太仓市2016-2017学年第一学期初一数学期末教学质量调研测试及答案
【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案
)
2
1 B 、8 C 、 1
A、 6
8
D 、3 2
7. 某商品进价 a 元,商店将价格提高 30%作零售价销售, 在销售旺季过后, 商店以 8 折(即
售价的 80%)的价格开展促销活动,这时一件商品的售价为(
)
A.a 元; B.0.8a
元
C.1.04a
元;
D.0.92a 元
8.已知:如图,点 C 是线段 AB的中点,点 D 是线段 BC的中点, AB=20cm,那么线段 AD
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1.- 2016 的相反数是(
)
A.
1
2016
1
B.
2016
C . 6102
D . 2016
2.有理数 ( 1)2 , ( 1)3 , 12 ,
)
A、 2n 1 3n 2
B
、 2n 2 1 n
C 、 2n 1 3n 2
11. 下列图形 ( 如图所示 ) 经过折叠不能围成正方体的是 (
D
、
2n
2
1
n
)
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
C. ax=-ay D.3-ax=3-ay
6、现规定一种新运算“ * ”:a* b= a b ,如 3*2= 32 =9,则( 1 ) *3= (
2016-2017学年七年级上期末数学试卷含答案解析
2017-2018学年七年级(上)期末数学试卷一、选择题本大题(共10小题,每小题3分,共30分)1.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×1072.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y3.下列说法正确的是()A.﹣2与2互为倒数B.2与互为相反数C.绝对值是本身的数只有零D.(﹣1)3和﹣13的结果相等4.画如图所示物体的俯视图,正确的是()A. B. C.D.5.有理数a、b在数轴上的位置如图所示,则下列各式正确的是()A.ab>0 B.|b|<|a|C.b<0<a D.a+b>06.若一个多项式减去a2﹣3b2等于a2+2b2,则这个多项式是()A.﹣2a2+b2B.2a2﹣b2C.a2﹣2b2D.﹣2a2﹣b27.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C.若∠2=32°;则∠1的度数为()A.58°B.42°C.32°D.28°8.如图,射线OA⊥OC,射线OB⊥OD,则图中互为补角的对数共有()A.1对 B.2对 C.3对 D.4对9.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是()A.3x+1=4x﹣2 B.3x﹣1=4x+2 C.D.10.如图,数轴上有A、B、C、D四个整数点(即各点均表示整数),且3AB=BC=2CD.若A、D两点所表示的数分别是﹣6和5,则线段AC的中点所表示的数是()A.﹣3 B.﹣1 C.3 D.﹣2二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题纸相对应的位置上.11.多项式3x2y﹣2xy+1的二次项系数为.12.如果∠A=26°18′,那么∠A的余角为°(结果化成度).13.若代数式2a m b4与﹣5a2b n+1是同类项,则m n=.14.当x=时,代数式2x﹣与代数式x﹣3的值相等.15.若2a﹣b﹣3=0,则多项式8﹣6a+3b的值是.16.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是16cm,则小长方形的面积是cm 2.17.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣2|a+b|的绍果为.18.如图,长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点.动点P从A点出发,以每秒1cm的速度沿A﹣B﹣C﹣E运动,最终到达点E.若点P运动的时间为x秒,则当x=时,△APE的面积等于5.三、解答题本大题共10小题,共76分把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.计算(1)﹣+(﹣﹣+)×24(2)﹣12010﹣(1﹣÷3)×|3﹣(﹣3)2|20.(1)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中|a+1|+(b﹣)2=0.(2)先化简,再求值:﹣(3x2﹣4xy)﹣ [x2﹣2(4x﹣4xy)],其中x=﹣2.21.解下列方程:(1)2﹣3(2﹣x)=4﹣x;(2)﹣1=.22.已知关于x的方程3(x﹣1)=3m﹣6与2x﹣5=﹣1的解互为相反数,求(m+)3的值.23.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.24.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8 吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)(1)若经过这一周,该粮仓存有大米88吨,求m的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.25.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.26.某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.(1)求购进甲、乙两种款式的服装每件的价格各是多少元?(2)若该服装店购进乙款服装的件数是甲款服装件数的3倍,并都以每件120元的价格进行销售.经过一段时间,甲款服装全部售完,乙款服装还余20件未售完,该店决定对余下服装打8折销售.求该店把这批服装全部售完获得的利润.27.已知线段AB=8,在直线AB上取一点P,恰好使=3,点Q为线段PB的中点.求AQ的长.28.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC.将一直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方.将直角三角板绕着点O按每秒10⁰的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC 与∠BOE之间有何数量关系?并说明理由.(2)若射线OC的位置保持不变,且∠COE=140°.①则当旋转时间t=秒时,边AB所在的直线与OC平行?②在旋转的过程中,是否存在某个时刻,使得射线OA,OC与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值.若不存在,请说明理由.③在旋转的过程中,当边AB与射线OE相交时(如图3),求∠AOC﹣∠BOE的值.2016-2017学年江苏省苏州市常熟市七年级(上)期末数学试卷参考答案与试题解析一、选择题本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应的位置上.1.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将258000用科学记数法表示为2.58×105.故选B.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.3.下列说法正确的是()A.﹣2与2互为倒数B.2与互为相反数C.绝对值是本身的数只有零D.(﹣1)3和﹣13的结果相等【考点】有理数的乘方;相反数;绝对值;倒数.【分析】根据倒数的定义,只有符号不同的两个数叫做互为相反数,绝对值的性质有理数的乘方对各选项分析判断后利用排除法求解.【解答】解:A、应为﹣2与2互为相反数,故本选项错误;B、应为2与互为倒数,故本选项错误;C、应为绝对值是本身的数是零和正数,故本选项错误;D、(﹣1)3=﹣1,﹣13=﹣1,结果相等正确,故本选项正确.故选D.4.画如图所示物体的俯视图,正确的是()A. B. C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看矩形分成两个矩形,分线是虚线,故B正确.故选:B.5.有理数a、b在数轴上的位置如图所示,则下列各式正确的是()A.ab>0 B.|b|<|a|C.b<0<a D.a+b>0【考点】数轴;绝对值.【分析】根据a与b在数轴上的位置即可判断【解答】解:由数轴可知:b<﹣1<0<a<1,∴ab<0,|b|>|a|,a+b<0,∴故选(C)6.若一个多项式减去a2﹣3b2等于a2+2b2,则这个多项式是()A.﹣2a2+b2B.2a2﹣b2C.a2﹣2b2D.﹣2a2﹣b2【考点】整式的加减.【分析】结合整式加减法的运算法则进行求解即可.【解答】解:∵一个多项式减去a2﹣3b2等于a2+2b2,∴这个多项式为:a2﹣3b2+a2+2b2=2a2﹣b2.故选B.7.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C.若∠2=32°;则∠1的度数为()A.58°B.42°C.32°D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=180°﹣∠1﹣∠BAC=32°,∴∠1=58°,故选A.8.如图,射线OA⊥OC,射线OB⊥OD,则图中互为补角的对数共有()A.1对 B.2对 C.3对 D.4对【考点】余角和补角.【分析】若两个角的和等于180°,则这两个角互补.根据由互补的定义确定互为补角的对数.【解答】解:图中互为补角的对数有2对,分别是∠AOD和∠BOC,∠AOC和∠BOD.故选:B.9.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是()A.3x+1=4x﹣2 B.3x﹣1=4x+2 C.D.【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系;两种分苹果的方法,分别计算出小朋友的人数.【解答】解:∵设共有x个苹果,∴每个小朋友分3个则剩1个时,小朋友的人数是;,若每个小朋友分4个则少2个时,小朋友的人数是;,∴,故选:C,10.如图,数轴上有A、B、C、D四个整数点(即各点均表示整数),且3AB=BC=2CD.若A、D两点所表示的数分别是﹣6和5,则线段AC的中点所表示的数是()A.﹣3 B.﹣1 C.3 D.﹣2【考点】数轴.【分析】首先设出BC,根据3AB=BC=2CD表示出AB、CD,求出线段AD的长度,即可得出答案.【解答】解:设BC=6x,∵3AB=BC=2CD,∴AB=2x,CD=3x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=2,BC=6,AC=AB+BC=2+6=8,∵A点是﹣6,∴C点所表示的数是2.∴线段AC的中点表示的数是=﹣2.故选:D.二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题纸相对应的位置上.11.多项式3x2y﹣2xy+1的二次项系数为﹣2.【考点】多项式.【分析】直接利用多项式的定义得出二次项进而得出答案.【解答】解:∵多项式3x2y﹣2xy+1的二次项是﹣2xy,∴二次项系数为:﹣2.故答案为:﹣2.12.如果∠A=26°18′,那么∠A的余角为63.7°(结果化成度).【考点】余角和补角.【分析】根据互余两角之和为90°求解,然后把结果化为度.【解答】解:∠A的余角=90°﹣∠A=90°﹣26°18′=63°42′=63.7°.故答案为:63.7.13.若代数式2a m b4与﹣5a2b n+1是同类项,则m n=8.【考点】同类项.【分析】根据同类项的概念即可求出答案.【解答】解:由题意可知:m=2,4=n+1∴m=2,n=3,∴m n=23=8,故答案为:814.当x=﹣时,代数式2x﹣与代数式x﹣3的值相等.【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣=x﹣3,去分母得:4x﹣1=x﹣6,移项合并得:3x=﹣5,解得:x=﹣,故答案为:﹣15.若2a﹣b﹣3=0,则多项式8﹣6a+3b的值是﹣1.【考点】代数式求值.【分析】将多项式提公因式,得到8﹣3(2a﹣b),然后将2a﹣b=3直接代入即可.【解答】解:∵2a﹣b﹣3=0,∴2a﹣b=3.∴8﹣6a+3b=8﹣3(2a﹣b)=8﹣3×3=﹣1..故答案为:﹣1.16.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是16cm,则小长方形的面积是3cm 2.【考点】二元一次方程组的应用.【分析】设小长方形的长为xcm,宽为ycm,根据大长方形的周长结合图形可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据长方形的面积公式即可得出结论.【解答】解:设小长方形的长为xcm,宽为ycm,根据题意得:,解得:,∴小长方形的面积为3×1=3(cm 2).故答案为:3.17.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣2|a+b|的绍果为a+3b.【考点】整式的加减;数轴;绝对值.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:﹣2<a<﹣1<0<b<1,且|a|>|b|,∴a﹣b<0,a+b<0,则原式=b﹣a+2a+2b=a+3b,故答案为:a+3b18.如图,长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点.动点P从A点出发,以每秒1cm 的速度沿A ﹣B ﹣C ﹣E 运动,最终到达点E .若点P 运动的时间为x 秒,则当x= 或5 时,△APE 的面积等于5.【考点】三角形的面积.【分析】分P 在AB 上、P 在BC 上、P 在CE 上三种情况,根据三角形的面积公式计算即可.【解答】解:当P 在AB 上时,∵△APE 的面积等于5,∴x•3=5,x=;当P 在BC 上时,∵△APE 的面积等于5,∴S 矩形ABCD ﹣S △CPE ﹣S △ADE ﹣S △ABP =5,∴3×4﹣(3+4﹣x )×2﹣×2×3﹣×4×(x ﹣4)=5,x=5;③当P 在CE 上时,(4+3+2﹣x )×3=5,x=(不合题意),故答案为:或5.三、解答题本大题共10小题,共76分把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.计算(1)﹣+(﹣﹣+)×24(2)﹣12010﹣(1﹣÷3)×|3﹣(﹣3)2|【考点】有理数的混合运算.【分析】(1)先利用分配律计算,再进行加减运算;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:(1)原式=﹣﹣×24﹣×24+×24=﹣﹣15﹣4+14=﹣5;(2)原式=﹣1﹣×6=﹣6.20.(1)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中|a+1|+(b﹣)2=0.(2)先化简,再求值:﹣(3x2﹣4xy)﹣ [x2﹣2(4x﹣4xy)],其中x=﹣2.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)先去括号,再合并同类项化简原式,继而代入求值即可;(2)先去括号,再合并同类项化简原式,继而代入求值即可.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=时,原式=3×(﹣1)2×﹣(﹣1)×()2=+=;(2)原式=﹣3x2+4xy﹣(x2﹣8x+8xy)=﹣3x2+4xy﹣x2+4x﹣4xy=﹣x2+4x,当x=﹣2时,原式=﹣×(﹣2)2+4×(﹣2)=﹣×4﹣8=﹣14﹣8=﹣22.21.解下列方程:(1)2﹣3(2﹣x)=4﹣x;(2)﹣1=.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2﹣6+3x=4﹣x,移项合并得:4x=8,解得:x=2;(2)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.22.已知关于x的方程3(x﹣1)=3m﹣6与2x﹣5=﹣1的解互为相反数,求(m+)3的值.【考点】一元一次方程的解.【分析】先求出第一个方程的解,把x=﹣2代入第二个方程求出m,即可求出答案.【解答】解:解方程2x﹣5=﹣1得:x=2,∵关于x的方程3(x﹣1)=3m﹣6与2x﹣5=﹣1的解互为相反数,∴把x=﹣2代入方程3(x﹣1)=3m﹣6得:m=﹣1,∴(m+)3=﹣.23.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【考点】平行线的判定与性质.【分析】(1)根据平行线的性质和判定证明即可;(2)根据角平分线的定义和平行线的性质解答即可.【解答】证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.24.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8 吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)(1)若经过这一周,该粮仓存有大米88吨,求m的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总总量,可得答案.【解答】解:(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20,答:星期五该粮仓是运出大米,运出大米20吨;(2)132+|﹣32|+26+|﹣23|+|﹣16|+|﹣20|+42+|﹣21|=180,180×15=2700元,答:这一周该粮仓需要支付的装卸总费用2700元.25.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.【考点】对顶角、邻补角;角平分线的定义.【分析】(1)根据对顶角相等求出∠BAOC的度数,设∠AOE=2x,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠BOF的度数即可.【解答】解:(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC=5x,∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,则2x=30°,∴∠AOE=30°;(2)OB是∠DOF的平分线;理由如下:∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°,∵OF平分∠BOE,∴∠BOF=75°,∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠COF的角平分线.26.某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.(1)求购进甲、乙两种款式的服装每件的价格各是多少元?(2)若该服装店购进乙款服装的件数是甲款服装件数的3倍,并都以每件120元的价格进行销售.经过一段时间,甲款服装全部售完,乙款服装还余20件未售完,该店决定对余下服装打8折销售.求该店把这批服装全部售完获得的利润.【考点】一元一次方程的应用.【分析】(1)设购进乙种款式的服装每件的价格是x元,则购进甲种款式的服装每件的价格是(x+10)元,由题意得等量关系:购买30件甲款服装的费用=购买35件乙款服装的费用﹣100元,根据等量关系列出方程,再解即可;(2)设购进甲款服装a件数,由题意得等量关系:购进乙款服装的件数+甲款服装件数=80,根据等量关系列出方程,求出x的值,可得甲乙两种服装的件数,然后分别计算出两种服装的总利润可得答案.【解答】解:(1)设购进乙种款式的服装每件的价格是x元,由题意得:30(x+10)=35x﹣100,解得:x=80,则x+10=90,答:购进乙种款式的服装每件的价格是80元,购进,甲种款式的服装每件的价格是90元;(2)设购进甲款服装a件数,由题意得:a+3a=80,解得:a=20,3a=3×20=60,(20+40)×120+20×120×0.8﹣20×90﹣60×80=2520(元),答:这批服装全部售完获得的利润是2520元.27.已知线段AB=8,在直线AB上取一点P,恰好使=3,点Q为线段PB的中点.求AQ的长.【考点】两点间的距离.【分析】由于点P的位置不确定,故需要分情况讨论.【解答】解:当点P在线段AB上时,如图所示:∵AB=8,=3,∴AP=6,BP=2∵点Q为线段PB的中点,故PQ=BP=1故AQ=AP+PQ=7当点P在线段AB的延长线上时,如图所示:∵AB=8,=3,∴BP=4,∵点Q为线段PB的中点,故BQ=BP=2,故AQ=AB+BQ=8+2=10当点P在线段AB的反向延长线上时,不成立故AQ=7或1028.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC.将一直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD 上,另一边OB在直线DE上方.将直角三角板绕着点O按每秒10⁰的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC 与∠BOE之间有何数量关系?并说明理由.(2)若射线OC的位置保持不变,且∠COE=140°.①则当旋转时间t=7或25秒时,边AB所在的直线与OC平行?②在旋转的过程中,是否存在某个时刻,使得射线OA,OC与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值.若不存在,请说明理由.③在旋转的过程中,当边AB与射线OE相交时(如图3),求∠AOC﹣∠BOE的值.【考点】角的计算;角平分线的定义.【分析】(1)由∠AOB=90°知∠BOC+∠AOC=90°、∠AOD+∠BOE=90°,根据∠AOD=∠AOC可得答案;(2)①由∠COE=140°知∠COD=40°,分AB在直线DE上方和下方两种情况,根据平行线的性质分别求得∠AOD度数,从而求得t的值;②当OA平分∠COD时∠AOD=∠AOC、当OC平分∠AOD时∠AOC=∠COD、当OD 平分∠AOC时∠AOD=∠COD,分别列出关于t的方程,解之可得;③由∠AOC=∠COE﹣∠AOE=140°﹣∠AOE、∠BOE=90°﹣∠AOE得∠AOC﹣∠BOE=﹣(90°﹣∠AOE)=50°.【解答】解:(1)∠BOC=∠BOE,∵∠AOB=90°,∴∠BOC+∠AOC=90°,∠AOD+∠BOE=90°,∵OA平分∠COD,∴∠AOD=∠AOC,∴∠BOC=∠BOE;(2)①∵∠COE=140°,∴∠COD=40°,如图1,当AB在直线DE上方时,∵AB∥OC,∴∠AOC=∠A=30°,∴∠AOD=∠AOC+∠COD=70°,即t=7;如图2,当AB在直线DE下方时,∵AB∥OC,∴∠COB=∠B=60°,∴∠BOD=∠BOC﹣∠COD=20°,则∠AOD=90°+20°=110°,∴t==25,故答案为:7或25;②当OA平分∠COD时,∠AOD=∠AOC,即10t=20,解得t=2;当OC平分∠AOD时,∠AOC=∠COD,即10t﹣40=40,解得t=8;当OD平分∠AOC时,∠AOD=∠COD,即360﹣10t=40,解得:t=32;综上,t的值为2、8、32;③∵∠AOC=∠COE﹣∠AOE=140°﹣∠AOE,∠BOE=90°﹣∠AOE,∴∠AOC﹣∠BOE=﹣(90°﹣∠AOE)=50°,∴∠AOC﹣∠BOE的值为50°.2017年3月21日。
2016-2017学年七年级上期末数学试卷含答案解析
2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。
学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)
2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。
16-17-1七年级数学质量检测参考答案
2016-2017学年第一学期七年级数学参考答案第一部分,选择题1. A.【解析】 “绝对值”与“相反数”的意义,所以选A ;2.C. 【解析】科学计数法,所以选C ;3.C. 【解析】普查、抽样调查的概念,选C ;4.C. 【解析】同类项概念,所以选C ;5. D. 【解析】由多边形对角线定义,选A ;6. A. 【解析】绝对值的几何意义,所以选A.7.D. 【解析】截面和正方体的展开和折叠,所以选D ;8.C. 【解析】设进货价为x 元 1200.9(120%)x ⨯=+,90x =,故选C ; 9.B. 【解析】11,2,2,22a a a a a -=∴==±≠∴=-,所以选B ;10.D.【解析】A.周长应为2(225)a -,B 选项的三角形面积为162h ⨯⨯,C 选项为a 是十位数,所以选D ;11. A. 【解析】390,39,3k k k -+=-=-= 所以选A ; 12. A. 【解析】3,4a b =±=±,分四种情况讨论:13,4,3434a b ==+=+()情况不成立23,4,34343(4)7a b a b ==--≠--=--=()情况成立,故(3)3,4,3434a b =-=-+=-+情况不成立43,4,3434a b =-=---≠-()情况成立,故3(4)7a b -=--=所以选A .第二部分 非选择题13. >; 14.3; 15.105; 16.32. 13. 【解析】;14. 【解析】去括号,2123a b -+=+= 15. 【解析】90°+15°=105°16. 【解析】113a =,2131213a ==-,312312a ==--,413a =,532a =,所以,以13、32、2-三个一组循环,201532a = 17.解:(1) 137(11)(24)2812--+⨯-原式=337(1)(24)2812--+⨯-…………1分=2436914-++-…………2分=29-+ =7…………3分(2)()()()324224⎡⎤-⨯-÷---⎣⎦原式=16(2)(84)-⨯-÷-+…………1+1=2分=32(4)÷-=8- …………3分(第17题1,2两小题每小题适当省略步骤不扣分,但每小题至少应有两个步骤(两个等号),直接一个步骤(一个等号)得到答案的只给1分)(3)解:22221223333x x xy y x ⎛⎫--- ⎪⎝⎭-+=22222233x x xy y x ++-- …………1分=232xy y -+…………3分 当2,1x y ==-时,原式=222(1)(1)3+⨯-⨯⨯--…………4分=7 …………5分 (此题化简部分至少应有两个步骤(两个等号),直接一步得到化简答案的前3分只给1分;没有化简,直接将2,1x y ==-代入原式计算的不得分;只有一步“原式=7”的不得分) 18.解:(1)3)23(25-=--x x5643x x -+=-…………1分936x =-+…………2分93x =…………3分13x =………4分 (2)13453=---x x3(3)5(4)15x x ---=…………1分 3952015x x --+=…………2分24x -=…………3分2x =-…………4分(第19题每小题适当省略步骤不扣分,但每小题至少应有两个步骤(两个等号),直接一个步骤(一个等号)得到答案的只给1分) 19.(1)200人 …………2分(2)100人条形图 …………2分 (3)18°…………1分 (4)1500 …………1分20. (第20题每种情况给2分,要求用直尺画图)从正面看从左面看从上面看21. 解:(1)∵∠BOM =90°,∴∠AOM=90°-∠BOM =90°∴∠COM =∠AOC=12∠AOM =45° ………2分 ∴∠AOD=180°-∠AOC = 180°-45°=135°……3分 (2)∵∠COM =14∠BOC ∴设∠COM=x ,则∠BOC=4x ∴∠BOM =4x 3x x -== 90°∴30x =°即∠MOC=30° …………4分∴∠AOC =90°-∠MOC =60°…………5分∴∠MOD =180°-∠COM =180°-30°=150°…………6分(第21题只要有适当步骤,得到正确答案的均得满分,答案错误的按得分点给分)22. 解:(1)设该中学库存x 套桌凳,…………1分 由题意得:2014147x x-=+,…………3分 解方程得x =840. …………4分(2)设①②③三种修理方案的费用分别为y 1、y 2、y 3元,则:123840(8010)5400,14840(12010)5200,147840(8012010)504014147y y y =+⨯==+⨯=+=++⨯=++综上可知,选择方案③更省时省钱. …………7分23. 解:(1)设CQ=t cm 则(12)AQ t =-cm ,AP=2t cm .…………1分∵AQ=AP 122t t -=解得t =4 .…………2分(2)设CQ =t cm 则(12)AQ t =- cm∵QAB ∆的面积=112122t -⨯().…………3分依题意得:1111216=1216242t -⨯⨯⨯⨯() .…………4分解得:t=9 .…………5分 (3)①若点Q 在AC 上,点P 在AB 上12AQ t =- ,162BP t =- 112(162)4t t -=-16t =∵当16t =时,Q 点在AB 上∴不合题意,舍去。
2016~2017学年江苏苏州太仓市初一上学期期末数学试卷(解析)
A. a + b < 0
B. a − b < 0
C. |a| > |b|
D.
b >0
a
答案 B
解 析 根据a,b两数在数轴的位置依次判断所给选项的正误即可.考查的知识点为:数轴上左边的数比右边的数 小;异号两数相加,取绝对值较大的数的符号.
5. 如图,三条直线相交于点O.若C , O⊥AB ∠1 = 56∘,则∠2等于( ).
当a + 8b = −5 时,原式= . 10
15. 求上午10时30分,钟面上时针和分针的夹角为
.
答案
135∘
解析
钟面平均分成12份,可得每份是30∘,
时针只在6上,分针指在10与11的 1 处,时针与分针相距(4 + 1 ) 份.
2
2
即 . ∘
1
∘
30 × (4 + ) = 135
2
16. 如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还
2. 下列各数中:+ 、 (−5) |−1 − 、 2| − π 、− (−7)、0、(−2015)3,负数有( ).
2
A. 2个
B. 3个
/12/12 答 案 B 2018 解 析 第1、3、6个数字小于0,
om 故负数有3个.
i.izhikang.c 3. 下列各组中,不是同类项的是( ).
jiaosh A.
A.
∘ 30
B.
∘ 34
答案 B
解析
∵ , , ∘ C O⊥AB ∠1 = 56
∴ , ∘
∘
∘
∘
2016-2017七年级上期末数学试卷含答案解析
2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。
2016——2017 学年第一学期教学质量检测七年级数学试题及答案
2016——2017学年第一学期教学质量检测七年级数学试卷说明:本试卷考试时间90分钟,满分100分,答题必须在答题卷上作答,在试题卷上作答无效。
第一部分选择题一、选择题:(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是()A .2B .12-C .2-D .122.2015年10月29日,中共十八届五中全会公报决定,实施普遍二孩政策,中国从1980年开始,推行了35年的城镇人口独生子女政策真正宣告终结。
“未来中国人口会不会突破15亿?”是政策调整决策中的重要考量,“经过高、中、低方案反复测算,未来中国人口不会突破。
”15亿用科学计数法表示为()A .81510⨯B .8510⨯C .91.510⨯D .91.53.下列调查方式合适的是()A .为了了解冰箱的使用寿命,采用普查的方式B .为了了解全国中学生的视力状况,采用普查的方式C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式4.下列各组代数式中,不是同类项的是()A .22x y 和2yx -B .33-和3C .2ax 和2a xD .3xy 和2xy -5.若从n 边形的一个顶点出发,最多可以引()条对角线A .n B .1n -C .2n -D .3n -6.有理数a 、b 在数轴上的位置如图,则下列各式不成立的是()A .0a b +>B .0a b ->C .b a>D .0ab <7.下面说法,错误的是()A .一个平面截一个球,得到的截面一定是圆B .一个平面截一个正方体,得到的截面可以是五边形C .棱柱的截面不可能是圆D .下边甲、乙两图中,只有乙才能折成正方体8.某件产品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该件产品的进货价为()A .80元B .85元C .90元D .95元9.方程()1230a a x --+=是关于x 的一元一次方程,则a =()A .2B .2-C .1±D .2±10.下列说法正确的是()A .长方形的长是a 米,宽比长短25米,则它的周长可表示为()225a -米B .6h 表示底为6,高为h 的三角形面积C .10a b +表示一个两位数,它的个位数字是a ,十位数字是bD .甲、乙两人分别从相距40千米的两地同时相向出发,其行走的速度分别为3千米/小时和5千米/小时,经过x 小时相遇,则可列方程式为3540x x +=11.关于x 、y 的代数式()()33981kxy y xy x -++-+中不含有二次项,则k =()A .3B .13C .4D .1412.已知3a =,216b =;且a b a b +≠+,则代数式a b -的值为()A .1或7B .1或7-C .1-或7-D .±1或±7第二部分非选择题二、填空题:(本题共4小题,每小题3分,共12分)13.比较大小:8-________9-(填“<”、“=”、“>”).14.若1a b -=,则代数式()2a b --的值是________.15.在时钟的钟面上,九点半的时针与分针的夹角是________.16.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112--=,1-的差倒数是()11112--=,已知113a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2015a =________.三、解答题:(本题共7小题,其中第17题11分,第18题8分,第19题6分,第20题6分,第21题6分,第22题7分,第23题8分,共52分)17.计算:(1)(本题3分)()137********⎛⎫--+⨯- ⎪⎝⎭(2)(本题3分)()()()324224⎡⎤-⨯-÷---⎣⎦(3)(本题5分)先化简,再求值:22221223333x x xy y x ⎛⎫--+-- ⎪⎝⎭,其中2x =,1y -=.18.(每小题4分,共8分)解方程:(1)()52323x x ---=(2)34153x x ---=19.(本题6分)校学生会体育部为更好的的开展同学们课外体育活动,现对学生最喜欢的一项球类运动进行了随机抽样调查,根据调查的结果绘制成如图2-①和图2-②所示的两幅不完整统计图,其中A .喜欢篮球B .喜欢足球C .喜欢乒乓球D .喜欢排球。
精选七年级数学上学期期末考试试题答案
2016—2017学年度(上)期末教学质量检测七年级数学试卷参考答案一、选择题(每小题2分,共20分)二、填空题(每小题2分,共16分)11. 41 21';12. 6;13. B 点;14. 2;15. -2; 16. 24; 17. 2518.-1021021y x 三、(第19题每小题4分,第20题每小题4分,共计16分)19.(1)解:原式=-1+5×(-2)×(-5) -----------------------1 =-1+50 -------------------------3 =49 ---------------------4(2)解;原式=(-3×)1-94)×(-23) ----------------------1 =(-)()23-1-34×) -----------------------2 =2337× ------------------------3 =27-----------------------4 20.(1)解:去括号得2x+5=3x-3 -------------------------1 移项合并得-x=-8 --------------------------3 系数化1得 x=8 ----------------------------4 (2)解:去分母得:2(x-1)=2-x+12 ---------------------1 去括号得:2x-2=2-x+12 ----------------------2 移项合并得:3x=16 ------------------------3系数化1得:x=316------------------------4 四、(6分)21.原式=a-3a+b 2-6a+2b2---------------------------1=(2 b 2+ b 2)+(a-3a-6a ) -------------------------- 2 =3 b 2-8a ----------------------------4 当a=-2,b=-1时,原式=3×1-8×(-2)=3+16=19 ------------6 五、(8分)22. (1)画对 -----------------------2(2)画对 -----------------------2 (3)画对 ------------------------1 (4)画对 ------------------------1 (5)画对 ------------------------1 (6)画对 ------------------------1六、(第23题8分,第24题8分,共计16分) 23.解:(1)ab-4412×r π=ab-2r π ------------------------------4 (2)当a=500,b=200,r=20时,ab-2r π =(100000-400π)m 2--------------------3答:广场空地的面积是(100000-400π)m 224.解(1)+9-3-5+4-8+6-3-6-4+10-2+3 ----------------2 =(9+4+6+10+3)+(-3-5-8-3-6-4-2)=32-31=1(km ) --------------------------------3 答:出租车就在新华街东1km 处。
2016-2017学年七年级上期末数学试卷含答案解析
2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣22.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠16.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣510.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+111.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=8713.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是.16.比较大小:﹣﹣(填“<”或“>”)17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=cm.三、解答题(本题共8道题,满分60分)19.(6分)计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).20.(6分)解方程:=.21.(6分)先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.22.(6分)已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D 是AC的中点,求BD的长.23.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.24.如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.25.(10分)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?26.(10分)如图,长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的B′处,得到折痕EC ,将点A 落在直线EF 上的点A′处,得到折痕EN .(1)若∠BEB′=110°,则∠BEC= °,∠AEN= °,∠BEC +∠AEN= °. (2)若∠BEB′=m°,则(1)中∠BEC +∠AEN 的值是否改变?请说明你的理由. (3)将∠ECF 对折,点E 刚好落在F 处,且折痕与B′C 重合,求∠DNA′.2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣2【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:实数﹣2的绝对值是2,故选:A.【点评】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.2.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数【考点】有理数.【分析】根据零的意义,可得答案.【解答】解:A、没有最小的有理数,故A错误;B、没有最小的整数,故B错误;C、0没有倒数,故C错误;D、0是最小的非负数,故D正确;故选:D.【点评】本题考查了有理数,零是自然数,是最小的非负数,是整数,注意零既不是正数也不是负数.3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,系数相加字母部分不变.4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】两点间的距离;直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短.【分析】根据直线、射线等相关的定义或定理分别判断得出答案即可.【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.【点评】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠1【考点】角的概念.【分析】先表示出各个角,再根据角的表示方法选出即可.【解答】解:图中的角有∠A、∠1、∠α、∠AEC,即表示方法不正确的有∠E,故选B.【点评】本题考查了对角的表示方法的应用,主要考查学生对角的表示方法的理解和掌握.6.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:21.54°=21°32.4′=21°32′24″.故选:D.【点评】本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣【考点】一元一次方程的解.【分析】把x=﹣2代入方程计算即可求出m的值.【解答】解:把x=﹣2代入方程得:﹣4+2m=5,解得:m=.故选C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°【考点】角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°,故选C.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣5【考点】代数式求值.【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:﹣8a﹣2b=﹣5,再将x=﹣2代入这个代数式中,最后整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,则8a+2b+1=6,8a+2b=5,∴﹣8a﹣2b=﹣5,则当x=﹣2时,ax3+bx+1=(﹣2)3a﹣2b+1=﹣8a﹣2b+1=﹣5+1=﹣4,故选B.【点评】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【考点】整式的加减.【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(3x2+4x﹣1)﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1,故选A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.11.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°【考点】余角和补角.【分析】根据补角和余角的定义关系式,然后消去∠α即可.【解答】解:∵∠α与∠β互补,∠α与∠γ互余,∴∠α+∠β=180°,∠α+∠γ=90°.∴∠β﹣∠γ=90°.故选:A.【点评】本题主要考查的是余角和补角的定义,根据余角和补角的定义列出关系式,然后再消去∠α是解题的关键.12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=87【考点】由实际问题抽象出一元一次方程.【分析】设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,根据两种笔共卖出87元,列方程即可.【解答】解:设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,由题意得,0.8×1.2x+0.9×2(60﹣x)=87.故选A.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断出a、b的符号,再去括号,合并同类项即可.【解答】解:∵由图可知,a<0<b,∴a﹣b<0,|a|=﹣a,∴原式=b﹣a+a=b.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108【考点】科学记数法—表示较大的数.【分析】首先利用已知求出奖金总数,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:设屠呦呦的奖金是x元,根据题意可得:2.25%•x×20%=13500,解得:x=3000000,将3000000用科学记数法表示为:3×106.故选:B.【点评】此题考查了一元一次方程的应用以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是5.【考点】单项式.【分析】根据所有字母的指数和叫做这个单项式的次数,可得答案.【解答】解:7πa2b3的次数是5,故答案为:5.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.比较大小:﹣<﹣(填“<”或“>”)【考点】有理数大小比较.【分析】根据负数的绝对值越大负数越小,可得答案.【解答】解:这是两个负数比较大小,先求他们的绝对值,|﹣|=,|﹣|=,∵>,∴﹣<﹣,故答案为:<.【点评】本题考查了有理数大小比较,利用负数的绝对值越大负数越小是解题关键.17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为90°.【考点】角的计算.【分析】根据已知条件“∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°”和平角的定义可以求得∠AOF=∠DOF=∠AOD=62°,∠DOE=∠BOE=28°;然后根据图形求得∠EOF=∠DOF+∠DOE=62°+28°=90°.【解答】解:∵∠DOE=∠BOE,∠BOE=28°,∴∠DOB=2∠BOE=56°;又∵∠AOD+∠BOD=180°,∴∠AOD=124°;∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD=62°,∴∠EOF=∠DOF+∠DOE=62°+28°=90°.故答案是:90°.【点评】本题考查了角的计算.解题时,注意利用隐含在题干中的已知条件“∠AOB=180°”.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=6或14cm.【考点】两点间的距离.【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况,结合图形计算即可.【解答】解:当点C在线段AB上时,AC=AB﹣BC=6cm,当点C在线段AB的延长线上时,AC=AB+BC=14cm,故答案为:6或14.【点评】本题考查的是两点间的距离的计算,灵活运用数形结合思想、分情况讨论思想是解题的关键.三、解答题(本题共8道题,满分60分)19.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【考点】有理数的加减混合运算.【分析】首先根据有理数减法法则,把算式进行化简,然后应用加法交换律和结合律,求出算式的值是多少即可.【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣17【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法.20.解方程:=.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4(2x﹣1)=3(x+2),去括号得:8x﹣4=3x+6,移项合并得:5x=10,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a﹣8a+2﹣3+4a=﹣a﹣1,当a=时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D是AC的中点,求BD的长.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D 是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.23.在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.【考点】整式的加减—化简求值.【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【解答】解:(1)根据题意得:S=2m•2n﹣m(2n﹣0.5n﹣n)=4mn﹣0.5mn=3.5mn;(2)∵(m﹣6)2+|n﹣5|=0,∴m=6,n=5,则S=3.5×6×5=105.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.(1)如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.【考点】角平分线的定义.【分析】(1)先由角平分线定义可得∠AOM=∠AOB=(∠BON+∠AON)=×68°=34°,再根据∠MON=∠AOM﹣∠AON,代入数据计算即可;(2)先由角平分线定义可得∠AOM=∠BOM,再根据∠AOM=∠AON+∠MON,∠MON=∠BON﹣∠MON即可解题.【解答】解:(1)∵OM 平分∠AOB ,∴∠AOM=∠AOB=(∠BON +∠AON )=×68°=34°,∴∠MON=∠AOM ﹣∠AON=34°﹣11°=23°;(2)∵OM 平分∠AOB ,∴∠AOM=∠BOM ,∵∠AON +∠MON=∠BON ﹣∠MON ,∴2∠MON=∠BON ﹣∠AON ,∴∠MON=(∠BON ﹣∠AON ),因此这个同学得出的关系式正确.【点评】本题考查了角平分线定义,角的和与差的计算,(2)中求得∠AON +∠MON=∠BON ﹣∠MON 是解题的关键.25.(10分)(2016秋•路北区期末)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?【考点】一元一次方程的应用.【分析】(1)首先得出16吨,应分两段交费,再利用已知表格中数据求出答案;(2)利用五月份交水费50元,可以判断得出应分3段交费,再利用已知表格中数据得出等式求出答案;(3)利用分类讨论利用①当a ≤12时,②当12<a ≤18时,③当a >18时,求出答案.【解答】解:(1)∵12<16<18,∴2×12+2.5×(16﹣12)=24+10=34(元),答:四月份用水量为16吨,需交水费为34元;(2)设五月份所用水量为x吨,依据题意可得:2×12+6×2.5+(x﹣18)×3=50,解得;x=21,答:五月份所有水量为21吨;(3)①当a≤12时,需交水费2a元;②当12<a≤18时,需交水费,2×12+(a﹣12)×2.5=(2.5a﹣6)元,③当a>18时,需交水费2×12+6×2.5+(a﹣18)×3=(3a﹣15)元.【点评】此题主要考查了一元一次方程的应用以及列代数式,正确利用分段表示出水费的总额是解题关键.26.(10分)(2016秋•路北区期末)如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=55°,∠AEN=35°,∠BEC+∠AEN=90°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质可求出∠BEC和∠AEN的度数,然后求出两角之和;(2)不变.根据折叠的性质可得∠BEC=∠B'EC,根据∠BEB′=m°,可得∠BEC=∠B'EC=∠BEB′=m°,然后求出∠AEN,最后求和进行判断;(3)根据折叠的性质可得∠B'CF=∠B'CE,∠B'CE=∠BCE,进而得出∠B'CF=∠B'CE=∠BCE,求出其度数,在Rt△BCE中,可知∠BEC与∠BCE互余,然后求出∠BEC 的度数,最后根据平角的性质和折叠的性质求解.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC=∠BEB′=55°,∠AEN=∠A'EN=∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=∠BEB′=m°,∠AEN=∠A'EN=∠AEA'=(180°﹣m°),∴∠BEC+∠AEN=m°+(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°。
太仓期末数学试卷初一答案
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √2D. 0.333...答案:C解析:有理数是可以表示为两个整数比的数,包括整数、分数和小数。
√2是无理数,不能表示为两个整数的比。
2. 下列运算中,正确的是()A. (-2)² = -4B. (-3)³ = -27C. (-5)⁰ = 0D. (-2)⁴ = 16答案:B解析:(-3)³ = -3 × -3 × -3 = -27。
其他选项的运算结果分别为 A. 4,C. 1,D. 16。
3. 一个长方形的长是5cm,宽是3cm,它的面积是()A. 8cm²B. 15cm²C. 10cm²D. 12cm²答案:B解析:长方形的面积计算公式为长×宽,所以5cm × 3cm = 15cm²。
4. 下列分数中,最大的是()A. 1/3B. 2/5C. 3/4D. 4/7答案:C解析:分数的大小比较可以通过通分或比较分子和分母的大小来确定。
通分后,比较分子的大小,3/4 > 1/3 > 2/5 > 4/7。
5. 下列等式中,正确的是()A. 2x + 3 = 5x - 2B. 3x - 4 = 2x + 5C. 4x + 1 = 5x - 3D. 2x + 4 = 5x - 1答案:D解析:将等式两边的x项移至一边,常数项移至另一边,得到2x - 5x = -1 - 4,化简后得到-3x = -5,解得x = 5/3。
只有选项D满足这个等式。
二、填空题(每题5分,共25分)6. 0.25的小数点向右移动两位后是______。
答案:25解析:0.25向右移动两位,相当于乘以100,得到25。
7. 如果一个数的平方是9,那么这个数是______。
答案:±3解析:9的平方根是3,所以这个数可以是3或者-3。
2016-2017新版人教版七年级数学上册期末测试题及答案
2016~2017学年度上学期七年级期末学情调研数学试卷(人教版)(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中)的方C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )第8题图A .110B .158C .168 二、填空题(本大题共8个小题;每小题3分,共24 13.-3的倒数是________. 14.单项式12-xy2的系数是_________. 15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为18.19.20.个小题;共60分)(本小题满分分)计算:(-1)3-14×[2-(-3)2] . (本小题满分分)一个角的余角比这个角的21少30°,请你计算出这个角的大小. 3(((3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.(本小题满分8分)6 2 224 20 4 88 4 446 (43)共94元如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请通 21.C ;213.31-21. 22.2解得:x =80 …………………………………………………………………5分答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x………………………………………………3分 =12--x ………………………………………………………………4分把x =21代入原式: AE DBFC原式=12--x =121(2--……………………………………………………………5分=45-……………………………………………………………………………7分 24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分25.( ( ( (26.27.∴∴∵∴ ∴28. (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分根据题意,得21y +25(105-y )=2447.………………………………………………7分 解之得:y =44.5 (不符合题意) . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a ,因为 a 、z 都是整数,且178+a 应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
江苏省太仓市2016-2017学年初一上数学期终模拟试卷(八)及答案解析
学校________________ 班级____________ 姓名____________ 考试号____________…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2016—2017学年第一学期初一数学期终模拟试卷八班级: 姓名: 学号: 成绩:考试范围:苏科版2013年教材七年级数学上册全部内容,加七年级下册第11章《一元一次不等式》部分。
考试题型:选择、填空、解答三大类;考试时间:120分钟;试卷分值:130分。
一、选择题(共30分)1.(3分)﹣3的相反数是( )A . B .C .3D .﹣32.(3分)下列计算正确的是( )A .7a +a=7a 2B .5y ﹣3y=2C .3x 2y ﹣2yx 2=x 2yD .3a +2b=5ab3.(3分)①x ﹣2=;②0.3x=1;③x 2﹣4x=3;④=5x ﹣1;⑤x=6;⑥x +2y=0.其中一元一次方程的个数是( )A .2 B .3C .4D .54.(3分)若a <b ,则下列各式中一定成立的是( ) A .a ﹣1<b ﹣1B .>C .﹣a <﹣bD .ac <bc5.(3分)下列各方程,变形正确的是( ) A . =1化为x=B .1﹣[x ﹣(2﹣x )]=x 化为3x=﹣1C .化为3x 一2x +2=1 D .化为2(x ﹣3)﹣5(x +4)=106.(3分)如果0<x <1,则下列不等式成立的( ) A .B .C .D .7.(3分)某商人一次卖出两件衣服,一件赚了15%,另一件赔了15%,卖价都是1955元,在这次生意中商品经营( )A .不赚不赔B .赚90元C .赚100元D .赔90元 8.(3分)如图,该几何体的展开图是( )A .B .C .D .9.(3分)工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.410.(3分)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个二、填空题11.(3分)一个数的绝对值是2,则这个数是.12.(3分)国家体育场“鸟巢”的建筑面积达258000m2,它用科学记数法表示应为m2.13.(3分)如图,直线AB、CD、EF交于点O,则∠1+∠2+∠3=.(第13题)(第17题)14.(3分)若3a m b2n与﹣2b n+1a2和是单项式,则m=,n=.15.(3分)已知代数式x2+x+3的值是8,那么代数式9﹣2x2﹣2x的值是.16.(3分)一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是.17.(3分)按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.18.(3分)如图,是用若干个小立方块搭成的几何体的主视图和俯视图,则搭成这个几何体最少需要个小立方块.19.(3分)点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC 的中点,EF=.20.(3分)a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2010的差倒数a2011=.三、解答题(共70分)21.(8分)计算(1).(2).22.(5分)先化简,再求值:﹣5x2y﹣[2x2y﹣3(xy﹣2x2y)]+2xy,其中x=﹣1,y=﹣2.23.(8分)解下列方程:(1)4﹣3(2﹣x)=5x;(2).24.(8分)解不等式,并把解集在数轴上表示出来:(1)2(5x+3)≤x﹣3(1﹣2x);(2).25.(7分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OP是∠BOC的平分线,(1)图中除直角外,还有相等的角吗?请写出两对:①;②.(2)如果∠AOD=40°.①那么根据,可得∠BOC=度.②因为OP是∠BOC的平分线,所以∠BOP=度.③求∠BOF的度数.26.(8分)已知方程3m﹣6=2m的解也是关于x的方程2(x﹣3)﹣n=4的解.(1)求m、n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使,点Q为PB的中点,求线段AQ的长.27.(8分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元?(2)设x表示公民每月收入(单位:元),y表示应交税款(单位:元),当2500≤x≤4000时,请写出y关于x的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?28. (8分)解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x 对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x 对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为.(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|+|x+4|≥a对任意的x都成立,求a的取值范围.29. (10分)如图,已知A、B、C是数轴上的三点,点C表示的数为7,BC=4,AB=16,动点P、Q分别从A、C同时出发,点P以每秒5个单位的速度沿数轴向右匀速运动,点Q 以每秒2个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)点A表示的数为,点B表示的数为(2)当t<6时,求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.答案与解析一、选择题(共30分)1.﹣3的相反数是()A.B.C.3 D.﹣3【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列计算正确的是()A.7a+a=7a2B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.3a+2b=5ab【分析】根据合并同类项得法则依次判断即可.【解答】解:A、7a+a=8a,故本选项错误;B、5y﹣3y=2y,故本选项错误;C、3x2y﹣2yx2=x2y,故本选项正确;D、3a+2b=5ab,不是同类项,不能合并,故本选项错误;故选C.【点评】本题主要考查了合并同类项的法则,熟练掌握运算法则是解题的关键.3.①x﹣2=;②0.3x=1;③x2﹣4x=3;④=5x﹣1;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:一元一次方程有②0.3x=1;④=5x﹣1;⑤x=6;其中共有3个,故选:B.【点评】本题考查了一元一次方程的概念.一元一次方程的未知数的指数为1.4.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.ac<bc【分析】根据不等式的性质分析判断.【解答】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>﹣b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.【点评】主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.下列各方程,变形正确的是()A.=1化为x=B.1﹣[x﹣(2﹣x)]=x化为3x=﹣1C.化为3x一2x+2=1D.化为2(x﹣3)﹣5(x+4)=10【分析】分别利用性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式求出即可.【解答】解:A、﹣=1化为x=﹣3,故此选项错误;B、1﹣[x﹣(2﹣x)]=x化为3x=﹣3,故此选项错误;C、﹣=1化为3x﹣2x+2=6,故此选项错误;D、﹣=1化为2(x﹣3)﹣5(x+4)=10,此选项正确.故选:D.【点评】此题主要考查了等式的基本性质,熟练掌握等式的性质是解题关键.6.如果0<x<1,则下列不等式成立的()A.B.C.D.【分析】利用不等式的基本性质,分别求得x、x2及的取值范围,然后比较,即可做出选择.【解答】解:∵0<x<1,∴0<x2<x(不等式两边同时乘以同一个大于0的数x,不等号方向不变);0<1<(不等式两边同时除以同一个大于0的数x,不等号方向不变);∴x2.故答案选B.【点评】解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.7.某商人一次卖出两件衣服,一件赚了15%,另一件赔了15%,卖价都是1955元,在这次生意中商品经营()A.不赚不赔 B.赚90元C.赚100元 D.赔90元【分析】此类题应算出实际赔了多少和赚了多少,然后再比较是赔是赚,赔多少,赚多少.还应注意赔赚都是在原价的基础上.【解答】解:(1)设赚了15%的衣服是x元,则:(1+15%)x=1955解得:x=1700则实际赚了255元.(2)设赔了15%的衣服是y元,则(1﹣15%)y=1955,解得:y=2300则:实际赔了345元,又255<345,所以赔了90元.故选D.【点评】注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.8.如图,该几何体的展开图是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题,注意带图案的两个面相邻.【解答】解:观察题干图形可知,带图案的两个面相邻.只有选项C中几何体的展开图带图案的两个面相邻.故选:C.【点评】本题主要考查了几何体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.9.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.10.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°=90°,所以④正确.综上可知,①②④均正确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.二、填空题11.一个数的绝对值是2,则这个数是±2.【分析】根据互为相反数的两个数的绝对值相等解答.【解答】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点评】本题考查了绝对值的性质,是基础题,熟记性质是解题的关键.12.国家体育场“鸟巢”的建筑面积达258000m2,它用科学记数法表示应为 2.58×105m2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:258 000=2.58×105m2.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.如图,直线AB、CD、EF交于点O,则∠1+∠2+∠3=180°.【分析】先根据对顶角的性质得出∠3=∠BOF,再根据邻补角的定义即可得出结论.【解答】解:∵∠3与∠BOF是对顶角,∴∠3=∠BOF,∵∠1+∠2+∠BOF=180°,∴∠1+∠2+∠3=180°.故答案为:180°.【点评】本题考查的是对顶角及邻补角,熟知对顶角及邻补角的性质是解答此题的关键.14.若3a m b2n与﹣2b n+1a2和是单项式,则m=2,n=1.【分析】由3a m b2n与﹣2b n+1a2和是单项式即可合并同类项,故可得出答案;【解答】解:∵3a m b2n与﹣2b n+1a2和是单项式,∴m=2,2n=n+1,∴m=2,n=1,故答案为:2,1.【点评】本题考查了合并同类项,属于基础题,关键是根据对应项系数相等进行求解.15.已知代数式x2+x+3的值是8,那么代数式9﹣2x2﹣2x的值是﹣1.【分析】根据题意可知x2+x+3=8,化简得x2+x=5.对所求代数式9﹣2x2﹣2x进行提取公因数,再将x2+x的值整体代入即可.【解答】解:∵x2+x+3的值是8,即x2+x+3=8,x2+x=5,∴9﹣2x2﹣2x,=9﹣2(x2+x),=9﹣2×5,=﹣1.故答案为:﹣1.【点评】本题考查代数式求值,解决本题的关键是将x2+x的值作为一个整体代入求解.16.一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2.【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【解答】解:设这个整式为M,则M=x2﹣1﹣(﹣3+x﹣2x2),=x2﹣1+3﹣x+2x2,=(1+2)x2﹣x+(﹣1+3),=3x2﹣x+2.故答案为:3x2﹣x+2.【点评】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.17.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.【分析】利用正方体及其表面展开图的特点,分别求得a,b,c的值,然后代入求解.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.如图,是用若干个小立方块搭成的几何体的主视图和俯视图,则搭成这个几何体最少需要6个小立方块.【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从而算出总的个数.【解答】解:由俯视图易得最底层有5个小立方块,由主视图可得第二层最少有1个小立方块,∴搭成这个几何体最少需要5+1=6个小立方块.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm或1cm.【分析】因为A、B、C三点位置不明确,分点B在A、C之间和点A在B、C之间两种情况讨论,①根据中点定义先求出BE、BF的长,BE+BF=EF;②根据中点定义先求出BE、BF的长,BF﹣BE=EF.【解答】解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.【点评】本题利用线段中点定义,需要分两种情况讨论.20.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2010的差倒数a2011=.【分析】理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解答】解:根据差倒数定义可得:,,a3=4,,很明显,进入一个三个数的循环数组,只要分析2011被3整除余1即可知道,a2011=﹣.故答案为:﹣.【点评】本题考查了差倒数的规律,此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.三、解答题(共50分)21.计算(1).(2).【分析】(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的,注意运用乘法的分配律简便计算.【解答】解:(1)=﹣9﹣8﹣1÷|1﹣|=﹣9﹣8﹣1÷=﹣9﹣8﹣1=﹣18;(2)=﹣×24+×24﹣2.75×24﹣1=﹣3+32﹣66﹣1=﹣38.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.22.先化简,再求值:﹣5x2y﹣[2x2y﹣3(xy﹣2x2y)]+2xy,其中x=﹣1,y=﹣2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=﹣5x2y﹣2x2y+3xy﹣6x2y+2xy=﹣13x2y+5xy,当x=﹣1,y=﹣2时,原式=26+10=36.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解下列方程:(1)4﹣3(2﹣x)=5x;(2).【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程变形后,去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)方程变形得: +=0.1,去分母得:400x+75﹣30x=0.6,移项合并得:370x=﹣74.4,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.24.解不等式,并把解集在数轴上表示出来:(1)2(5x+3)≤x﹣3(1﹣2x);(2).【分析】(1)先去括号,然后通过移项、合并同类项,化未知数系数为1解不等式;(2)先去分母,然后通过移项、合并同类项,化未知数系数为1解不等式.【解答】解:(1)去括号,得:10x+6≤x﹣3+6x,移项、合并同类项,得:3x≤﹣9,化系数为1,得:x≤﹣3;表示在数轴上为:(2)去分母,得:6+2x>30﹣3x+6,移项、合并同类项,得:5x>30,化系数为1,得:x>6.表示在数轴上为:【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.25.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OP是∠BOC的平分线,(1)图中除直角外,还有相等的角吗?请写出两对:①∠BOF=∠EOC;②∠BOP=∠COP.(2)如果∠AOD=40°.①那么根据对顶角相等,可得∠BOC=40度.②因为OP是∠BOC的平分线,所以∠BOP=20度.③求∠BOF的度数.【分析】(1)利用角平分线定义易求∠BOP=∠COP,而根据垂直定义有∠COF=∠BOE=90°,即∠BOC+∠COE=∠BOC+∠BOF,再利用等式性质可得∠BOF=∠EOC;(2)①直接利用对顶角相等,可求∠BOC=40°;②由于∠BOC=40°,OP是角平分线,根据角平分线的定义可求∠BOP=20°;③由于∠COF=90°,∠BOC=40°,而∠COF=∠BOC+∠BOF,易求∠BOF.【解答】解:(1)∠BOF=∠EOC,②∠BOP=∠COP;①∵OP是∠BOC的角平分线,∴∠BOP=∠COP;②∵OE⊥AB,OF⊥CD,∴∠COF=∠BOE=90°,∴∠BOC+∠COE=∠BOC+∠BOF,∴∠BOF=∠EOC;(2)①对顶角相等,40;∵∠AOD=40°,∴∠BOC=40°(对顶角相等),②20,∵∠BOC=40°,OP是∠BOC的角平分线,∴∠BOP=20°,③∵∠COF=90°,∠BOC=40°,∴∠BOF=90°﹣40°=50°.故答案是∠BOF=∠EOC,∠BOP=∠COP;对顶角相等,40,20,50°.【点评】本题考查了角的计算、垂直定义、对顶角相等、角平分线定义.解题的关键是找出所求角与已知角的关系.26.已知方程3m﹣6=2m的解也是关于x的方程2(x﹣3)﹣n=4的解.(1)求m、n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使,点Q为PB的中点,求线段AQ的长.【分析】(1)先求出m,再将m的值等于x,代入即可求得n的值;(2)分两种情况,点P在线段AB上,AP=2BP;点P在线段AB的延长线上,点B为AP 的中点,从而求得AQ的长即可.【解答】解:(1)解3m﹣6=2m得m=6,将x=6代入方程2(x﹣3)﹣n=4得n=2;(2)①点P在线段AB上,如图,∵AB=6,AP=2BP,∴AP=4,∴BP=2,∵点Q为PB的中点,∴PQ=BQ=1,∴AQ=5;②点P在线段AB的延长线上,如图,∵AP=2AB,∴AP=12,∵点Q为PB的中点,∴PQ=BQ=3,∴AQ=9,∴AQ=5或AQ=9.【点评】本题考查了同解方程的概念以及线段的长短比较,是几何与代数的综合题,难度较大.27.依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元?(2)设x表示公民每月收入(单位:元),y表示应交税款(单位:元),当2500≤x≤4000时,请写出y关于x的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?【分析】(1)按照图表计算即可得应纳多少税.(2)当2500≤x≤4000时,其中2000元不用纳税,应纳税的部分在500元至2000元之间,其中500元按5%交纳,剩余部分按10%交纳,列出y与x的函数关系式化简可得y=0.1x﹣225.(3)设他的收入为z元.根据(2)可知,当收入为2500元至4000元之间时,纳税额在25元至175元之间,于是,由该职员纳税款120元,可知他的收入肯定在2500元至4000元之间,求出z.【解答】解:(1)该工人3月的收入2400元中,应纳税的部分是400元,按纳税的税率表,他应交纳税款400×5%=20(元);(2)当2500≤x≤4000时,其中2000元不用纳税,应纳税的部分在500元至2000元之间,其中500元按5%交纳,剩余部分按10%交纳,于是,有y=[(x﹣2000)﹣500]×10%+500×5%=(x﹣2500)×10%+25;即y关于x的函数关系式为y=(x﹣2500)×10%+25=0.1x﹣225(2500≤x≤4000).(3)根据(2)可知,当收入为2500元至4000元之间时,纳税额在25元至175元之间,于是,由该职员纳税款120元,可知他的收入肯定在2500元至4000元之间;设他的收入为z元,由(2)可得:(z﹣2500)×10%+25=120,解得:z=3450;故该职员2008年4月的收入为3450元.【点评】本题利用一次函数的应用来解决实际问题,结合图标.一次函数的应用是中考热点问题,考生应多加注意.28. (2011•顺德区校级一模)解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为1和﹣7.(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|+|x+4|≥a对任意的x都成立,求a的取值范围.【考点】解一元一次不等式.【专题】阅读型.【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x﹣3|+|x+4|≥9表示到3与﹣4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x﹣3|+|x+4|≤a对任意的x都成立,即求到3与﹣4两点距离的和最小的数值.【解答】解:(1)方程|x+3|=4的解就是在数轴上到﹣3这一点,距离是4个单位长度的点所表示的数,是1和﹣7.故解是1和﹣7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和﹣4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得:x≥4或x≤﹣5.(3)|x﹣3|+|x+4|即表示x的点到数轴上与3和﹣4的距离之和,当表示对应x的点在数轴上3与﹣4之间时,距离的和最小,是7.故a≤7.【点评】正确理解题中叙述的题目的意义是解决本题的关键,本题主要考查了绝对值的意义,就是表示距离.29. 如图,已知A、B、C是数轴上的三点,点C表示的数为7,BC=4,AB=16,动点P、Q分别从A、C同时出发,点P以每秒5个单位的速度沿数轴向右匀速运动,点Q以每秒2个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)点A表示的数为﹣13,点B表示的数为3(2)当t<6时,求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.【考点】一元一次方程的应用;数轴;两点间的距离.【专题】几何动点问题.【分析】(1)根据点C所表示的数,以及BC、AB的长度,即可写出点A、B表示的数;(2)根据题意画出图形,表示出AP=5t,CQ=2t,再根据线段的中点定义可得AM,根据线段之间的和差关系进而可得到点M表示的数;根据CQ=3CN可得CN,根据线段的和差关系可得到点N表示的数,进一步求得MN;(3)此题有两种情况:当点P在点O的左侧,点Q在点O的右侧时;当P在点O的右侧,点Q在点O的左侧时,分别画出图形进行计算即可.【解答】解:(1)∵C表示的数为7,BC=4,∴OB=7﹣4=3,∴B点表示3.∵AB=16,∴AO=16﹣3=13,∴A点表示﹣13;(2)由题意得:AP=5t,CQ=2t,如图1所示:∵M 为AP 中点,∴AM=AP=t ,∴在数轴上点M 表示的数是﹣13+t ,∵点N 在CQ 上,CQ=3CN ,∴CN=t ,∴在数轴上点N 表示的数是7﹣t ,∴MN=7﹣t ﹣(﹣13+t )=20﹣t ; (3)如图2所示:由题意得,AP=6t ,CQ=3t ,分两种情况:①当点P 在点O 的左侧,点Q 在点O 的右侧时,OP=13﹣5t ,OQ=7﹣2t , ∵O 为PQ 的中点,∴OP=OQ ,∴13﹣5t=7﹣2t ,解得:t=2,当t=2秒时,O 为PQ 的中点;②如图3,。
2016-2017年江苏省苏州市太仓市七年级(上)期末数学试卷和参考答案
2016-2017学年江苏省苏州市太仓市七年级(上)期末数学试卷一.选择题.(3*10=30分)1.(3分)一个物体作左右方向的运动,规定向右运动5m记作+5m,那么向左运动5m记作()A.﹣5m B.5m C.10m D.﹣10m2.(3分)下列各数中:+(﹣5)、|﹣1﹣2|、﹣、﹣(﹣7)、0、(﹣2015)3,负数有()A.2个 B.3个 C.4个 D.5个3.(3分)下列各组中,不是同类项的是()A.32与23B.﹣3ab与baC.0.2a2b与D.a2b3与﹣a3b24.(3分)有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.|a|>|b|D.5.(3分)如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°6.(3分)在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB 和∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°7.(3分)下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是()A.1个 B.2个 C.3个 D.4个8.(3分)若|x+3|+|y﹣2|=0,则x+y的值为()A.5 B.﹣5 C.﹣1 D.19.(3分)一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合做,那么剩下的部分需要几个小时完成?若设还要xh完成,则依题意可列方程为()A.B.C.D.10.(3分)同学小明在用一副三角板画出了许多不同度数的角,但下列哪个度数他画不出来()A.135°B.120°C.75°D.25°二.填空题.(3*8=24)11.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210 000 000用科学记数法表示为.12.(3分)若单项式x2y n﹣1与单项式﹣5x m y3是同类项,则m﹣n的值为.13.(3分)若关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,则这两个方程的解为x=.14.(3分)如果代数式a+8b的值为﹣5,那么代数式3(a﹣2b)﹣5(a+2b)的值为.15.(3分)求上午10时30分,钟面上时针和分针的夹角=度.16.(3分)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还需要分钟.17.(3分)如图,线段AB=8,C是AB的中点,点D在直线CB上,DB=1.5,则线段CD的长等于.18.(3分)一种新运算,规定有以下两种变换:①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2);②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2).按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于.三.简答题.(76分)19.(8分)计算(1)﹣2﹣4×(﹣3)+|﹣6|×(﹣1);(2)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.20.(10分)先化简再求值:(1)3x2﹣(2x2﹣xy+y2)+(﹣x2+3xy+2y2),其中x=﹣2,y=3(2)求2xy﹣[(3xy﹣8x2y2)﹣2(xy﹣2x2y2)]的值,其中x=,y=﹣0.2.21.(8分)解下列方程:(1)1﹣3(x﹣1)=2x+6(2)﹣=1.22.(5分)下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)该几何体的体积是cm3,表面积是cm2;(2)分别画出从正面、左面、上面看到的立体图形的形状.23.(6分)如图,DF平分∠ADE,AC∥DE,∠1=68°,∠ADE=136°.(1)求∠A的度数;(2)试说明:DF∥BC.24.(6分)某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.(1)小明家10月份用电80度,应缴费元.小丽家11月份用电150度,应缴费元;(2)小亮家12月份用电平均每度0.7元,则他家12月份用了多少度电.25.(6分)如图,每个小方格都是边长为1个单位的小正方形,A,B,C三点都是格点(每个小方格的顶点叫格点).(1)找出格点D,画AB的平行线CD;找出格点E,画AB的垂线AE;(2)计算格点△ABC的面积.26.(8分)如图,直线AB,CD相交于点O,OE平分∠BOD.(1)若∠EOF=55°,OD⊥OF,求∠AOC的度数;(2)若OF平分∠COE,∠BOF=15°,求∠DOE的度数.27.(9分)将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC=;若∠AOC=135°,则∠BOD=;(2)如图(2)若∠AOC=140°,则∠BOD=;(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.28.(10分)如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA=cm OB=cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?2016-2017学年江苏省苏州市太仓市七年级(上)期末数学试卷参考答案与试题解析一.选择题.(3*10=30分)1.(3分)一个物体作左右方向的运动,规定向右运动5m记作+5m,那么向左运动5m记作()A.﹣5m B.5m C.10m D.﹣10m【解答】解:∵规定向右运动5m记作+5m,∴向左运动记作负数,∴向左运动5m记作﹣5m.故选:A.2.(3分)下列各数中:+(﹣5)、|﹣1﹣2|、﹣、﹣(﹣7)、0、(﹣2015)3,负数有()A.2个 B.3个 C.4个 D.5个【解答】解:+(﹣5)=﹣5<0,|﹣1﹣2|=3>0,﹣<0,﹣(﹣7)=7>0,0=0,(﹣2015)3=﹣20153<0,故负数有3个.故选:B.3.(3分)下列各组中,不是同类项的是()A.32与23B.﹣3ab与baC.0.2a2b与D.a2b3与﹣a3b2【解答】解:A、32与23是同类项;B、﹣3ab与ba是同类项;C、0.2a2b与是同类项;D、a2b3与﹣a3b2相同字母的指数不同不是同类项.故选:D.4.(3分)有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.|a|>|b|D.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,不符合题意;B、a﹣b<0,符合题意;C、|a|<|b|,不符合题意;D、<0,不符合题意.故选:B.5.(3分)如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.6.(3分)在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB 和∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【解答】解:如图1,∠BOC在∠AOB内部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB﹣∠BON=40°﹣10°=30°;如图2,∠BOC在∠AOB外部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB+∠BON=40°+10°=50°,.故选:D.7.(3分)下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与已知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.8.(3分)若|x+3|+|y﹣2|=0,则x+y的值为()A.5 B.﹣5 C.﹣1 D.1【解答】解:∵|x+3|+|y﹣2|=0,∴x=﹣3,y=2,则x+y=﹣3+2=﹣1.故选:C.9.(3分)一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合做,那么剩下的部分需要几个小时完成?若设还要xh完成,则依题意可列方程为()A.B.C.D.【解答】解:“设剩下部分要x小时完成”,那么甲共工作了4+x小时,乙共工作了x小时,设工作总量为1,则甲的工作效率为,乙的工作效率为.那么可得出方程为:+=1;即++=1,故选:D.10.(3分)同学小明在用一副三角板画出了许多不同度数的角,但下列哪个度数他画不出来()A.135°B.120°C.75°D.25°【解答】解:A、135°=90°+45°,故本选项能画出;B、120°=90°+30°,故本选项能画出;C、75°=30°+45°,故本选项能画出;D、25°不能写成90°、60°、45°、30°的和或差,故本选项画不出.故选:D.二.填空题.(3*8=24)11.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210 000 000用科学记数法表示为 2.1×108.【解答】解:将210000000用科学记数法表示为:2.1×108.故答案为:2.1×108.12.(3分)若单项式x2y n﹣1与单项式﹣5x m y3是同类项,则m﹣n的值为﹣2.【解答】解:由题意可知:m=2,n﹣1=3,∴m=2,n=4,∴m﹣n=﹣2故答案为:﹣213.(3分)若关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,则这两个方程的解为x=2.3x=2a,x=,2x+3a﹣13=0,2x=13﹣3a,x=,∵关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,∴=,解得:a=3,∴x==2,故答案为:2.14.(3分)如果代数式a+8b的值为﹣5,那么代数式3(a﹣2b)﹣5(a+2b)的值为10.【解答】解:原式=3a﹣6b﹣5a﹣10b=﹣2a﹣16b=﹣2(a+8b),当a+8b=﹣5时,原式=10.故答案为:10.15.(3分)求上午10时30分,钟面上时针和分针的夹角=135度.【解答】解:钟面平均分成12,可得每份是30°,时针只在6上,分针指在10与11的=处,时针与分针相距(4+)份30°×(4+)=135°,故答案为:135.16.(3分)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还需要6分钟.∴2×3=6,即由C到点B还需要6分钟.故答案为:6.17.(3分)如图,线段AB=8,C是AB的中点,点D在直线CB上,DB=1.5,则线段CD的长等于 2.5或5.5.【解答】解:∵线段AB=8,C是AB的中点,∴CB=AB=4,如图1,当点D在线段CB的延长线上时,CD=CB+BD=5.5,如图2,当点D在线段CB上时,CD=CB﹣BD=2.5.故答案为:2.5或5.5.18.(3分)一种新运算,规定有以下两种变换:①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2);②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2).按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于(﹣5,﹣6).【解答】解:根据题意得:g[f(5,﹣6)]=g(5,6)=(﹣5,﹣6).故答案为:(﹣5,﹣6).三.简答题.(76分)19.(8分)计算(1)﹣2﹣4×(﹣3)+|﹣6|×(﹣1);(2)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【解答】解:(1)﹣2﹣4×(﹣3)+|﹣6|×(﹣1)=﹣2+12﹣6=4(2)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣1=﹣220.(10分)先化简再求值:(1)3x2﹣(2x2﹣xy+y2)+(﹣x2+3xy+2y2),其中x=﹣2,y=3(2)求2xy﹣[(3xy﹣8x2y2)﹣2(xy﹣2x2y2)]的值,其中x=,y=﹣0.2.【解答】解:(1)原式=3x2﹣2x2+xy﹣y2﹣x2+3xy+2y2=4xy+y2当x=﹣2,y=3时,∴原式=﹣24+9=﹣15(2)原式=2xy﹣(xy﹣4x2y2﹣2xy+4x2y2)=2xy+xy=xy当x=,y=﹣时,原式==﹣21.(8分)解下列方程:(1)1﹣3(x﹣1)=2x+6(2)﹣=1.【解答】解:(1)去括号得:1﹣3x+3=2x+6,移项合并得:﹣5x=2,解得:x=﹣0.4;(2)去分母得:3x+3﹣2+3x=6,移项合并得:6x=5,解得:x=.22.(5分)下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)该几何体的体积是7cm3,表面积是28cm2;(2)分别画出从正面、左面、上面看到的立体图形的形状.【解答】解:(1)几何体的体积:1×1×1×7=7(cm3),表面积:5+5+5+5+4+4=28(cm2);故答案为:7cm3,28cm2;(2)如图所示:.23.(6分)如图,DF平分∠ADE,AC∥DE,∠1=68°,∠ADE=136°.(1)求∠A的度数;(2)试说明:DF∥BC.【解答】解:(1)∵∠1=68°,∠ADE=136°,∴∠B=∠ADE﹣∠1=68°,∵AC∥DE,∠1=68°,∴∠C=∠1=68°,∴∠A=180°﹣∠C﹣∠B=180°﹣68°﹣68°=44°;(2)∵∠1=68°,∠B=68°,∴∠EDB=180°﹣∠B﹣∠1=44°,∵∠A=44°,∴∠A=∠EDB,∴DF∥BC.24.(6分)某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.(1)小明家10月份用电80度,应缴费40元.小丽家11月份用电150度,应缴费90元;(2)小亮家12月份用电平均每度0.7元,则他家12月份用了多少度电.【解答】解:(1)80×0.5=40(元),100×0.5+(150﹣100)×0.8=90(元).故答案为:40;90.(2)设小亮家12月份用了x度电,∵0.7>0.5,∴x>100.根据题意得:0.7x=100×0.5+(x﹣100)×0.8,解得:x=300.答:小亮家12月份用了300度电.25.(6分)如图,每个小方格都是边长为1个单位的小正方形,A,B,C三点都是格点(每个小方格的顶点叫格点).(1)找出格点D,画AB的平行线CD;找出格点E,画AB的垂线AE;(2)计算格点△ABC的面积.【解答】解:(1)如图所示:AE,CD即为所求;(2)S=3×3﹣×3×2﹣×1×2﹣×1×3=3.5.△ABC26.(8分)如图,直线AB,CD相交于点O,OE平分∠BOD.(1)若∠EOF=55°,OD⊥OF,求∠AOC的度数;(2)若OF平分∠COE,∠BOF=15°,求∠DOE的度数.【解答】解:(1)∵OE平分∠BOD,∴∠BOE=∠DOE,∵∠EOF=55°,OD⊥OF,∴∠DOE=35°,∴∠BOE=35°,∴∠AOC=70°;(2)∵OF平分∠COE,∴∠COF=∠EOF,∵∠BOF=15°,∴设∠DOE=∠BOE=x,则∠COF=x+15°,∴x+15°+x+15°+x=180°,解得:x=50°,故∠DOE的度数为:50°.27.(9分)将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC=145°;若∠AOC=135°,则∠BOD= 45°;(2)如图(2)若∠AOC=140°,则∠BOD=40°;(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;(3)∠AOC与∠BOD互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(4)OD⊥AB时,∠AOD=30°,CD⊥OB时,∠AOD=45°,CD⊥AB时,∠AOD=75°,OC⊥AB时,∠AOD=60°,即∠AOD角度所有可能的值为:30°、45°、60°、75°;故答案为:(1)145°,45°;(2)40°.28.(10分)如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA=8cm OB=4cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设C点所表示的实数为x,分两种情况:①点C在线段OA上时,则x<0,∵AC=CO+CB,∴8+x=﹣x+4﹣x,3x=﹣4,x=﹣;②点C在线段OB上时,则x>0,∵AC=CO+CB,∴8+x=4,x=﹣4(不符合题意,舍).故CO的长是cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.。
2016-2017年新人教版七年级上数学期末试卷有答案
2016-2017学年度第一学期期末质量检测试卷七年级数学(满分 150分, 时间 120 分钟)题号一二三四A 卷总分B 卷总分A+B 总分总分人审核人得分一、选择题。
(下列各题均有四个答案,其中只有一个是正确,共10个小题,每小题 3 分,共30 分)1.﹣6的绝对值是()A .6 B .﹣6 C .±6 D .2.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A .0.109×105 B .1.09×104C .1.09×103D .109×1023.计算﹣32的结果是()A .9 B .﹣9 C .6 D .﹣6w w w .x k b 1.c o m4.如图1是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A .数B .学C .活D .的得分评卷人题号 1 2 3 4 5 6 7 8 9 10选项考点考生所在学校姓名考场考号图15.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是()A .3x+2x 2=5x 3B .2a 2b ﹣a 2b=1C .﹣ab ﹣ab=0D .﹣y 2x+xy 2=07.如图2,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为()A .35°B .45°C .55°D .65°8.下列说法中错误的是()A .的系数是B .0是单项式C .的次数是 1D .﹣x 是一次单项式9.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为()A .88元B .98元C .108元D .118元10.如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M ,N 分别为AB ,BC的中点,那么M ,N 两点之间的距离为()A .5cmB .1cmC .5或1cmD .无法确定二、填空题,(共8个小题,每小题4分,共32分)11.如果零上2℃记作+2℃,那么零下5℃记作℃.12.若3x 2k ﹣3=5是一元一次方程,则k=.13.若2a 2b m 与﹣a n b 3是同类项,则n m =.得分评卷人图214.已知a2+|b+1|=0,那么(a+b)2015的值为.15.一条直线上有n个不同的点,则该直线上共有线段条.16.如图,已知点O在直线AB上,∠1=65°15′,∠2=78°30′,则∠1+∠2=,∠3=.图317.小明与小刚规定了一种新运算△:a△b=3a﹣2b.小明计算出2△5=﹣4,请你帮小刚计算2△(﹣5)=.18.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为.三、解答题(共38分)19.(每小题5分,共10分)计算(1)(﹣6)2×[﹣+(﹣)](2)0﹣23÷(﹣4)3﹣20.(每小题5分,共10分)解方程(1)4x﹣3=﹣4 (2)(1﹣2x)=(3x+1)21.(8分)化简:3b+5a﹣[﹣(2a﹣4b)﹣( 3b+5a)]22.(10分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?xkb1B 卷23.(8分)先化简,再求值:2(a 2b+ab 2)﹣2(a 2b ﹣1)﹣ab 2﹣2.其中a=1,b=﹣3.来源学|科|网Z|X|X|K]24.(8分)解方程:.25.(10分)如图,已知点M 是线段AB 的中点,点N 在线段MB 上,MN=AM ,若MN=3cm ,求线段AB 和线段NB 的长.26.(12分)如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC=70°,求∠BOD 的度数;得分评卷人得分评卷人图6。
初一数学2016-2017学年度第一学期期末试题
七年级数学试卷 第1页(共8页)2016—2017学年度第一学期期末学业质量评估七年级数学试题(时间90分钟,满分120分)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.选择题选出答案后,将正确答案填写在第Ⅱ卷填空题上方的表格里,答在原题上无效.第Ⅰ卷(选择题 共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在第Ⅱ卷的表格里,每小题选对得3分,满分36分. 多选、不选、错选均记零分.)1.下列各式中,相等的是 ( )A .()23-与23- B .()23-与23- C .23-与()32- D .33-和()3-32. 下列说法中,正确的是( )A .连接两点的线段叫做两点间的距离B .直线上任意两点都可以表示这条直线C .若点C 在线段AB 外,则AB AC <D .三条直线相交,有三个交点 3. “曙光4000A 超级服务器”的峰值计算速度达到每秒8061000000000次.将这个数四舍五入精确到百亿位,用科学记数法表示为( )A .111061.80⨯ B .111006.8⨯ C .1210061.8⨯ D .121006.8⨯ 4.下列调查中,适宜采用全面调查(普查)方式的是( ) A .河务部门要了解7月份流经某水文站的黄河河水的泥沙含量; B .某部门要调查全省七年级学生每周课外活动的时间; C .某航空公司检测80架民航客机的安全性能; D.质量监督部门要检测某种品牌的复合木地板的耐磨程度. 5. 如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km,七年级数学试卷 第2页(共8页)距Q 站点0.7km,则这辆公交车的位置在( )A. R 站点与S 站点之间B. P 站点与O 站点之间C. O 站点与Q 站点之间D. Q 站点与R 站点之间6. 如图,已知P 为线段AC 的中点,M 为线段AB 的中点,N 为线段BC 的中点,下列四个等式中不成立的是( )A .PC MN =B .AP MC MP -= C .()BC AC PN -=21D .()PB AC MN +=21 7. 当21<<a 时,代数式a a -+-12的值是( ) A .-1 B .1 C .3 D .-38. 设字母x 表示甲数,字母y 表示乙数,下列代数式中,表示“甲数与乙数的5倍的差的一半”的是( ) A .25y x - B .25y x - C .()25y x - D .y x 25- 9.下列说法中错误..的有( )个 ①任何数的倒数都比它本身小; ②两个数的差一定小于这两个数的和; ③a -的系数是-1; ④多项式123+-y x 是二次三项式;⑤如果bc ac =,那么b a =; A . 2 B .3 C . 4 D . 510.甲、乙两人练习赛跑,甲每秒跑7m ,乙每秒跑6.5m ,甲让乙先跑5m ,设x 秒后甲追上乙,则下列四个方程不正确的是( )A .55.67+=x xB .x x 5.657=+C .()55.6-7=xD .575.6-=x x 11.若关于x 的方程032=+--m mxm 是一元一次方程,则这个方程的解是( )A .0=xB .3=xC .3-=xD .2=x12.李伟的爸爸将手中持有的A 、B 两种股票同时卖出,卖价均为m 元.其中,A 股股票盈利20%,B 股股票亏损20%.卖出这两种股票合计盈亏( )元. A .不亏不赢 B .盈利12m 元 C .亏损12m 元 D .盈利m 52元七年级数学试卷 第3页(共8页)2016—2017学年度第一学期期末学业质量评估七年级数学试题第Ⅱ卷(非选择题 共84分)一、请把选择题答案填在下列表格中(每小题3分,满分36分)二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分)13.代数式()221251312bx y x y ax x -+--⎪⎭⎫⎝⎛+-+的值与字母x 的取值无关,则a = ,b = .14. 右图是正方体的展开图,则原正方体相对两个面的数字之和的最小值是 .15. 某种长途电话的收费方式为按时收费,3分钟之内收费1.8元,以后每加一分钟收费1元(不到1分钟按1分钟计算).则电话费y (元)与时间t (分)(t >3)之间的函数关系式是(t >3) .16. 若x ,y 满足()02-22=++x x y ,则3⎪⎭⎫⎝⎛x y 的值为 .17.某水库年初放养鲢鱼3万尾,成活率约为75%.秋季捕捞时随意取出10尾,称得每尾的质量如下(单位:千克):1.0 1.1 1.4 1.5 1.1 0.9 0.8 1.2 1.0 1.2 根据样本,估计这池鱼的总产量约为 千克. 18. 下面的一列图形是由边长为1的正方形按照某种规律排列而成的.七年级数学试卷 第4页(共8页)三、解答题(本题共7小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19. (本题满分8分,每小题4分)计算: (1)()245-532.0-1-3-⨯⎪⎭⎫ ⎝⎛⨯ (2)()111712-3+1-1-732186⎛⎫⎛⎫÷⨯ ⎪ ⎪⎝⎭⎝⎭20. (本题满分10分,每小题5分)解方程: (1)1332414-+=-x x (2)2110110.30.6x x ++-=七年级数学试卷 第5页(共8页)21. (本题满分8分)已知22232A x xy y =-+,22=2x 3B xy y +-, 且A+B+C=0,求多项式C ;并求当31=x ,21-=y 时C 的值.22. (本题满分9分)为了绿化环境,新华中学七年级1236名同学都积极参加植树活动.今年的植树节,七年级一班同学的植树情况的部分数据如图所示.请根据统计图的信息,回答下列问题:(1)七年级一班共有多少名同学? (2)请将条形统计图补充完整;(3)请估计七年级同学植树不少于4株的学生人数.23.(本题满分9分)新华中学位于东西方向的新华路上,一天王老师从学校出发去家访,她向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,最后从刚刚家回到学校. 请回答下列问题:(1)聪聪家与刚刚家的距离是多少?(2)如果把这条新华路看作一条数轴,以向东为正方向,学校为原点,请你在这条数轴上标出他们三家与学校的大致位置(数轴上一个单位长度表示50米);聪聪家向西230米是中百超市,请利用上面的数轴求中百超市所在的点表示的数;(3)王老师这次家访的路程一共多少米?七年级数学试卷第6页(共8页)24.(本题满分10分)某市出租车计费方法如图所示,请根据图象回答问题:(1)出租车的起步价是多少元?在多少千米之内只收起步价?(2)由图象求出起步价路程走完之后,每行驶1千米所需要的钱数;(3)若某顾客有一次乘出租车的车费为31元(不足1千米按1千米计费),这位乘客乘车的里程数最多是多少千米?七年级数学试卷第7页(共8页)25.(本题满分12分)一项工程,如果由甲、乙两人单独完成,则分别需要30天和45天完成. 现两人同时工作,在15天后,因另有任务将乙调走,剩下的工作由甲单独完成.(1)还需多少天甲才能完成任务?(2)已知甲做了10天,乙做了13天,共得工资2650元,又知甲的工作效率比乙高,甲做4天比乙做5天的工资多40元.求两人各应分得多少元?七年级数学试卷第8页(共8页)。
2016-2017学年度七年级(上)期末数学试卷含答案解析
2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
江苏省太仓市七年级数学上学期期末教学质量调研测试
江苏省太仓市七年级数学上学期期末教学质量调研测试(试卷满分130分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1. 2-的值等于( )A. 2-B. 2C. 12-D.122.下列计算正确的是( )A.321a a -=B.2325a a a += C.325a b ab += D.32ab ba ab -= 3. 已知23x y =⎧⎨=⎩是关于x ,y 的方程431kx y -=-的一个解,则k 的值为( )A. 1B. 1-C. 2D.2- 4.如图,小军同学用剪刀沿虚线将一长方形剪掉一角, 发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是( )A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是( )6.某测绘装置上一枚指针原来指向南偏西50°(如下 图),把这枚指针按逆时针方向旋转13周则结果指 针的指向( )A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克( )元.A. (120%)a +B. (120%)a -C.120%a - D. 120%a+8.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( )A.ac bc >B.ab cb >C.a c b c +>+D.a b c b +>+ 9.轮船沿江从P 港顺流行驶到Q 港,比从Q 港返回P 港少用3小时,若船速为26千米/时,水速为2千米/时,求P 港和Q 港相距多少千米.设P 港和Q 港相距x 千米.根据题意,可列出的方程是( )A.32824x x =- B. 32824x x =+ C.2232626x x +-=+ D.2232626x x -+=- 10. n 是小于100的正整数,且满足[][][]236n n nn ++=,其中[]x 表示不超过x 的最大正整数(如[1.25]1=,[2]2=,[2.8]2=),则这样的正整数n 有( )个. A. 2 B. 4 C. 12 D. 16 二、填空题(本大题共8小题,每小题3分,共24分)11.据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 .12.如图,A 、B 、C 三点在一条直线上,若CD CE ⊥,123∠=︒,则2∠的度数是 .13. 已知x ,y 满足24237x y x y +=⎧⎨+=⎩,则34x y += .14.若不等式(3)3a x a -≤-的解集在数轴上表示如图所示,则a 的取值范围是 . 15.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为 .16.把面值20元的纸币换成1元和5元的两种..纸币(两种纸币都要使用),则共有 种换法.17.如图,将一张长方形的纸片沿折痕E 、F 翻折,使点C 、D 分别落在点M 、N 的位置,且12BFM EFM ∠=∠,则BFM ∠的度数为 °.18.如图,某点从数轴上的A 点出发,第1次向右移动1个单位长度至B 点,第2次从B 点向左移动2个单位长度至C 点,第3次从C 点向右移动3个单位长度至D 点,第4次从D 点向左移动4个单位长度至E 点,…,依此类推,经过 次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明) 19.(本题满分8分)计算: (1) 152()36269--⨯; (2) 201825(1)(5)0.813-÷-⨯+-20.(本题满分8分)解方程:(1) 7997x x -=- (2) 11(1)2(2)25x x -=-+21.(本题满分6分) 解不等式21531322x x -++≥,并把它的解集在数轴上表示出来.22.(本题满分5分)先化简,后求值:2211312()()4323x x y x y --+-+,其中22(2)0x y -++=.23. (本题满分6分) 己知关于x ,y 的方程组3521x y mx y m +=⎧⎨+=-⎩的解满足22x y +=.(1)求m 的值;(2)若a m ≥,化简:12a a +--.24.(本题满分6分)在如图所示的55⨯的方格纸中,每个小正方形的边 长为1,点A 、B 、C 均为格点(格点是指每个小正 方形的顶点). (1)按下列要求画图:①标出格点D ,使//CD AB ,并画出直线CD ; ②标出格点E ,使CE AB ⊥,并画出直线CE . (2)计算ABC ∆的面积.25.(本题满分7分)把边长为1厘米的6个相同正方体摆成如图的形式. (1)画出该几何体的主视图、左视图、俯视图; (2)直接写出该几何体的表面积为 cm 2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 小正方体.26.(本题满分9分)如图,直线AB 与CD 相交于O . OF 是BOD ∠的平分线,OE OF ⊥. (1)若BOE ∠比DOF ∠大38°,求DOF ∠和AOC ∠的度数; (2)试问COE ∠与BOE ∠之间有怎样的大小关系?请说明理由. (3)BOE ∠的余角是 ,BOE ∠的补角是 .27.(本题满分10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少千克?28.(本题满分11分)如图,动点M 、N 同时从原点出发沿数轴做匀速运动,己知动点M 、N 的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t 秒.(1)若动点M 向数轴负方向运动,动点N 向数轴正方向运动,当2t =秒时,动点M 运动到A 点,动点N 运动到B 点,且12AB =(单位长度).①在直线l 上画出A 、B 两点的位置,并回答:点A 运动的速度是 (单位长度/秒);点B 运动的速度是 (单位长度/秒). ②若点P 为数轴上一点,且PA PB OP -=,求OPAB的值; (2)由(1)中A 、B 两点的位置开始,若M 、N 同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,4MN =(单位长度)?。
江苏省昆山、太仓市七年级数学上学期期末教学质量调研卷
江苏省昆山、太仓市七年级数学上学期期末教学质量调研卷本试卷由填空题、选择题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其它笔答题;3.考生答题必须答在答题卷上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分).在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号坡写在答题卷相应的位置上.1.13-的相反数是 A.13 B.3 C.3- D.13-2.下列计算正确的是A.325a b ab +=B.22523a a -=C. 277a a a +=D.222242a b a b a b -=- 3.若773x y a b +和2427y x a b --是同类项,则x 、y 的值为 A.3x =-,2y = B.2x =,3y =- C.2x =-,3y = D.3x =,2y =- 4.下列关于多项式221a b ab +-的说法中,正确的是A.次数是5B.二次项系数是0C.最高次项是22a bD.常数项是1 5.下列图形中,线段AD 的长表示点A 到直线BC 距离的是6.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则k 的值为 A. 3 B.3- C. 4- D. 47.实数a 、b 在数轴上的位置如图,则化简a b +的结果为A. a b -B. a b +C. a b -+D.a b -- 8.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是9.下列说法中正确的是A.过一点有且仅有一条直线与已知直线平行B.若AC BC =,则点C 是线段AB 的中点C.相等的角是对顶角D.两点之间的所有连线中,线段最短10.如图,正方形ABCD 的边长为1,电子蚂蚁P 从点A 分别以1个单位/秒的速度顺时针沿正方形运动,电子蚂蚁Q 从点A 以3个单位/秒的速度逆时针沿正方形运动,则第2019次相遇在A.点AB.点BC.点CD.点D二、填空题(本大题共8小题,每小题3分,共24分).把答案直接填在答题卷相应的位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太仓市第一学期期末教学质量调研测试
初 一 数 学
(试卷满分130分,考试时间120分)
一.选择题。
(3*10=30分)
1.一个物体作左右方向的运动,规定向右运动5m ,记作+5m,那么向左运动5m 记作 A. -5m B. 5m C. 10m D. -10m
2.下列各数中:(5)+-、|12|--、2
π
-
、(7)--、0、3(2015)-,负数有
A .2 个
B .3 个
C .4 个
D .5 个 3.下列各组中,不是同类项的是
A .23与3
2 B .3ab -与ba C .20.2a b 与215
a b D .23a b 与32a b - 4.有理数,a b 在数轴上对应点的位置如图所示,下列各式正确的是 A . 0a b +< B .0a b -< C .|||a b > D .
0b
a
>
5. 如图,三条直线相交于点O .若CO ⊥AB ,∠1=56°,则∠2等于 A .30° B .34° C .45° D .56°
6. 在同一平面内已知∠AOB=80°,∠BOC=20°,OM 、ON 分别是∠AOB 和∠BOC 的平分线,则∠MON 的度数为
A .30° B. 40° C. 50° D.30°或50° 7.下列说法:
①两点之间的所有连线中,线段最短; ②相等的角是对顶角;
③过直线外一点有且仅有一条直线与已知直线平行; ④两点之间的距离是两点间的线段. 其中正确的个数是
A .1个
B .2个
C .3个
D .4个 8.若|3||2|0x y ++-=,则x y +的值为
A .5
B .-5
C .-1
D .1
9. 一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合做,那么剩下的部分需要几个小时完成?若设还要xh 完成,则依题意可列方程为( ) A .
41202012x x --= B .41202012
x x
-+=
C .
41202012x x +-= D .41202012
x x ++= 10.同学小明在用一副三角板画出了许多不同度数的角,但下列哪个度数他画不出来( ) A .135° B .120° C .75° D .25°
二.填空题.(3*8=24)
11.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为 . 12.若单项式
21
23
n x y -与35m x y -单项式是同类项,则m n -的值为______ 13.若关于x 的方程320x a -=与23130x a +-=的解相同,则这两个方程的解为___x = 14.如果代数式8a b +的值为5-,那么代数式3(2)5(2)a b a b --+的值为_____ 15.求上午10时30分,钟面上时针和分针的夹角=_________°
16.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿数轴匀速爬向B 点的过程中,到达C 点时用了9分钟,那么到达B 点还需要________分钟.
17.如图,线段AB=8,C 是AB 的中点,点D 在直线CB 上,DB=1.5,则线段CD 的长等于__________
18.一种新运算,规定有以下两种变换: ①f (m ,n )=(m ,﹣n ).如f (3,2)=(3,﹣2); ②g (m ,n )=(﹣m ,﹣n ),如g (3,2)=(﹣3,﹣2). 按照以上变换有f[g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f (5,﹣6)]等于 .
三.简答题.(76分) 19.计算(8分)
(1)24(3)|6|(1);--⨯-+-⨯- (2)421
1(1)3|3(3)|2
---÷⨯--
20.先化简再求值:(10分)
(1) 2
2
2
2
2
3(2)(32),x x xy y x xy y --++-++其中2,3x y =-=.
(2)求2222
1
2(38)2(2)2xy xy x y xy x y ⎡⎤----⎢⎥⎣⎦的值,其中2
,0.23x y ==-.
21.解下列方程:(8分)
(1)13(1)26x x --=+ (2)
123126
x x
+--=
22.(5分)
下列物体是由六个棱长为1cm 的正方体组成如图的几何体. (1)该几何体的体积是 3cm ,表面积是 2cm ; (2)分别画出从正面、左面、上面看到的立体图形的形状.
23.(6分)
如图,DF 平分∠ADF ,AC//DE ,∠1=68°,∠ADE=136° (1)求∠A 的度数; (2)试说明:DF//BC.
24.(6分)
某市电力部门对居民用电按月收费,标准如下: ①用电不超过100度的,每度收费0.5元;
②用电超过100度的,超过部分每度收费0.8元. (1)小明家10月份用电80度,应缴费______元.小丽家11月份用电150度,应缴费______元;
(2)小亮家12月份用电平均每度0.7元,则他家12月份用了多少度电
25.(6分)
如图,每个小方格都是边长为1个单位的小正方形,A,B,C三点都是格点(每个小方格的顶点叫格点).
(1)找出格点D,画AB的平行线CD;找出格点E,画AB的垂线AE;
(2)计算格点△ABC的面积.
26.(8分)
如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠EOF=55°,OD⊥OF,求∠AOC的度数;
(2)若OF平分∠COE,∠BOF=15°,求∠DOE的度数.
27.(9分)
将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图(1)若∠BOD=35°,则∠AOC= __ ;若∠AOC=135°,则∠BOD= ____;(2)如图(2)若∠AOC=140°,则∠BOD= ___;
(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.
(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由
28.(10分)
如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB
(1)OA=________ cm,OB=__________cm;
(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;
(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.
①当t为何值时,2OP-OQ=4;
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q 后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q 运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?。