如何比较反比例函数与一次函数的大小

合集下载

反比例函数与一次函数

反比例函数与一次函数

反比例函数与一次函数1.函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.2.函数的图象函数的图象定义:对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上.3.函数的表示方法函数的三种表示方法:____、____、____.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.4.反比例函数的性质反比例函数的性质:(1)反比例函数y=xk(k≠0)的图象是____;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.5.反比例函数图象上点的坐标特征反比例函数y=xk(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.待定系数法求反比例函数解析式用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.7.反比例函数的应用(1)利用反比例函数解决实际问题:①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.8.反比例函数综合题(1)应用类综合题能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能力和从实际问题向数学问题转化的能力.在解决这些问题的时候我们还用到了反比例函数的图象和性质、待定系数法和其他学科中的知识.(2)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.9.一次函数的图象(1)一次函数的图象的画法:经过两点(0,b)、(﹣bk,0)或(1,k+b)作直线y=kx+b.注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b 分别是与y 轴,x 轴平行的直线,就不是一次函数的图象.(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx 平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.注意:①如果两条直线平行,则其比例系数相等;反之亦然;②将直线平移,其规律是:________;③两条直线相交,其交点都适合这两条直线.10.一次函数图象与系数的关系由于y=kx+b 与y 轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y 轴交于正半轴;当b<0时,(0,b)在y 轴的负半轴,直线与y 轴交于负半轴.①k>0,b>0⇔y=kx+b 的图象在一、二、三象限;②k>0,b<0⇔y=kx+b 的图象在一、三、四象限;③k<0,b>0⇔y=kx+b 的图象在一、二、四象限;④k<0,b<0⇔y=kx+b 的图象在二、三、四象限.11.两条直线相交或平行问题直线y=kx+b,(k≠0,且k,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k,b 都相同时,两条线段重合.(1)两条直线的交点问题两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.例如:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2.12.一次函数的应用1、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.13.一次函数综合题(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.14.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.1.函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【例1】(2014•成都双流中学期末)在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>练1.(2014春•湘潭中学质检)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3D.y=2.待定系数法求反比例函数解析式;反比例函数的性质.【例2】(2014•山西中考一模)如果反比例函数的图象经过点(﹣2,﹣3),那么k的值为()A.B.C.﹣6D.6练2.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限3.反比例函数图象上点的坐标特征.【例3】(2014•河北博野县一模)点M (﹣2,3)在曲线y=上,则下列点一定在该曲线上的是()A.(2,3)B.(﹣2,﹣3)C.(3,﹣2)D.(3,2)练3.已知点P(m,n)在某反比例函数的图象上,则此图象上还有点()A.(0,0)B.(﹣m,﹣n)C.(m,﹣n)D.(﹣m,n)4.一次函数的图象.【例4】(2014•秋•宜昌校级月考)关于x 的一次函数y=kx+k 2+1的图象可能正确的是()A.B.C.D.练4.已知函数y=kx+b 的图象如图,则y=2kx+b 的图象可能是()A.B.C.D.5.反比例函数与一次函数的交点问题.【例5】(2014•东营中学期中)如图所示,反比例函数y 1与正比例函数y 2的图象的一个交点坐标是A(2,1),若y 2>y 1>0,则x 的取值范围在数轴上表示为()A.B.C.D.练5.如图,反比例函数y=的图象与直线y=x+m 在第一象限交于点P(6,2),A、B 为直线上的两点,点A 的坐标为2,点B 的横坐标为3.D、C 为反比例函数图象上的两点,且AD、BC 平行于y 轴.(1)直接写出k,m 的值;(2)求梯形ABCD 的面积.1.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0B.k>0C.b<0D.b>02.如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A.第一象限B.第二象限C.第三象限D.第四象限3.小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.4.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2B.v=m2﹣1C.v=3m﹣3D.v=m+15.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.6.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应()A.不小于4.8ΩB.不大于4.8ΩC.不小于14ΩD.不大于14Ω__________________________________________________________________________________________________________________________________________________________________1.矩形面积为4,它的长y与宽x之间的函数关系用图象大致可表示为()A.B.C.D.2.为了预防“HINI”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为()A.B.C.D.3.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应()A.不小于4.8ΩB.不大于4.8ΩC.不小于14ΩD.不大于14Ω4.设从茂名到北京所需的时间是t,平均速度为v,则下面刻画v与t的函数关系的图象是()A.B.C.D.)与它的体积v(m3)5.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa 的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是()A.B.C.D.6.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积.7.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?8.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为8mg.根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6mg时,对人体无毒害作用.那么从消毒开始,经多长时间学生才可以返回教室?。

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

一次函数与反比例函数

一次函数与反比例函数

一次函数与反比例函数第一部分 知识梳理一、一次函数和反比例函数的解析式1.一次函数的定义:函数y= kx+b (k 、b 为常数,k ≠0,自变量x 的次数是1次)叫做一次函数。

2.一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

二、一次函数和反比例函数的图像1.一次函数y=kx+b 的k 、b 的值对一次函数图象的影响。

y① k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限; ② k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③ k ﹤0,b ﹥0, y =kx +b 的 图象在一、二、四象限; ④ k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。

2.反比例函数的性质3.反比例函数中反比例系数的几何意义 ①过双曲线xky =(k ≠0) 上任意一点作x 轴、y 轴的垂线段,所得矩形(如图)面积为k 。

第二部分 例题与解题思路方法归纳类型一 一次函数的图像与性质【例题1】已知一次函数y=(6+3m )x+n ﹣4. (1)当m 、n 为何值时,函数的图象过原点?(2)当m 、n 满足什么条件时,函数的图象经过第一、二、三象限?〖选题意图〗本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.〖解题思路〗(1)将点(0,0)代入一次函数解析式y=(6+3m)x+n﹣4求得n值,利用一次函数的性质知系数6+3m≠0求得m值;(2)根据一次函数的性质知,当该函数的图象经过第一、二、三象限时,6+3m>0,且n ﹣4>0,据此求m、n的值.〖参考答案〗解:(1)∵一次函数y=(6+3m)x+n﹣4的图象过原点,∴6+3m≠0,且n﹣4=0,解得,m≠﹣2,n=4;(2)∵该函数的图象经过第一、二、三象限,∴6+3m>0,且n﹣4>0,解得m>﹣2,n>4.【课堂训练题】1.如图,直线y=﹣x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x 轴交于点C,则△ABC的面积为.〖参考答案〗解:因为直线y=﹣x+4中,b=4,故A点坐标为(0,4);令﹣x+4=0,则x=3,故D点坐标为(3,0).令x+=0,则,x=﹣1,故C点坐标为(﹣1,0),因为B点为直线y=﹣x+4直线y=x+的交点,故可列出方程组﹣,解得,故B点坐标为(,2),故S△ABC=S△ACD﹣S△BCD=CD•AO﹣CD•BE=×4﹣×4×2=4.2.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.〖参考答案〗解:由题意可知当直线y=﹣2x+b经过A(1,1)时b的值最小,即﹣2×1+b=1,b=3;当直线y=﹣2x+b过C(2,2)时,b最大即2=﹣2×2+b,b=6,故能够使黑色区域变白的b 的取值范围为3≤b≤6.3.已知直线l n:y=﹣+(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1,(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=﹣x+与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2;…依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.则s1+s2+s3+s4+s5=;S n=.〖参考答案〗解出l1、l2、l3、l4…l n的解析式为l1:y=﹣2x+1,l2:y=﹣x+,l3:y=﹣x+,l4:y=﹣x+,l5:y=﹣x+…l n:y=﹣+(n是不为零的自然数).于是S1=1××=;S2=××=;S3=××=;S4=××=;S5=××=….S n=××=()s1+s2+s3+s4+s5=++++=.4.(2011•绍兴)在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(l,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上,求a,b 的值.〖参考答案〗(1)解:∵1×2≠2×(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)解:由题意得:当a>0时,(a+3)×2=3a,∴a=6,点P(a,3)在直线y=﹣x+b上,代入得:b=9当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6,点P(a,3)在直线y=﹣x+b上,代入得:b=﹣3,∴a=6,b=9或a=﹣6,b=﹣3.类型二一次函数图像与几何变换【例题2】(2011•咸宁)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任意一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上…由此我们知道,平移n 次后在函数的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.〖选题意图〗本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.〖解题思路〗(1)根据点的平移特点描出每次平移后P点的位置即可;(2)先根据P点平移一次后的点的坐标求出过此点的函数解析式,再根据函数图象平移的性质解答即可;(3)设点Q 的坐标为(x ,y ),求出Q 点的坐标,得出n 的取值范围,再根据点Q 的坐标为正整数即可进行解答.〖参考答案〗解:(1)如图所示:(2)设过(0,2),(1,0)点的函数解析式为:y=kx+b (k≠0), 则,解得 ﹣ , 故第一次平移后的函数解析式为:y=﹣2x+2; ∴答案依次为:y=﹣2x+2;y=﹣2x+4;y=﹣2x+2n . (3)设点Q 的坐标为(x ,y ),依题意, ﹣.解这个方程组,得到点Q 的坐标为(,).∵平移的路径长为x+y , ∴50≤≤56.∴37.5≤n≤42. ∵点Q 的坐标为正整数,∴点Q 的坐标为(26,26),(28,28). 【课堂训练题】1.(1)点(0,1)向下平移2个单位后的坐标是 ,直线y=2x+1向下平移2个单位后的解析式是 ;(2)直线y=2x+1向右平移2个单位后的解析式是 ;(3)如图,已知点C 为直线y=x 上在第一象限内一点,直线y=2x+1交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC 方向平移 个单位,求平移后的直线的解析式.〖参考答案〗解:(1)(0,﹣1),y=2x+1﹣2=2x﹣1;(2)y=2(x﹣2)+1=2x﹣3;(3)y=2(x﹣3)+1+3,即y=2x﹣2.2.如图,将直线y=2x沿y轴向下平移后,得到的直线与x轴交于点(,),与双曲线在第一象限交于点B,且△OAB的面积.(1)求直线AB的解析式(2)求双曲线的解析式.〖参考答案〗解:(1)直线AB的解析式为y=2x﹣b,把A(,0)代入得,0=2×﹣b,解得b=5,故此直线的解析式为:y=2x﹣5;(2)作BD⊥x轴,∵△OAB的面积,即OA•BD=,∵A(,0),∴BD=3,∵B点在直线y=2x﹣5上,∴3=2x﹣5,解得x=4,∴B (4,3)∵B 点在反比例函数y=上, ∴k=3×4=12,∴此反比例函数的解析式为:y=.3.如图,直线y=x+4与x 轴、y 轴分别交于A 、B 两点,点C 在OB 上,若将△ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是 (0,1.5) .〖参考答案〗解:由题意得:A (﹣3,0),B (0,4); ∴OA=3,OB=4.那么可得AB=5.易得△ABC ≌△ADC ,∴AD=AB=5,∴OD=AD ﹣OA=2.设OC 为x .那么BC=CD=4﹣x .那么x 2+22=(4﹣x )2,解得x=1.5, ∴C (0,1.5).类型三 反比例函数的图像与性质【例题3】(2011•防城港)如图,是反比例函数y=和y=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值是( )A .1B .2C .4D .8〖选题意图〗本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd ﹣ab=4是解此题的关键.〖解题思路〗设A (a ,b ),B (c ,d ),代入双曲线得到k 1=ab ,k 2=cd ,根据三角形的面积公式求出cd ﹣ab=4,即可得出答案.〖参考答案〗解:设A (a ,b ),B (c ,d ),代入得:k 1=ab ,k 2=cd , ∵S △AOB =2,∴cd ﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故选C.【课堂训练题】1.(2011•东营)如图,直线l和双曲线(>)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A、S1<S2<S3B、S1>S2>S3C、S1=S2>S3D、S1=S2<S3〖参考答案〗解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.故选D.2.如图,点A是反比例函数y=的图象上任意一点,延长AO交该图象于点B,AC⊥x 轴,BC⊥y轴,求Rt△ACB的面积.〖参考答案〗解:设点A的坐标为(x,y),则点B坐标为(﹣x,﹣y),所以AC=2y,BC=2x,所以Rt△ACB的面积为AC•BC=×2x•2y=2xy=2|k|=24.类型四反比例函数与一次函数的交点问题【例题4】(2011•雅安)如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(﹣2,3),BC⊥x轴于C,四边形OABC面积为4.(1)求反比例函数和一次函数的解析式;(2)求点D的坐标;(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)〖选题意图〗此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,利用图象判定函数的大小关系是中学的难点同学们应重点掌握.〖解题思路〗(1)先设出反比例函数和一次函数的解析式:y=和y=ax+b,把点B的坐标代入反比例函数的解析式求出k即可;(2)两个解析式联立,求得点D的坐标即可;(3)利用函数图象求出分别得出使一次函数的值大于反比例函数的值的x的取值范围.〖参考答案〗解:(1)设反比例函数的解析式y=和一次函数的解析式y=ax+b,图象经过点B,∴k=﹣6,∴反比例函数解析式为y=﹣,又四边形OABC面积为4.∴(OA+BC)OC=8,∵BC=3,OC=2,∴OA=1,∴A(0,1)将A、B两点代入y=ax+b有﹣,解得﹣∴一次函数的解析式为y=﹣x+1,(2)联立组成方程组得﹣﹣,解得x=﹣2或3,∴点D(3,﹣2)(3)x<﹣2或0<x<3.【课堂训练题】1.(2011•潼南县)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.〖参考答案〗解:(1)由图象可知:点A的坐标为(2,)点B的坐标为(﹣1,﹣1)∵反比例函数(m≠0)的图象经过点(2,),∴m=1∴反比例函数的解析式为:∵一次函数y=kx+b(k≠0)的图象经过点(2,)点B(﹣1,﹣1)∴﹣﹣解得:k=b=﹣∴一次函数的解析式为﹣(2)由图象可知:当x>2或﹣1<x<0时一次函数值大于反比例函数值2.如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交点A(1,3).(1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.〖参考答案〗解:(1)由题意,得3=1+m,解得:m=2.所以一次函数的解析式为y1=x+2.由题意,得3=,解得:k=3.所以反比例函数的解析式为y2=.由题意,得x+2=,解得x1=1,x2=﹣3.当x2=﹣3时,y1=y2=﹣1,所以交点B(﹣3,﹣1).(2)由图象可知,当﹣3≤x<0或x≥1时,函数值y1≥y2.类型五函数的应用【例题5】(2011•岳阳)某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:(1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求y与x之间的函数关系式.(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.〖选题意图〗此题主要考查了一次函数的应用,一次函数的应用是中考中的重点题型,利用图表得出正确的信息是解决问题的关键.〖解题思路〗(1)根据图表得出16x+12y+10(20﹣x﹣y)=240,从而求出y与x的关系式即可;(2)利用(1)中关系式即可得出方案;(3)分别求出(2)中方案的利润即可.〖参考答案〗解:(1)∵厂方计划由20个工人一天内加工完成,设加工甲种配件的人数为x,加工乙种配件的人数为y,∴加工丙种配件的人数为(20﹣x﹣y)人,∴16x+12y+10(20﹣x﹣y)=240,∴y=﹣3x+20;(2)设加工丙种配件的人数为z=(20﹣x﹣y)人,当x=3时,y=11,z=6,当x=4时,y=8,z=8,当x=5时,y=5,z=10,其他都不符合题意,∴加工配件的人数安排方案有三种;(3)由图表得:方案一利润为:3×16×6+11×12×8+10×6×5=1644元,方案二利润为:4×16×6+8×12×8+10×8×5=1552元,方案三利润为:5×16×6+5×12×8+10×10×5=1460元,∴应采用(2)中方案一,最大利润为1644元.【课堂训练题】1.(2011•孝感)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?〖参考答案〗解:(1)设该公司组装A型器材x套,则组装B型器材(40﹣x)套,依据题意得(﹣),(﹣)解得22≤x≤30,由于x 为整数,所以x取22,23,24,25,26,27,28,29,30.故组装A、B两种型号的健身器材共有9套组装方案;(2)总的组装费用y=20x+18(40﹣x)=2x+720,∵k=2>0,∴y随x的增大而增大,∴当x=22时,总的组装费用最少,最少组装费用是2×22+720=764元,总的组装费用最少的组装方案为:组装A型器材22套,组装B型器材18套.2.为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?〖参考答案〗解:(1)门票定价为50元/人,那么10人应花费500元,而从图可知实际只花费300元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费400元,而原价是500元,可以知道是打8折得到的价格,所以b=8,看图可知m=10;(2)设y1=kx,当x=10时,y1=300,代入其中得,k=30y1的函数关系式为:y1=30x同理可得,y2=50x(0≤x≤10),当x>10时,设其解析式为:y2=(x﹣10)×50×0.8+500,化简得:y2=40x+100;(3)设A团有n人,则B团有(50﹣n)人,当0≤n≤10时,50n+30(50﹣n)=1900解得,n=20这与n≤10矛盾,当n>10时,40n+100+30(50﹣n)=1900,解得,n=30,50﹣30=20.答:A团有30人,B团有20人.【例题6】用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?〖选题意图〗现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.〖解题思路〗(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,后根据题意代入求出k1和k2即可;(2)当y=0.5时,求出此时小红和小敏所用的水量,后进行比较即可.〖参考答案〗解:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,将和分别代入两个关系式得:1.5=,2=,解得:k1=1.5,k2=2.∴小红的函数关系式是=,小敏的函数关系式是.(2)把y=0.5分别代入两个函数得:=0.5,=0.5,解得:x1=3,x2=4,10×3=30(升),5×4=20(升).答:小红共用30升水,小敏共用20升水,小敏的方法更值得提倡.【课堂训练题】1.一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.〖参考答案〗解:(1)设ρ=,当V=10m3时,ρ=1.43kg/m3,所以1.43=,即k=14.3,所以ρ与V的函数关系式是ρ=;(2)当V=2m3时,把V=2代入得:ρ=7.15(kg/m3),所以当V=2m3时,氧气的密度为7.15(kg/m3).类型六一次函数与反比例函数的综合题【例题7】(2011•宜宾)如图,一次函数的图象与反比例函数﹣(<)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(>)的图象与﹣(<)的图象关于y轴对称,在y2=(>)的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.〖选题意图〗此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.〖解题思路〗(1)根据x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值得到点A的坐标,利用待定系数法求函数的解析式即可;(2)求得B点的坐标后设出P点的坐标,利用告诉的四边形的面积得到函数关系式求得点P的坐标即可.〖参考答案〗解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则﹣,解之得﹣,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与﹣(<)的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设p(n,)n>2,S四边形BCQP=S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).【课堂训练题】1.(2011•成都)如图,已知反比例函数()的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.〖参考答案〗解:(1)把点(,8)代入反比例函数(),得k=•8=4,∴反比例函数的解析式为y=;又∵点Q(4,m)在该反比例函数图象上,∴4•m=4,解得m=1,即Q点的坐标为(4,1),而直线y=﹣x+b经过点Q(4,1),∴1=﹣4+b,解得b=5,∴直线的函数表达式为y=﹣x+5;(2)联立﹣,解得或,∴P点坐标为(1,4),对于y=﹣x+5,令y=0,得x=5,∴A点坐标为(0,5),∴S△OPQ=S△AOB﹣S△OBP﹣S△OAQ=•5•5﹣•5•1﹣•5•1=.2.(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B、(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.〖参考答案〗解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,∴点B坐标为(2,2),∴k=xy=2×2=4.(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,∴ON=OM=2OA=4,∴点E横坐标为4,点F纵坐标为4.∵点E、F在函数y=的图象上,∴当x=4时,y=1,即E(4,1),当y=4时,x=1,即F(1,4).设直线EF解析式为y=mx+n,将E、F两点坐标代入,得,∴m=﹣1,n=5.∴直线EF的解析式为y=﹣x+5.第三部分课后自我检测试卷A类试题:1.(2011•阜新)反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2 C.3 D.12.如图,直线y=x+2交x轴于A,交y轴于B(1)直线AB关于y轴对称的直线解析式为;(2)直线AB绕原点旋转180度后的直线解析式为;(3)将直线AB绕点P(﹣1,0)顺时针方向旋转90度,求旋转后的直线解析式.3.将一次函数y=kx﹣1的图象向上平移k个单位后恰好经过点A(3,2+k).(1)求k的值;(2)若一条直线与函数y=kx﹣1的图象平行,且与两个坐标轴所围成的三角形的面积为,求该直线的函数关系式.4.(2011•肇庆)如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.5.如图所示,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A (4,m).(1)求m的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B、C,求线段BC的长.B类试题:6.已知直线x﹣2y=﹣k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k的取值范围;(2)若k为非整数,点A的坐标(2,0),点P在直线x﹣2y=﹣k+6上,求使△PAO为等腰三角形的点的坐标.7.在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求证:△AEC≌△DFB.C 类试题:9.如图,双曲线y= (k >0,x >0)的图象上有两点P 1(x 1,y 1)和P 2(x 2,y 2),且x 1<x 2,分别过P 1和P 2向x 轴作垂线,垂足为B 、D .过P 1和P 2向y 轴作垂线,垂足为A 、C .(1)若记四边形AP 1BO 和四边形CP 2DO 的面积分别为S 1和S 2,周长为C 1和C 2,试比较S 1和S 2,C 1和C 2的大小;(2)若P 是双曲线y=(k >0,x >0)的图象上一点,分别过P 向x 轴、y 轴垂线,垂足为M 、N .试问当P 点落在何处时,四边形PMON 的周长最小?10.(2011•曲靖)如图:直线y=kx+3与x 轴、y 轴分别交于A 、B 两点,OA OB =,点C (x ,y )是直线y=kx+3上与A 、B 不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.课后自我检测试卷参考答案A类试题:1.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选A.2.解:由题意得:A(﹣4,0),B(0,2),(1)∵关于y轴对称则:此直线过点(0,2)和(4,0),∴可得函数解析式为i:y=﹣x+2(2)∵关于原点对称的两点的横坐标纵坐标都互为相反数,∴可得函数解析式过点(0,﹣2)和(﹣4,0),∴函数解析式为:y=﹣x﹣2(3)设函数解析式为y=2x+b,又∵过点(﹣1,0),∴函数解析式为:y=2x+2.3.解:(1)根据平移规律可知,平移后解析式为y=kx﹣1+k,将点A(3,2+k)代入,得3k﹣1+k=2+k,解得k=1;(2)设所求直线解析式为y=x+b,则图象与坐标轴两交点坐标为(﹣b,0),(0,b),由三角形面积公式得×|b|×|﹣b|=,解得b=±1,∴y=x+1或y=x﹣1(不合题意,舍去),故所求直线的函数关系式为y=x+1.4.解:(1)把点B(﹣1,0)代入一次函数y=x+b得:0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=,;(2)反比例函数y=,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y=,∴当1≤x≤6时,反比例函数y的值:≤y≤2.5.解:(1)∵点A (4,m)在反比例函数y=的图象上,∴m==1,∴A (4,1),把A (4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3,(2)∵直线x=2与反比例和一次函数的图象分别交于点B、C,∴当x=2时,y B==2,y C=2﹣3=﹣1,∴线段BC的长为|y B﹣y C|=2﹣(﹣1)=3.B类试题:6.解:(1)由题可得:﹣﹣,解得:﹣,∴两直线的交点坐标为(k+4,k﹣1),又∵交点在第四象限,∴>﹣<,解得:﹣4<k<1;(2)由于k为非负整数且﹣4<k<1,∴k=0,此函数的解析式为:x﹣2y=6.直线x﹣2y=6与y轴的交点坐标为:(0,﹣3),与x轴交点坐标为(6,0),∵2<3,∴等腰三角形△PAO只有以OA为底边,∴可得P点坐标为(1,﹣).7.解:(1)当P把△ABC分成如图(一)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AB上,设P运动了t秒,则BP=t,AP=12﹣t,由题意得:BP+BD=(AP+AC+CD),即t+3=(12﹣t+12+3),解得t=7秒;(2)当DP把△ABC分成如图(二)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AC上,设P运动了t秒,则AB+AP=t,PC=AB+AC﹣t,由题意得:BD+t=2(PC+CD),即3+t=2(12+12﹣t+3),即3t=51,t=17秒.∴当t=7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.解:(1)由题意得1=,∴m=6,∴n=,∴n=2;(2)设直线AB的函数解析式为y=kx+b﹣由题意得,解得∴直线AB的函数解析式为y=﹣2x+8;(3)∵y=﹣2x+8,∴A(0,8),B (4,0)∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB∵AE=DF=2,CE=BF=1∴△AEC≌△DFB.C类试题:9.解:(1)根据反比例函数系数k的几何意义可知S1=S2=k;当y1﹣y2=x2﹣x1即AC=BD时C1=C2;当y1﹣y2<x2﹣x1即AC<BD时C1<C2;当y1﹣y2>x2﹣x1即AC>BD时C1>C2.(2)设P(x,y),即(x,),四边形PMON的周长=2(x+y)=2(x+),因为面积相等的四边形中正方形的周长最小,所以x=,解得x=,故四边形PMON的周长最小=2(x+y)=4.10.解:(1)∵直线y=kx+3与y轴分别交于B点,∴B(0,3),∵OA OB= ,∴OA=4,∴A (4,0),∵直线y=kx+3过A (4,0),∴4k+3=0,∴k=﹣ ,∴直线的解析式为:y=﹣ x+3;(2)∵A (4,0),∴AO=4,∵△AOC 的面积是6,∴△AOC 的高为:3,∴C 点的纵坐标为3,∵直线的解析式为:y=﹣ x+3,∴3=﹣ x+3,x=0,∴点C 运动到B 点时,△AOC 的面积是6;(3)当过点C 的另一直线CD 与y 轴相交于D 点,且CD ⊥y 轴于点D 时,BD=BO=3,△BCD 与△AOB 全等, ∴C 点纵坐标为6,∴6=﹣ x+3,解得:x=﹣4,∴C 点坐标为:(﹣4,6).。

一次函数与反比例函数值的大小比较方法

一次函数与反比例函数值的大小比较方法

一次函数与反比例函数值的大小比较方法一次函数和反比例函数是两种常见的函数类型。

在一次函数中,函数的值随着自变量的增加而线性增加或减少;而在反比例函数中,函数的值随着自变量的增加而减小。

在这两种函数中,比较函数值的大小是非常常见的问题。

本文将介绍两种函数值的大小比较方法,并给出具体的例子来解释这些方法。

方法一:代入法代入法是将自变量的值代入函数中,比较函数值的大小。

例如,对于一次函数 y = 2x + 1 和反比例函数 y = 1/x,我们可以将x的值代入函数中比较函数值的大小。

当 x = 0 时,一次函数 y = 2(0) + 1 = 1,反比例函数 y = 1/0不存在。

因此,在一次函数中,当x = 0 时,函数值最小,即 y = 1。

当 x = 1 时,一次函数 y = 2(1) + 1 = 3,反比例函数 y = 1/1 = 1。

因此,在一次函数中,当 x = 1 时,函数值最大,即 y = 3。

因此,我们可以得出结论,在一次函数中,当自变量的值越大,函数值也越大;而在反比例函数中,当自变量的值越大,函数值越小。

方法二:图像法图像法是通过绘制函数的图像来比较函数值的大小。

对于一次函数和反比例函数,它们的图像分别是一条直线和一个双曲线。

例如,对于一次函数 y = 2x + 1 和反比例函数 y = 1/x,我们可以将它们的图像绘制在同一个坐标系中,比较函数值的大小。

在一次函数的图像中,当自变量的值越大,函数值也越大,因此函数的图像是一条向右上方倾斜的直线。

在反比例函数的图像中,当自变量的值越大,函数值越小,因此函数的图像是一个向左上方弯曲的双曲线。

通过比较两个函数的图像,我们可以发现,在一次函数中,函数值随着自变量的增加而线性增加;而在反比例函数中,函数值随着自变量的增加而减小。

综上所述,我们可以得出结论,在一次函数中,当自变量的值越大,函数值也越大;而在反比例函数中,当自变量的值越大,函数值越小。

八年级一次函数与反比例函数知识点总结

八年级一次函数与反比例函数知识点总结

一次函数与反比例函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .函数y =x 的取值范围是___________. 已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y 5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

一次函数与反比例函数的性质

一次函数与反比例函数的性质

05
典型例题解析
一次函数典型例题
例题1
已知一次函数 y = 2x + 1,求该函数在 x = 3 时的函数值。
例题2
已知一次函数 y = kx + b(k ≠ 0)的图像经 过点(2,3)和(-1,-2),求该函数的解 析式。
例题3
已知一次函数 y = -x + 4 与 x 轴交于点 A, 与 y 轴交于点 B,求 △AOB 的面积。
3
例题3
已知一次函数 y = kx + b 与反比例函数 y = m/x 的图像交于 C、D 两点,且 C 、D 两点的纵坐标分别为 -4 和 6,CD = 10,求这两个函数的解析式及 k、b、 m 的值。
06
总结与展望
知识体系总结
一次函数与反比例函数的基本性质
01
包括定义域、值域、单调性、奇偶性等基础概念。
一次函数的增减性与 其图像的斜率方向一 致。
当一次函数的比例系 数小于0时,函数在 整个定义域内是减函 数。
一次函数的对称性
一次函数不具有轴对称性,因为其图像是一 条直线,无法关于某条直线对称。
一次函数具有中心对称性,即其图像关于某 一点中心对称。该点即为一次函数的中心点 ,坐标为(h, k),其中h和k分别为一次函数与 x轴和y轴的交点横纵坐标的平均值。

综合应用典型例题
1
例题1
已知一次函数 y = ax + b(a ≠ 0)与反 比例函数 y = k/x(k ≠ 0)的图像交于 A、B 两点,且 A、B 两点的横坐标分别 为 -1 和 3,求这两个函数的解析式。
2
例题2
已知一次函数 y = -2x + m 与反比例函 数 y = n/x 的图像交于 A(-1,4)和 B (3,-2)两点,求这两个函数的解析式 及 m、n 的值。

(完整版)如何比较一次函数与反比例函数的大小

(完整版)如何比较一次函数与反比例函数的大小

如何比较一次函数与反比率函数的大小一次函数和反比率函数是初中数学授课的重要内容, 也是学生应掌握的最基础,最核心的内容。

它们之间的大小关系是一次函数和反比率函数的综合应用,遇到这样的问题时同学们不知从何下手, 易出现错误。

下面我们就结合一条例题的讲解,介绍如何轻松的解决这样的问题。

例:如图 ,一次函数 y 1 =x -1 与反比率函数 y 2 = 2的图像交于点 A(2 ,1);xB(-1,- 2),则使 y 1 >y 2 的 x 的取值范围是()A. x>2B. x>2 或- 1<x<0C. -1<x<2D. x>2 或 x<-1解析:依照图象特点结合 A , B 两点就可以找出使 y 1 >y 2 的 x 的取值范围解:由 A(2 , 1),B(- 1,- 2)两点可知当 x>2 或- 1<x<0 时,一次函数的图象在反比率函数图象的上方,故应选 B 。

学生在看图像比较一次函数与反比率函数的大小时, 经常不知从何下手, 我经过多年的授课实践,认为可以依照以下的步骤解决这样的问题:1、数学结合:依照题意画出图像(本例题已经画出了图像)2、找交点:依照函 数图像,找到两函数的交点坐标。

如本题两函数的交点坐标分别是A(2 , 1)和 B(-1,- 2)。

(2 1)(-1-2)3、画三线:依照两条函数的交点画出三条垂x 直于轴的直线。

如本题的三条直线分别为 x=-1;x=0( 即 y 轴) 和 x=2。

x=-1x=2x=0(2 1)(-1-2)4、分四域:以三线为界可将直角平面划分为四个地域。

如本题可分为① x<- 1;②- 1<x<0;③ 0< x< 2;④ x> 2。

x=-1x=2x=0区区(2 1)域域区区①②域域(-1 -2) ③④5、定大小:依照“上大下小”原则。

在“4”中我们已经获取 4 个地域,下面我们就依照分的地域比较大小:①x<- 1 时,一次函数图像在反比率函数图像的下面,即 y1<y2;②- 1<x<0 时,一次函数图像在反比率函数图像的上面,即y1> y2;③ 0<x<2 时,一次函数图像在反比率函数图像的下面,即y1<y2;④ x> 2 时,一次函数图像在反比率函数图像的上面,即y1> y2。

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像

反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交K≠0..2、性质:1.当k>0时;图象分别位于第一、三象限;同一个象限内;y随x的增大而减小;当k<0时;图象分别位于二、四象限;同一个象限内;y随x的增大而增大..2.k>0时;函数在x<0上同为减函数、在x>0上同为减函数;k<0时;函数在x<0上为增函数、在x>0上同为增函数..定义域为x≠0;值域为y≠0..3.因为在y=k/xk≠0中;x不能为0;y也不能为0;所以反比例函数的图象不可能与x轴相交;也不可能与y轴相交..4. 在一个反比例函数图象上任取两点P;Q;过点P;Q分别作x轴;y轴的平行线;与坐标轴围成的矩形面积为S1;S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形;又是中心对称图形;它有两条对称轴y=x y=-x即第一三;二四象限角平分线;对称中心是坐标原点..6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点m、n同号;那么A B两点关于原点对称..7.设在平面内有反比例函数y=k/x和一次函数y=mx+n;要使它们有公共交点;则n^2+4k·m≥不小于0..8.反比例函数y=k/x的渐近线:x轴与y轴..9.反比例函数关于正比例函数y=x;y=-x轴对称;并且关于原点中心对称.10.反比例上一点m向x、y分别做垂线;交于q、w;则矩形mwqoo为原点的面积为|k|11.k值相等的反比例函数重合;k值不相等的反比例函数永不相交..12.|k|越大;反比例函数的图象离坐标轴的距离越远..13.反比例函数图象是中心对称图形;对称中心是原点一次函数(一)函数1、确定函数定义域的方法:1关系式为整式时;函数定义域为全体实数; 2关系式含有分式时;分式的分母不等于零;3关系式含有二次根式时;被开放方数大于等于零; 4关系式中含有指数为零的式子时;底数不等于零;5实际问题中;函数定义域还要和实际情况相符合;使之有意义.. (二)一次函数 1、一次函数的定义一般地;形如y kx b =+k ;b 是常数;且0k ≠的函数;叫做一次函数;其中x 是自变量..当0b =时;一次函数y kx =;又叫做正比例函数..⑴一次函数的解析式的形式是y kx b =+;要判断一个函数是否是一次函数;就是判断是否能化成以上形式. ⑵当0b =;0k ≠时;y kx =仍是一次函数.⑶当0b =;0k =时;它不是一次函数.⑷正比例函数是一次函数的特例;一次函数包括正比例函数. 2、正比例函数及性质一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数.注:正比例函数一般形式 y=kx k 不为零 ① k 不为零 ② x 指数为1 ③ b 取零当k>0时;直线y=kx 经过三、一象限;从左向右上升;即随x 的增大y 也增大;当k<0时;•直线y=kx 经过二、四象限;从左向右下降;即随x 增大y 反而减小.(1) 解析式:y=kxk 是常数;k ≠0 (2) 必过点:0;0、1;k(3) 走向:k>0时;图像经过一、三象限;k<0时;•图像经过二、四象限 (4) 增减性:k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小 (5) 倾斜度:|k|越大;越接近y 轴;|k|越小;越接近x 轴 3、一次函数及性一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;y=kx +b 即y=kx;所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b k 不为零 ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过0;b 和-kb;0两点的一条直线;我们称它为直线y=kx+b;它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时;向上平移;当b<0时;向下平移 1解析式:y=kx+bk 、b 是常数;k ≠0 2必过点:0;b 和-kb;0 3走向: k>0;图象经过第一、三象限;k<0;图象经过第二、四象限 b>0;图象经过第一、二象限;b<0;图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限4增减性: k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小.5倾斜度:|k|越大;图象越接近于y 轴;|k|越小;图象越接近于x 轴.6图像的平移: 当b>0时;将直线y=kx 的图象向上平移b 个单位;当b<0时;将直线y=kx 的图象向下平移b 个单位.一次函数()0k kx b k =+≠k ;b 符号 0k >0k < 0b > 0b < 0b = 0b >0b <0b = 图象Ox yyx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线;并且只能画出一条直线;即两点确定一条直线;所以画一次函数的图象时;只要先描出两点;再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:0;b;.即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限图象从左到右上升;y 随x 的增大而增大k<0 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限图象从左到右下降;y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线;它可以看作是由直线y=kx 平移|b|个单位长度而得到当b>0时;向上平移;当b<0时;向下平移6、正比例函数和一次函数及性质正比例函数 一次函数概 念 一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数 一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;是y=kx;所以说正比例函数是一种特殊的一次函数.自变量 范 围X 为全体实数图 象 一条直线必过点 0;0、1;k 0;b 和-k b ;0 走 向 k>0时;直线经过一、三象限; k<0时;直线经过二、四象限 k >0;b >0;直线经过第一、二、三象限 k >0;b <0直线经过第一、三、四象限 k <0;b >0直线经过第一、二、四象限 k <0;b <0直线经过第二、三、四象限 增减性 k>0;y 随x 的增大而增大;从左向右上升 k<0;y 随x 的增大而减小..从左向右下降 倾斜度 |k|越大;越接近y 轴;|k|越小;越接近x 轴 图像的 平 移 b>0时;将直线y=kx 的图象向上平移b 个单位;b<0时;将直线y=kx 的图象向下平移b 个单位.7、直线11b x k y +=01≠k 与22b x k y +=02≠k 的位置关系 1两直线平行⇔21k k =且21b b ≠ 2两直线相交⇔21k k ≠3两直线重合⇔21k k =且21b b = 4两直线垂直⇔121-=k k8、用待定系数法确定函数解析式的一般步骤:1根据已知条件写出含有待定系数的函数关系式;2将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; 3解方程得出未知系数的值;4将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0a;b 为常数;a ≠0的形式;所以解一元一次方程可以转化为:当某个一次函数的值为0时;求相应的自变量的值. 从图象上看;相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0a;b 为常数;a ≠0的形式;所以解一元一次不等式可以看作:当一次函数值大小于0时;求自变量的取值范围.11、一次函数与二元一次方程组1以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcx b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b c x b a +-的图象交点.二次函数一、二次函数概念:1.二次函数的概念:一般地;形如2y ax bx c =++a b c ,,是常数;0a ≠的函数;叫做二次函数.. 这里需要强调:和一元二次方程类似;二次项系数0a ≠;而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数;右边是关于自变量x 的二次式;x 的最高次数是2. ⑵ a b c ,,是常数;a 是二次项系数;b 是一次项系数;c 是常数项.二、二次函数的基本形式① 一般式:()()20f x ax bx c a =++≠ ② 顶点式:()()()20f x a x m n a =++≠ ③ 零点式:()()()()120f x a x x x x a =--≠当240b ac∆=->时;二次函数的图像和x轴有两个交点()11,0M x;()22,0M x;线段1212M M x xa a=-==.当240b ac∆=-=时;二次函数的图像和x轴有两个重合的交点,02bMa⎛⎫-⎪⎝⎭.特别地;当且仅当0b=时;二次函数()()20f x ax bx c a=++≠为偶函数.1. 二次函数基本形式:2y ax=的性质:a 的绝对值越大;抛物线的开口越小..2. 2y ax c=+的性质:上加下减..3. ()2y a x h=-的性质:左加右减..4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+;确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变;将其顶点平移到()h k ,处;具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移;负左移;k 值正上移;负下移”. 概括成八个字“左加右减;上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位;c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位;c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看;()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式;后者通过配方可以得到前者;即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭;其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+;确定其开口方向、对称轴及顶点坐标;然后在对称轴两侧;左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,;()20x ,若与x 轴没有交点;则取两组关于对称轴对称的点.画草图时应抓住以下几点:开口方向;对称轴;顶点;与x 轴的交点;与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时;抛物线开口向上;对称轴为2bx a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时;y 随x 的增大而减小;当2b x a >-时;y 随x 的增大而增大;当2bx a =-时;y 有最小值244ac b a -.2. 当0a <时;抛物线开口向下;对称轴为2b x a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时;y 随x 的增大而增大;当2b x a >-时;y 随x 的增大而减小;当2bx a=-时;y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++a ;b ;c 为常数;0a ≠;2. 顶点式:2()y a x h k =-+a ;h ;k 为常数;0a ≠;3. 两根式:12()()y a x x x x =--0a ≠;1x ;2x 是抛物线与x 轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式;但并非所有的二次函数都可以写成交点式;只有抛物线与x 轴有交点;即240b ac -≥时;抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中;a 作为二次项系数;显然0a ≠.⑴ 当0a >时;抛物线开口向上;a 的值越大;开口越小;反之a 的值越小;开口越大;⑵ 当0a <时;抛物线开口向下;a 的值越小;开口越小;反之a 的值越大;开口越大.总结起来;a 决定了抛物线开口的大小和方向;a 的正负决定开口方向;a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下;b 决定了抛物线的对称轴.⑴ 在0a >的前提下;当0b >时;02ba-<;即抛物线的对称轴在y 轴左侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba->;即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下;结论刚好与上述相反;即 当0b >时;02ba->;即抛物线的对称轴在y 轴右侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba-<;即抛物线对称轴在y 轴的左侧. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ;在y 轴的右侧则0<ab ;概括的说就是“左同右异”3. 常数项c⑴ 当0c >时;抛物线与y 轴的交点在x 轴上方;即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时;抛物线与y 轴的交点为坐标原点;即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时;抛物线与y 轴的交点在x 轴下方;即抛物线与y 轴交点的纵坐标为负. 总结起来;c 决定了抛物线与y 轴交点的位置. 总之;只要a b c ,,都确定;那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式;通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点;选择适当的形式;才能使解题简便.一般来说;有如下几种情况:1. 已知抛物线上三点的坐标;一般选用一般式;2. 已知抛物线顶点或对称轴或最大小值;一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标;一般选用两根式;4. 已知抛物线上纵坐标相同的两点;常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况;可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后;得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后;得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后;得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后;得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后;得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后;得到的解析式是()2y a x h k =-+-;4. 关于顶点对称即:抛物线绕顶点旋转180° 2y ax bx c =++关于顶点对称后;得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后;得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后;得到的解析式是()222y a x h m n k =-+-+-根据对称的性质;显然无论作何种对称变换;抛物线的形状一定不会发生变化;因此a 永远不变.求抛物线的对称抛物线的表达式时;可以依据题意或方便运算的原则;选择合适的形式;习惯上是先确定原抛物线或表达式已知的抛物线的顶点坐标及开口方向;再确定其对称抛物线的顶点坐标及开口方向;然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系二次函数与x 轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时;图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠;其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=. ② 当0∆=时;图象与x 轴只有一个交点;③ 当0∆<时;图象与x 轴没有交点.1' 当0a >时;图象落在x 轴的上方;无论x 为任何实数;都有0y >;2' 当0a <时;图象落在x 轴的下方;无论x 为任何实数;都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交;交点坐标为(0;)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标;需转化为一元二次方程;⑵ 求二次函数的最大小值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ;b ;c 的符号;或由二次函数中a ;b ;c 的符号判断图象的位置;要数形结合;⑷ 二次函数的图象关于对称轴对称;可利用这一性质;求和已知一点对称的点坐标;或已知与x 轴的一个交点坐标;可由对称性求出另一个交点坐标.二次函数与一元二次方程、一元二次不等式的关系从函数观点来看;一元二次不等式()200ax bx c a ++>≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点的横坐标的集合;一元二次不等式()200ax bx c a ++<≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点的横坐标的集合;一元二次不等式()200ax bx c a ++≥≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点和与x 轴的交点的横坐标的集合;一元二次不等式()200ax bx c a ++≤≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点和与x 轴的交点的横坐标的集合.一元二次方程()200ax bx c a ++=≠的解就是二次函数()()20f x ax bx c a =++≠的图像上;与x 轴的交点的横坐标.。

反比例与一次函数综合面积问题,比较大小问题

反比例与一次函数综合面积问题,比较大小问题

反比例与一次函数综合(1)考点:1.求反比例函数,一次函数解析式,求点坐标2.面积问题3.通过图像求不等式解集4.线段和差最值课前思考:1.已知点A(4.5,5), B(6,0), C(-2,0), 求△ABC的面积.小结:求面积方法__________________________2.已知点A(-2,1),B(1,-3),C(3,4), 求△ABC的面积.小结:求面积方法__________________________铅锤法:如果三角形的三条边与坐标轴都不平行,则通常有以下计算方法:①如图,过三角形的某个顶点作与x轴或y轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A BS S S AD y y S S CE x x∆∆∆∆∆=+=⋅-=+=⋅-其中D,E两点坐标可以通过BC或AB的直线方程以及A或C点坐标得到.②如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBFS S S S S∆∆∆∆=---.所涉及的各块面积都可以通过已知点之间的坐标差直接求得.③如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()ABABCBCBACACADEBADFCCFEByyxxyyxxyyxxSSSS+--+-++-=-+=212121ABC△经典例题:例1、如图,已知一次函数b +x k =y 11的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数xk =y 22的图分别交于C 、D 两点,点D 的坐标(2,-3),点B 是线段AD 的中点。

(1)求一次函数b +x k =y 11与反比例函数xk =y 22的解析式。

(2)求△COD 的面积;(3)直接写出21y >y 时自变量x 的取值范围。

变式练习:如图,一次函数y=kx+b 的图象与反比例函数y=的图象交于点A ﹙﹣2,﹣5﹚ C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1)求反比例函数y=和一次函数y=kx+b 的表达式; (2)连接OA ,OC .求△AOC 的面积.(3)直接写出kx+b>时自变量x 的取值范围。

反比例函数、一次函数及二次函数性质及图像

反比例函数、一次函数及二次函数性质及图像

反比例函数1、反比例函数图象:反比例函数的图像属于以为对称中心的中心对称的反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与相交(K≠0)。

2、性质:1.当k>0时,图象分别位于第一、三象限,同一个内,y随x的增大而减小;当k<0时,图象分别位于二、,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

为x≠0;为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例上任取两点P,Q,过点P,Q分别作x轴,y轴的,与坐标轴围成的面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是,又是,它有两条y=x y=-x(即第一三,二四象限角平分线),是坐标原点。

6.若设y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于。

7.设在内有反比例函数y=k/x和y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x,并且关于原点中心对称.10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的越远。

13.反比例函数图象是中心对称图形,对称中心是原点一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

如图,一次函数的图象与反比例函数y1=-3x(x0)的图像相交于a点,与y轴,x轴分别相交

如图,一次函数的图象与反比例函数y1=-3x(x0)的图像相交于a点,与y轴,x轴分别相交

如图,一次函数的图象与反比例函数y1=-3/x(x<0)的图像相交于A点,与y轴,x轴分别相交于B,C两点,且C(2,0)。

当x小于-1时,一次函数值大于反比例函数值,当x大于-1时,一次函数值小于反比例函数值
(1)求一次函数解析式
(2)设函数y2=a/x(x>0)的图像与y1=-3/x(x<0)的图像关于y轴对称,在y2=a/x(x>0)的图像上取一点P(P的横坐标大于2)过P做PQ垂直于x轴,垂足是Q,若四边形BCQP 的面积等于2,求P坐标。

(1)当x小于-1时,一次函数值大于反比例函数值,当x大于-1时,一次函数值小于反比例函数值
由上可知当x时一次与反比例函数相交
x=-1 y=3 交点A为(-1,3)
将A和C的坐标代入一次函数y=kx+b可得y=-x+2
(2)∵函数y2=a/x(x>0)的图像与y1=-3/x(x<0)的图像关于y轴对称
∴y2=3/x(x>0)
∵y=-x+2
∴B点的坐标为(2,0)
四边形BCQP的面积等于四边形OCQP的面积减去三角形BOC的面积
四边形OCQP的面积为(y+2)×x÷2
三角形BOC的面积为2
即S=(y+2)×x÷2-2=2 → S=xy+2x=8
由y2=3/x(x>0)得xy=3
代入S德得x=5/2 y=6/5
即P点坐标为(5/2,6/5)。

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像
工程设计和优化
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

专题07一次函数与反比例函数综合问题通用的解题思路:1.三角形面积的解题步骤:类型一:三角形有其中一边与坐标轴平行(垂直)的,以这边为底边,以该边所对的顶点的坐标的绝对值为高•底边平行于V轴,则以所对顶点的横坐标的绝对值为高,反之则以纵坐标的绝对值为高.类型二:三角形没有其中一边与坐标轴平行(垂直)的,可以用公式水平宽X铅垂高求解.2.利用图象法解不等式解集的解题步骤:①求交点:联立方程求出方程组的解;②分区间:将一次函数和反比例函数两个交点以及y轴左右两侧分层4个区间;③比大小:图象谁在上方谁就大;④:写出对应区间自变量的取值范围.3.两线段和差的最值问题利用将军饮马模型:做对称,连定点,求交点.1.(2024广东东莞•一模)如图,一次函数y=+3的图象与'轴交于点,与反比例函数日的图象在第一象限内交于点瓦点B的横坐标为1,连接。

8,过点B作BClx轴于点C.⑴求一次函数和反比例函数的解析式;.....................................~4〜.......................⑵设点。

是x轴上一点,使得S^BCD=~S^AOB,求点Q的坐标.【答案】(1)必=2x+3,J=-x⑵点。

的坐标为(-1,0)或(3,0)【分析】本题主要考查了待定系数法确定函数的解析式,一次函数图象的性质,一次函数图象上点的坐标的特征,反比例函数的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.(1)把点代入一次函数了=心+3中,解得m=2,进而可得点B的坐标为(1,5),再利用待定系数法解答即可;(2)根据坐标求得S△朝=可知S%co=:S△皿=5,再根据S^cd=?CD・BC,得CD=2,即可求解.【详解】(1)解:把点{―代入一次函数:Y=m+3中,,一3___——m+3=0,解得m=2,园一次函数的解析式为"2x+3.把点B的横坐标工二1代入y=2x+3中,得"5,国点B的坐标为(1,5),国点B为一次函数和反比例函数图象的交点,园把点8(1,5)代入反比例函数y=|中,得S5,园反比例函数的解析式为:y=-;(2)园jo],8(1,5),BClx轴,0OA=-,BC=5,C(l,0),S5aaob=-AO-BC=-x-x5=—,△如2224[?]Q=—V-^x—=5U*BCD3°AA(9B34,0S ABCn=-CD BC=-CD=5,园CD=2,M(l,0),回点。

一次函数与反比例函数值的大小比较方法

一次函数与反比例函数值的大小比较方法

一次函数与反比例函数值的大小比较方法一次函数和反比例函数是数学中比较基础的概念,它们在实际问题中有广泛的应用。

一次函数通常表示为 y = kx + b 的形式,其中k 是斜率,b 是 y 轴截距。

反比例函数通常表示为 y = k/x 的形式,其中 k 是常数。

在一次函数中,当斜率 k 为正数时,函数值 y 随着 x 的增大而增大;当斜率 k 为负数时,函数值 y 随着 x 的增大而减小。

在反比例函数中,当常数 k 为正数时,函数值 y 随着 x 的增大而减小;当常数 k 为负数时,函数值 y 随着 x 的增大而增大。

为了比较一次函数和反比例函数的值大小,我们可以通过求解它们的交点来确定它们的大小关系。

具体来说,我们可以将一次函数和反比例函数的方程联立起来,解得它们的交点坐标,然后在这个交点处比较它们的函数值大小。

例如,假设我们有一次函数 y = 2x + 1 和反比例函数 y = 3/x,我们可以将它们的方程联立起来,得到一个二次方程 2x^2 + x - 3 = 0。

通过求解这个二次方程,我们可以得到两个交点坐标 x1 = -1 和x2 = 3/2。

在 x1 = -1 处,一次函数的函数值为 y1 = 2(-1) + 1 = -1,反比例函数的函数值为 y2 = 3/(-1) = -3。

因此,在这个交点处,反比例函数的值比一次函数的值小。

在 x2 = 3/2 处,一次函数的函数值为 y3 = 2(3/2) + 1 = 4,反比例函数的函数值为 y4 = 3/(3/2) = 2。

因此,在这个交点处,一次函数的值比反比例函数的值大。

通过这种方法,我们可以比较一次函数和反比例函数的值大小,并确定它们的大小关系。

反比例函数图象的特征及性质

反比例函数图象的特征及性质
上。
性质
当x增大时,y值减小,但xy的乘积保持不变 ,等于比例系数。
对反比例函数应用的展望
01
拓展应用领域
反比例函数作为一种基本的函 数类型,在物理、化学、工程 等领域都有广泛的应用。未来 可以进一步探索其在更多领域 的应用可能性。
02
深化理论研究
虽然反比例函数的基本性质已 经比较清楚,但是关于其更深 层次的理论研究仍然有待加强 。例如,可以进一步探讨反比 例函数与其他函数类型的复合 、变换等问题。
感谢您的观看
THANKS
性质的比较
反比例函数性质
反比例函数在其定义域内是连续的,且当x趋近于0时,y趋近于无穷大或无穷小。此外,反比例函数在其定义域 内具有单调性,即当k>0时,在每个象限内随着x的增大,y值逐渐减小;当k<0时,则相反。
一次函数性质
一次函数在其定义域内是连续的,且当x趋近于无穷大或无穷小时,y也趋近于无穷大或无穷小。此外,一次函 数的斜率决定了函数的增减性,即当斜率大于0时,函数为增函数;当斜率小于0时,函数为减函数。
反比例函数的一般形式
反比例函数的一般形式为 y = k/x(k ≠ 0),其中 k 是比例系数。
当 k > 0 时,反比例函数的图象位于 第一象限和第三象限;当 k < 0 时, 反比例函数的图象位于第二象限和第 四象限。
比例系数 k 决定了反比例函数的图象 特征和性质。
02
反比例函数的图象
图象的形状
反比例函数的图象是由两支分别位于第一、三象限和第二、四象限的双曲线组成。
当$k > 0$时,两支曲线分别位于第一、三象限内;当$k < 0$时,两支曲线分别位 于第二、四象限内。
在每个象限内,随着$x$的增大,$y$值逐渐减小,曲线从坐标轴附近向无限远处延 伸。

函数中的“大小比较”问题

函数中的“大小比较”问题

【当堂检测】 当堂检测】
3、已知点A(-4, y1)、 (-3, y2)、 (1, y3) 、已知点 ( )、B( )、C( 是二次函数y=x2+4x-5的图象上的三个点,则y1,y2,y3的 的图象上的三个点, 是二次函数 的图象上的三个点 大小关系是( 大小关系是( ) A.y1<y2<y3 B.y2<y1<y3 . . C.y3<y1<y2 . D.y1<y3<y2 . 4、一次函数y1=x- 与反比例函数y2=2/x的图 x-1与反比例函数 、一次函数y x- 与反比例函数y 的图 像交于点A(2,1),B(-1,-2),则使y1>y2的x的取 像交于点 , - - ,则使y 值范围是( 值范围是( ) A.x> .x>2 B.x> 或-1<x< .x>2 <x<0 .x> .x> <x< C.- <x< .-1<x< D.x> 或x<- .x>2 x<-1 .- <x<2 .x>
y -1 -2

y=k2x x
y=k1x+b
【课内探究】 课内探究】
考点二:两个函数中的“大小比较”问题 考点二:两个函数中的“大小比较”
3、(2010年潍坊中考)已知函数y1 = x2与函数 1 y2 = - 2 x+3的图象大致如图,若y1 < y2,则自变量 的x的取值范围是( ) 3 3 y A. - 〈x〈2 B. x 〉 2或x 〈2 2 C. 3 D. 3
y 2 y2 A y 1 1 x O 1 2
(A)0 1 2
(B) 0 1 2
(C) 0 1 2
(D) 0 1 2
【课内探究】 课内探究】
考点二:两个函数中的“大小比较”问题 考点二:两个函数中的“大小比较”
2、直线L1:y=k1x+b与直线 2:y=k2x在同一平面直 、直线 与直线L 与直线 在同一平面直 角坐标系中的图象如图所示,则关于的不等式k 角坐标系中的图象如图所示,则关于的不等式 1x+b>k2x 的解为( ) 的解为( A. x>-1 B. x<-1 > < C. x<-2 D. 无法确定 <

探究一次函数与反比例函数图像交点的一个规律

探究一次函数与反比例函数图像交点的一个规律

探究一次函数与反比例函数图像交点的一
个规律
一次函数和反比例函数的图形的交点是一个很重要的主题,学习
它可以更好地理解和应用图形和函数之间的关系。

一次函数是一种线
性函数,它定义为y=ax+b,其中a是斜率,b是一次函数的截距。


比例函数定义为y=a/x,其中a为系数。

在反比例函数的图形中,有两个反对称的对称轴,在这两个轴的两侧,其曲线的斜率是相反的。

当一次函数和反比例函数的图像相交时,有一个明显的特征和规律:两个函数的斜率是相等的。

可以将一次函数的斜率表示为a,反比例函数的斜率表示为b,则a=b。

交点处,也就是x=a/b,因此,整个
过程就结束了。

这里有一个简单的例子来解释这个规律:一次函数定义为y=2x+1,反比例函数定义为y=3/x,由此可以得知两个函数的斜率相同,即
a=2=b。

据此,可以得出它们的交点x=2/3。

函数的交点可以用以上的
规律来求出,这里的规律是:的两个函数的斜率是相等的,则它们的交点为x=a/b。

以上,就是一次函数和反比例函数图像交点的规律。

学会这一规律后可以帮助我们更好地应用函数图形,也可以更方便地求解交点的位置。

了解规律有助于更好地快速求解。

函数值的大小比较

函数值的大小比较

二次函数、反比例函数比较大小一、二次函数的大小比较方法:1、特殊值代入法:直接根据题目要求,分别代入具体的数值,再比较大小。

2、利用函数的增减性:当各点都在对称轴的一侧时,利用函数的增减性进行比较。

3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。

)(1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。

当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2-)>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2-)<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。

当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法:结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。

(第一、二象限的函数值总是大于第三、四象限的函数值)5、移点法:利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。

二、反比例函数的大小比较方法由于反比例函数图象为双曲线,所以比较大小时,首先应注意利用k 值弄清各点所处的象限。

1、 同一象限时,利用函数的增减性比较大小。

K >0时,y 随x 的增大而减小;K <0时,y 随x 的增大而减大;2、不同象限时,用图象法,利用y 轴“上大下小”的特点进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档