+1(n≥2),
且a1=1,a7=13;数列{bn}的前n项和为Sn,且Sn=
3n-1 2.
(1)求数列{an}和{bn}的通项公式;
由已知可得,2an=an-1+an+1(n≥2), 则数列{an}为等差数列,设其公差为d, 由a7=a1+6d=13,解得d=2, ∴an=2n-1, 在数列{bn}中,当n=1时,b1=S1=1, 当 n≥2 时,bn=Sn-Sn-1=3n-2 1-3n-21-1=3n-1,
1234
4.(2022·山东联考)已知数列{an}中,a1=1,a2=2,an+2=kan(k≠1), n∈N*,a2+a3,a3+a4,a4+a5成等差数列. (1)求k的值和{an}的通项公式;
当n=1时,满足上式,∴bn=3n-1.
(2)若数列 cn=abnn, ,nn为 为奇 偶数 数, , 求数列{cn}的前 n 项和 Tn.
因为 cn=abnn, ,nn为 为奇 偶数 数, ,
则当n为偶数时,Tn=c1+c2+c3+…+cn =1+5+…+2n-3+3+…+3n-1 =n21+22n-3+3-1-3n9+1=n2-2 n+3n+81-3,
专题三 数 列
微重点10 子数列问题
子数列问题包括数列中的奇偶项、公共数列以及分段数列,是近几年高 考的重点和热点,一般方法是构造新数列,利用新数列的特征(等差、等比或 其他特征)求解原数列.
内容索引
考点一 奇数项、偶数项 考点二 两数列的公共项 考点三 分段数列
专题强化练
考点一
奇数项、偶数项
方法一 由题意知,2n≤m,即n≤log2m, 当m=1时,b1=0. 当m∈[2k,2k+1-1)时,bm=k,k∈N*, 则S100=b1+(b2+b3)+(b4+b5+…+b7)+…+(b32+b33+…+b63)+ (b64+b65+…+b100) =0+1×2+2×4+3×8+4×16+5×32+6×37=480. 方法二 由题意知bm=k,m∈[2k,2k+1), 因此,当m=1时,b1=0; 当m∈[2,4)时,bm=1;
高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析
第一部分 一 9一、选择题1.(文)(2014·东北三省三校联考)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6 =12,则S 7的值是( )A .21B .24C .28D .7[答案] C[解析] ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴2a 4=a 1+a 7=8,∴S 7=7(a 1+a 7)2=7×82=28.[方法点拨] 1.熟记等差、等比数列的求和公式. 2.形如a n +1=a n +f (n )的递推关系用累加法可求出通项; 3.形如a n +1=a n f (n )的递推关系可考虑用累乘法求通项a n ;4.形如a n +1=ka n +b (k 、b 为常数)可通过变形,设b n =a n +bk -1构造等比数列求通项a n .(理)在等比数列{a n }中,a 1=a ,前n 项和为S n ,若数列{a n +1}成等差数列,则S n 等于( ) A .a n +1-a B .n (a +1) C .na D .(a +1)n -1[答案] C[解析] 利用常数列a ,a ,a ,…判断,则存在等差数列a +1,a +1,a +1,…或通过下列运算得到:2(aq +1)=(a +1)+(aq 2+1),∴q =1,S n =na .2.(文)已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53 D .4[答案] A[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.(理)(2014·全国大纲文,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .64[答案] C[解析] 解法1:由条件知:a n >0,且⎩⎪⎨⎪⎧a 1+a 2=3,a 1+a 2+a 3+a 4=15, ∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15,∴q =2. ∴a 1=1,∴S 6=1-261-2=63.解法2:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.[方法点拨] 下标成等差的等差、等比数列的项或前n 项和的问题,常考虑应用等差、等比数列的性质求解.3.(2015·浙江理,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0 [答案] B[解析] 考查等差数列的通项公式及其前n 项和;等比数列的概念. ∵{a n }为等差数列,且a 3,a 4,a 8成等比数列, ∴(a 1+3d )2=(a 1+2d )(a 1+7d )⇒ a 1=-53d ,∴S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,∴a 1d =-53d 2<0,dS 4=-23d 2<0,故选B.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,a 3=9a 1=a 1q 2,∴q 2=9, 又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.[方法点拨] 求基本量的问题,熟记等差、等比数列的定义、通项及前n 项和公式,利用公式、结合条件,建立方程求解.5.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于( )A .31008-2B .31008-3C .32015-2D .32015-3[答案] A[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3(1-31007)1-3=31008-2.6.(文)(2014·新乡、许昌、平顶山调研)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101的值为( )A .2B .200C .-2D .0[答案] A[解析] 设公比为q ,∵a n +2a n +1+a n +2=0,∴a 1+2a 2+a 3=0,∴a 1+2a 1q +a 1q 2=0,∴q 2+2q +1=0,∴q =-1,又∵a 1=2,∴S 101=a 1(1-q 101)1-q =2[1-(-1)101]1+1=2.(理)(2014·哈三中二模)等比数列{a n },满足a 1+a 2+a 3+a 4+a 5=3,a 21+a 22+a 23+a 24+a 25=15,则a 1-a 2+a 3-a 4+a 5的值是( )A .3 B. 5 C .- 5 D .5[答案] D[解析] 由条件知⎩⎪⎨⎪⎧a 1(1-q 5)1-q=3a 21(1-q10)1-q2=15,∴a 1(1+q 5)1+q=5,∴a 1-a 2+a 3-a 4+a 5=a 1[1-(-q )5]1-(-q )=a 1(1+q 5)1+q=5.7.(文)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600[答案] B[解析] 由a 1+a 2+a 3=3,a 18+a 19+a 20=87得, a 1+a 20=30,∴S 20=20×(a 1+a 20)2=300.(理)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 [答案] C[解析] 由条件知a 3=a 1+2a 2, ∴a 1q 2=a 1+2a 1q , ∵a 1≠0,∴q 2-2q -1=0, ∵q >0,∴q =1+2, ∴a 8+a 9a 6+a 7=q 2=3+2 2. 8.(2015·福建理,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[答案] D[解析] 由韦达定理得a +b =p ,a ·b =q ,因为p >0,q >0,则a >0,b >0,当a ,b ,-2适当排序后成等比数列时,-2必为等比中项,故a ·b =(-2)2=4,故q =4,b =4a .当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时,2a =4a -2,解得a =1,b =4,;当b 是等差中项时,8a =a -2,解得a =4,b =1,综上所述,a +b =p =5,所以p +q =9,选D.9.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=2,n ∈N +,则数列{ba n }的前10项的和为( )A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) [答案] D[解析] 由a 1=1,a n +1-a n =2得,a n =2n -1, 由b n +1b n=2,b 1=1得b n =2n -1, ∴ba n =2a n -1=22(n -1)=4n -1,∴数列{ba n }前10项和为1×(410-1)4-1=13(410-1).10.(文)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1等于( )A .1-14nB.23(1-14n ) C .1-12nD.23(1-12n ) [答案] B[解析] 因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1, 所以1a n a n +1=12×(14)n -1,所以{1a n a n +1}也是等比数列,所以T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12×1×(1-14n )1-14=23(1-14n ),故选B.(理)(2014·唐山市一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n( )A .4n -1B .4n -1 C .2n -1 D .2n -1[答案] C[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12)=2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 11.给出数列11,12,21,13,22,31,…,1k ,2k -1,…,k1,…,在这个数列中,第50个值等于1的项的序号..是( ) A .4900 B .4901 C .5000 D .5001[答案] B[解析] 根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,…,第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,…,分子、分母的和为99的有98项,分子、分母的和为100的项依次是:199,298,397,…,5050,5149,…,991,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=98(1+98)2+50=4901.[点评] 本题考查归纳能力,由已知项找到规律,“1”所在项的特点以及项数与分子、分母的和之间的关系,再利用等差数列求和公式即可.二、填空题12.(文)(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.[答案] 10[解析] 本题考查等差数列的性质及简单运算,属于容易题.因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.(理)(2015·湖南理,14)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.[答案] 3n -1[解析] 考查等差数列与等比数列的性质.∵3S 1,2S 2,S 3成等差数列,∴4S 2=3S 1+S 3,∴4(a 1+a 2)=3a 1+a 1+a 2+a 3⇒a 3=3a 2⇒q =3.又∵{a n }为等比数列,∴a n =a 1q n -1=3n -1.[方法点拨] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.13.(文)(2015·安徽理,14)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.[答案] 2n -1[解析] 考查1.等比数列的性质;2.等比数列的前n 项和公式.由题意,⎩⎪⎨⎪⎧ a 1+a 4=9,a 2·a 3=8.∴⎩⎪⎨⎪⎧a 1+a 4=9,a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n -1.(理)(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.[答案]2011[解析] 考查数列通项,裂项求和.由题意得:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2(1n -1n +1),S n =2(1-12)+2(12-13)+…+2(1n -1n +1)=2(1-1n +1)=2nn +1,S 10=2011.三、解答题14.(文)设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3.所以{a n }是首项为p 3,公比为43的等比数列.(2)因为a 1=1,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3(43)n -1-1,当n =1时,上式也成立.∴b n =3·(43)n -1-1.[方法点拨] 证明数列是等差(等比)数列时,应用定义分析条件,结合性质进行等价转化. (理)(2015·河南高考适应性测试)已知数列{a n }的各项均为正数,且a 1=2,a n =a 2n +1+4a n +1+2.(1)令b n =log 2(a n +2),证明:数列{b n }是等比数列. (2)设c n =nb n ,求数列{c n }的前n 项和S n .[解析] (1)由a n =a 2n +1+4a n +1+2,得a n +2=a 2n +1+4a n +1+4=(a n +1+2)2.因为a n >0,所以a n +2=a n +1+2. 因为b n +1b n =log 2(a n +1+2)log 2(a n +2)=log 2a n +2log 2(a n +2)=12,又b 1=log 2(a 1+2)=2,所以数列{b n }是首项为2,公比为12的等比数列.(2)由(1)知,b n =2·⎝⎛⎭⎫12n -1,则c n =2n ⎝⎛⎭⎫12n -1. S n =2×⎝⎛⎭⎫120+4×⎝⎛⎭⎫121+…+2(n -1)⎝⎛⎭⎫12n -2+2n ⎝⎛⎭⎫12n -1,① 12S n =2×⎝⎛⎭⎫121+4×⎝⎛⎭⎫122+…+2(n -1)⎝⎛⎭⎫12n -1+2n ⎝⎛⎭⎫12n .② ①-②得:12S n =2×⎝⎛⎭⎫120+2×⎝⎛⎭⎫121+2×⎝⎛⎭⎫122+…+2×⎝⎛⎭⎫12n -1-2n ·⎝⎛⎭⎫12n =21-⎝⎛⎭⎫12n1-12-2n ·⎝⎛⎭⎫12n =4-(4+2n )⎝⎛⎭⎫12n . 所以S n =8-(n +2)⎝⎛⎭⎫12n -2.15.(2015·南昌市一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围.[解析] (1)等差数列{a n },a 1=1,S 3=6,∴d =1,故a n =n⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n (1)b 1·b 2·b 3·…·b n -1=2S n -1 (2),(1)÷(2)得b n =2S n -S n -1=2a n =2n (n ≥2), b 1=2S 1=21=2,满足通项公式,故b n =2n(2) 设λb n >a n 恒成立⇒λ>n 2n 恒成立,设c n =n 2n ⇒c n +1c n =n +12n当n ≥2时,c n <1,{c n }单调递减, ∴(c n )max =c 1=12,故λ>12.16.(文)(2014·湖北理,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.[分析] (1)设数列{a n }的公差为d ,利用等比数列的性质得到a 22=a 1·a 5,并用a 1、d 表示a 2、a 5,列等式求解公差d ,进而求出通项,注意对公差d 分类讨论;(2)利用(1)的结论,对数列{a n }的通项分类讨论,分别利用通项公式及等差数列的前n 项和公式求解S n ,然后根据S n >60n +800列不等式求解.[解析] (1)设数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ).化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立, 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2,令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去).此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.[方法点拨] 存在型探索性问题解答时先假设存在,依据相关知识(概念、定理、公式、法则、性质等),结合所给条件进行推理或运算,直到得出结果或一个明显成立或错误的结论,从而断定存在与否.(理)(2014·新课标Ⅰ理,17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[分析](1)利用a n+1=S n+1-S n用配凑法可获证;(2)假设存在λ,则a1,a2,a3应成等差数列求出λ的值,然后依据a n+2-a n=λ推证{a n}为等差数列.[解析](1)由题设:a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1,令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.。
高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版
4.(2010年高考北京卷)已知{an}为等差数列,且a3 =-6,a6=0. (1)求{an}的通项公式; (2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3, 求{bn}的前n项和公式. 解:(1)设等差数列{an}的公差为 d.
因为 a3=-6,a6=0,
所以aa11+ +25dd= =-0,6, 解得ad=1=2-. 10,
A.6
B.7
Hale Waihona Puke C.8D.9解析:选 A.∵{an}是等差数列, ∴a4+a6=2a5=-6, 即 a5=-3,d=a55- -a11=-34+11=2,得{an}是首 项为负数的递增数列,所有的非正项之和最 小.∵a6=-1,a7=1,∴当 n=6 时,Sn 取最小 值,故选 A.
3.(2010 年高考辽宁卷)设{an}是由正数组成的等
比数列,Sn 为其前 n 项和.已知 a2a4=1,S3=7,
则 S5=( )
15
31
A. 2
B. 4
33 C. 4
17 D. 2
解析:选 B.an>0,a2a4=a21q4=1①,S3=a1+a1q+ a1q2=7②. 解得 a1=4,q=12或-13(舍去), S5=a111--qq5=4×1-1-12312=341,故选 B.
(1)求通项an及Sn; (2)设{bn-an}是首项为1,公比为3的等比数 列,求数列{bn}的通项公式及前n项和Tn.
【解】 (1)∵{an}是首项为 a1=19,公差为 d =-2 的等差数列,
∴an=19-2(n-1)=21-2n, Sn=19n+12n(n-1)×(-2)=20n-n2. (2)由题意得 bn-an=3n-1,即 bn=an+3n-1,∴ bn=3n-1-2n+21,Tn=Sn+(1+3+…+3n-1)=- n2+20n+3n-2 1.
高考数学总复习(第二轮)数列
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方
法. 1、等差数列求和公式:Sn
n(a1 + 2
an )
na1
+
n(n 1) 2
d
2、等比数列求和公式:Sn
na1 a1 (1
q
n
)
1 q
a1 anq 1 q
(q 1) (q 1)
3、Sn
n k 1
k
1n(n 2
高考数学总复习(第二轮) 第2讲 数列
1
一、基本知识归纳
1、一般数列
[数列的通项公式]
an
a1 S n
S1(n Sn1 (n
1)
2)
[数列的前n项和] Sn a1 + a2 + a3 + … + an
2
2、等差数列
[等差数列的概念] [定义]如果一个数列从第2项起,每一项与它的前一项的 差等于同一个常数,那么这个数列就叫做等差数列,这个
即 G 2 ab 。
aG
[等比数列的通项公式] 如果等比数列{an}的首项是a1 ,公比是q,则等比数列的通 项为 an a1q n1
[等比数列的前n项和]
①S n
a1(1 q n ) 1 q
(q
1)
② Sn
a1 anq 1 q
(q
1)
③Sn
当 q 1
na1
时
10
[等比数列的性质] 1.等比数列任意两项间的关系:如果 am 是等比数 列的第m项,an 是等比数列的第n项,且m n , 公比为q,则有 an amq nm
2.对于等差数列 an ,若 n + m p + q, 则 an + am ap + aq
新教材2024高考数学二轮专题复习分册一专题三数列第一讲等差数列与等比数列__小题备考微专题1等差数
第一讲等差数列与等比数列——小题备考常考常用结论1.等差数列(1)通项公式:a n=a1+(n-1)d;(2)求和公式:S n==na1+d;(3)性质:①若m,n,p,q∈N*,且m+n=p+q,则a m+a n=a p+a q;②a n=a m+(n-m)d;③S m,S2m-S m,S3m-S2m,…成等差数列.2.等比数列(1)通项公式:a n=a1q n-1(q≠0);(2)求和公式:当q=1时,S n=na1;当q≠1时,S n==;(3)性质:①若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q;②a n=a m·q n-m;③S m,S2m-S m,S3m-S2m,…(S m≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算1.[2023·江西赣州二模]已知等差数列{a n}中,S n是其前n项和,若a3+S3=22,a4-S4=-15,则a5=( )A.7 B.10 C.11 D.132.[2023·安徽合肥二模]已知等差数列{a n}的前n项和为S n,a4=-1,a1+a5=2,则S8的值为( )A.-27B.-16C.-11D.-93.[2023·吉林长春三模]已知等比数列{a n}的公比为q(q>0且q≠1),若a6+8a1=a4+8a3,则q的值为( )A.B.C.2D.44.[2023·全国甲卷]已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3-4,则S4=( )A.7B.9C.15D.305.[2023·辽宁鞍山二模]天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”之后地支回到“子”重新开始,即“丙子”,…,以此类推,2023年是癸卯年,请问:在100年后的2123年为( )A.壬午年B.癸未年C.己亥年D.戊戌年1.(1)[2023·山东济南模拟](多选)已知等差数列{a n},前n项和为S n,a1>0,<-1,则下列结论正确的是( )A.a2022>0B.S n的最大值为S2023C.|a n|的最小值为a2022D.S4044<0(2)[2023·湖南长沙明德中学三模]中国古代数学著作《增减算法统宗》中有这样一段记载:“三百七十八里关,初行健步不为难,次日脚痛减一半,如此六日过其关.”则此人在第六天行走的路程是________里(用数字作答).技法领悟1.在等差(比)数列中,a1,d(q),n,a n,S n这五个量知道其中任意三个,就可以求出其他两个.求解这类问题时,一般是转化为首项a1和公差d(公比q)这两个基本量的有关运算.2.对于等比数列的前n项和公式,应按照公比q与1的关系分类讨论.一般地,若涉及n 较小的等比数列的前n项和问题,为防止遗忘分类讨论,可直接利用通项公式写出,而不必使用前n项和公式.[巩固训练1] (1)[2022·全国乙卷]记S n为等差数列的前n项和.若2S3=3S2+6,则公差d=________.(2)[2023·河北正定中学模拟]已知等比数列{a n}的前三项和为39,a6-6a5+9a4=0,则a5=( )A.81B.243C.27D.729微专题1 等差数列与等比数列的基本量计算保分题1.解析:设公差为d,则a1+2d+3a1+3d=22,a1+3d-4a1-6d=-15,解得a1=3,d =2,故a5=a1+4d=3+8=11.故选C.答案:C2.解析:因为{a n}是等差数列,设公差为d,因为a4=-1,a1+a5=2,所以,则,因为{a n}的前n项和为S n,所以S8=8×5+=-16,故选B.答案:B3.解析:已知等比数列{a n}的公比为q(q>0且q≠1),若a6+8a1=a4+8a3,则a6-a4=8a3-8a1,所以==q3=8,解得q=2.故选C.答案:C4.解析:由题知1+q+q2+q3+q4=5(1+q+q2)-4,即q3+q4=4q+4q2,即q3+q2-4q -4=0,即(q-2)(q+1)(q+2)=0.由题知q>0,所以q=2.所以S4=1+2+4+8=15.故选C.答案:C5.解析:由题意得:天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于100÷10=10,余数为0,故100年后天干为癸;由于100÷12=8…4,余数为4,故100年后地支为未;综上:100年后的2123年为癸未年.故选B.答案:B提分题[例1] (1)解析:∵数列{a n}为等差数列,a1>0,<-1,∴数列{a n}为递减的等差数列,∴a2023<0,a2022>0,故A正确;∵数列{a n}为递减的等差数列,a2023<0,a2022>0,∴S n的最大值为S2022,故B错;∵a2023<0,a2022>0,∴由<-1得a2023<-a2022,∴a2023+a2022<0,∴|a2023|>|a2022|,∴|a n|的最小值为|a2022|,即a2022,故C正确;S4044==2022(a2022+a2023)<0,故D正确.故选ACD.(2)解析:将这个人行走的路程依次排成一列得等比数列{a n},n∈N*,n≤6,其公比q=,令数列{a n}的前n项和为S n,则S6=378,而S6==,因此=378,解得a1=192,所以此人在第六天行走的路程a6=a1×=6(里).答案:ACD (2)6[巩固训练1] (1)解析:方法一设等差数列{a n}的首项为a1,公差为d.因为2S3=3S2+6,所以2(a1+a1+d+a1+2d)=3(a1+a1+d)+6,所以6a1+6d=6a1+3d+6,解得d=2.方法二设等差数列{a n}的首项为a1,公差为d.由2S3=3S2+6,可得2×3a2=3(a1+a2)+6.整理,得a2-a1=2,所以d=2.(2)解析:由a6-6a5+9a4=0⇒a4·(q2-6q+9)=0.而a n≠0,∴q=3,又a1+a2+a3=a1+3a1+9a1=13a1=39⇒a1=3,∴a n=3n,a5=35=243.故选B.答案:(1)2答案:B。
高考数学二轮复习 第二部分 专题二 数列 第1讲 等差数列与等比数列课件 理
因此an=1(,λ+n=1)1,·2n-2,n≥2. 若数列{an}是等比数列,则a2=1+λ=2a1=2. 所以λ=1,经验证当λ=1时,数列{an}是等比数 列.
[迁移探究] 若本例中条件“a1=1”改为“a1= 2”,其他条件不变,试求解第(2)问.
解:由本例(2),得an+1=2an(n≥2,n∈N*).
所以{an+bn}是首项为1,公比为12的等比数列. 由题设得4(an+1-bn+1)=4(an-bn)+8, 即an+1-bn+1=an-bn+2. 又因为a1-b1=1, 所以{an-bn}是首项为1,公差为2的等差数列. (2)解:由(1)知,an+bn=2n1-1,an-bn=2n-1, 所以an=12[(an+bn)+(an-bn)]=21n+n-12, bn=12[(an+bn)-(an-bn)]=21n-n+12.
由S1n=b2n-bn2+1,得Sn=2(bbnn+b1n-+1bn).
当n≥2时,由bn=Sn-Sn-1,得 bn=2(bbnn+b1n-+1bn)-2(bbnn--1bbnn-1),
整理得bn+1+bn-1=2bn. 所以数列{bn}是首项和公差均为1的等差数列. 因此,数列{bn}的通项公式为bn=n(n∈N*).
又S4=a1(1+q+q2+q3)=15,所以a1=1. 故a3=a1q2=4. 答案:C
2.(2019·全国卷Ⅲ)记Sn为等差数列{an}的前n项 和.若a1≠0,a2=3a1,则SS150=________.
解析:由a1≠0,a2=3a1,可得d=2a1, 所以S10=10a1+10× 2 9d=100a1, S5=5a1+5×2 4d=25a1,所以SS150=4. 答案:4
专题二 数 列
第1讲 等差数列与等比数列
数列二轮复习专题一、二参考答案
课前预习案:1、B 2、D 3、A 4、B 课内探究学案:例1:74 变式1:D 例2:A 变式2:B 例3:33 变式3:A当堂检测:1--5:C D A C B 6--10:B D A A B 11—15:C C D C C 16—18:A A A 课后训练案:1—5:A A B A D6—10:D B B D A 11—12:A B 13、7 14、3115、答案 (Ⅰ) 解:012,2,221121213=--∴+=∴+=d d d a a d a a a a 21,1-=∴≠d d (Ⅱ) 解:,25221)1(2+-=⎪⎭⎫⎝⎛-⋅-+=n n b n,492)(21nn b b n S n n +-=+=4)10)(1()252(492---=+--+-=-∴n n n n n b S n n ;101n n b S n n ===∴时,或;,92n n b S n >≤≤时n n b S ,n <≥时11.16、课前预习案:1、21n+ 2、18 3、1342n -⎛⎫⋅ ⎪⎝⎭4、25、(1)(4)课内探究学案: 例4:略 变式4:例5:解:(I )解:设等差数列{}n a 的公差为d ,由2214111(),a a a =⋅得2111()(3)a d a a d +=+ 因为0d ≠,所以d a =所以1(1),.2n n an n a na S +==(II )解:因为1211()1n S a n n =-+,所以 123111121(1)1n n A S S S S a n =++++=-+因为1122n n a a--=,所以21122211()11111212(1).212n nn nB a a a a a a --=++++=⋅=--当0122,21n nn n n n n C C C C n ≥=++++>+ 时, 即1111,12n n -<-+所以,当0,;n n a A B ><时当0,.n n a A B <>时变式5:(Ⅰ)解:由1*3(1),2n n b n N -+-=∈,可得2,,1,n n b n ⎧=⎨⎩为奇数为偶数,又()1121nn n n n b a b a +++=-+,当121231,21,2,;2n a a a a =+=-==-时由可得当2332,25,8.n a a a =+==时可得(Ⅱ)证明:对任意*n N ∈ 21212221n n n a a --+=-+ ①2221221n n n a a ++=+ ②②-①,得21211212132,32,4n n n n n n nc a a c c --++--=⨯=⨯=即于是所以{}n c 是等比数列。
高三数学第二轮复习数列解析版
高三数学第二轮复习数列解析版高三第二轮复习资料(数列)顺序(5学时)一【本章知识结构】等差数列的性质有等差数列正一般术语和整数列的概念,前n个术语和数字等比数列等比序列集性质二、【高考要求】1.了解数列有关概念和几种简单的表示方法(列表、图像、通项公式).2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式和前n项之和公式,并能利用这些知识解决一些实际问题。
三、 [热点分析]1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.系列问题命题倾向:(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点;(2)序列推理是一个新的课题,在过去的高考中经常使用学科几何试题来测试逻辑推理能力。
近两年来,在数字系列试题中,等差等比系列的综合考试也得到了加强;3.熟练掌握、灵活运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列;② 灵活利用等差序列和等比序列的相关性质可以更准确、快速地解决问题。
这种思想在解决客观问题时更为突出。
序列的许多客观问题都有灵活而简单的解5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。
数列综合二轮复习基础知识01
可是,这家人都没有来。杏花落了一地,厚厚一层,洁白如雪。
今年的春天,杏花又开了,又落了一地,洁白如雪。依然没有看到这家人来。
ቤተ መጻሕፍቲ ባይዱ
她是个爽朗的人,又对我说:老太太就稀罕杏树,老家的房前种的就是杏树。这不,我先来北京买房,把杏树顺便也种上,明年,老太太来的时候,就能看见杏花开了!
听了她的这一番话,我的心里挺感动,难得有这样孝顺贴心的孩子。当然,也得有钱,如今在北京买一套房,没有足够的“实力”支撑,老太太再美好的愿望,女儿再孝敬的心意,都是白搭。还得 说了,有钱的主儿多了,也得舍得给老人花钱,老人的愿望,才不会是海市蜃楼,空梦一场。
彼此熟络后,她告诉我:明年开春带我妈一起来住,买这个房子,就是为了给我妈住的。老太太在农村辛苦一辈子了,我爸爸前不久去世了,就剩下老太太一个人,想让她到城里享享福。孩子她爸 爸说到沈阳住,我就对他说,这些年,你做生意挣了钱,不差这点儿钱,老太太就想去北京,就满足老太太的愿望吧!到时候,我就提前办了退休手续,让孩子他爸爸把公司开到北京来,一起陪陪老太 太!bbin平台百家乐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二轮复习系列:数列1
1.【山东省师大附中2013届高三第四次模拟测试1月数学文】设等差数列{}n a 的前n 项和为,n S 2a 、4a 是方程220x x --=的两个根,5S = A .
52 B .5 C .5
2
- D .-5 2.【云南省昆明一中2013届高三第二次高中新课程双基检测数学文】在等比数列{}n a 中,若37,a a 是方程2
420x x ++=的两根,则 5a 的值是
A .2-
B
.C
.D
3.【贵州省六校联盟2013届高三第一次联考 文】等差数列}{n a 的前n 项和为n S ,已知
6,835==S a ,则9a =( )
A .8
B .12
C .16
D .24
4.【山东省青岛一中2013届高三1月调研考试数学文】已知数列{n a }满足
*331l o g 1
l o g ()n n a a n ++=∈N ,且2469a a a ++=,则15793
log ()
a a a ++的值是
( ) A.15-
B.5-
C.5
D. 15
5.【北京市海淀区北师特学校2013届高三第四次月考文】等差数列{}n a 的前n 项和是n S ,若125a a +=,349a a +=,则10S 的值为( )
A. 55
B. 65
C. 60
D.
70
6.【北京市东城区2013届高三上学期期末统一练习数学文】已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于
(A )1 (B )
5
3
(C )2 (D )3 7.【北京北师特学校2013届高三第二次月考 文】在等差数列{an }中,281-=a ,公差4=d ,
若前n 项和Sn 取得最小值,则n 的值为( )
.A 7 .B 8 .C 7或8 .D 8或9
8.【北京北师特学校2013届高三第二次月考 文】等差数列{a n }与{b n }的前n 项和分别
为S n 与T n , 若
1
22
3+-=
n n T S n n , 则=77b a ( ) .
A 2737 .
B 2838 .
C 2939
.D 30
40 9.【云南省玉溪一中2013届高三第五次月考 文】已知数列{n a }满足11a =,
12()1()n n n
a n a a n +⎧=⎨+⎩为正奇数为正偶数,则其前6项之和是( )
A.16
B.20
C.33
D.120
10.【北京市昌平区2013届高三上学期期末考试数学文】在数列{}n a 中 ,
111,,)2n n a a a y x +==点(在直线上,则4a 的值为
A .7
B .8
C .9
D .16
11.【北大附中河南分校2013届高三第四次月考数学(文)】设等比数列{}n a 的公比q=2,前n 项和为{}n S ,则
43
S a 的值为
( )
A .154
B .152
C .74
D .72
12.【山东省潍坊一中2013届高三12月月考测试数学文】各项为正数的等比数列{}n a 中,
2311
,,2
a a a 成等差数列,则4
534a a a a ++的值为
A.
1
2
B.
1
2
C.
12
-
D.
11
22
或 13.【北大附中河南分校2013届高三第四次月考数学(文)】设等差数列}{n a 的前n 项和为
,n S 且满足,0,01615<>S S 则15
152
211,,,a S a S a S 中最大的项为
A .
6
6
a S B .
77a S C.99a S D.8
8a S 14.【北大附中河南分校2013届高三第四次月考数学(文)】在数列{}n a 中,已知
1222,7,n a a a +==等于1()n n a a n N +∈*的个位数,则2013a 的值是( )
A .8
B .6
C .4
D .2
15.【云南师大附中2013届高三高考适应性月考卷(四)文】已知数列{}n a 中121,2a a ==,
当整数1n >时,1112()n n n S S S S +-+=+都成立,则15S = .
16.【云南省昆明一中2013届高三第二次高中新课程双基检测数学文】已知公差为零的等差数列{}n a 的前n 项和为104,,n S a S =若则
8
9
S a 等于 . 17.【云南省昆明三中2013届高三高考适应性月考(三)文】已知数列{}n a 为等比数列,且2113725a a a π+=,则)cos(122a a 的值为________________.
18.【山东省青岛一中2013届高三1月调研考试数学文】在如图的表格中,每格填上一个数
字后,使得每一横行成等差数列,每一纵列成等比数列,则a b c ++的值为
________________.
19.【贵州省六校联盟2013届高三第一次联考 文】已知正项等比数列}{n a 中,31=a ,
2433=a ,若数列}{n b 满足n n a b 3l o g =,则数列}1
{1
+n n b b 的前n 项和=n S .
20.【贵州省遵义四中2013届高三第四月考文】等差数列{}n a 的前n 项和为n S ,且
936S =-,13104S =-,则6a = 。
21.【北京市昌平区2013届高三上学期期末考试数学文】已知n S 是等差数列{}n a 的前n 项和,其中283,15,a a =-=则56=___;____a S =
22.【北京市石景山区2013届高三上学期期末考试数学文】在等比数列{}n a 中,
141
=,=42
a a -,则公比=q ;123++++=n a a a a L .
23.【北京市东城区普通高中示范校2013届高三12月综合练习(一)数学文】 公比为2的
等比数列{}n a 的各项都为正数,且2616a a =,则4a =_______;
12310a a a a +++⋅⋅⋅+=_________________.
24.【北京市朝阳区2013届高三上学期期末考试数学文】已知数列1,,9a 是等比数列,数列
121,,,9b b 是等差数列,则
12
a b b +的值为 .
25.【北京市海淀区2013届高三上学期期末考试数学文】数列{}n a 是公差不为0的等差数列,且268a a a +=,则
5
5
_____.S a = 26.【北京市通州区2013届高三上学期期末考试数学文】在等差数列{}n a 中,若11a =,前5项的和525S =,则2013a = .
27.【北京北师特学校2013届高三第二次月考 文】设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于
28.【云南省玉溪一中2013届高三第五次月考 文】(本小题满分12分)已知数列{}n a 满足的前n 项和为n S ,且)(,1)3
1
(*
∈-+=N n n S n n . (1)求数列{}n a 的通项公式;
(2)若数列}{n b 的通项公式满足)1(n n a n b -=,求数列}{n b 的前n 项和n T 。