人教版九年级下册(新)第二十六章-反比例函数教材分析文字讲义含例题及练习题及答案
初三数学下册(人教版)第二十六章反比例函数26.1知识点总结含同步练习及答案
k S = P M ⋅ P N = |y| ⋅ |x| = |xy| .因为 y = ,所以 k = xy ,故 S = |k|.连接 P O ,MN ,则 △P MO 和 △MON x 1
1 和 △P NO 的面积都相等,其值为 |k| . 2
x
常见模型 ① A ,B 为反比例函数上任意不重合两点,连接 OA ,OB ,过 A ,B 分别作 AE ⊥ x 轴,BF ⊥ x 轴于点 E,F , 则 S △OAB = S 四边形AEFB .
k1 k 上一点,向 x,y 轴上作垂线,交反比例函数 y = 2 上于点 A ,B ,交 x 轴于点 x x
③ 当反比例函数过矩形对角线交点时,则 S 四边形OABC = 4k .
④ 当反比例函数过矩形一个顶点,并且原点在矩形的一条对角线上时,则 S 1 = S 2 = k.
⑤ 四边形 ABCD 为平行四边形,对角线的交点与原点重合,A 、B 、C 、D 在反比函数图象上,则
10 ,当 1 < x < 2 时,y 的取值范围是( ) x B. 1 < y < 2 C. 5 < y < 10 D. y > 10
如图,A 、B 两点在双曲线 y =
S 1 + S 2 =(
)
4 上,分别经过 A 、B 两点向轴作垂线段,已知阴影部分的面积为 1 ,则 x
A. 3 B. 4 C. 5 D. 6 解:D. 因为过 A 、B 两点所作出的矩形面积为 4 ,所以 S 1 = S 2 = 3 . 如图,原点O 是矩形 ABCD 的对称中心,顶点 A 、C 在反比例函数图象上,AB 平行 x 轴.若矩形 ABCD 的面积 为 8 ,那么反比例函数的解析式是______.
新人教版九年级下《第26章反比例函数》单元测试题含答案解析
新人教版九年级下册数学?第26章反比例函数?单元测试题一.选择题〔共10小题〕1.以下关系式中,y是x的反比例函数的是〔〕A.y=4x B.=3 C.y=﹣ D.y=x2﹣12.在同一平面直角坐标系中,函数 y=kx与y=的图象大致是〔〕A.〔1〕〔3〕B.〔1〕〔4〕C.〔2〕〔3〕D.〔2〕〔4〕3.反比例函数y=﹣,以下结论中不正确的选项是〔〕A.图象必经过点〔﹣3,2〕B.图象位于第二、四象限C.假设x<﹣2,那么0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,S阴影=,那么S1+S2等于〔〕A.4B.C.D.5.以下各点中,在函数y=﹣图象上的是〔〕A.〔﹣3,﹣2〕B.〔﹣2,3〕C.〔3,2〕D.〔﹣3,3〕6.以下函数中,图象经过点〔1,﹣2〕的反比例函数关系式是〔〕A.y=B.y=C.y=D.y=7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,当y=x的函数值大于y=的函数值时,x的取值范围〔〕A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了 6小时到达目的地,当他按原路匀速返回时,汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为〔〕A.v=B.v+t=480C.v=D.v=9.对于反比例函数y=〔k≠0〕,以下所给的四个结论中,正确的选项是〔〕A.假设点〔2,4〕在其图象上,那么〔﹣2,4〕也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,那么矩形OAPB的面积为kD.反比例函数的图象关于直线y =x和y=﹣x成轴对称10.反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,那么以下四个点中,在这个函数图象上的是〔〕A.〔1,8〕B.〔3,〕C.〔,6〕D.〔﹣2,﹣4〕二.填空题〔共8小题〕11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大〞,那么此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,那么△OAC与△OBD的面积之和为.13.A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,且x1<0<x2,那么y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A〔2,1〕,C2与C1关于x轴对称,那么图象C2对应的函数的表达式为〔x>0〕.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P〔m,12〕,那么反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S△POM=4,那么k=.17.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.假设点B在x轴上,点A的坐标为〔6,4〕,那么△BOC的面积为.18.如果点〔﹣1,y 1〕、B 〔1,y 2〕、C 〔2,y 3〕是反比例函数y =图象上的三个点,那么y 1、y 2、y 3的大小关系是 .三.解答题〔共7小题〕19.y =〔m 2+2m 〕x是关x 于的反比例函数,求m 的值及函数的解析式.20.反比例函数y =〔m ﹣2〕〔1〕假设它的图象位于第一、三象限,求m 的值;〔2〕假设它的图象在每一象限内 y 的值随x 值的增大而增大,求 m 的值.21.双曲线y =如下图,点 A 〔﹣1,m 〕,B 〔n ,2〕.求S △AOB .22.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为 A ,C 的坐标为〔1,0〕,反比例函数y =〔x >0〕的图象经过 BC 的中点D ,交AB 于点E .AB =4,BC =5.求k 的值.23.如图,直线 y =﹣2x 经过点P 〔﹣2,a 〕,点P 关于y 轴的对称点 P ′在反比例函数y =〔k ≠0〕的图象上.1〕求反比例函数的解析式;2〕直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=〔x<0〕的图象相交于点A、点B,与X轴交于点C,其中点A〔﹣1,3〕和点B〔﹣3,n〕.〔1〕填空:m=,n=.〔2〕求一次函数的解析式和△AOB的面积.〔3〕根据图象答复:当x为何值时,kx+b≥〔请直接写出答案〕.25.如图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.1〕求反比例函数和一次函数的表达式;2〕如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;〔3〕假设P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.新人教版九年级下册数学?第26章反比例函数?单元测试题参考答案与试题解析一.选择题〔共10小题〕1.以下关系式中, y 是x 的反比例函数的是〔A .y =4xB .=3【分析】根据反比例函数的定义判断即可. 【解答】解:A 、y =4x 是正比例函数;B 、 =3,可以化为 y =3x ,是正比例函数;C 、y =﹣ 是反比例函数;D 、y =x 2﹣1是二次函数;应选:C .【点评】此题考查的是反比例函数的定义,形如2.在同一平面直角坐标系中,函数 y =kx 与〕 C .y =﹣ D .y =x 2﹣1y = 〔k 为常数,k ≠0〕的函数称为反比例函数.y = 的图象大致是〔 〕A .〔1〕〔3〕B .〔1〕〔4〕C .〔2〕〔3〕D .〔2〕〔4〕 【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项. 【解答】解:当k >0时,函数y =kx 的图象位于一、三象限, y = 的图象位于一、三象限,〔1〕符合;当k <0时,函数y =kx 的图象位于二、四象限, y = 的图象位于二、四象限,〔4〕符合;应选:B .【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.反比例函数y=﹣,以下结论中不正确的选项是〔〕A.图象必经过点〔﹣3,2〕B.图象位于第二、四象限C.假设x<﹣2,那么0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点〔﹣3,2〕,故A正确;B、图象位于第二、四象限,故B正确;C、假设x<﹣2,那么y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;应选:D.【点评】此题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,S阴影=,那么S1+S2等于〔〕A.4B.C.D.5【分析】根据反比例函数系数k的几何意义可得S四边形AEOF=4,S四边形BDOC=4,根据S1+S2=S 四边形AEOF+S四边形BDOC﹣2×S阴影,可求S1+S2的值.【解答】解:如图,∵A、B两点在双曲线y=上,S四边形AEOF=4,S四边形BDOC=4,S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,S1+S2=8﹣=应选:C.【点评】此题考查了反比例函数系数k的几何意义,熟练掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5.以下各点中,在函数y=﹣图象上的是〔〕A.〔﹣3,﹣2〕B.〔﹣2,3〕C.〔3,2〕D.〔﹣3,3〕【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y=﹣中,k=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B选项符合.应选:B.【点评】此题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.以下函数中,图象经过点〔1,﹣2〕的反比例函数关系式是〔〕A.y=B.y=C.y=D.y=【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y=〔k≠0〕,把〔1,﹣2〕代入得:k=﹣2,那么反比例函数解析式为y=﹣,应选:D.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解此题的关键.7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,当y=x的函数值大于y=的函数值时,x的取值范围〔〕A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,∴点B坐标为〔﹣2,﹣2〕∴当x>2或﹣2<x<0应选:D.【点评】此题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为〔〕A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间〞列出关系式即可.【解答】解:由于以80千米/时的平均速度用了 6小时到达目的地,那么路程为∴汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为v=.应选:A.【点评】此题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=〔k≠0〕,以下所给的四个结论中,正确的选项是〔A.假设点〔2,4〕在其图象上,那么〔﹣2,4〕也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,那么矩形OAPB D.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;80×6=480千米,〕的面积为k【解答】解:A、假设点〔2,4〕在其图象上,那么〔﹣2,4〕不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,那么矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,应选:D.【点评】此题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,那么以下四个点中,在这个函数图象上的是〔〕A.〔1,8〕B.〔3,〕C.〔,6〕D.〔﹣2,﹣4〕【分析】根据反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,可以得到k的值,从而可以判断各个选项是否符合题意,此题得以解决.【解答】解:∵反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,∴k=xy=〔﹣4〕×2=﹣8,∵1×8=8≠﹣8,应选项A不符合题意,∵3×〔﹣〕=﹣8,应选项B符合题意,∵×6=3≠﹣8,应选项C不符合题意,∵〔﹣2〕×〔﹣4〕=8≠﹣8,应选项D不符合题意,应选:B.【点评】此题考查反比例函数图象上点的坐标特征,解答此题的关键是明确题意,利用反比例函数的性质解答.二.填空题〔共8小题〕11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大〞,那么此函数的表达式可以为y=.【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,此题得以解决.【解答】解:∵当x>0时,y随x的增大而增大,∴此函数的解析式可以为y=,故答案为:y=.【点评】此题考查反比例函数的性质,解答此题的关键是明确题意,写出相应的函数解析式,注意此题答案不唯一.12.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,那么与△OBD的面积之和为2.△OAC【分析】根据反比例函数比例系数k的几何意义可得S△OAC=S△OBD=×2=1,再相加即可.【解答】解:∵函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,∴S△OAC=S△OBD=×2=1,∴S△OAC+S△OBD=1+1=2.故答案为2.【点评】此题考查了反比例函数比例系数k的几何意义:过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k|.13.A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,且x1<0<x2,那么y1与y2大小关系是y1>y2.【分析】将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.【解答】解:∵A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,∴y1=,y2=,x1<0<x2,∴y1>0>y2,故答案为:y1>y2【点评】此题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A〔2,1〕,C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣〔x>0〕.【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标〔2,﹣1〕,从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A〔2,1〕,A′坐标〔2,﹣1〕,C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】此题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P〔m,12〕,那么反比例函数的关系式是y=.【分析】把点P〔m,12〕代入正比例函数 y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P〔m,12〕代入正比例函数y=6x得:12=6m,解得:m=2,把点P〔2,12〕代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】此题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数 y=的图象上,PM⊥y轴于M,S△POM=4,那么k=﹣8.【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.【解答】解:由题意知:S△PMO=|k|=4,所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】此题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.假设点B在x轴上,点A的坐标为〔6,4〕,那么△BOC的面积为3.【分析】由于点A的坐标为〔6,4〕,而点D为OA的中点,那么D点坐标为〔3,2〕,利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为〔6,4〕,而点D为OA的中点,∴D点坐标为〔3,2〕,把D〔3,2〕代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=×|6|=3.|k|=故答案为:3;【点评】此题考查了反比例y=〔k≠0〕数k的几何意义:过反比例函数图象上任意一点分别作x|k|.轴、y轴的垂线,那么垂线与坐标轴所围成的矩形的面积为y1、y2、18.如果点〔﹣1,y1〕、B〔1,y2〕、C〔2,y3〕是反比例函数y=图象上的三个点,那么y3的大小关系是y2>y3>y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∴∵﹣1<0,∴A点在第三象限,∴y1<0,∴2>1>0,∴B、C两点在第一象限,∴y2>y3>0,y 2>y 3>y 1.故答案是:y 2>y 3>y 1.【点评】此题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题〔共7小题〕19 .y =〔m 2+2m 〕x是关x 于的反比例函数,求 m 的值及函数的解析式.【分析】根据反比例函数的定义知m 2+2m =﹣1,且m 2+2m ≠0,据此可以求得m 的值,进而得出反比例函数的解析式.2是反比例函数,【解答】解:∵y =〔m+2m 〕x22∴m+2m =﹣1,且m+2m ≠0,∴〔m+1 〕〔m+1〕=0,∴ m+1= 0,即m =﹣ 1;∴反比例函数的解析式y =﹣x﹣1.【点评】此题考查了反比例函数的定义,重点是将一般式y =〔k ≠0〕转化为y =kx﹣1〔k ≠0〕的形式.20 .反比例函数 y =〔m ﹣2〕〔 1〕假设它的图象位于第一、三象限,求m 的值;〔 2〕假设它的图象在每一象限内y 的值随x 值的增大而增大,求 m 的值.【分析】〔1〕根据反比例函数的定义与性质,得出,进而求解即可;〔2〕根据反比例函数的定义与性质,得出 ,进而求解即可.【解答】解:〔1〕由题意,可得,解得m =3;〔2〕由题意,可得,解得m =﹣2.【点评】此题考查了反比例函数的性质;用到的知识点为:反比例函数y=kx〔k≠0〕的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.也考查了反比例函数的定义.21.双曲线y=如下图,点A〔﹣1,m〕,B〔n,2△AOB.〕.求S【分析】根据点A、B两点在反比例函数图象上得其坐标,再根据S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE可得答案.【解答】解:将点A〔﹣1,m〕、B〔n,2〕代入y=,得:m=6、n=﹣3,如图,过点A作x轴的平行线,交y轴于点C,过点B作y轴的平行线,交x轴于点D,交CA于点E,那么DE=OC=6、BD=2、BE=4、OD=3,AC=1、AE=2,S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE3×6﹣×1×6﹣×3×2﹣×2×48.【点评】此题主要考查反比例函数系数k的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为〔1,0〕,反比例函数y=〔x>0〕的图象经过BC的中点D,交AB于点E.AB=4,BC=5.求k的值.【分析】根据勾股定理可求AC=3,那么可求点A〔4,0〕,可得点B〔4,4〕,根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标〔1,0〕OC=1OA=OC+AC=4∴点A坐标〔4,0〕∴点B〔4,4〕∵点C〔1,0〕,点B〔4,4〕∴BC的中点D〔,2〕∵反比例函数y=〔x>0〕的图象经过BC的中点D∴2=∴k=5【点评】此题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,直线y=﹣2x经过点P〔﹣2,a〕,点P关于y轴的对称点P′在反比例函数y=〔k≠0〕的图象上.〔1〕求反比例函数的解析式;〔2〕直接写出当y<4时x的取值范围.【分析】〔1〕把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;〔2〕结合图象确定出所求x的范围即可.【解答】解:〔1〕把P〔﹣2,a〕代入直线y=﹣2x解析式得:a=4,即P〔﹣2,4〕,∴点P关于y轴对称点P′为〔2,4〕,代入反比例解析式得:k=8,那么反比例解析式y=;为x>﹣2.〔2〕当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解此题的关键.24.如图,一次函数y=kx+b与反比例函数y=〔x<0〕的图象相交于点A、点B,与X轴交于点C,其中点A〔﹣1,3〕和点B〔﹣3,n〕.〔1〕填空:m=﹣3,n=1.〔2〕求一次函数的解析式和△AOB的面积.〔3〕根据图象答复:当x为何值时,kx+b≥〔请直接写出答案〕﹣3≤x≤﹣1.【分析】〔1〕将A点坐标,B点坐标代入解析式可求m,n的值〔2〕用待定系数法可求一次函数解析式,根据S△AOB=S△AOC﹣S△BOC可求△AOB的面积.〔3〕由图象直接可得【解答】解:〔1〕∵反比例函数y=过点A〔﹣1,3〕,B〔﹣3,n〕m=3×〔﹣1〕=﹣3,m=﹣3nn=1故答案为﹣3,1〔2〕设一次函数解析式y=kx+b,且过〔﹣1,3〕,B〔﹣3,1〕∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C0=x+4x=﹣4C〔﹣4,0〕S△AOB=S△AOC﹣S△BOC∴S△AOB=×4×3﹣×4×1=43〕∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点评】此题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是此题关键.25.如图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.1〕求反比例函数和一次函数的表达式;2〕如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;〔3〕假设P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【分析】〔1〕将点A 〔3,1〕代入y =,利用待定系数法求得反比例函数的解析式,再将点A 〔3,1〕和B 〔0,﹣2〕代入y =kx+b ,利用待定系数法求得一次函数的解析式;〔2〕首先求得 AB 与x 轴的交点 C 的坐标,然后根据 S △ABP =S △ACP +S △BCP 即可列方程求得P 的横坐标;〔3〕分两种情况进行讨论: ①点P 在x 轴上;②点P 在y 轴上.根据 PA =OA ,利用等腰三角形的对称性求解.【解答】解:〔1〕∵反比例函数y = 〔m ≠0〕的图象过点 A 〔3,1〕,∴3=,解得m =3.∴反比例函数的表达式为 y = .∵一次函数 y =kx+b 的图象过点 A 〔3,1〕和B 〔0,﹣2〕,∴ ,解得:,∴一次函数的表达式为y =x ﹣2;2〕如图,设一次函数y =x ﹣2的图象与x 轴的交点为C .令y =0,那么x ﹣2=0,x =2, ∴点C 的坐标为〔2,0〕. ∵S △ABP =S△ACP +S △BCP =3, ∴PC ×1+PC ×2=3,PC =2,∴点P 的坐标为〔0,0〕、〔4,0〕;〔3〕假设P是坐标轴上一点,且满足PA=OA,那么P点的位置可分两种情况:①如果点P在x轴上,那么O与P关于直线x=3对称,所以点P的坐标为〔6,0〕;②如果点P在y轴上,那么O与P关于直线y=1对称,所以点P的坐标为〔0,2〕.综上可知,点P的坐标为〔6,0〕或〔0,2〕.【点评】此题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
第二十六章反比例函数教材分析
第二十六章反比例函数一、教材分析本章内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界存在各种函数以及如何应用函数解决实际问题。
反比例函数是最基本的函数之一,是学习后续各类函数的基础。
它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二教科书内容分析(一)本章知识结构框图(二)教科书内容分析26.1 反比例函数3课时26.2 实际问题与反比例函数4课时数学活动小结 1课时 1本章的主要内容是反比例函数,教科书从几个学生熟悉的实际问题出发,引进反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识。
第17.1节的内容是反比例函数的概念、图象和性质。
反比例函数(为常数,)的图象分布在两个象限,当时,图象分布在一、三象限,随的增大(减小)而减小(增大);当时,图象分布在二、四象限,随的增大(减小)而增大(减小)。
第17.2节的内容是如何利用反比例函数解决现实世界的实际问题,以及如何用反比例函数解释现实世界中的一些现象。
本章主要涉及到如下的4个现实世界中的反比例函数模型:当圆柱体的体积V一定时,圆柱的底面积是高(深度)的反比例函数:;当工程总量一定时,做工时间是做工速度的反比例函数:;在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数:;电压一定,输出功率是电路中电阻的反比例函数:。
此外,本章还安排了两个选学内容:第17.1节的“信息技术应用”中安排了“探索反比例函数的性质”,第17.1节的“阅读与思考”中安排了“生活中的反比例关系”。
人教版数学九年级下册第二十六章《反比例函数》知识总结及考点分析
第26章 反比例函数一、教学内容:反比例函数 教学目标:1. 理解反比例函数、图像及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2. 初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
二、重点、难点: 重点:1.能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2、反比例函数的图像特点及性质的探究3、通过观察图像,归纳总结反比例函数图像 难点:1、理解反比例函数的概念2、画反比例函数的图像,并从图像中获取信息3、从反比例函数的图像中归纳总结反比例函数的主要性质 4.反比例函数的应用。
三、知识要点1、经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式2、一般地,如果两个变量x ,y 之间的关系可以表示成y=xk 〔k 为常数,k 不等于0〕的形式,那么称y 是x 的反比例函数.从y=xk中可知,x 作为分母,所以不能为零3、画反比例函数图像时要注意以下几点a 列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点b 列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线c 在连线时要用“光滑的曲线〞,不能用折线 4、反比例函数的性质反比例函数 ()0≠=k xky k 的取值范围0>k 0<k图像性质①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:1〕反比例函数是轴对称图形和中心对称图形;2〕双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交; 3〕在利用图像性质比拟函数值的大小时,前提应是“在同一象限〞内。
人教版九年级数学下册-- 第26章 反比例函数(共19页)--(附解析答案)
第二十六章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______. 2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数. (3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)x y 3=(B)xy 3-= (C)xy 31=(D)xy 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ). (A)4 (B)-4 (C)3 (D)-3三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式; ②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______. 2.如果函数y =2+1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1 (B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2 (B)y 2<0<y 1(C)y 1<y 2<0 (D)y 2<y 1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大 (B)当x <0时,y 随x 的增大而减小 (C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值? (3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =______.2.反比例函数xy 6-=的图象一定经过点(-2,______). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________. 二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限(D)第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x xy(B))0(5>=x xy (C))0(5>-=x xy(D))0(6>=x xy 15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式; (3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______.2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______. 3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ). (A)①④(B)②(C)①②(D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;(2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ). (A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系 (C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系 5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300(A)y =3000x (B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______. 7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价400 250 240 200 150 125 120 x(元/千克)销售量y/千克30 40 48 60 80 96 100价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第二十六章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)xwy =,反比例. 3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=xy 410.反比例. 11.B . 12.D . 13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A .11.列表:x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x…-4-3-2-11234…y (1)34 2 4 -4 -2 -34-1 …(1)y =-2; (2)-4<y ≤-1; (3)-4≤x <-1.19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081. 测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天。
人教版九年级下册(新)第二十六章-反比例函数教材分析文字讲义含例题及练习题及答案
第二十六章反比例函数教材分析练习及答案一.本章的地位和作用函数知识在中学数学教学中有着极为重要的地位,是教学的重点,也是教学的难点之一,反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,是后续学习的重要的基础。
现实世界中充满了反比例函数的例子,有着极广泛的应用。
应用反比例函数解决实际问题,尤其是跨学科应用反比例函数的图象和性质的实际问题,这类题目日益成为中考的热点之一.反比例函数的教学,是在学生对函数已经形成初步认识的基础上,学习认识的又一种函数,通过学习,使学生掌握函数概念,进一步对函数所蕴涵的“变化和对应”思想有了深层的理解。
在应用反比例函数解决问题中,增强应用数学知识的意识,体会数形结合、转化、类比、归纳等数学思想方法。
二. 本章知识结构:三. 课程教学目标:1.经历在具体问题中探索数量关系和变化规律的过程,使学生理解并掌握反比例函数的概念,结合具体情境领会反比例函数作为一种数学模型的意义,进一步体会函数是刻画现实世界中变化规律的重要数学模型。
2.能画出反比例函数的图象,能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些函数性质分析和解决一些简单的实际问题;并根据实际问题中的条件确定反比例函数的解析式;3.在学习一次函数的基础上,进一步理解常量与变量的辩证关系和反映在函数概念中运动变化观点,逐步提高学生的观察和归纳分析能力,体验数形结合和转化的数学思想方法;四. 教学重点与难点:教学重点:反比例函数的概念、图象和性质及反比例函数的应用.教学难点:反比例函数及其图象的性质的理解和掌握,反比例函数的应用。
五. 课时安排:(总课时约9课时)17.1 反比例函数约3课时;17.2 实际问题与反比例函数约4课时;数学活动小结约2课时.六. 教学建议:本章教学内容主要分为三大部分: 第一部分:反比例函数的概念;第二部分:反比例函数的图象及其性质; 第三部分:反比例函数的应用.根据这三部分教学内容,提以下几点教学建议: 第一部分:反比例函数的概念:1.在引进反比例函数概念时,应先复习前面所学的函数概念,及相关的知识为基础,为反比例函数的学习作好铺垫。
(完整版)人教版初三数学下册第二十六章反比例函数全章复习与练习含答案,推荐文档
反比例函数全章复习与巩固【学习目标】1. 使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式y = k(k ≠ 0) ,能判断一个给定函数是否为反比例函数;x2. 能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3. 能根据图象数形结合地分析并掌握反比例函数 y = k(k ≠ 0) 的性质,能利用这些性质分析x和解决一些简单的实际问题. 【要点梳理】要点一、反比例函数的概念一般地,形如 y = k(k ≠ 0) 的函数称为反比例函数,其中 x 是自变量, y 是函数,自变x量 x 的取值范围是不等于 0 的一切实数. 要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数 y = k中,只有一个待定系x数k ,因此只需要知道一对 x 、y 的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.要点三、反比例函数的图象和性质1. 反比例函数的图象反比例函数 y = k(k ≠ 0) 的图象是双曲线,它有两个分支,这两个分支分别位于第一、三x象限或第二、四象限.它们关于原点对称,反比例函数的图象与 x 轴、 y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 2. 反比例函数的性质 (1) 图象位置与反比例函数性质当k > 0 时, x 、y 同号,图象在第一、三象限,且在每个象限内, y 随 x 的增大而减小; 当k < 0 时,x 、y 异号,图象在第二、四象限,且在每个象限内, y 随 x 的增大而增大.(2) 若点(a,b)在反比例函数 y = k的图象上,则点(-a ,-b )也在此图象上,故反比例函数x的图象关于原点对称. (3) 正比例函数与反比例函数的性质比较kk < 0 ,二、四象限 k < 0 ,二、四象限增减性k > 0 , y 随 x 的增大而增大k < 0 , y 随 x 的增大而减 小k > 0 ,在每个象限, y 随 x 的增大而减小k < 0 ,在每个象限, y 随 x 的增大而 增大(4) 反比例函数 y = 中k 的意义①过双曲线 y = k( k ≠0) 上任意一点作 x 轴、 y 轴的垂线,所得矩形的面积为 k .x ②过双曲线 y = k( k ≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面x积为 2 .要点四、应用反比例函数解决实际问题须注意以下几点1. 反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意 将实际问题转化为数学问题.2. 列出函数关系式后,要注意自变量的取值范围. 【典型例题】类型一、确定反比例函数的解析式例 1、已知函数 y = (k + 2)x k -3 是反比例函数,则k 的值为 . 举一反三:【变式】反比例函数 y =n + 5图象经过点(2,3),则n 的值是( ).xA. - 2B. - 1C. 0D. 1类型二、反比例函数的图象及性质例 2、已知,反比例函数 y = 4 - 2m的图象在每个分支中 y 随 x 的增大而减小,试求 2m-1 的x取值范围.举一反三:【变式】已知反比例函数y =k - 2,其图象位于第一、第三象限内,则k 的值可为x(写出满足条件的一个k 的值即可).-k例3、在函数y =x(k ≠ 0, k为常数)的图象上有三点(-3,y1)、(-2,y2)、(4,y3),则函数值的大小关系是()A. y1<y2<y3举一反三:B. y3<y2<y1C. y2<y3<y1D. y3<y1<y2【变式1】在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是().A. B.C. D.【变式 2】已知 a>b,且a ≠ 0, b ≠ 0, a +b ≠ 0 则函数 y=ax+b 与y =a +b在同一坐标系中的图象不x 可能是( ) .例 4、如图所示,P 是反比例函数y =k图象上一点,若图中阴影部分的面积是 2,求此反比例x 函数的关系式.举一反三:【变式】如图,过反比例函数y =2(x > 0) 的图象上任意两点 A、B,分别作x 轴的垂线,垂足x为A'、B',连接 OA,OB,A A' 与OB 的交点为 P,记△AOP与梯形PA'B'B 的面积分别为S 、1S2,试比较S1、S2的大小.类型三、反比例函数与一次函数综合5、已知反比例函数y =k和一次函数 y=mx+n 的图象的一个交点坐标是(-3,4),且一x次函数的图象与x 轴的交点到原点的距离为 5,分别确定反比例函数和一次函数的表达式.举一反三:【变式】如图所示,A、B 两点在函数y =m(x > 0) 的图象上.xx(1) 求m 的值及直线 AB 的解析式; (2) 如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.类型四、反比例函数应用6、一辆客车从甲地出发前往乙地,平均速度 v (千米/小时)与所用时间 t (小时)的函数关系如图所示,其中 60≤v ≤120. (1) 直接写出 v 与 t 的函数关系式; (2) 若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶 20 千米,3 小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站 A 、B ,它们相距 200 千米,当客车进入 B 加油站时,货车恰好进入 A 加油站(两车加油的时间忽略不计),求甲地与 B 加油站的距离.课堂练习: 一.选择题1 若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是( ) A .(2,3) B .(3,2) C .(﹣2,3) D .(﹣2,﹣3)2. 函数 y=x+m 与 y = m(m ≠ 0) 在同一坐标系内的图象可以是( )33. 反比例函数 y= k的图象经过点 P(-1,2),则这个函数的图象位于( ).xA. 第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 4. 数 y = (m -1)x m2-2是反比例函数,则m 的值是()A .±1B .1C .D .-15. 如图所示,直线 y=x+2 与双曲线 y = k相交于点 A ,点 A 的纵坐标为 3, k 的值为().xA .1B .2C .3D .46. 点 (-1,是( ).y 1 ),(2, y 2 ),(3, y 3 )在反比例函数 y = - k 2 -1x的图象上.下列结论中正确的 A. y 1 > y 2 > y 3B. y 1 > y 3 > y 2C. y 3 > y 1 > y 2D. y 2 > y 3 > y 17. 已知 p (x , y ) 、 p (x , y ) 、 p (x , y ) 是反比例函数 y = 2图象上的三点,且 x < x < 0 < x , 1 1 1 2 2 2 3 3 3 x123则 y 1 、 y 2 、 y 3 的大小关系是()A. y 1 > y 2 > y 3B. y 3 > y 2 > y 1C. y 3 > y 1 > y 2D. y 1 > y 3 > y 28. 如图所示,点 P 在反比例函数 y = 1(x > 0) 的图象上,且横坐标为 2.若将点 P 先向右平移x两个单位,再向上平移一个单位后所得的像为点 P ',则在第一象限内,经过点 P '的反比例函数图象的解析式是( ).A . y = - 5(x > 0)x B . y = 5 (x > 0) x C . y = - 6 (x > 0) x D . y = 6(x > 0)x二.填空题9. 图象经过点(-2,5)的反比例函数的解析式是.10. 若函数y =m - 2的图象在其象限内 y 的值随 x 值的增大而增大,则 m 的取值范围 x.11. 反比例函数 y = k(k ≠ 0) 的图象叫做 x.当 k>0 时,图象分居第 象限, 在每个象限内 y 随 x 的增大而 ;当 k<0 时,图象分居第 象限,在每个象限内 y 随 x 的增大而 .12. 若点 A(m ,-2)在反比例函数 y = 4 的图像上,则当函数值 y ≥-2 时,自变量 x 的取值 x范围是 .13. 若变量 y 与x 成反比例,且 x=2 时,y=-3,则 y 与 x 之间的函数关系式是 ,在每个象限内函数值 y 随 x 的增大而 . 14. 已知函数y = m ,当 x = - 1 时,y=6,则函数的解析式是 . x 215. 如图,面积为 3 的矩形 OABC 的一个顶点 B 在反比例函数 y = k的图象上,另三点在坐标x轴上,则k = .16. 在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积 V 时,气体的密度 ρ 也随之改变.在一定范围内,密度 ρ 是容积 V 的反比例函数.当容积为 5 m 3时,密度是 1.4 kg 三.解答题m 3 ,则 ρ 与 V 的函数关系式为 .17.一辆汽车匀速通过某段公路,所需时间 t( h )与行驶速度 v( kg h )满足函数关系:t = k,其图象为如图所示的一段曲线且端点为 A(40,1)和 B( m ,0.5). v(1) 求k 和m 的值;(2) 若行驶速度不得超过 60 kg h ,则汽车通过该路段最少需要多少时间?18.在压力不变的情况下,某物体承受的压强P(Pa)是它的受力面积S()的反比例函数,其图象如图所示.(1)求P 与S 之间的函数关系式;(2)求当S=0.5 时物体承受的压强P.19.如图,直线y= 4 x3k 与双曲线y= (x>0)交于点 A,将直线 y= x 4x 向下平移个 6 单位后,3k与双曲线 y= (x>0)交于点 B,与x 轴交于点 C.x(1)求C 点的坐标.(2)若 =2,则 k 的值为?20.如图所示,一次函数y=k x + 2 与反比例函数y =k2 的图象交于点 A(4,m )和1 12 xB(-8,-2),与y 轴交于点 C.(1) k1=,k2=;(2)根据函数图象可知,当y1>y2时,x 的取值范围是;(3)过点 A 作AD⊥x 轴于点 D,点P 是反比例函数在第一象限的图象上一点.设直线 OP 与线段AD 交于点 E,当S四边形ODAC: S△ODE= 3: 1时,求点 P 的坐标.⎩2 ⎪ ⎪ 【答案与解析】一.选择题1.【答案】D ;【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称, ∴该点的坐标为(﹣2,﹣3).故选:D . 2.【答案】B ;【解析】分m >0,和m <0 分别画出图象,只有 B 选项是正确的. 3. 【答案】D ;【解析】 ∵ 点 P(-1,2)在第二象限,∴ 反比例函数 y = k的图象在第二、四象限.x4. 【答案】D ;⎧m -1 ≠ 0【解析】由反比例函数的意义可得: ⎨m 2 - 2 = -1.解得, m =-1.5. 【答案】C ;【解析】把 y =3 代入 y = x + 2 ,得 x = 1 .∴ A(1,3).把点 A 的坐标代入 k = xy = 3 .6. 【答案】B ;y = kx ,得【解析】∵ -k 2 -1 = -(k 2 +1) < 0 ,∴ 反比例函数 y =-k 2 -1 的图象位于第二、四象限,x画出函数图象的简图,并在图象上表示出已知各点,易知 y 1 > y 3 > y 2 .7. 【答案】C ;【解析】观察图象如图所示.8. 【答案】D ;【解析】 由点 P 的横坐标为 2,可得点 P 的纵坐标为 1.2∴ P ⎛ 2, 1 ⎫ .由题意可得点 P '⎛ 4, 3 ⎫.⎝ ⎭ ⎝ ⎭∴ 在第一象限内,经过点 P '的反比例函数图象的解析式为 y = 6(x > 0) .故选 D 项.x二.填空题9. 【答案】 y = -10 ; x10. 【答案】m <2;【解析】∵函数 y=的图象在其象限内 y 的值随 x 值的增大而增大,∴m﹣2<0,解得 m <2.11. 【答案】双曲线;一、三;减小;二、四;增大; 12. 【答案】 x ≤-2 或x > 0 ;【解析】结合图象考虑反比例函数增减性.13. 【答案】 y = - 6;增大 ;x y = - 314. 【答案】x ; 15. 【答案】-3;【解析】由矩形 OABC 的面积=3,可得 B 点的横坐标与纵坐标的乘积的绝对值=3,又因为图象在第四象限,所以反比例函数的k < 0 .16. 【答案】= 7.V三.解答题 17. 【解析】解:(1)将(40,1)代入t = k,得1 = v ∴ 该函数解析式为t = 40.vk ,解得k =40.40 ∴ 当 t =0.5 时, 0.5 = 40,解得m =80,m∴ k =40, m =80.(2)令 v =60,得t = 40 = 2,60 3结合函数图象可知,汽车通过该路段最少需要 2小时.318. 【解析】解:(1)设所求函数解析式为p = ks ,把(0.25,1000)代入解析式,k得 1000=0.25 , 解得k =250∴所求函数解析式为p =250s (s>0)(2)当s=0.5 时,P=500(Pa)19.【解析】解:(1)∵将直线y=x 向下平移个6 单位后得到直线BC,∴直线BC 解析式为:y=x﹣6,令y=0,得x﹣6=0,∴C点坐标为(,0);(2)∵直线y=x 与双曲线y=(x>0)交于点A,∴A(,),又∵直线y=x﹣6 与双曲线y=(x>0)交于点B,且=2,∴B(+,),将B 的坐标代入y=中,得(+)=k,解得 k=12.20.【解析】1解:(1) ,16;2(2)-8<x <0 或x >4;(3)由(1)知,y1=1x + 2 ,y2 2=16.x∴ m =4,点 C 的坐标是(0,2),点 A 的坐标是(4,4).∴CO=2,AD=OD=4.∴ S梯形ODAC =CO +AD⨯OD =2 + 4⨯4 =12 .2 2∵ S梯形ODAC : S△ODE= 3: 1 ,∴ S△ODE=1⨯S3 梯形ODAC=1⨯12 = 43即1OD DE = 4 ,∴DE=2.∴点E 的坐标为(4,2).2又点E 在直线OP 上,∴DE=2.∴点E 的坐标为(4,2).⎧y =16, ⎧⎧⎨1 ⎨x= 4 2, ⎨ ⎪x2=-4 2,由x⎪y1= 2 2, y =-2 2. (不合题意舍去)⎪y =x,⎩ 2得⎪1⎪2∴P 的坐标为(4 2, 2 2) .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
九年级数学下册第二十六章反比例函数重点知识归纳(带答案)
九年级数学下册第二十六章反比例函数重点知识归纳单选题1、如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分∠OAE ,反比例函数y =k x (k >0,x >0)的图象经过AE 上的两点A ,F ,且AF =EF ,△ABE 的面积为18,则k 的值为( )A .6B .12C .18D .24答案:B分析:先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a×k a =18,求解即可.解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为k 2a , 代入反比例函数解析式可得F 点的坐标为(2a ,k 2a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a×k a =18,解得k=12,故选:B .小提示:本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.2、若反比例函数y =k x 的图象经过点(2,4),则k 的值是( ) A .2B .−2C .8D .−8答案:C分析:把点(2,4)代入y =k x ,求出k 的数值即可. 解:把点(2,4)代入y =k x 得4=k 2, 解得k =8.故选:C .小提示:此题考查利用待定系数法求函数解析式,图象上点的坐标都适合函数解析式解题的关键.3、如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2答案:C分析:一次函数y1=kx+b落在与反比例函数y2= c图象上方的部分对应的自变量的取值范围即为所求.x∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= c(c是常数,且c≠0)的图象相交于A(﹣3,x﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.小提示:本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.的图象上,则x1,x2,x3的大小关系是()4、若点A(x1,−5),B(x2,2),C(x3,5)都在反比例函数y=10xA.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2答案:C分析:因为A,B,C三点均在反比例函数上,故可将点代入函数,求解x1,x2,x3,然后直接比较大小即可.,可求得x1=−2,x2=5,x3=2,比较其大小可得:x1<x3<x2.将A,B,C三点分别代入y=10x故选:C.小提示:本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.(k为常数,且k≠0)的图象大致( )5、在同一平面直角坐标系中,函数y=x−k与y=kxA .B .C .D .答案:A 分析:根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决. 解:∵函数y =x −k 与y =k x (k 为常数,且k≠0), ∴当k >0时,y =x −k 经过第一、三、四象限,y =k x 经过第一、三象限,故选项A 正确,选项B 错误; 当k <0时,y =x −k 经过第一、二、三象限,y =k x 经过第二、四象限,故选项C 错误,选项D 错误, 故选:A .小提示:本题考查反比例函数的图象、一次函数的图象,熟练掌握是解题的关键.6、如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x (k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .5答案:D分析:设A(1,m),B(4,n),连接AC 交BD 于点M ,BM=4-1=3,AM=m-n ,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n ,从而可求出n 的值,即可得到k 的值.设A(1,m),B(4,n),连接AC 交BD 于点M ,则有BM=4-1=3,AM=m-n ,∴S 菱形ABCD =4×12BM•AM , ∵S 菱形ABCD =452,∴4×12×3(m-n )=452,∴m-n=154,又∵点A ,B 在反比例函数y =k x , ∴k=m=4n ,∴n=54,∴k=4n=5,故选D.小提示:本题考查了反比例函数k 的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.7、一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m ,-2m )、B (m ,1),则△OAB 的面积( )A .3B .134C .72D .154答案:D分析:将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可.解:∵A (-1m ,-2m )在反比例函数y =m x 的图像上, ∴m =(-1m ) • ( -2m )=2,∴反比例函数的解析式为y =2x ,∴B (2,1),A (-12,-4), 把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD=12×3×2+12×3×12 =154.故选:D . .小提示:本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.8、为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元答案:C分析:直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.A、设反比例函数的解析式为y=kx,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=200x,当x=4时,y=50,∴4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则100=200x,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D、设一次函数解析式为:y=kx+b,则{4k+b=506k+b=110,解得:{k=30b=−70,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x=9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C.小提示:此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.(k≠0)的图象经过点(2,−3),则它的图象也一定经过的点是()9、若反比例函数y=kxA.(−2,−3)B.(−3,−2)C.(1,−6)D.(6,1)答案:C分析:先利用反比例函数y=k(k≠0)的图象经过点(2,−3),求出k的值,再分别计算选项中各点的横纵坐x标之积,然后根据反比例函数图象上点的坐标特征进行判断.(k≠0)的图象经过点(2,−3),解:∵反比例函数y=kx∴k=2×(﹣3)=﹣6,∵(﹣2)×(﹣3)=6≠﹣6,(﹣3)×(﹣2)=6≠﹣6,1×(﹣6)=﹣6,,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C.小提示:本题考查了反比例函数图象上点的坐标特征:反比例函数y=k(k≠0)的图象是双曲线,图象上的点x(x,y)的横纵坐标的积是定值k,即xy=k.熟练掌握反比例函数的性质是解题的关键.(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果10、如图,点A为函数y=kx△AOB的面积为2,那么k的值为()A.1B.2C.3D.4答案:Dmn=2,所以mn=4,设点A坐标为(m,n),则有AB=m,OB=n,由题意可得:12又点A在双曲线y=k上,所以k=mn=4,x故选D.填空题的图象相交于点M(1,m),N(﹣2,n).若y1<y2,则x的取值范围11、如图,函数y1=x+1与函数y2=2x是x<﹣2或 _____.答案:0<x<1分析:观察函数图象,找出一次函数图象在反比例函数图象的下方时对应的x的取值范围即可.解:由图象可知,y1<y2时的x的取值范围为:x<−2或0<x<1,所以答案是:0<x<1.小提示:本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标12、如图,已知直线y=2x与反比例函数y=2x是______.答案:(-1,-2)分析:直接利用正比例函数和反比例函数的性质得出M,N两点关于原点对称,进而得出答案.解:∵直线y=2x与反比例函数y=2x的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).所以答案是:(-1,-2).小提示:此题主要考查了反比例函数与正比例函数图象的性质,正确得出M,N两点位置关系是解题关键.13、如图,点A是反比例函数y=kx(x<0)图象上一点,过点A作AB⊥y轴于点D,且点D为线段AB的中点.若点C为x轴上任意一点,且△ABC的面积为4,则k=______________.答案:−4分析:设点A(a,ka ),利用S△ABC=12×(−2a)×ka=4即可求出k的值.解:设点A(a,ka),∵点D为线段AB的中点.AB⊥y轴∴AB=2AD=−2a,又∵S△ABC=12×(−2a)×ka=4,∴k=−4.所以答案是:−4小提示:本题考查利用面积求反比例函数的k的值,解题的关键是找出S△ABC=12×(−2a)×ka=4.14、已知反比例函数y=−k2−1x图象上的三个点(x1,y1),(x2,y2),(x3,y3),其中x1<0<x2<x3,则y1,y2,y3的大小关系是______(用“<”连接).答案:y2<y3<y1分析:根据平方的非负性得出−k2−1<0,再分析反比例函数y=−k2−1x图象上点的坐标特征解答即可.解:∵反比例函数y=−k2−1x中,−k2−1<0,∴反比例函数图象位于第二,第四象限内,且每一象限内y随x的增大而增大.∵点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=−k2−1x图象上,且x1<0<x2<x3,∴y2<y3<0<y1,∴y2<y3<y1.所以答案是:y2<y3<y1.小提示:本题考查了根据反比例函数图象的性质比较反比例函数值的大小,根据平方的非负性判断反比例函数图象所处的象限,并熟练掌握反比例函数图象上点的坐标特征是解题的关键.15、正比例函数y=kx与反比例函数y=1x的图象交于A(x1,y1)、B(x2,y2)两点,则代数式x1y2+x2y1的值是_________.答案:-2分析:联立方程组,用含k的式子表示x1,x2,y1,y2,再代入求解即可.解:正比例函数y=kx与反比例函数y=1x的图象交于A(x1,y1)、B(x2,y2)两点,∴{y =kx y =1x解得:{x 1=√k k y 1=√k 或{x 2=−√k k y 2=−√k,∴x 1y 2+x 2y 1=√k k ×(−√k)+(−√k k )×√k =−2,所以答案是:-2.小提示:本题考查了正比例函数与反比例函数的交点问题和解二元一次方程组,联立方程组求解是解题的关键.解答题16、定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y =12x +12的图象的“等值点”.(1)分别判断函数y =x +2,y =x 2−x 的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y =3x (x >0),y =−x +b 的图象的“等值点”分别为点A ,B ,过点B 作BC ⊥x 轴,垂足为C .当△ABC 的面积为3时,求b 的值;(3)若函数y =x 2−2(x ≥m)的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.答案:(1)函数y =x +2没有“等值点”; 函数y =x 2−x 的“等值点”为(0,0),(2,2);(2)b =4√3或−2√3;(3)m <−98或−1<m <2.. 分析:(1)根据定义分别求解即可求得答案;(2)根据定义分别求A (√3,√3),B (b 2,b 2),利用三角形面积公式列出方程求解即可;(3)由记函数y =x 2-2(x ≥m )的图象为W 1,将W 1沿x =m 翻折后得到的函数图象记为W 2,可得W 1与W 2的图象关于x =m 对称,然后根据定义分类讨论即可求得答案.解:(1)∵函数y =x +2,令y =x ,则x +2=x ,无解,∴函数y =x +2没有“等值点”;∵函数y=x2−x,令y=x,则x2−x=x,即x(x−2)=0,解得:x1=2,x2=0,∴函数y=x2−x的“等值点”为(0,0),(2,2);(2)∵函数y=3x,令y=x,则x2=3,解得:x=√3(负值已舍),∴函数y=3x的“等值点”为A(√3,√3);∵函数y=−x+b,令y=x,则x=−x+b,解得:x=b2,∴函数y=−x+b的“等值点”为B(b2,b2);△ABC的面积为12BC•|x B−x A|=12•|b2|•|b2−√3|=3,即b2−2√3b−24=0,解得:b=4√3或−2√3;(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于x=m对称,∴函数W的解析式为{y=x2−2(x≥m)y=(2m−x)2−2(x<m),令y=x,则x2−2=x,即x2−x−2=0,解得:x1=2,x2=−1,∴函数y=x2−2的“等值点”为(-1,-1),(2,2);令y=x,则(2m−x)2−2=x,即x2−(4m+1)x+4m2−2=0,当m≥2时,函数W的图象不存在恰有2个“等值点”的情况;当−1<m<2时,观察图象,恰有2个“等值点”;当m<−1时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴△=[−(4m+1)]2−4×1×(4m2−2)<0,整理得:8m+9<0,解得:m<−98.综上,m的取值范围为m<−98或−1<m<2.小提示:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.17、如图,点A(a,2)在反比例函数y=4x 的图象上,AB//x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;的解析式;(2)求反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD中点时,求△OAD的面积.(3)点D为反比例函数y=kx;(3)3.答案:(1)y=x;(2)y=−2x分析:(1)先求解A的坐标,再把A的坐标代入正比例函数y=mx,解方程即可得到答案;(2)利用AC=2BC,先求解B的坐标,再利用待定系数法求解解析式即可;),而A(2,2),E为AD的中点,利用中点坐标公式求解D,E的坐标,再利用S△OAD=S△ODE+(3)设D(n,−2nOE(|x A|+|x D|),计算即可得到答案.S△OAE=12的图象上,解:(1)∵点A(a,2)在反比例函数y=4x∴2a=4,a=2,则A(2,2),∴AC=2,设直线AO为:y=mx,∴2m=2,则m=1,所以直线AO为:y=x,(2)∵AB//x轴,AC=2BC=2.∴BC=1,∴B(−1,2),∴k=xy=−1×2=−2,.所以反比例函数为:y=−2x(3)设D(n,−2n),而A(2,2),E为AD的中点,∴x E=12(2+n)=0,∴n=−2,∴D(−2,1),E(0,32),∴S△OAD=S△ODE+S△OAE=12OE(|x A|+|x D|)=12×32×(2+2)=3.小提示:本题考查的利用待定系数法求解一次函数与反比例函数的解析式,图形与坐标,中点坐标公式,熟练应用以上知识解题是关键.18、如图,一次函数y=k1x+b与反比例函数y=k2x(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b<k2x的x的取值范围;(3)求△AOB的面积.答案:(1)y=6x,2;(2)0<x<1或x>3;(3)8分析:(1)把A的坐标代入反比例函数解析式即可求得k2的值,然后把x=3代入即可求得n的值;(2)根据一次函数和反比例函数的图象即可直接求解;(3)利用待定系数法求得一次函数的解析式,设直线与x轴相交于点C,然后根据S△AOB=S△AOC−S△BOC即可求解.解:(1)∵A(1,6)在y=k2x的图象上,∴k2=6,∴反比例函数的解析式是y =6x . 又∵B(3,n)在y =k 2x 的图象上,∴n =63=2; (2)由图像可知:当0<x <1或x >3时,k 1x +b <k 2x ;(3)∵A(1,6),B(3,2)在函数y =k 1x +b 的图象上,∴ {k 1+b =63k 1+b =2, 解得:{k 1=−2b =8, 则一次函数的解析式是y =−2x +8, 设直线y =−2x +8与x 轴相交于点C ,则C 的坐标是(4,0).∴S △AOB =S △AOC −S △BOC=12OC ⋅|y A |−12OC ⋅|y B | =12×4×6−12×4×2 =8.小提示:本题考查了反比例函数和一次函数的综合,熟练掌握待定系数法求函数的解析式是解决本题的关键.。
九年级数学下册《第二十六章 反比例函数在其他学科中的应用》练习题附答案解析-人教版
九年级数学下册《第二十六章 反比例函数在其他学科中的应用》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.下面每个选项中的两种量成反比例的是( )A .A 和B 互为倒数B .圆柱的高一定,体积和底面积C .被减数一定,减数和差D .除数一定,商和被除数2.如果矩形的面积为15cm 2,那么它的长ycm 与宽xcm 之间的函数关系用图象表示大致是( ). A . B . C . D .3.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()p kPa 与气体体积3()V m 之间的函数关系如图所示.当气球的体积是31m ,气球内的气压是( )kPa .A .96B .150C .120D .644.下面各组变量的关系中,成正比例关系的有( )A.人的身高与年龄B.汽车从甲地到乙地,所用时间与行驶速度C.正方形的面积与它的边长D.圆的周长与它的半径5.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有3个月的利润低于100万元D.8月份该厂利润达到200万元6.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为()A.24IR=B.36IR=C.48IR=D.64IR=二、填空题7.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为_______元.8.一水桶的下底面积是桶盖面积的2倍,如果将其底朝下放在桌上,它对桌面的压强是500Pa .翻过来放,对桌面的压强是_____________.三、解答题9.2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x 元时,求该商品销售量y 与x 之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W 最大,最大利润是多少元?10.受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A 端以平均()2x +米/秒的速度滑到B 端,用了24秒;第二次从滑雪道A 端以平均()3x +米/秒的速度滑到B 端,用了20秒.(1)求x 的值;(2)设小勇从滑雪道A 端滑到B 瑞的平均速度为v 米/秒,所用时间为t 秒,请用含t 的代数式表示v (不要求写出t 的取值范围).11.某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?参考答案与解析1.A【解析】略2.C【分析】根据题意有:xy =15;故y 与x 之间的函数图象为反比例函数,且根据x 、y 实际意义x 、y 应大于0,其图象在第一象限,即可得出答案.【详解】解:由矩形的面积公式可得xy =15∴y =15x(x >0,y >0).图象在第一象限. 故选:C .【点睛】本题考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.3.A【分析】根据题意可知温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,且过点(0.8,120),代入解析式即可得到结论.【详解】设球内气体的气压p (kPa )和气体体积V (m 3)的关系式为k p V = ∵图象过点(0.8,120)∴k=96即气压p (kPa )与气体体积V (m 3)之间的函数关系为96p V =∴当V=1时,p=96.故选:A .【点睛】本题考查了反比例函数的应用,根据图象上的已知点的坐标,利用待定系数法求出函数解析式.4.D【分析】根据正比例函数的定义,逐项判断即可求解.【详解】解:A 、人的身高与年龄不成比例,故此选项不符合题意;B 、汽车从甲地到乙地,所用时间与行驶速度成反比例关系,故此选项不符合题意;C 、正方形的面积与它的边长的平方成正比例,故此选项不符合题意;D 、圆的周长与它的半径成正比例关系,故此选项符合题意;故选:D【点睛】本题主要考查了正比例函数的定义,熟练掌握形如()0y kx k =≠(k 为常数) 的函数叫正比例函数是解题的关键.5.D【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【详解】解:A 、设反比例函数的解析式为y =kx把(1,200)代入得,k=200∴反比例函数的解析式为:y=200 x当x=4时,y=50∴4月份的利润为50万元,故此选项正确,不合题意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,故此选项正确,不合题意;C、当y=100时,则100=200 x解得:x=2则只有3月,4月,5月共3个月的利润低于100万元,故此选项正确,不符合题意.D、设一次函数解析式为:y=kx+b则450 6110 k bk b+⎧⎨+⎩==解得:3070 kb⎧⎨-⎩==故一次函数解析式为:y=30x-70故y=200时,200=30x-70解得:x=9则治污改造完成后的第5个月,即9月份该厂利润达到200万元,故此选项不正确,符合题意.故选:C.【点睛】此题主要考查了一次函数与反比函数的应用,正确得出函数解析是解题关键.6.C【分析】根据题意,电流与电阻是反比例函数关系,根据图中给出的坐标即可求出该反比例函数解析式.【详解】根据题意,电流与电阻是反比例函数关系,在该函数图象上有一点(6,8)故设反比例函数解析式为I=k R将(6,8)代入函数解析式中解得k=48故I=48 R故选C.【点睛】本题主要考查反比例函数解析式的求解方法,掌握求解反比例函数解析式的方法是解答本题的关键.7.300 【分析】先利用待定系数法求出6000y x=,再根据“利润=(售价-进价)⨯销量”建立方程,然后解方程即可得. 【详解】由题意,设ky x = 将(200,30)代入得:30200k =,解得6000k = 则6000y x =设要使该款运动鞋每天的销售利润达到2400元,其售价应定为a 元则()60001802400a a -⋅=整理得:()51802a a -=解得300a =经检验,300a =是所列方程的解故答案为:300.【点睛】本题考查了利用待定系数法求反比例函数的解析式、分式方程的应用,正确求出售价与销量之间的反比例函数关系式是解题关键.8.1000Pa 【分析】根据压强公式f p s=计算即可. 【详解】解:设水桶的盖面积是S ,则下底面积是2S根据题意可知,50021000f s s =⨯= 翻过来放,对桌面的压强10001000s p s ==帕故答案为:1000Pa 【点睛】本题主要考查了反比例函数的应用,解题的关键是根据实际意义列出函数关系式,熟悉压强公式f p s=,能根据实际题意灵活变形. 9.(1)2296y x =-+;(2)每套售价为91元时,每天销售套件所获利润最大,最大利润是6498元.【分析】(1)根据 “该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.”列出函数关系式,即可求解;(2)根据利润等于每件的利润乘以销售量,可得到函数关系式,再利用二次函数的性质,即可求解.(1) 解:根据题意,得12004(48)2y x =-⨯- 2296x =-+y ∴与x 之间的函数关系式是2296y x =-+.(2)解:根据题意,得(34)(2296)W x x =--+22(91)6498x =--+20a =-<∴抛物线开口向下,W 有最大值当91x =时6498W =最大答:每套售价为91元时,每天销售套件所获利润最大,最大利润是6498元.【点睛】本题主要考查了一次函数的应用,二次函数的实际应用,明确题意,准确得到等量关系是解题的关键.10.(1)3x = (2)120v t=【分析】(1)根据第一次他从滑雪道A 端以平均()2x +米/秒的速度滑到B 端,用了24秒;第二次从滑雪道A 端以平均()3x +米/秒的速度滑到B 端,用了20秒同,列出方程求解即可;(2)称算出路程,再列出用含t 的代数式表示v 即可.(1)根据题意,得()()242203x x +=+解这个方程,得3x =(2)()2432120⨯+=120v t= 【点睛】本题考查了一元一次方程的应用及反比例函数的应用,解决本题的关键是根据题中的等量关系列出方程.11.(1)甲种客车每辆200元,乙种客车每辆300元(2)租用甲种客车2辆,乙种客车6辆,租车费用最低为2200元【分析】(1)可设甲种客车每辆x 元,乙种客车每辆y 元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;(2)设租车费用为w 元,租用甲种客车a 辆,根据题意列出不等式组,求出a 的取值范围,进而列出w 关于a 的函数关系式,根据一次函数的性质求解即可.(1)解:设甲种客车每辆x 元,乙种客车每辆y 元,依题意知500231300x y x y +=⎧⎨+=⎩ ,解得200300x y =⎧⎨=⎩ 答:甲种客车每辆200元,乙种客车每辆300元;(2)解:设租车费用为w 元,租用甲种客车a 辆,则乙种客车()8a - 辆()15258180a a +-≥解得:02a <≤()20030081002400w a a a =+-=-+1000-<w ∴随a 的增大而减小 a 取整数a ∴最大为22a ∴=时,费用最低为100224002200-⨯+=(元)826-=(辆).答:租用甲种客车2辆,乙种客车6辆,租车费用最低为2200元.【点睛】本题考查一次函数的应用,一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
九年级下册第二十六章第一课时“反比例函数”教材分析
“反比例函数”教材分析报告一、教材的基本信息人教版数学九年级下册第二十六章第一课时“反比例函数”。
二、课标分析(一)课程目标分析1.掌握数与式的运算,能够解释运算结果的意义(P14)2.会用反比例函数描述现实问题中的数量关系和变化规律,形成合适的运算思路解决问题;形成抽象能力、模型观念,进一步发展运算能力(P14)3.探索在不同的情境中从数学的角度发现和提出问题,综合运用数学和其他学科的知识从不同的角度寻求分析问题和解决问题的方法,能运用几何直观、逻辑推理等方法解决问题,形成模型观念和数据观念(P15)4.关注社会生活中与数学相关的信息主动参与数学活动:在解决数学问题的过程中,能够克服困难,树立学好数学的信心,感受数学在实际生活中的应用,体会数学的价值,欣赏并尝试创造数学美;养成认真勤奋、独立思考,合作交流反思质疑的学习习惯(P15)(二)课程内容标准分析1.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式(P57)2.能画反比例函数的图象,根据图象和表达式)0(≠=k xk y 探索并理解0<k 和0>k 时图象的变化情况(P58)3.能用反比例函数解决简单实际问题(P58)(三)学业要求1.结合具体情境用实例体会反比例函数的意义,能根据已知条件确定反比例函数的表达式(P61)2.会用描点法画出反比例函数的图像(P61)3.知道当0<k 和0>k 时反比例函数)0(≠=k xk y 图象的整体特征(P61) 4.能用反比例函数解决简单实际问题(P61)三、教材内容分析(一)知识的逻辑结构分析1.知识点在一般情况下,如果两个变量x ,y 之间的关系可以表示成)0(≠=k xk y (k 为常数,k ≠0,x ≠0),其中k 叫做反比例系数,x 是自变量,y 是x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。
k>0时,图象在一、三象限。
新人教版九年级下册第二十六章“反比例函数”教材分析简介
新人教版九年级下册第二十六章“反比例函数”教材分析简介预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数。
人教版九年级数学下册 第26章 反比例函数和几何综合(讲义及答案)
反比例函数与几何综合(讲义)➢课前预习前期学习一次函数与几何综合问题时,解决思路是将坐标、几何图形和一次函数综合起来分析、转化.如:坐标与线段长互转,由坐标求解表达式,根据函数表达式计算坐标等,请尝试解决下列问题,并体会整个解决问题的过程:如图,已知直线l1:与直线l2:y=-2x+16相交于点C,直线l1,l2分别交x轴于A,B两点,矩形DEFG的顶点D,E分别在l1,l2上,顶点F,G都在x轴上,且点G与点B重合,那么S矩形DEFG:S△ABC =_________.解决一次函数与几何综合问题的核心在于:找坐标,转线段长,借助几何或函数特征建等式求解.➢知识点睛反比例函数与几何综合的处理思路:1.从关键点入手.“关键点”是信息汇聚点,通常是_________和________的______.通过___________和_______________的互相转化可将_________与________综合在一起进行研究.2.梳理题干中的函数和几何信息,依次转化.3.借助___________或__________列方程求解.与反比例函数相关的几个结论,在解题时可以考虑调用.结论:结论:结论:AB=CD结论:BD∥CE➢精讲精练1.如图,A,B是双曲线(k<0)上的点,且A,B两点的横坐标分别为a,2a,线段AB的延长线交x轴于点C.若S△AOC=6,则k=________.第1题图第2题图2.如图,已知第一象限内的图象是反比例函数图象的一个分支,第二象限内的图象是反比例函数图象的一个分支,在x轴上方有一条平行于x轴的直线l与它们分别交于点A,B,过点A,B作x轴的垂线,垂足分别为点C,D.若四边形ACDB的周长为8,且AB<AC,则点A的坐标是______.3.如图,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,且OA⊥OB,,则k的值为__________.第3题图第4题图4.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB,BC相交于点D,E.若四边形ODBE的面积为6,则k的值为________.5.如图,正方形OAPB的顶点B以及等腰直角三角形AFD的顶点A,D在坐标轴上,点P,F在函数()的图象上,则点F的坐标为________.第5题图第6题图6.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数()的图象上,则点E的坐标是________.7.如图,直线()与双曲线在第一象限内的交点为R,与轴的交点为P,与轴的交点为Q.作RM⊥轴于点M,若△OPQ与△PRM的面积之比为4:1,则k=__________.第7题图第8题图8.如图,直线与双曲线(x>0)交于点.将直线向右平移个单位后,与双曲线(x>0)交于点,与x轴交于点,若,则k=________.9.如图,在平面直角坐标系中有Rt△ABC,∠CAB=90°,AB=AC,A(-1,0),B(1,1),将△ABC沿x轴的正方向平移,在第一象限内B,C两点的对应点B1,C1正好落在反比例函数的图象上,则k=__________.10.如图,双曲线经过点A(2,2)与点B(4,m),则△AOB的面积为___________.11.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数(x>0)的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_________.12.反比例函数,在第一象限内的图象如图所示,过y2上的任意一点A作x轴的平行线,交y1于点B,交y轴于点C,过点A作x轴的垂线,交y1于点D,交x轴于点E,连接BD,CE,则=_________.13.如图,一次函数的图象与x轴,y轴交于A,B两点,与反比例函数的图象交于C,D两点,过C,D两点分别作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△DEF与△CEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论序号是___________.【参考答案】➢课前预习8:9➢知识点睛1.函数图象;几何图形;交点;关键点坐标;横平竖直的线段长;函数特征;几何特征3.函数特征;几何特征➢精讲精练1.-42.(,3)3.-64. 25.(,) 6.(,) 7.8.129. 610.311.-612.13.①②④。
(完整版)新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题,推荐文档
新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1 •理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式ky =—兀(k为常数,怎齐0),能判断一个给定函数是否为反比例函数.2 •能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.kP 二—3•能根据图象数形结合地分析并掌握反比例函数盂(k为常数,力牡°)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4 •对于实际问题,能找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5 •进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1 •重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2 •难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念ky = ——1. x(上芷o)可以写成y=fo:(上工0)的形式,注意自变量x的指数为一1,在解决有关自变量指数问题时应特别注意系数这一限制条件;k——2. 疋(上註° )也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;P 二一3•反比例函数尤的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象—在用描点法画反比例函数兀的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1•函数解析式:孟(疋H 0 )2 •自变量的取值范围:X社03 .图象:(1 )图象的形状:双曲线."越大,图象的弯曲度越小,曲线越平直. 卜I越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当上二°时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当上C °时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a, b)在双曲线的一支上,^U (一曲,一B)在双曲线的另一支上.图象关于直线y=~X对称,即若(a , b)在双曲线的一支上,则卫严)和(■占,一曲)(1) 双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个当俎E °)时,两图象没有交点;当 俎时,两图象必有两个交点,且这两 个交点关于原点成中心对称.(3)反比例函数与一次函数的联系. (四)实际问题与反比例函数1.求函数解析式的方法:丿¥Urc(2)直线 - •的关系: 5 •说明:分支分别讨论,不能一概而论.A与双曲线(1) 待定系数法;(2 )根据实际意义列函数解析式.2 .注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析答案:(1) C; (2) A .(1)已知函数;1 . ' 是反比例函数,①若它的图象在第二、四象限内,那么k=②若y随x的增大而减小,那么k=象限.y = —l兀经过点(一】,2),则一次函数y =的图象一定不经象限.ay — ~(4) 已知a b v0,点P (a, b)在反比例函数'的图象上,则直线 '亠•-不经过的象限是().A. 第一象限B. 第二象限C. 第三象限D.第四象限1 ☆•反比例函数的概念(1)下列函数A. y=3x C. 3xy=1(2) 下列函数^ = i+-D . A(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数ah卩二一-的图象位于(3)若反比例函数过第.图象和性质(5)若P (2 , 2)和Q ( m,宀)是反比例函数"图象上的两点,答案:(1 [①一】② 1 ; (2 )一、三;(3)四;(4) C ; ( 5) C ; ( 6) B . 仇函数的增减性y 二占住<0)(1 )在反比例函数…的图象上有两点 心M ),巩帀乃),且,则耳一二的值为().A .正数B .负数C .非正数y= ---------(2)在函数- (a 为常数)的图象上有三个点则函数值门、凡、“的大小关系是().D .已v(3)下列四个函数中:①55_ _c- 丁二一 » 二一一 ② :③ -;;④ -y 随x 的增大而减小的函数有().D . 3个丁二―(4)已知反比例函数 ■-的图象与直线y=2x 和y=x+1的图象过同一点,则当 x >0 时,这个反比例函数的函数值y 随x 的增大而(填增大”或则一次函数y=kx+m 的图象经过(). A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限(6)已知函数丿二力0一1)和* 工(k 和),它们在同一坐标系内的图象大致是().A .B .C .D .D .非负数答案:(1) A; (2) D ; (3) B .注意,(3)中只有②是符合题意的,而③是在每一个象限内”y随x的增大而减小.2 丄(1 )若》与••成反比例,芒与亠:成正比例,则y是z的().A •正比例函数B •反比例函数C •一次函数D •不能确定h(2) 若正比例函数y=2x与反比例函数工的图象有一个交点为(2, m),贝Um= ____ , k= _______ ,它们的另一个交点为___________ •_ W33_ m(3)已知反比例函数’ 止的图象经过点,〔,反比例函数.-的图象在第二、四象限,求鳴的值.tn +1y —(4)已知一次函数y=x+m与反比例函数k兀工一1 )的图象在第一象限内(的交点为P (x 0, 3) •①求x0的值;②求一次函数和反比例函数的解析式.贸笔克)(5) ☆为了预防非典”某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为________________ ,自变量x的取值范围是________________ ;药物燃烧后y关于x的函数关系式为________________________ •②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过________ 分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B ;(2)4, 8,(一I,—);2 ■- 严(3)依题意," .-•」且:;「;:[,解得::T二-4 .(4)①依题意,②一次函数解析式为」,反比例函数解析式为”二F 0< <g尸二翌幺洱(5 [①;—-3x-= 13.25 >10②30 ;③消毒时间为1 (分钟),所以消毒有效.3厂二一―(1)☆如图,在函数“的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为:、"、、'」,则()•A、u B•*第(2)题图第(i)题图1 y- — (2) ☆如图,A 、B 是函数 一一的图象上关于原点 0对称的任意两点,AC//y 轴, BC//X 轴,△ ABC 的面积S ,则(). A . S=1 B . 1v S v2 C . S=2 D . S >2 m y -— (3) 如图,Rt △ AOB 的顶点A 在双曲线 丄上,且S A AOB=3,求m 的值. 尹二— (6) 如图在Rt △ ABO 中,顶点A 是双曲线 -1与直线- "' ■-在第四象限 第(3)题图4 (4) ☆已知函数 --的图象和两条直线 y=x , y=2x 在第一象限内分别相交于 P1和 P2两点,过P1分别作x 轴、y 轴的垂线P1Q1 , P1R1 , 垂足分别为 Q1 , R1,过P2分别 作x 轴、y 轴的R 2,求矩形0 Q 1P1 R 1和0 Q 2P2 R 2的周长,并比较它们的大小. (5)如图,正比例函数 y=kx ( k >0)和反比例函数 1 7 =— 尤的图象相交于A 、C 两点, BC ,若△ ABC 面积为S ,贝U S= 第(4)题图3 的交点,AB丄x轴于B且S A ABO=-1),①求这两个函数的解析式;②求直线与双曲线的两个交点 A 、C 的坐标和△ AOC 的面积.y-~点A 、C 分别在x 轴、y 轴上,点B 在函数 -(k >0, x >0)的图象上,点P ( m , n )y~ —是函数 X (k > 0, x >0)的图象上任意一点, 过P 分别作x 轴、y 轴的垂线,垂足为E 、 F ,设矩形OEPF 在正方形OABC 以外的部分的面积为 S .①求B 点坐标和k 的值;E = 一②当 】时,求点P 的坐标;③写出S 关于m 的函数关系式.答案:(1) D ; (2) C ; (3) 6 ;(4)亠l ’二」,矩形O Q 1P1 R 1的周长为8 , O Q 2P2 R 2的周长为 (5) 1 .(6)①双曲线为②直线与两轴的交点分别为(0, 一2 )和(一2, 0),且A (1严)和C (一?,因此一 面积为4 .(7 [① B ( 3, 3), ;(7)如图,已知正方形OABC 的面积为9,点0为坐标原点,②求一次函数和反比例函数的解析式.•L 的图象交于第一象限 C 、D 两点,坐标轴交于 A 、B 两点,连结OC , OD (O 是坐标 原点). ①利用图中条件,求反比例函数的解析式和 m 的值; ②双曲线上是否存在一点 P ,使得△ POC 和厶POD 的面积相等?若存在,给出证明 并求出点P 的坐标;若不存在,说明理由. (5 )不解方程,判断下列方程解的个数.答案:(1) D .2=——(2[①反比例函数为 人,一次函数为」 1 ;②范围是:或(3 [① A ( 0, -:), B (0, 1 ), D (1 , 0);2②一次函数为• - 1 ■,反比例函数为'4了 =—(4 [①反比例函数为②存在丁 (2 , 2).I(5) ①构造双曲线-和直线⑴ 41,它们无交点,说明原方程无实数解;(4) ☆如图,一次函数」 -的图象与反比例函数 —+4工二 0①人 1-4^=0②…②构造双曲线.一和直线丁 X,它们有两个交点,说明原方程有两个实数解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章反比例函数教材分析练习及答案一.本章的地位和作用函数知识在中学数学教学中有着极为重要的地位,是教学的重点,也是教学的难点之一,反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,是后续学习的重要的基础。
现实世界中充满了反比例函数的例子,有着极广泛的应用。
应用反比例函数解决实际问题,尤其是跨学科应用反比例函数的图象和性质的实际问题,这类题目日益成为中考的热点之一.反比例函数的教学,是在学生对函数已经形成初步认识的基础上,学习认识的又一种函数,通过学习,使学生掌握函数概念,进一步对函数所蕴涵的“变化和对应”思想有了深层的理解。
在应用反比例函数解决问题中,增强应用数学知识的意识,体会数形结合、转化、类比、归纳等数学思想方法。
二. 本章知识结构:三. 课程教学目标:1.经历在具体问题中探索数量关系和变化规律的过程,使学生理解并掌握反比例函数的概念,结合具体情境领会反比例函数作为一种数学模型的意义,进一步体会函数是刻画现实世界中变化规律的重要数学模型。
2.能画出反比例函数的图象,能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些函数性质分析和解决一些简单的实际问题;并根据实际问题中的条件确定反比例函数的解析式;3.在学习一次函数的基础上,进一步理解常量与变量的辩证关系和反映在函数概念中运动变化观点,逐步提高学生的观察和归纳分析能力,体验数形结合和转化的数学思想方法;四. 教学重点与难点:教学重点:反比例函数的概念、图象和性质及反比例函数的应用.教学难点:反比例函数及其图象的性质的理解和掌握,反比例函数的应用。
五. 课时安排:(总课时约9课时)17.1 反比例函数约3课时;17.2 实际问题与反比例函数约4课时;数学活动小结约2课时.六. 教学建议:本章教学内容主要分为三大部分: 第一部分:反比例函数的概念;第二部分:反比例函数的图象及其性质; 第三部分:反比例函数的应用.根据这三部分教学内容,提以下几点教学建议: 第一部分:反比例函数的概念:1.在引进反比例函数概念时,应先复习前面所学的函数概念,及相关的知识为基础,为反比例函数的学习作好铺垫。
2.利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中的两个变量的相依关系和变化规律,结合具体实例引导学生用自己的语言说明两个变量之间的关系为什么可以看成是一个函数,并讨论出函数的表达式,形成反比例函数的概念的具体形象。
3.在概念教学中要重点突出函数中蕴含的重要的数学思想—变化—对应.例1.现有一批物资要自甲城运往乙城,已知甲城、乙城相距800km ,运输汽车的 速度为hxkm,运输的时间为y 小时,写出运输时间y(小时)与运输速度hxkm关系式,并结合这个关系式,分析两个变量的相依关系. 解:关系式:xy 800=.分析:(1)当x 越来越大时,y 越来越小;当x 越来越小时,y 越来越大;(2)当给定一个x 的值时,相应的确定了一个y 的值。
因此y 是x 的函数。
函数的形式为:的常数)0(≠=k xk y .教学中让学生多举几个生活中的类似实例,形成反比例函数概念。
4.在抽象出反比例函数的概念之后,要引导学生体会: (1)当常数k ≠0时,xy=k 与xk y =两种表达式是等价的,但前者是隐函数形式,作为反比例函数,应表示成显函数的形式:xk y =(或1-=kxy ) 。
(2)允许将实例中的自变量x 与函数y 互换(即o k yk x ≠=,),可根据需要进行选择.(3)定义中非零常数k 及变量x 、y 已经不再局限于只取正值,而允许取任意非零数值。
要让学生弄清楚解析式中各字母的意义,自变量x 的取值范围。
例2.当m 取什么数时,函数2)1(--=m x m y 为反比例函数式?解:函数2)1(--=m xm y 要为反比例函数式,则12-=-m ,∴,1±=m∵01≠-m ,∴1≠m ∴m=-1此题是认识反例函数定义的等价形式)0(1≠=-k kxy ,由这个等价形式可得到12-=-m 且01≠-m ,求出m=-1.解决此类问题最容易忽略的就是k ≠0条件,教学中要让学生注意。
通过教学使学生掌握反比例函数的解析式的形式: (1)xk y =(k ≠0的常数)(2)k xy =(k ≠0的常数) (3)1-=kxy (k ≠0的常数)第二部分:反比例函数的图象及其性质;函数的性质蕴涵于概念中,对反比例函数性质的探索是对其概念内在规定性的认识,教学中应引导学生在了解函数的三种表示方法的基础上,通过观察、分析函数的图象,自主地对反比例函数的图象及其性质作出直观描述。
1.学生初次遇到作非线性函数的图象,而且反比例函数的图象是由断开的两支曲线组成,因此,在作图象过程中,教师要引领学生从列表取点、描点连线。
师生互动议论,画出反比例函数图象。
2.利用几何画板作出几个具体的反比例函数图象,让学生观察,并把数与 形结合起来,归纳出反比例函数图象的特征。
3.利用几何画板作出k >0和k <0时的多个反比例函数图象,数形结合,让 学生归纳概括出反比例函数的性质。
反比例函数的性质:(1)反比例函数的图象是由两支曲线组成;即:反比例函数的图象是双曲线。
(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交。
(4)反比例函数的图象是对称图形;反比例函数的图象既是轴对称图形又是中心对称图形;①)0(≠=k x k y 是轴对称图形,其对称轴为x y x y -==和两条直线; ②)0(≠=k x k y 是中心对称图形,对称中心为原点(0,0)。
③xk y xk y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:. . .. . . . .. . . .x在反比例函数)0(≠=k xk y 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂 线段与坐标轴所围成的矩形的面积为定值k 。
(6)k 越大,双曲线越远离原点。
利用反比例函数的这些性质可解决一些相关的问题。
例3. 已知反比例函数5)3(-+=k x k y 的图象分布在二、四象限,求反比例函数的解析式. 解:由题意可知:⎩⎨⎧<+-=-0315k k ∴4-=k , ∴反比例函数的解析式为x y 1-=。
例4.已知反比例函数102)2(--=mx m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.解:由题意可知:⎩⎨⎧--=-021102m m ∴m=3,∴反比例函数的解析式为x y 1=。
例5.P 是反比例函数xk y =上一点,若图中阴影部分的矩形面积是5,求这个反比例函数的解析式. 解:由反比例函数的几何意义可知: k =5, ∵反比例函数xk y =的图象位于二、四象限,∴k <0,∴k=-5. ∴这个反比例函数为xy 5-=.例6.已知点A (-3,a),B(-1,b),C(3,c)都在反比例函数xy 4=的图象上,则a 、b 、c 的大小关系为( D )A.c b a >>B.a b c >>C.a c b >>D.b a c >> 例7. 反比例函数x k y 1=的图象经过点A (-2,3),请问经过点A 的正比例函数x k y 2=的图象与反比例函数xk y 1=的图象还有其它交点吗?若有,求出交点坐标;若没有,说明理由.解:有,因为正、反比例函数的图象均关于原点对称,且点A 在它们的图象上,所以A (-2,3) 关于原点的对称点B (2,-3)也在它们的图象上, 所以,它们相交的另一个交点坐标为(2,-3). 第三部分:反比例函数的应用 1.确定反比例函数解析式.由反比例函数的解析式可知:确定反比例函数解析式只需把待定系数k 求出来.因此,只需一个独立条件:(1)图象经过的一个点的坐标;(2)适合解析式的一对对应值;(3)其它间接的条件等;例8.如图,已知一次函数b kx y +=的图象与反比例函数xm y =的图象交于A (-2,1),B (1,n )两点. (1)求这两个函数解析式; (2)求△AOB 的面积. 解:(1)∵反比例函数xm y =的图象经过点A 、B ,∴21-=m , m=-2,∴反比例函数为x y 2-=;∴12-=n =-2,∴B (1,-2);∵一次函数b kx y +=的图象经过点A 、B ,∴有⎩⎨⎧-=+=+-212b k b k 解之得:⎩⎨⎧-=-=11b k , ∴一次函数为1--=x y .(2)△AOB 的面积为1。
例9.已知y 是x 的反比例函数,且x=2时,y=-3. (1)求y 与x 的函数关系式; (2)当y=2时,求x 的值. 解:(1)设反比例函数为)0(≠=k xk y把x=2,y=-3代入解析式得:23k =-,∴k=-6,∴y 与x 的函数关系式为xy 6-=.(2)当y=2时,x=3.例10.(07年北京)在平面直角坐标系xOy 中,反比例函数xk y =的图象与xy 3=的图象关于x 轴对称,又与直线2+=ax y 交于点A (m,3),试确定a 的值.解:依题意得,反比例函数k y x=的解析式为3y x=-。
因为 点A (m ,3)在反比例函数3y x=-的图象上,所以 m33-=,解得 m=-1。
即点A 的坐标为(-1,3)。
因为 点A (-1,3)在直线y =ax +2上,所以3=-1a+2, 所以 a=-1。
2. 实际问题与反比例函数.在实际问题中,学生经历数学知识的应用,教学中要关注对问题的分析过程;利用反比例函数解决实际问题,关键是数学建模。
一般地建立函数模型有两种思路:(1)通过问题提供的信息,知道变量之间有什么函数关系,在这种情况下,可先设出函数的表达式,再由已知条件求出表达式中的字母系数即可。
(2)从问题本身的条件中不知道变量间是什么函数关系,在这种情况下,和列方程解应用题的思路一样,找出等量关系,把变量联系起来就得到函数表达式。
实际问题中的反比例函数,往往自变量的取值受到实际意义的限制,这时对应着的函数图象可能是双曲线的一支或是双曲线的一段,教学中要重视。
这点是学生在学习中最易错的,最易忽略的。
例11.某水池每小时的注水量Q (hm3)与注满水池所需的时间t (h )之间的函数关系如图所示.(1)求蓄水池的蓄水量,并写出Q 与t 的函数关系式; (2)若注满水池需用8h ,则它每小时的注水量是多少?(3)若需要4h 内注满水池,则每小时的注水量该如何控制? (4)若该水池注水管的注水能力最大为hm36,则注满水池至少需要多少时间?解:(1)由题意知:蓄水量=Qt=3×12=36(3m ). Q 与t 的函数关系式为:tQ 36=(t >0).(2)当t=8h 时,Q=)/(5.48363h m=即: 若注满水池需用8h ,则它每小时的注水量是4.5hm3.(3)当t=4h 时,Q=36/4=9(h m /3).即: 若需要4h 内注满水池,则每小时的注水量应控制在不低于93m .(4)当Q=hm36时,6=t36,∴t=6h.即:若该水池注水管的注水能力最大为hm36,则注满水池至少需要6h.例12.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)是气球体积V (立方米)的反比例函数,其图象如图. (1)写出p 与V 的函数关系式;(2)当气球内的体积为0.8立方米时,气球内的气压是多少?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米? 解:(1)由题意知,气球内气体的气压p (千帕)是气球体积V (立方米)的反比例函数,根据题意,设p=Vk .∵图象过点A (1.5,64),∴把V=1.5,p=64代入解析式得:k=96. ∴p 与V 的函数关系式为:Vp 96=.(2)当V=0.8立方米时,p=120千帕. (3)解法一:由p=144千帕,得V=3214496=,气球内的气压大于144千帕时,气球将爆炸,所以144≤p , 由图象可看出,p 随V 的增大而减小, ∴32≥V即:当气球的体积32≥V 立方米时,气球内的气压144≤p 千帕,气球就不会爆炸。