2009-2010(2)高等数学A参考答案
安徽大学高数期末考试试卷及答案解析 (1)
![安徽大学高数期末考试试卷及答案解析 (1)](https://img.taocdn.com/s3/m/b9968c3b6c85ec3a87c2c5db.png)
安徽大学2009-2010学年第二学期《高等数学A (二)、B (二)》考试试卷(A 卷)参考答案与评分标准一、填空题(本大题共五小题,每小题2分,共10分)12、0;3、;4、1 /20 arcsin d (,y y f x y π∫∫)d x 32;5、53二、选择题(本大题共五小题,每小题2分,共10分)6、 A ;7、D ;8、D ;9、A ; 10、A.三、计算题(本大题共五小题,其中第11、12、13题每小题10分,第14、15题每小题12分,共54分)11.解. 设。
则曲面在点处的法向量为22(,,)F x y z x y z =+−S (1,1,2)(1,1,2)(1,1,2)(,,)(2,2,1)(2,2,1)x y z F F F x y =−=−由题设可知,平面Π通过法线L ,故12a b 0,+−+=(1,,1)(2,2,1)0a −⋅−=即,由此解得123a b a +=⎧⎨+=⎩035,.22a b =−=12.解:令222(,),(,)2y xP x y Q x y x y x y−==++,则d d L I P x Q y =+∫v ,当时,220x y +≠22222()Q x y Px x y y∂−==∂+∂∂2。
取一小圆周22:C x y εε+=,0ε>充分小,使得C ε完全位于L 所围成的区域内,取逆时针方向。
设D ε为由L 与C ε所围成的区域,则由Green 公式得d d (d L C D Q PP x Q y x y x yεε+∂∂+=−=∂∂∫∫∫0, 所以d d d d LC P x Q y P x Q yε+=−+∫∫22(sin )(sin )(cos )(cos )d πεθεθεθεθθε−−=−∫20d 2πθπ==∫13.解:设cos ,sin ,x R u y R u z ==v =,则Σ对应于:02,0D u v h π≤≤≤≤。
《高等数学》A试卷A答案
![《高等数学》A试卷A答案](https://img.taocdn.com/s3/m/f44c41ef710abb68a98271fe910ef12d2af9a933.png)
《⾼等数学》A试卷A答案⼀、填空题(每⼩题4分,共20分): 1.设ln(y x =,则1d 2x y dx ==. 2.曲线sin ,1cos x t t y t =-??=-? 在 2t π= 处的切线斜率为1.3.若1lim ()x f x →存在,且111()2lim ()x x f x xf x -→=+,则1()2x f x x e -=-.4.若01()f x '=,则000(2)()lim arctan u f x u f x u u→+--=3.5.若2lim 8xx x a x a →∞+??= ?-??,则a =ln 2.⼆、选择题(每⼩题4分,共20分):1.设()232x x f x =+-,则当0x →时( D ). (A )()f x 与x 是等价⽆穷⼩量(B )()f x 是⽐x 较低阶的⽆穷⼩量(C )()f x 是⽐x 较⾼阶的⽆穷⼩量(D )()f x 与x 是同阶但⾮等价⽆穷⼩量2.若函数()f x 在0x 点存在左、右导数,则()f x 在点0x ( A ).(A )连续(B )可导(C )不可导(D )不连续3.当1x →时,12111x x e x ---的极限( C ). (A )等于2 (B )等于0 (C )不存在但不为∞ (D )为∞4.设函数21()1lim nn xf x x →∞+=+,讨论()f x 的间断点,其结论为( A ).(A )存在间断点1x = (B )存在间断点1x =-(C )存在间断点0x = (D )不存在间断点5.设对任意的x ,总有()()()x f x x ?ψ≤≤,且[]lim ()()0x x x ψ?→∞-=,则lim ()x f x →∞( C ).(A )存在且等于0 (B )存在但不⼀定等于0(C )不⼀定存在(D )⼀定不存在三、计算题(本题共4题,共计24分): 1.(5分)设tan y x y =+,求d y ;解:(tan )()d y d x y =+ 22s c 1e 1sec d ydy dx y d d xyy ==-+2.(6分)求极限:)lim x xx →-∞;解:)lim x xx →-∞limlim 05x x ==-=3.(6分)求极限:lim x +→;解:01lim lim 1()2x x x x ++→→=?22lim lim 212x x x x ++→→===4.(7分)设2(cos )y f x =,且f ⼆阶可导,求22d d yx.解:22(cos )2cos (sin )sin 2(cos )dyf x x x xf x dx''=?-=- (2cos 2)2sin )((cos 2sin )(cos 2cos 2'2''2'2 2xf x x xf x xf dx yd -=---=四、解答题(本题共3⼩题,共计24分): 1.(6分)设1x =1n x +=列{}n x 的极限存在,并求其极限.证明:单调性:当1n =时,1x =,21x x =>,假设当n k =时有1k k x x +>,则当1n k =+时仍然有,21k k x x ++=即,数列}{n x 是单调增加数列。
2010高等数学下试卷及答案
![2010高等数学下试卷及答案](https://img.taocdn.com/s3/m/ca952f1df18583d0496459aa.png)
华南农业大学期末考试试卷(A 卷)2009~2010学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、 单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程'220y y x ---=是( )A .齐次方程B .可分离变量方程C .一阶线性方程D .二阶微分方程2.过点(1,2,--且与直线25421x y z +-==-垂直的平面方程是( )A .4250x y z +-+=B .4250x y z ++-=C .42110x y z +-+=D .42110x y z ++-= 3.设(,)ln()2yf x y x x=+,则(1,1)y f =( ) A .0 B .13 C .12D .24.若lim 0n n u →∞=,则级数1n n u ∞=∑( )A .可能收敛,也可能发散B .一定条件收敛C .一定收敛D .一定发散5.下列级数中发散的是( )A .112n n ∞=∑ B .11(1)n n ∞-=-∑ C .n ∞= D .n ∞= 二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程"4'50y y y -+=的通解为______。
(今年不作要求)2.设有向量(4,3,0),(1,2,2)a b ==-,则2a b +=____________________。
3.设有向量(1,1,0),a b ==-,它们的夹角为θ,则c o s θ=____________________。
4.设x z y =,则dz =____________________。
5.设L 是圆周229x y +=(按逆时针方向绕行),则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰的值为____________________。
三、计算题(本大题共7小题,每小题7分,共49分)1.已知arctan x z y =,求2,z z x x y∂∂∂∂∂。
高等数学期末考试试题及答案(大一考试)
![高等数学期末考试试题及答案(大一考试)](https://img.taocdn.com/s3/m/2b07c63330126edb6f1aff00bed5b9f3f90f7241.png)
五、设函数由方程确定,求。
(8分)六、若有界可积函数满足关系式,求。
(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。
(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标。
(10分)十、求方程的通解(6分)十一、求证:。
(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。
B 3。
D 4.B 5。
D分,共18分)为任意常数),4. 2 ,5。
6。
分………………………………………..6分分解:………………3分 (6) (8)导 (3)数)…………6分分解:(1)。
……。
.3分…………………….6分分分=……………6分时有极大值2,有极小值. 在上是凸的,在上是凹的,拐点为(0,0)………10分十、解; (3)设方程(1)的解为代入(1)得………5分 (6)十一、证明:令………………1 分又…。
3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
,所以………….5分。
(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是()(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的( )(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内( )(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。
(A) (B)(C) (D)5.广义积分当()时收敛。
(A) (B)(C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限。
(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型. (7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。
中国传媒大学-高等数学-2009至2010学年第二学期期末考试试卷A卷(含答案)
![中国传媒大学-高等数学-2009至2010学年第二学期期末考试试卷A卷(含答案)](https://img.taocdn.com/s3/m/3ba135fbfe4733687f21aa76.png)
1,
ns
n1
s 1 时级数
1 收敛; s 1 时,级数
1 发散。
ns
n1
ns
n1
2、(本小题 8 分)
求级数
x 4n 的和函数 S( x) 。
n1 (4n)!
解:由幂级数的分析性质得微分方程
S (4) (x)
x 4n4
1 S( x)
n1 (4n 4)!
(8 分)
且 S(0) S(0) S(0) S(0) 0
1、设 u arcsin x ( y 0) 则 u
x2 y2
y
第1页共6页
x (A)
x2 y2
x (B)
x2 y2
x (C)
x2 y2
x (D)
x2 y2
答( A )
2、设 为球面 x2 y2 z2 a2 在 z h 部分, 0 h a ,则
3、若幂级数 an x n 的收敛半径为 R ,那么 n0
6
得分 评卷人
(3 分) (5 分)
四、解答下列各题(本大题共 3 小题,每小题 7 分,总计 21 分) 1、(本小题 7 分)
改变二重积分
1
2y
dy f ( x, y)dx
3
dy
3 y
f ( x, y)dx的积分次序
0
0
1
0
解:原式
2
dx
0
3 x x
f
( x,
y)dy
。
2
(7 分)
判别级数 a n , (a 0, s 0) 的敛散性。 n1 n s 解: 由比值判别法
l
i
a m
n1
a n n
0910高等数学A(二)答案
![0910高等数学A(二)答案](https://img.taocdn.com/s3/m/f0c9336fa9956bec0975f46527d3240c8447a10f.png)
0910高等数学A(二)答案第一篇:0910高等数学A(二)答案济南大学2009~2010学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学A(二)任课教师:张苏梅等一、填空题(每小题3分,共18分)1.yzez-xy;2.y=2x3-x2;3.2xdx+2ydy;π∞(-1)n(2x)2n4.0;5.2;6..12(1-n∑=0(2n)!),(-∞,+∞)二、选择题(每小题3分,共18分)C;D;C;B;A;B.三、计算题(每小题8分,共32分)1.解:∂z∂x=1ycosxy;.....4分∂2z1xxx∂x∂y=-y2cosy+y3siny.....8分2.解:⎰⎰xydσ=⎰2dx⎰xxydy.....4分D0=12⎰20x3dx=2.....8分 3.解:dS=+x2x2+y+y2x2+ydxdy=2dxdy.....2分⎰⎰zdS=⎰⎰x2+y22dxdy.....5分∑Dxy=⎰2πdθ⎰2r2dr=π.....8分 4.解:⎰⎰(x2+y2+z2)dxdy=dxdy=πa4...........8分∑D⎰⎰axy四、应用题(每小题8分,共16分)1.解:由椭球的对称性,不妨设(x,y,z)是该椭球面上位于第Ⅰ卦限的任一点,内接长方体的相邻边长为2x,2y,2z(x,y,z>0),其体积为:V=8xyz构造拉格朗日函数F(x,y,z,λ)=8xyz-λ(x2y2a+b+z2c-1)......4分∂F∂x=8yz-λ2xa2=0令∂F2y∂y=8xz-λb2=0........6分∂F∂z=8xy-λ2zc2=0求得(x,y,z)=⎛a,b,c⎫⎪,V=8xyz=8abc......8分⎝33⎪⎭332.解:Iz=⎰⎰⎰(x2+y2)dv.........3分Ω=⎰2π2430dθ⎰0dr⎰r2rdz.........6分=2π⎰2r3(4-r2)dr=03π.........8分五、(8分)解:因为limana=limn=1,所以收敛半径为1.n→∞n+1n→∞n+1又x=±1时,级数均发散,故级数的收敛域为(-1,1).....3分n=1∑nx∞n=x∑nxn=1∞n-1=x(∑xn)'......6分 n=1∞xx=x()'=,x∈(-1,1).........8分 21-x(1-x)六、(8分)解:① 设u=x2+y2,则∂zx=f'(u);∂xu∂2zx21x2=()f''(u)+f'(u)-3f'(u)........2分 2uu∂xuy21y2同理,2=()f''(u)+f'(u)-3f'(u)uu∂yu由∂2z∂2z∂x2+∂2z∂y2=0⇒f''(u)+1f'(u)=0.....4分 u② 设f'(u)=p,f''(u)=dp,du则原方程化为:dp1dpdu+p=0⇒=-duupu积分得:p=CC,即f'(u)=,........6分 uu由f'(1)=1,得C=1.于是f(u)=ln|u|+C1代入f(1)=0得:C1=0.函数f(u)的表达式为:f(u)=ln|u|.......8分第二篇:1112高等数学B(二)答案济南大学2011~2012学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学B(二)任课教师:一、填空题(每小题2分,共10分)1、2dx+dy,2、-5,3、1,4、⎰10dy⎰1yf(x,y)dx5、1二、选择题(每小题2分,共10分)1、A2、B3、C4、C5、D三、计算题(每小题8分,共40分)1、解:令F=x2+y2+z2-2z,则Fx=2x,Fz=2z-2.....2分∴∂zFx∂x=-xF=z.....4分z1-∂2z∂x(1-z)2+x2∴∂x2=∂x(1-z)=(1-z)3.....8分2、解:⎰⎰(x+6y)dxdy=⎰1dx5x76D0⎰x(x+6y)dy=3.....8分π3、解:⎰⎰+x2+y2dxdy=D⎰2dθ⎰1+r2rdr=π(22-1).....8分4、解:ux(2,1,3)=4,uy(2,1,3)=5,uz(2,1,3)=3 方向lϖ=(3,4,12)cosα=313,cosβ=413,cosγ=12 .....6分∂z∂l=uu68xcosα+ycosβ+uzcosγ=13.....8分5、解:收敛域为(0,2).....2分∞∞令S(x)=∑(n+1)(x-1)n=(1)n+1)'.....6分n=0∑(x-n=0S(x)=(x-12-x)'=1(2-x)2x∈(0,2).....8分四、解答题(每小11分,共33分)ϖ1、解:交线的方向向量为nϖiϖjkϖ=1-4=(-4,-3,-1).....8分2-1-5所求直线方程为x+3y-2z-54=3=1.....11分2、解:令f(x)=xx-1,则f'(x)=-1-x2x(x-1)<0x>1 所以un单调递减且limn→∞un=0∞所以级数∑(-1)nnn=2n-1.....6分n∞由于limn→∞=1,且∑1发散n=2nn∑∞(-1)n所以级数n.....11分n=2n-13、解:旋转曲面方程为z=x2+y2.....3分投影区域D:x2+y2≤1.....5分V=⎰⎰(1-x2-y2)dxdy=⎰2πdθ⎰1π(1-r)rdr=D.....11分五、证明题(每小题7分,共7分)ff(x,0)-f(0,0)x(0,0)=lim证:x→0x=0f(0,0)=limf(x,0)-f(0,0)xx→0x=0所以函数f(x,y)在(0,0)处可导.....3分lim∆z-fx(0,0)∆x-fy(0,0)∆yρ→0ρ=limf(∆x,∆y)∆x∆yρ→0∆x2+∆y2=limρ→0∆x2+∆y2取∆y=k∆x,得极限为k1+k,说明极限不存在所以函数f(x,y),在(0,0)点不可微.....7分第三篇:专升本高等数学(二)成人高考(专升本)高等数学二第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
中国石油大学高数(2-2)历年期末试题参考答案
![中国石油大学高数(2-2)历年期末试题参考答案](https://img.taocdn.com/s3/m/20ca8ec9ed630b1c58eeb503.png)
中国石油大学高数(2-2)历年期末试题参考答案2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上.1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π. 2. 函数22y xz +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分22()f x y dv+⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz.5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的(D)37 .10. 曲面积分2z dxdy ⎰⎰∑在数值上等于( C ).(A) 流速场iz v 2=穿过曲面Σ指定侧的流量;(B) 密度为2z =ρ的曲面片Σ的质量;(C) 向量场kz F 2=穿过曲面Σ指定侧的通量;(D) 向量场k z F 2=沿Σ边界所做的功.11.若级数1(2)nn n c x ∞=+∑在 4x =- 处是收敛的,则此级数在1x = 处 ( D )(A)发散; (B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 12.级数121(1)n pn n -∞=-∑的敛散性为 ( A )(A) 当12p >时,绝对收敛; (B )当12p >时,条件收敛;(C) 当102p <≤时,绝对收敛; (D )当102p <≤时,发散.三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤.13. (本题满分6分)设()x y z x y z e -++++=确定(,)z z x y =,求全微分dz .解:两边同取微分 ()(1)()x y z dx dy dz e dx dy dz -++++=⋅-⋅++ , 整理得 dz dx dy =--.14. (本题满分8分)求曲线2223023540xy z x x y z ⎧++-=⎨-+-=⎩ 在点(1,1,1)处的切线与法平面方程. 解:两边同时关于x 求导22232350dy dz x y z dx dx dy dz dx dx ⎧+⋅+⋅=⎪⎪⎨⎪-+=⎪⎩,解得(1,1,1)(1,1,1)9474dy dx dz dx ⎧=⎪⎪⎨⎪=-⎪⎩,所以切向量为:91{1,,}1616T =-, 切线方程为: 1111691x y z ---==-;法平面方程为:16(1)9(1)(1)0x y z -+---=,即169240x y z +--=. 15.(本题满分8分)求幂级数0(21)nn n x ∞=+∑的和函数.解:求得此幂级数的收敛域为(1,1)-,0(21)nn n x ∞=+∑02∞==+∑nn nx 0∞=∑nn x ,10122∞∞-===∑∑nn n n nxx nx,设11()∞-==∑n n A x nx ,则10011(),(11);1∞∞-=====-<<-∑∑⎰⎰xxn nn n x A x dx nx dx x x x 21(),1(1)'⎛⎫∴== ⎪--⎝⎭x A x x x即20222()(1)∞===-∑nn x nx xA x x ,0(21)∞=∴+∑n n n x 02∞==+∑nn nx 0∞=∑n n x 22211,(11)(1)1(1)+=+=-<<---x x x x x x .16.(本题满分6分)计算()∑=++⎰⎰I x y z dS ,其中∑为曲面5+=y z 被柱面2225+=xy 所截下的有限部分.解:()∑=++⎰⎰I x y z dS (5)∑=+⎰⎰x dS∑=⎰⎰xdS(∑关于yoz 平面对称,被积函数x 是x 的奇函数)5∑+⎰⎰dS05∑=+⎰⎰dS 222552+≤=⎰⎰x y dxdy 52251252π==.17.(本题满分8分)计算积分222(24)(2)=++-⎰LI xxy dx x y dy,其中L 为曲线22355()()222-+-=x y 上从点(1,1)A 到(2,4)B 沿逆时针方向的一段有向弧.解:4∂∂==∂∂Q P x x y,∴积分与路径无关,选折线AC +CB 为积分路径,其中(2,1)C ,,12:,1,0=≤≤⎧⎨==⎩x x x AC y dy 2,:.,14==⎧⎨=≤≤⎩x dx CB y y y222(24)(2)∴=++-⎰LI x xy dx x y dy222(24)(2)=++-⎰ACx xy dx x y dy 222(24)(2)+++-⎰CBx xy dx x y dy 24221141(24)(8).3=++-=⎰⎰x x dx y dy18.(本题满分8分)计算22()∑=+++⎰⎰I yzdydz y xz dzdx xydxdy,∑是由曲面224-=+y x z与平面0=y 围成的有界闭区域Ω的表面外侧.解:2222,(),,,∂∂∂==+=++=+∂∂∂P Q R P yz Q y x z R xy x z x y z由高斯公式, 22()∑=+++⎰⎰I yzdydz y x z dzdx xydxdy 22()Ω=+⎰⎰⎰x z dxdydz(利用柱面坐标变换cos sin ,θθ=⎧⎪=⎨⎪=⎩z x y y 则2:02,02,04.θπΩ≤≤≤≤≤≤-r y r )2224200032.3ππθ-==⎰⎰⎰r d rdr r dy19.(本题满分8分)在第Ⅰ卦限内作椭球面1222222=++cz b y a x 的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.解:设切点坐标为),,(0z y x ,则切平面的法向量为000222222{,,}x y z a b c, 切平面方程为0)()()(02020020=-+-+-z z c z y y b y x x a x ,即1202020=++czz b y y a x x ,则切平面与三个坐标面所围成的四面体体积为 22200016a b cV x y z=⋅, 令)1(ln ln ln ),,,(220220220000000-+++++=czb y a x z y x z y x L λλ解方程组⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=+=+=+1021021021220220222002020c z b y ax c z z b y y a x x λλλ,得30a x =,30b y =,3c z=,故切点坐标为)3,3,3(c b a .20. (本题满分6分)设(),()f x g x 均在[,]a b 上连续,试证明柯西不等式:22[()][()]bbaaf x dxg x dx ⎰⎰2[()()].baf xg x dx ≥⎰证:设:,.D a x b a y b ≤≤≤≤则22[()][()]bba af x dxg x dx ⎰⎰22()()Df xg y dxdy =⎰⎰(D关于y x=对称)22()()Df yg x dxdy =⎰⎰221[()()2D f x g y dxdy =+⎰⎰22()()]Df yg x dxdy ⎰⎰22221[()()()()]2Df xg y f y g x dxdy =+⎰⎰1[2()()()()]2Df xg x f y g y dxdy ≥⋅⎰⎰[()()()()]Df xg x f y g y dxdy =⋅⎰⎰()()()()b b aaf xg x dx f y g y dy =⎰⎰2[()()]baf xg x dx =⎰.2008—2009学年第二学期 高等数学(2-2)期末试卷(A)参考答案一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1. 设三向量,,a b c 满足关系式a b a c ⨯=⨯,则( D ). (A )必有0a =; (B )必有0b c -=; (C )当0a ≠时,必有b c =; (D )必有()a b c λ=- (λ为常数).2. 直线34273x y z++==--与平面4223x y z --=的关系是( A ). (A )平行,但直线不在平面上; (B )直线在平面上;(C )垂直相交; (D )相交但不垂直.3. 二元函数225,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( A )(A) 不连续,偏导数存在 (B) 连续,偏导数不存在(C) 连续,偏导数存在 (D) 不连续,偏导数不存在4. 已知2()()x ay dx ydyx y +++为某二元函数的全微分,则=a ( D ).(A )1-; (B )0; (C )1; (D )2.5. 设()f u 是连续函数,平面区域2:11,01D x y x -≤≤≤≤-,则22()Df x y dxdy +=⎰⎰( C ).(A )21122()x dx f x y dy-+⎰⎰; (B )211220()y dy f x y dx-+⎰⎰;(C )12()d f r rdr ⎰⎰πθ; (D )120()d f r dr⎰⎰πθ.6. 设a 为常数,则级数1(1)(1cos )nn a n∞=--∑( B ).(A )发散 ; (B )绝对收敛; (C )条件收敛; (D )收敛性与a 的值有关.二.填空题(本题共6小题,每小题4分,满分24分).1. 设函数222(,,)161218x y zu x y z =+++,向量{1,1,1}n =,点0(1,2,3)P , 则03.3P u n∂=∂2. 若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数5.a =-3. L 为圆221x y +=的一周,则22()0.Lx y ds -=⎰4. 设1lim 2n n naa +→∞=,级数211n n n a x ∞-=∑的收敛半径为2.25. 设221()x y f x e dy-=⎰,则111()(1).4xf x dx e -=-⎰6. 设()f x 是以2为周期的周期函数,它在区间(1,1]-上的定义为32,10(),01x f x x x -<≤⎧=⎨<≤⎩, 则()f x 的以2为周期的傅里叶级数在1x =处收敛于3.2三.解答下列各题(本题共7小题,满分44分).1.(本小题6分)设()f u 是可微函数,(y z f =,求2z z x y x y ∂∂+∂∂. 解题过程是:令yu =,则()y zf u x ∂'=∂,()2zf u y x y∂'=∂,20.z zxy x y∂∂∴+=∂∂2. (本小题6分)计算二重积分2211Dxy dxdy x y +++⎰⎰,其中22{,)1,0}D x y x y x =+≤≥.解题过程是:D 关于x 轴对称,被积函数221xy x y ++关于y 是奇函数,221Dxy dxdy x y∴=++⎰⎰,故2211D xy dxdy x y +++⎰⎰221D xy dxdy x y =++⎰⎰221Ddxdy x y +++⎰⎰122020ln 2.12rdr d r -=+=+⎰⎰πππθ3. (本小题6分) 设曲面(,)z z x y =是由方程31x y xz +=所确定,求该曲面在点0(1,2,1)M -处的切平面方程及全微分(1,2)dz .解题过程是:令3(,,)1F x y z x y xz =+-,23x F x y z '=+,3y F x '=,zF x '=,则所求切平面的法向量为:0{,,}{5,1,1}x y zM n F F F '''==,切平面方程为:560.x y z ++-=23x zF z x y z x F x '∂+=-=-'∂,2y zF zx y F '∂=-=-'∂,0(1,2)5.M M z z dzdx dy dx dy x y ∂∂∴=+=--∂∂ 4. (本小题6分) 计算三重积分22x y dxdydzΩ+,其中Ω是由柱面21y x =-0,0y z ==,4x y z ++=所围成的空间区域. 解题过程是:利用柱面坐标变换,22x y dxdydz Ω+⎰⎰⎰14(cos sin )2000r d r dr dz -+=⎰⎰⎰πθθθ 12300[4(cos sin )]d r r dr =-+⎰⎰πθθθ04141[(cos sin )].3432d =-+=-⎰ππθθθ5. (本小题6分)求(2)x z dydz zdxdy ∑++⎰⎰,其中∑为曲面22(01)z x y z =+≤≤,方向取下侧.解题过程是:补2211,(,){1}.z x y D x y ∑=∈=+≤上:∑与1∑上所围立体为20201, 1.r r z Ω≤≤≤≤≤≤:,θπ 由高斯公式,得1(2)(201)x z dydz zdxdy dxdydz Ω∑+∑++=++⎰⎰⎰⎰⎰上下2211332r d rdr dz ππθ==⎰⎰⎰, (2)x z dydz zdxdy ∑∴++=⎰⎰13(2)2x z dydz zdxdy π∑-++⎰⎰上3012Ddxdy π=--⎰⎰3.22πππ=-=6. (本小题7分) 求幂级数211nn n x n∞=+∑的收敛域及和函数.解题过程是:因为1lim nn n a R a →∞+=2211lim 1(1)1n n n n n →∞++==++,故收敛区间为(1,1)-; 1±=x 时,极限21lim 0n n n→∞+≠,级数均是发散的;于是收敛域为(1,1)-,211()n n n S x x n ∞=+=∑1n n nx ∞==∑1nn x n∞=+∑10011n x x n n n x x nx dx dxn ∞∞-==''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑⎰⎰0111x x x dx x x '⎛⎫=+ ⎪--⎝⎭⎰2ln(1),(1,1).(1)x x x x =--∈--7. (本小题7分)例1 计算22()I xy dS∑=+⎰⎰,∑为立体221x y z +≤≤的边界. 解题过程是: 设12∑=∑+∑,其中1∑为锥面22,01z x y z =+≤≤,2∑为221,1z xy =+≤部分,12,∑∑在xoy 面的投影为:D 221x y +≤.22112z z dS dxdy dxdyx y ⎛⎫∂∂⎛⎫=++= ⎪ ⎪∂∂⎝⎭⎝⎭,2dS dxdy=,22()I x y dS ∑∴=+⎰⎰122()x y dS ∑=++⎰⎰222()xy dS ∑+⎰⎰22()2Dx y dxdy =+⎰⎰22()Dx y dxdy++⎰⎰22(21)()Dx y dxdy =+⎰⎰2130(21)(21).2d r dr ππθ==⎰⎰四.证明题(8分).设函数(,)f x y 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2221()[()1]Ly f xy x y f xy I dx dy y y+-=+⎰, (1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.证明: (1)记21()(,)y f xy P x y y +=,22[()1](,)x yf xy Q x y y -=,;1)()()](]1)([);(1)()](1[])()(2[22322222y xy f xy xy f y xy f y x xy f y x Q xy f xy y xy f y xy f y y x xy f y xy yf y P -'+='⋅+-=∂∂'+-=+-⋅'+=∂∂P Q y x∂∂∴=∂∂成立,积分I 与路径L 无关.(2)由于积分与路径无关,选取折线路径,由点(,)a b 起至点(,)c b ,再至终点(,)c d ,则(,)(,)(,)(,)(,)(,)c b c d a b c b I P x y dx Q x y dy =+⎰⎰21[()][()]cda ccbf bx dx cf cy dy b y=++-⎰⎰ ()()cb cd ab cb c a c c f t dt f t dt b d b -=+++-⎰⎰()().cd ab c a c af t dt ab cd d b d b=-+==-⎰2009—2010学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题(6530⨯=分分)1. 若向量,,a b c 两两互相垂直,且5,12,13a b c ===,则132.a b c ++=2.设函数22sin y z xy x=,求2.z z x y zx y∂∂+=∂∂3. 设函数(,)f x y 为连续函数, 改变下列二次积分的积分顺序:2221212201(,)(,)(,).y xx y dy f x y dx dx f x y dy f x y dy --=+⎰⎰⎰⎰⎰⎰ 4. 计算(1,2)2(0,0)7()(2).2y y I e x dx xe y dy e =++-=-⎰5. 幂级数213nnn nx ∞=∑(3,3).-6. 设函数2()()f x x x x πππ=+-<< 的傅里叶级数为:01(cos sin )2n n n a a nx b nx ∞=++∑,则其系数32.3bπ=二、选择题(4520⨯=分分)1.直线11321x y z --==-与平面342x y z +-=的位置关系是( A )(A) 直线在平面内; (B) 垂直; (C) 平行; (D) 相交但不垂直.2.设函数22(,)4()f x y x y x y =---, 则(,)f x y ( C )(A) 在原点有极小值; (B) 在原点有极大值;(C) 在(2,2)-点有极大值; (D) 无极值.3. 设L 是一条无重点、分段光滑,且把原点围在内部的平面闭曲线,L 的方向为逆时针方向,则22Lxdy ydxx y-=+⎰( C ) (A) 0; (B)π; (C) 2π; (D) 2π-.4. 设a 为常数,则级数21sin n nan n ∞=⎛ ⎝∑( B )(A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性与a 值有关.三、计算题 (7+7+7+7+6+8=42分)1. 设224,(,)(0,0),(,)0,(,)(0,0).xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩讨论(,)f x y 在原点(0,0)处是否连续,并求出两个偏导数(0,0)xf '和(0,0)yf '. (7分) 解:令422442,lim (,)lim 1y y ky k x ky f ky y k y y k →→===++,随k 的取值不同,其极限值不同,00lim (,)x y f x y →→∴不存在,故(,)f x y 在原点不连续;00(0,0)(0,0)00(0,0)limlim 0x x x f x f f xx ∆→∆→+∆--'===∆∆, 00(0,0)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→+∆--'===∆∆.2. 计算222I x y z dxdydzΩ=++其中Ω是由上半球面222z x y =--和锥面22z x y =+所围成的立体 . (7分) 解:作球面坐标变换:sin cos ,sin sin ,cos .x y z ρϕθρϕθρϕ=== 则2sin dxdydz d d d ρϕθϕρ=, :02,0,02.4πθπϕρΩ≤≤≤≤≤≤222I x y z dxdydz Ω=++2234000sin (22).d d d ππθϕϕρπ==-⎰⎰⎰3. 求锥面22z x y =+被柱面222x y x +=所割下部分的曲面面积 .(7分)解:锥面∑:22,(,)xy z x y x y D =+∈=22{2}.x y x +≤22xz x y'=+22yz x y '=+ 22122.xyxyx y D D S dS z z dxdy dxdy ∑''∴==++==⎰⎰4. 计算曲面积分222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰,其中∑是由22z x y =+,221xy +=,0,0,0x y z ===围在第一卦限的立体的外侧表面 . (7分)解:设Ω为∑所围立体,222,,,P z x Q x y R y z ===222,P Q R x y z x y z∂∂∂++=++∂∂∂由Gauss 公式,222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰222()xy z dxdydzΩ=++⎰⎰⎰作柱面坐标变换:cos ,sin ,.x r y r z z θθ=== 则dxdydz rd drdzθ=,2:0,01,0.2r z r πθΩ≤≤≤≤≤≤ 2122205().48r I d rdr r z dz πθπ∴=+=⎰⎰⎰5.讨论级数312ln n n n∞=∑的敛散性. (6分)解:543124ln ln lim lim0,n n n nn nn→∞→∞⋅==312ln n nn ∞=∴∑收敛 .6. 把级数121211(1)(21)!2n n n n xn -∞--=--∑的和函数展成1x -的幂级数.(8分)解:设级数的和函数为()S x ,则 121211(1)()(21)!2n n n n S x x n -∞--=-=-∑2111(1)sin (21)!22n n n x x n --∞=-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑,(,).x ∈-∞+∞即111111()sin sin sin cos cos sin2222222x x x x S x ---⎛⎫⎛⎫==+=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭201(1)1sin 2(2)!2n n n x n ∞=--⎛⎫=⋅ ⎪⎝⎭∑2101(1)1cos 2(21)!2n n n x n +∞=--⎛⎫+⋅ ⎪+⎝⎭∑2201(1)sin (1)2(2)!2nnnn x n ∞=-=⋅-⋅∑212101(1)cos (1),(,).2(21)!2n n n n x x n ∞++=-+⋅-∈-∞+∞+⋅∑四、 设曲线L 是逆时针方向圆周22()()1,()x a y a x ϕ-+-=是连续的正函数,证明:()2()Lxdy y x dx y ϕπϕ-≥⎰. (8分)证明:设22:()()1,D x a y a -+-≤由Green 公式, ()()()LDxdy Q P y x dx dxdy y x y ϕϕ∂∂-=-∂∂⎰⎰⎰1(())()Dx dxdy y ϕϕ=+⎰⎰(而D 关于y x =对称)1(())()Dx dxdy x ϕϕ=+⎰⎰1[2()]22.()D Dx dxdy dxdy x ϕπϕ≥⋅==⎰⎰⎰⎰即 ()2()Lxdyy x dx y ϕπϕ-≥⎰.2010-1011学年第二学期高等数学(2-2)期末考试A 卷参考答案一. 填空题 (共4小题,每小题4分,共计16分) 1.22(1,0)ln(),yz xe x y dz =++=设则dy dx +3 .2.设xy y x y x f sin ),(+-=,则dx x x f dy y⎰⎰11 0),(=)1cos 1(21-.3.设函数21cos ,0()1,0xx f x xx x πππ+⎧<<⎪=-⎨⎪+-≤≤⎩以2π为周期,()s x 为的()f x 的傅里叶级数的和函数,则(3)s π-= 212π+ .4.设曲线C 为圆周222R y x =+,则曲线积分ds x y x C⎰+)—(322=32R π . 二.选择题(共4小题,每小题4分,共计16分)1. 设直线L 为32021030,x y z x y z ++=⎧⎨--+=⎩平面π为4220x y z -+-=,则 ( C ) .(A) L 平行于平面π (B) L 在平面π上(C) L 垂直于平面π (D) L 与π相交,但不垂直 2.设有空间区域2222:x y z R Ω++≤,则222x y z dvΩ++等于( B ).(A) 432R π (B) 4R π (C) 434R π (D) 42R π 3.下列级数中,收敛的级数是( C ).(A)∑∞=+-1)1()1(n nnn n (B) ∑∞=+-+11)1(n nn n(C) nn e n -∞=∑13(D)∑∞=+1)11ln(n n nn4. 设∑∞=1n na 是正项级数,则下列结论中错误的是( D )(A ) 若∑∞=1n na 收敛,则∑∞=12n na 也收敛 (B )若∑∞=1n na 收敛,则11+∞=∑n n na a 也收敛(C )若∑∞=1n na 收敛,则部分和nS 有界 (D )若∑∞=1n na 收敛,则1lim 1<=+∞→ρnn n a a 三.计算题(共8小题,每小题8分,共计64分) 1.设函数f 具有二阶连续偏导数,),(2y x y xf u +=,求yx u ∂∂∂2.解:212f xyf xu+=∂∂)()(22222121211212f f x f f x xy xf yx u++++=∂∂∂221221131)2(22f f x xy yf x xf++++=2.求函数y x xy z +-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向x 轴正向的切线方向的方向导数.解:曲线⎩⎨⎧+==1:2x y xx L 在点(1,2)处的切向量)2,1(=T ,)2,1(51=T52cos ,51cos ==βα13|)16(|,11|)13(|)2,1()2,1()2,1(2)2,1(=+=∂∂=-=∂∂xy yzy x z 函数在点(1,2)沿)2,1(=T 方向的方向导数为5375213511|)2,1(=⨯+=∂T3.计算,)(2dxdy y x D⎰⎰+其中}4),({22≤+=y xy x D .解dxdy xy dxdy y xdxdy y x y x y x D⎰⎰⎰⎰⎰⎰≤+≤+++=+4422222222)()(223000d r dr πθ=+⎰⎰ =π84. 设立体Ω由锥面22z x y =+及半球面2211z x y =+--围成.已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量. 解:由题意知密度函数||),,(z k z y x =ρ 法1:⎪⎩⎪⎨⎧≤≤≤≤≤≤Ωϕπϕπθcos 204020r :质量M =⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z k dxdydz z y x ||),,(ρk =drr r d d ϕϕϕθϕππsin cos 2cos 204020⎰⎰⎰ 76kπ= . 法2:222222:1,:11D x y x y z x y ⎧+≤⎪Ω⎨+≤≤--⎪⎩(,,)||M x y z dxdydz k z dxdydzρΩΩ==⎰⎰⎰⎰⎰⎰22111076r rkk d dr ππθ+-==⎰⎰⎰.法3:1222017||(1(1)).6kM k z dxdydz z z dz z z dz πππΩ==+--=⎰⎰⎰⎰⎰5.计算曲线积分⎰+++-=Cyx dyx y dx y x I 22)()(,其中C 是曲线122=+y x 沿逆时针方向一周.解:⎰++-=Cdyx y dx y x I 1)()(dxdy y Px Q y x ⎰⎰≤+∂∂-∂∂=122)(π2])1(1[122=--=⎰⎰≤+dxdy y x .6. 计算第二类曲面积分⎰⎰∑++dxdy zx xydxdz xyzdydz 2,其中∑为球面1222=++z y x的外侧.解:利用高斯公式,dxdydz x x yz dxdy zx xydxdz xyzdydz ⎰⎰⎰⎰⎰Ω∑++=++)()(22dxdydz x yz ⎰⎰⎰Ω+=)(dxdydz x ⎰⎰⎰Ω+2dxdydzz y x ⎰⎰⎰Ω+++=)(310222.154sin 31104020πϕϕθππ==⎰⎰⎰dr r d d 7.求幂级数nn x n ∑∞=+111的和函数 .解:幂级数的收敛半径1=R ,收敛域为)1,1[-0≠x 时,1111)(+∞=∑+=n n x n x xS =01x nn x dx ∞=∑⎰01x n n x dx ∞==∑⎰0ln(1)1xxdx x x x==----⎰0=x 时,0)0(=S ,⎪⎩⎪⎨⎧=⋃-∈---=∴00)1,0()0,1[)1ln(1)(x x xx x S四.证明题(本题4分)证明下列不等式成立:π≥⎰⎰Dx y dxdy ee ,其中}1|),{(D 22≤+=y x y x .证明:因为积分区域关于直线x y =对称, ⎰⎰⎰⎰=DDyxxy dxdy e edxdy e e⎰⎰=∴D x y dxdy e e 21)(⎰⎰⎰⎰+D D y xxy dxdy ee dxdy e e =π=≥+⎰⎰⎰⎰dxdy dxdy e e e e D y xx y 221(21)五.应用题(本题8分)设有一小山,取它的底面所在平面为xoy 坐标面,其底部所占的区域为},75:),{(22≤-+=xy y x y x D 小山的高度函数为.75),(22xy y x y x h +--= (1)设),(0y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(0y x g ,试写出),(0y x g 的表达式。
高数A(二)A卷参考答案
![高数A(二)A卷参考答案](https://img.taocdn.com/s3/m/17b0a796cc22bcd126ff0c76.png)
学生期末考试试题参考答案及评分标准纸
课程名称
高等数学A(二)
考试班级
05级A类
考试标准用时
120
试卷代号
A
参考答案及评分标准:
一、填空题:(每小题4分,共24分)
1、 2、 3、 4、 5、 6、3
二、选择题:(每小题4分,共16分)
1、D 2、C 3、B 4、C
三、计算重积分:(每小题7分,共14分)
1、 3分
7分
2、 3分
7分
四、计算曲线积分(每小题7分,共14分)
1、 4分
7分
2、 ,
2分
= 4分
7分
五、(本题共有两小题,第1题5分,第2题7分,共12分)
1、 3分
发散5分
2、 2分
命题人
的收敛区域为 3分
5分
7分
六、求解微分方程(每小题7分,共14分)
1、先求对应的齐次方程: ,变量分离可得:
两边积分可得: 是对应的齐次方程的通解3分
再利用常数变易法,设 为原方程的解,代入原方程可得:
为原方程的通解6分
又 即 为原方程满足初始条件的解7分
2、特征方程为 得 所对应的齐次方程的通解为 2分
命题
时间
2006年6月16日
教研室
审核人
审核
时间
年月日
……………………………………………………………………装订线……………………………………………………………………
学生期末考试试题参考答案及评分标准纸
课程名称
高等数学A(二)
2009-2010(2)期末考试试卷(A)(高等数学)
![2009-2010(2)期末考试试卷(A)(高等数学)](https://img.taocdn.com/s3/m/4c2551fc336c1eb91b375d11.png)
9. 计算 zdS ,其中∑是上半球面 z 4 x 2 y 2 介于 z 1, z 2 之间的部分
10. 计算 xzdydz yzdzdx 2zdxdy ,其中∑是 x y z 1与三个坐标面围成区域的整个边界面 的外侧。
11. 已知连续函数 fΒιβλιοθήκη (x) 满足 f (x) e x
ds
=____________.
4.设 D: x2+y2≤1, 则 (4 1 x 2 y 2 )dxdy __________.
D
5. 若 y 1, y x, y x 2 为某个二阶线性非齐次微分方程的三个解,则该方程的通解为 。
二、解答下列各题(1-6 小题每个 6 分,7-13 每题 7 分,总计 85 分)
武汉工业学院 2009 –2010 学年第 2 学期 期末考试试卷(A 卷)
课程名称 高等数学 2
学号:
注:1、考生必须在答题纸的指定位置答题,主观题要有必要的步骤。
2、考生必须在答题纸的密封线内填写姓名、班级、学号。
姓名:
班级:
3、考试结束后只交答题纸。
------------------------------------------------------------------------------------------------------------------------------------一、填空题(每小题 2 分, 共 10 分)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
2009年专升本(高等数学二)真题试卷(题后含答案及解析)
![2009年专升本(高等数学二)真题试卷(题后含答案及解析)](https://img.taocdn.com/s3/m/779cf8faccbff121dc36831d.png)
2009年专升本(高等数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.A.0B.tanlC.π/4D.1正确答案:B2.A.B.C.D.正确答案:B3.设函数f(x)=exlnx,则f'(1)=( )A.0B.1C.eD.2e正确答案:C4.函数f(x)在[0,2]上连续,且在(0,2)内f'(x)>0,则下列不等式成立的是( )A.f(0)>f(1)>f(2)B.f(0)<f(1)<f(2)C.f(0)<f(2)<f(1)D.f(0)>f(2)>f(1)正确答案:B5.A.x2+ex+CB.2x2+ex+CC.x2+xex+CD.2x2+xex+C正确答案:A6.A.B.C.D.正确答案:D7.A.B.C.D.正确答案:A8.A.B.C.D.正确答案:C9.设函数z=f(u),u=x2+y2且f(u)二阶可导,则=( )A.4f''(u)B.4xf''(u)C.4yf''(u)D.4xyf''(u)正确答案:D10.任意三个随机事件A,B,C中至少有一个发生的事件可表示为( ) A.A∪B∪CB.A∪B∩CC.A∩B∩CD.A∩B∪C正确答案:A填空题11.____。
正确答案:2/312.____。
正确答案:e-1/313.设函数____。
正确答案:14.已知y=ax3在X=l处的切线平行于直线y=2x-1,则a= 。
正确答案:2/315.函数y=x sin x,则y''=。
正确答案:2cosx-xsinx16.曲线y=x5-10x2+8的拐点坐标(x0,y0)=。
正确答案:(1,-1)17.____。
正确答案:18.____。
正确答案:19.____。
正确答案:1/220.设函数z=ln(x+y2),则全微分dz=。
正确答案:解答题21.求正确答案:22.设函数y=esinx,求dy.正确答案:23.计算正确答案:24.计算正确答案:25.有10件产品,其中8件是正品,2件是次品,甲、乙两人先后各抽取一件产品,求甲先抽到正品的条件下,乙抽到正品的概率.正确答案:26.求函数的单调区间、极值、凹凸区间和拐点.正确答案:27.(1)求在区间[0,n]上的曲线y=sin x与x轴所围成图形的面积S.(2)求(1)中的平面图形绕x轴旋转一周所得旋转体的体积V.正确答案:28.求函数z=x2+2y2+4x-8y+2的极值.正确答案:。
西南交通大学期末真题及答案09-10高等数学IIA卷解答
![西南交通大学期末真题及答案09-10高等数学IIA卷解答](https://img.taocdn.com/s3/m/f962462ddd88d0d232d46a47.png)
班 级 学 号 姓 名9.()(3)xyLy e dx x e dy -++=⎰ 2ab π .其中L 是椭圆22221x y a b +=的正向.三、计算题(每小题8分,共64分)10.已知函数ln(u x =,曲线23:x ty t z t =⎧⎪Γ=⎨⎪=⎩.求(1) 曲线Γ在点(1,1,1)处切线方向的单位向量(沿t 增加方向);(2) 函数ln(u x =在点(1,0,0)处沿(1)所指方向的方向导数的值.解:(1) 切线方向 {}{}211,2,31,2,3t t t == ………………………………2’}1,2,3 …………………………………….4’ (2)ργρβραρρ)cos ,cos ,cos 1(lim 0+=∂∂→u l u ………………….…….….6’ 14131+=…………………………………………….………….8’ 11. 设 sin()0x y e x z ++= 计算,z z x y∂∂∂∂. 解:令(,,)sin()x y F x y z e x z +=+ ………………………….1’(,,)sin()cos()x y x y x F x y z e x z e x z ++=+++ (,,)sin()x y y F x y z e x z +=+ (,,)cos()x y z F x y z e x z +=+..4’1tan()x zF zx z x F ∂=-=--+∂ ………………………….6’tan()zx z y∂=-+∂ ………………………….8’ 12.计算二重积分66cos yxdy dx xππ⎰⎰. 解:66600cos cos x yx x dy dx dx dy x xπππ=⎰⎰⎰⎰ ……………………4’60cos xdx π=⎰601cos 2xdx π==⎰…………………………8’ 13计算三重积分 I zdxdydz Ω=⎰⎰⎰.其中Ω由锥面z =与平面1z =所围成的区域.解:2221x y zI zdxdydz dzzdxdy Ω+≤==⎰⎰⎰⎰⎰⎰…………….4’1304z dz ππ==⎰ ………………8’或解2211x y I zdxdydz dxdy Ω+≤==⎰⎰⎰⎰⎰ …………………..4’()22221112x y x y dxdy +≤=--⎰⎰4π= ………………….8’ 14.设Γ是曲线2222x y z a x y z⎧++=⎨++=⎩,计算 22()x y ds Γ+⎰. 解: 222222()()3x y ds x y z ds ΓΓ+=++⎰⎰ …………………4’ =223a ds Γ⎰ ………………….6’=343a π ………………….8’15.计算32223x dydz xz dzdx y dxdy ∑++⎰⎰,∑为抛物面224z x y =--被平面0z =所截下的部分的下侧.解;作曲面221:0,:4xy z D x y ∑=+≤,朝上。
高等数学第二学期期中考试试卷及答案(优选.)
![高等数学第二学期期中考试试卷及答案(优选.)](https://img.taocdn.com/s3/m/99c61796a1c7aa00b42acb16.png)
卷号:(A ) ( 年 月 日) 机密学年第2学期2010级计算机专业《高等数学》期中考试试卷A 卷一、选择题(本大题共5小题,每小题2分,共10分) 1.下列方程所示曲面是双叶旋转双曲面的是( )(A) 1222=++z y x (B) z y x 422=+(C) 14222=+-z y x (D) 1164222-=-+z y x 2.二元函数 222214y x y x z +++=arcsin ln的定义域是( )(A) 4122≤+≤y x (B) 4122≤+<y x (C) 4122<+≤y x (D) 4122<+<y x3.已知),(y x f 在点),(00y x 处连续,且两个偏导数),(00y x f x ,),(00y x f y 存在是),(y x f 在 该点可微的( )(A) 充分条件,但不是必要条件; (B) 必要条件,但不是充分条件;(C) 充分必要条件 ; (D) 既不是充分条件,也不是必要条件. 4. 下列直线中平行xOy 坐标面的是________ .(A ).233211+=+=-z y x ; (B ).⎩⎨⎧=--=--04044z x y x ; (C ).10101zy x =-=+; (D ).3221=+=+=z t y t x ,,. 5.函数z y x u sin sin sin =满足),,(0002>>>=++z y x z y x π的条件极值是( )(A) 1 ; (B) 0 ; (C) 61 ; (D) 81 . 二、填空题(本大题共10个填空题,每空3分,共30分)1.已知52==||,||b a 且,),(3π=∠b a则_______)()(=+⋅-b a b a 32.2.通过曲线⎩⎨⎧=-+=++0562222222y z x z y x ,且母线平行于y 轴的柱面方程是_________________. 3.若),ln(222z y x u ++=则._________________=du4. 已知球面的一直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________________..5. 函数2223u x y z z =++-在点()01,1,2M -的梯度为___________及沿梯度方向上函数的方向导数为_________.6.设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________. 7.设⎪⎩⎪⎨⎧=+≠++=0 , 00 , ),(2222222y x y x y x y x y x f ,求),(y x f x =___________________________.8.xy y x y x +→)2,1(),(lim=___________.y xy y x )tan(lim )0,2(),(→=___________.三、解下列微分方程(本大题共3小题,每小题5分,共15分) 1.给定一阶微分方程dydx= 3x (1)求它的通解;(2)求过点(2,5)的特解;(3)求出与直线y = 2x – 1 相切的曲线方程。
高等数学(A)(下)期末考试试题.解答.
![高等数学(A)(下)期末考试试题.解答.](https://img.taocdn.com/s3/m/fe98d0eca0116c175f0e48a6.png)
2009-2010(春)高等数学A(下)期末考试试题解答(2010.6)一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在空中).2∂z=2xyexy.∂x2函数u=xy2+z3-x2yz在点P(1,1,1)处的梯度(-1,1,2).21设z=exy,则3设f(x,y)为二元连续函数,交换积分次序⎰10dy⎰f(x,y)dx=y⎰10dx⎰f(x,y)dy.x5级数L在p>1条件下收敛.∑pnn=1∞二、选择填空题(本题满分15分,共有5道小题,每道小题3分).以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效.1 二元函数f(x,y)在点(x0,y0)处两个偏导数fx(x0,y0)与fy(x0,y0)存在是f(x,y)在该点处连续的( D ).(A)充分而非必要条件;(B)必要而非充分条件;(C)充分必要条件;(D)既非必要条件又非充分条件. 2 曲面yz+zx+xy=3在点(0,1,3)处的切平面方程为( B ).(A) 2x+y-1=0; (B)4x+3y+z-6=0; (C) x+y+z-1=0; (D) 4x+3y+z-2=0.(A)bn=(B)bn=(C)bn=(D)bn=4 设级数f(x)sinnxdx(n=1,2, ),和函数为f(x);⎰ππ-πf(x)cosnxdx(n=1,2, ),和函数为f(x);⎰ππ-11πf(x)cosnxdx(n=1,2, ),和函数为2f(x);⎰ππ-ππ⎰2πf(x)sinnxdx(n=1,2, ),和函数为f(x).∑un=1∞n收敛,且∑un=1∞n=u,则级数∑(un+un+1)=( C ).n=1∞(A) 2u;(B)u;(C)2u-u1;(D)u-u1.25 已知y=1,y=x,y=x为某二阶非齐次线性微分方程y''+p(x)y'+q(x)y=f(x)的三个解,则其通解为( C ).(其中C1,C2为任意常数)(A)y=C1+C2x+x;(B)y=C1x+C2x+1;(C)y=C1(x-1)+C2(x-1)+1;(D)y=C1(x-1)+C2(x-1)+x-x.三、(本题满分8分)22222⎛∂2zx⎫设二元函数z=xy+f xy,⎪,其中函数f具有二阶连续的偏导数,求.∂x∂yy⎭⎝∂z1=y+yf1'+f2' , 4分解:∂xy⎡⎛x⎫⎤1⎛x⎫⎤∂2z1⎡''''''''''⎥⎪=1+f1+y⎢xf11+ -2⎪f12⎥-2f2+⎢xf21+ -2⎪f22⎪∂x∂yy⎣⎝y⎭⎦y⎝y⎭⎦⎣1x''-3f22'' . 4分 =1+f1'-2f2'+xyf11yy四、(本题满分10分)计算二重积分解:⎰⎰(yD2+3x+9)dxdy,其中D=(x,y)x2+y2≤1. {}22=(y+3x+9)dxdyy⎰⎰dxdy+⎰⎰3xdxdy+⎰⎰9dxdy 2分⎰⎰DDDD2y⎰⎰dxdy+0+9π 3分D ===⎰2π0sin2θ⎰ρ3dρ+9π 3分0137π . 2分 4五、(本题满分16分,其中1题为8分,2题为8分)1 讨论级数∑n=1∞(-1)nann(a>0)的敛散性;2 试将函数f(x)=1 解:当a>1,lim⎰x0. sint2dt展成x的幂级数(要求写出该幂级数的一般项并指出其收敛域)un+1n1=lim=<1,故原级数绝对收敛; 3分n→∞un→∞n+1aan 当0<a<1,limun+1n1=lim=>1,limun≠0,故原级数发散;3分n→∞n→∞un→∞n+1aan当a=1,原级数为∞∑n=1∞(-1)n,条件收敛. n 2分 (-1)n-1t2n-12 因为sint=∑t∈(-∞,+∞) , 2分 (2n-1)!n=1∞(-1)n-1t4n-22 则sint=∑t∈(-∞,+∞) . 2分n=1(2n-1)!将上式两端逐项积分,得⎛∞(-1)n-1t4n-2⎫ f(x)=⎰sintdt=⎰ ∑⎪dt (2n-1)!⎭00⎝n=1∞x(-1)n-1t4n-2=∑⎰dt (2n-1)!n=102xx(-1)n-1x4n-1=∑ (-∞<x<+∞) . 4分 2n-1!(4n-1)n=0∞六、(本题满分12分).∑ 2解:令∑1为z=4被z=x2+y2所截得部分的上侧, 则原式=由高斯公式z=4∑+∑1-⎰⎰∑1, 2分⎰⎰∑∑+=⎰⎰⎰[(x)'x+(y)'y+(z(x+y))'z]dv=13322ΩD=(⎰⎰Ωdxdy)xyz=x2+y2⎰[4(x2+ y2)]dz2π2z=422=⎰dθ⎰rdr⎰[4r]dz=2π⎰r[4r2](4-r2)dr=00z=r2012π8 . 6分 3由曲面积分计算公式得2π2222=0+0+4(x+y)dxdy=dθ4(r⎰⎰⎰⎰⎰⎰)rdr=32π, 2分∑1D00128π32π . 2分 -32π=33七、(本题满分8分)某工厂生产两种型号的机床,其产量分别为x台和y台,成本函数为故原式= c(x,y)=x2+2y2-xy (万元)若市场调查分析,共需两种机床8台,求如何安排生产,总成本最少?最小成本为多少?解:即求成本函数c(x,构造辅助函数 F(x,y)在条件x+y=8下的最小值. y)=x2+2y2-xy+λ(x+y-8) 2分⎧Fx'=2x-y+λ=0⎪解方程组⎨Fy'=-x+4y+λ=0⎪F'=x+y-8=0⎩λ解得λ=-7,x=5,y=3 4分这唯一的一组解,即为所求,当这两种型号的机床分别生产5台和3台时,总成本最小,最小成本为: c(5,3)=52+2⨯32-5⨯3=28(万) 2分八、(本题满分16分,其中1题为10分,2题为6分)1 设可导函数ϕ(x)满足ϕ(x)cosx+2⎰ϕ(t)sintdt=x+1,求ϕ(x). 0x2 设函数f(u)具有二阶连续的导函数,而且z=fesiny满足方程 x()∂2z∂2z2x+=ez,22∂x∂y试求函数f(u).解1 在ϕ(x)cosx+2⎰x0ϕ(t)sintdt=x+1两端对x求导得,ϕ'(x)+tanxϕ(x)=secx. 4分解上述一阶线性微分方程得通解为.ϕ(x)=six+nC. cxo 4分由ϕ(x)cosx+2⎰x0ϕ(t)sintdt=x+1得,ϕ(0)=1,则C=1故ϕ(x)=sinx+cosx. 2分2 设u=exsiny,则有∂z∂z=f'(u)exsiny,=f'(u)excosy ∂x∂y∂2z2x2x所以,2=f''(u)esiny+f'(u)esiny ∂x∂2z=f''(u)e2xco2sy-f'(u)exsiny 2分2∂x∂2z∂2z代入方程 +2=e2xz,2∂x∂y2x2x2x2x2x得,f''(u)esiny+f'(u)esiny+f''(u)ecosy-f'(u)esiny=ez 即,f''(u)e2x=f(u)e2x由此得微分方程 f''(u)-f(u)=0 2分解此二阶线性微分方程,得其通解为f(u)=C1e+C2eu-u (C1与C2为任意常数) 2分此即为所求函数.。
安徽大学高数A(二)期末试卷答案
![安徽大学高数A(二)期末试卷答案](https://img.taocdn.com/s3/m/36344f4c03d8ce2f0166230e.png)
安徽大学 2009—2010 学年第二学期 《高等数学 A(二)、B(二)》考试试卷(A 卷)
(闭卷 时间 120 分钟)
题号 一
二
三
四
五
总分
得分
阅卷人
学号
姓名
专业
一、填空题(本大题共五小题,每小题 2 分,共 10 分)
1.点 (2,1,1) 到平面 x + y − z +1 = 0 的距离为
.
2.极限
f (x, y) 在点 (x0 , y0 ) 处取极小值的充分条件的是
()
A.
fxx (x0 ,
y0 )
>
0,
fxx (x0 ,
y0 )
f yy (x0 ,
y0 ) −
f
2 xy
(
x0
,
y0fxx (x0 ,
y0 )
>
0,
fxx (x0 ,
y0 )
f yy (x0 ,
y0 ) −
f
2 xy
18.将 f (x) = 1 展开为 (x + 2) 的幂级数,并求该幂级数的收敛域. 1+ 2x
四、应用题(本大题共 8 分)
19. 在椭圆 x2 + 4 y2 = 4 上求一点,使该点到直线 2x + 3y −12 = 0 的距离最短.
《高等数学 A(二) 、B(二)》(A 卷) 第 5 页 共 6 页
_________.
2. 设 f (x, y) = x y ,则 lim f (x, y) =_____________ .
xy +1−1
(x, y)→(0,0)
∫ ∫ 3. 累次积分
高等数学AⅡ参考答案
![高等数学AⅡ参考答案](https://img.taocdn.com/s3/m/4bc906b351e79b89680226ec.png)
1、1.设是平面上以三点和为顶点的三角形区域,是的第一象限部分,则( A )。
(A);(B);(C);(D)。
2.下列级数中发散的级数是(C )。
(A);(B);(C);(D)。
3.设幂级数在处条件收敛,则该级数在处是( A )。
(A)绝对收敛;(B)条件收敛;(C)发散;(D)以上结论都不对。
4.设在展开成正弦级数为,且,则( C )。
(A);(B);(C);(D)以上结论都不对。
二 5.设闭区域由曲线与所围成,则。
6. 设曲线方程为,则。
7. 将展开成的幂级数为。
8. 设,则。
三9.分别用先二后一和柱坐标的方法计算三重积分,其中是由曲面及所围成的闭区域。
解先二后一1柱坐标的柱坐标为,则=10.设为锥面及平面所围成闭区域的边界曲面,计算。
解:如图,其中,故=+=+11. 设为从点沿曲线到点的弧,其中 为正的常数,计算。
解;作辅助线,若设与所围闭区域为,则,故12. 设是球面的上侧,计算。
解;作曲面,朝下。
则其中(先二后一)由,朝下,有,故13. 求幂级数的收敛域及和函数。
解由,可知幂级数收敛半径为1,且与均发散,故幂级数收敛域为。
当时故当时四、(10分)。
14.常数取什么值使得在平面存在二元函数满足,且,并求出函数。
解(1)设,故取值使得等式成立,即成立时存在二元函数满足条件,故,且O(0,0)B(x,y)A(x,0)其中五、(每小题4分,共8分)。
15.计算积分,其中为圆周。
解:注意到,取做曲线方向为逆时针,设曲线围成复连通区域为,显然在满足格林公式条件,故,可得,其中为所围区域。
16.判别级数的敛散性,并给出理由。
解:显然级数是正项级数且注意到,故收敛,故也收敛。
描述[←1]。
2009-2010学年第二学期高等数学(2)期末试卷及其答案
![2009-2010学年第二学期高等数学(2)期末试卷及其答案](https://img.taocdn.com/s3/m/331587f1647d27284a73517d.png)
2009-2010学年第二学期高等数学(2)期末试卷及其答案2009 至2010 学年度第2 期高等数学(下)课程考试试题册A试题使用对象:2009 级理科各专业(本科)命题人:考试用时120 分钟答题方式采用:闭卷说明:1.答题请使用黑色或蓝色的钢笔、圆珠笔在答题纸上书写工整.2.考生应在答题纸上答题,在此卷上答题作废.一.填空题(本题共15 分,共5 小题,每题 3 分)1.已知(2,1,),(1,2,4)a m b==,则当m=时,向量a b⊥.2.(,)(2,0)sin()lim x yxy y→=.3.设区域D为22yx+≤x2,则二重积分D dσ=⎰⎰.4.函数(,),(,)P x y Q x y在包含L的单连通区域G内具有一阶连续偏导数,如果曲线积分(,)(,)LP x y dx Q x y dy+⎰与路径无关,则(,),(,)P x y Q x y 应满足条件 .5. 当p 时,级数211pn n +∞=∑收敛.二.选择题(本题共15分,共5小题,每题3 分)1.直线221:314x y z L -+-==-与平面:6287x y z π-+=的位置关系是 .A .直线L 与平面π平行;B .直线L 与平面π垂直;C .直线L 在平面π上;D .直线L 与平面π只有一个交点,但不垂直.2. 函数(,)f x y 在点(,)x y 可微分是(,)f x y 在该点连续的( ).A .充分条件; B. 必要条件; C. 充分必要条件; D. 既非充分也不必要条件 3.改变积分次序,则100(,)y dy f x y dx⎰⎰.A .1(,)xdx f x y dy ⎰⎰; B .11(,)dx f x y dy ⎰⎰;C .11(,)x dx f x y dy ⎰⎰;D .11(,)xdx f x y dy ⎰⎰6.计算22()(sin )Lxy dx x y dy--+⎰,其中L 是上半圆周y =x 轴所围区域的边界,沿逆时针方向.7.将函数1()3f x x =+展开成(3)x -的幂级数. 8.计算曲面积分xydydz yzdzdx xzdxdy ∑++⎰⎰,其中∑为1x y z ++=,0,x =y =,0z =所围立体的外侧.9.求抛物面22z xy =+到平面10x y z +++=的最短距离.2009 至 2010 学年度第 2 期高等数学(下)课程试题A 参考答案试题使用对象: 2009 级 理科各专业(本科) 向瑞银一.填空题(本题共15 分,共5 小题,每题 3 分) 1. 1-; 2. 2; 3. π; 4.y P ∂∂=xQ ∂∂; 5.12p >二.选择题(本题共15分,共5小题,每题3 分) 1.B ; 2.A ; 3.D ; 4.C ; 5.C 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分).1.z z u z vx u x v x∂∂∂∂∂=+∂∂∂∂∂……4分sin cos u u ye v e v=+(sin()cos())xy e y x y x y =-+-……7分 2.2212()(tan())y y uf x y f xy y∂''''=⋅-+∂ ……4分2122sec ()()yyf f xy xy '''=-+2122sec ()yf xf xy ''=-+……7分 3. 令22(,,)1F x y z xy z=+--,则法向量(2,2,1)n x y =-,(2,1,4)(4,2,1)n=- ……3分在点(2,1,4)处的切平面方程为 4(2)2(1)(4)0x y z -+---=.即4260x y z +--=. (6)分法线方程为214421x y z ---==-. ……8分 4.22Dx d yσ⎰⎰22121xxx dx dy y=⎰⎰……4分221/11()x xx dxy=-⎰……6分231()x x dx =-⎰322111()42x x =-94=……8分5.令cos ,sin x a y a θθ==,则sin ,cos x a y a θθ''=-=,ds θ=ad θ= ……3分20a Le ad πθ=⎰⎰ ……6分=2aae π ……8分6.2P xy=-,1P y ∂=-∂ ,2(sin )Q x y =-+,1Q x∂=-∂ , ……4分()0DDQ PI dxdy dxdy x y∂∂=-=∂∂⎰⎰⎰⎰ ……6分=……8分 7.1136(3)x x =++-113616x =-+ ……4分 当316x -<,即 39x -<<时,13x +013()66nn x +∞=-=-∑ ……8分8. ⎰⎰∑++zxdxdy yzdzdx xydydz=()x y z dxdydz Ω++⎰⎰⎰……4分 =1110()xx ydx dy x y z dz---++⎰⎰⎰……6分81=……8分9.设抛物面一点(,,)x y z ,它到平面的距离为1d x y z =+++满足条件220x y z +-= ……3分 拉格朗日函数为222(1)()3x y z L x y z λ+++=++- ……5分2(1)203x x y z L x λ+++=+=,2(1)203yx y z Ly λ+++=+=2(1)3z x y z L λ+++=-=,220Lx y z λ=+-=解方程组得,12x y ==-,12z =. 由问题本身知最短距离存在,所以最短距离为0.5,0.5,0.5)d --=6=……8分。
高等数学下册期中考试题(答案)
![高等数学下册期中考试题(答案)](https://img.taocdn.com/s3/m/e505de4169eae009581bec15.png)
K b
= 19 ,
K a
+
K b
= 24 ,则
K a
−K b=. Nhomakorabea2、设 x2 + 2xy + y + zez = 1,则 dz =
.
(0,1)
∫ ∫ e
ln x
3、设 f (x, y) 为连续函数,交换积分次序: dx f (x, y)dy =
1
0
.
y
4、函数 f (x, y, z) = x z 的梯度为 grad f (x, y, z) =
所求的最大值为 f (1, 0) = 4 ,最小值为 f (−1, 0) = −4 ……………….………..….【12】
2
2009-2010 学年第二学期华侨大学 09 级高等数学 A(下册)期中考试试题参考解答与评分标准
3
六、【9 分】解:由 ∂z = x , ∂z = y 得 1+ ( ∂z )2 + ( ∂z )2 = 2 ….….….….….【3】
.
∫∫ 5、设 D = {(x, y) | x2 + y2 ≤ 4 } ,则 ( x2 + y2 )dxdy =
D2 3
.
※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:班级、姓名、学号。
二. 试解下列各题:(本题共 5 小题,每小题 7 分,满分 35 分)
1、【7
分】已知直线
2
5、解: lim (x, y)→(0,0)
xy 2 − exy
= lim xy( −1 (x,y)→(0,0)
2 − exy 1− exy
+ 1)
……………….....
2010年专升本(高等数学二)真题试卷(题后含答案及解析)
![2010年专升本(高等数学二)真题试卷(题后含答案及解析)](https://img.taocdn.com/s3/m/37e82ed2844769eae109ed1c.png)
2010年专升本(高等数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.A.B.0C.ln2D.-ln2正确答案:A2.A.2+eB.1+eC.D.正确答案:C3.设函数f(x)=cos2x,则f’(x)=A.2sin2xB.-2sin2xC.sin2xD.-sin2x正确答案:B4.下列函数在区间(0,+∞)内单调减少的是A.y=xB.y=exC.y=lnxD.正确答案:D5.A.B.C.D.正确答案:A6.曲线y=1-x2与x轴所围成的平面图形的面积S=A.2B.C.1D.正确答案:B7.A.B.C.D.正确答案:C8.设函数z=xe2y,则A.0B.C.1D.2正确答案:D9.A.B.C.D.正确答案:A10.袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出的2个球均为白色球的概率为A.B.C.D.正确答案:B填空题11.正确答案:012.当x→0时,f(x)与sin2x是等价无穷小量,则______. 正确答案:113.设函数在点x=0处的极限存在,则a=______. 正确答案:114.曲线y=x3+3x2+1的拐点坐标为______.正确答案:(-1,3)15.设函数y=ln(1+x),则y”=______.正确答案:16.设曲线y=axex在x=0处的切线斜率为2,则a=______.正确答案:217.________________正确答案:-e-x+C18.正确答案:e-119.正确答案:20.函数z=2(x-y)-x2-y2的驻点坐标为______. 正确答案:(1,-1)解答题21.计算正确答案:22.设,求dy.正确答案:23.计算正确答案:24.计算正确答案:25.已知离散型随机变量X的概率分布为求常数a.正确答案:2+0.1+0.3+a=1,所以a=0.426.求X的数学期望EX和方差DX.正确答案:EX=0×0.2+1×0.1+2×0.3+3×0.4 =1.9 DX=(0-1.9)2×0.2+(1-1.9)2×0.1+(2-1.9)2×0.3+(3-1.9)2×0.4 =1.2927.在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示),当矩形的长和宽各为多少时矩形面积最大?最大值是多少?正确答案:如图,设x轴通过半圆的直径,y轴垂直且平分直径.28.证明:当x>1时,x>1+lnx.正确答案:证:设f(x)=x-1-lnx,当x>1时,f’(x)>0则f(x)单调上升. 所以当x>1时,f(x)>f(1)=0. 即x-1-lnx>0,得x>1+lnx.29.求二元函数f(x,y)=x2+y2+xy,在条件x+2y=4下的极值.正确答案:设F(x,y,λ)=f(x,y)+λ(x+2y-4) =x2+y2+xy+λ(x+2y-4),。
数学复习题数二
![数学复习题数二](https://img.taocdn.com/s3/m/5df29f46a8956bec0975e315.png)
北京邮电大学2009——2010学年第二学期高等数学复习题一. 填空题(每小题3分,共15分).1. 设,sin y x e u x-=则yx u∂∂∂2在点)1,2(π的值为_____2)(e π_________. (8章)2. 设方程x y e xycos 2=+确定y 为x 的函数, 则dx dy =___yxe xye xy xy 2sin ++-____(8章)3.设二元函数),1ln()1(y x xe z y x +++=+则._________)0,1(=dz dy e edx )2(2++ (8章)4微分方程20y y y '''+-=的通解为212.x xy C e C e -=+ . (9章) 5微分方程2442x y y y xe '''-+=的一个特解形式可以设为 *222()xy x Ax Bx C e =++(9章6设函数2xy z x e -=-,则z zx y∂∂+=∂∂ 2()xy x x y e -++ . (9章) 7. 定积分dx x ⎰-11||=1 . (5章)8. 微分方程015'2''=-+y y y 的通解是x x e c e c y 3251+=- (8章) 9. 若x dt t f t x xcos 1)()(0-=-⎰,则dt t f )(20⎰π= 1 .10设y xy z )1(+=,则=∂∂)1,1(x z1 . (8章)11设)123ln(222++-=z y x u ,则(0,0,0)|du = 0 . (8章) 12.3111_________.2dx x +∞=⎰(数一考) (5章) 13. 设()22ln y x z +=,则=∂∂==11y x xz, ________________________. (8章)解:由()22ln y x z +=,得222y x xx z +=∂∂,所以,12112211=+=∂∂====y x y x y x xx z ,,14. 微分方程y y y x ln ='的通解为_____________________________.(9章) 解: 这是一个可分离变量的微分方程,由y y y x ln =',得xdxy y dy =ln , 两端积分,得⎰⎰=xdxy y dy ln ,得()Cx C x y ln ln ln ln ln =+=. 所以,Cx y =ln ,即Cxe y = (C 为任意常数).15. 设()()xy xy z 2cos sin +=,则=∂∂yz_____()()()xy xy x xy x sin cos 2cos -__.(8章) 16. 微分方程x x y sin +=''的通解为=y ______213sin 61C x C x x ++-________________. 二.单选题(每小题3分,共15分).1.抛物线x y 22=与直线4-=x y 所围图形的面积为( D )(6章) A . 12 B 14 C 16 D 182.已知三点,),,(),,,(,),,(742543321C B A 则三角形 ABC 的面积为( A )(7章)A 、14B 、32C 、13D 、4 3. 曲线 )40(2cos 0π≤≤=⎰x dt t y x的弧长为( A ). (6章)A. 1B. 2C.21 D. 12-4方程56e x y y y x -'''-+=的一个特解可设为( D ). (9章)(A ) 12()e x yx c x c -=+ (B ) 212()e x y x c x c -=+ (C ) 2312e e x x yc c =+ (D ) 12()e x y c x c -=+ 5. 微分方程x e x y y y 2323-=+'-''的特解*y 的形式为=*y 【 D 】. (微分方程) (A ).()x e b ax +; (B ).()x xe b ax +; (C ).()xce b ax ++; (D ).()xc x eb ax ++.解:微分方程xe x y y y 2323-=+'-''对应的齐次微分方程是023=+'-''y y y ,因此其特征方程为0232=+-r r .得其解为2,121==r r .因此微分方程x e y y y 223-=+'-''有形如x cxe y =*2.的特解.又微分方程x y y y 323=+'-''有形如b ax y +=*1.的特解.所以,微分方程x e x y y y 2323-=+'-''有形如()x cxe b ax y y y ++=+=**21*的特解.6..函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的【 D 】. (8章) (A ).充分条件; (B ).必要条件;(C ).充分必要条件; (D ).既不是必要,也不是充分条件.解:由二元函数()y x f ,的可导性与连续性之间的关系,可知:函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的既非必要,也非充分条件.7、可微的充分条件为( A ); (8章)A 、 的偏导数均连续B 、连续C 、的偏导数均存在D 、连续且均存在8 的通解为( A );A 、B 、C 、D 、9 的通解为( D ); (9章)A 、B 、C 、D 、10、微分方程的通解为( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
徐州工程学院试卷
2 0 0 9 — 2 0 1 0 学年 第 二 学期 课程名称 高 等 数 学 试卷类型 A 卷 考试形式 闭卷 考试时间 1 0 0 分钟
命 题 人 苏 莹 2010 年 6 月 3 日 使用班级 09信息类、电类本科 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号
一、选择题 (共5小题,每小题3分,共计15分)
1. 直线223
273x y z -+-==--与平面4223x y z --=的位置关系是( ). A. 垂直 B. 平行 C. 直线在平面上 D. 不确定 2. 下列说法正确的是( ).
A. 若00(,)x f x y 、00(,)y f x y 存在,在函数(,)f x y 在点00(,)x y 处可微
B. 若00(,)x f x y 、00(,)y f x y 存在,在函数(,)f x y 在点00(,)x y 处连续
C. 若函数(,)f x y 在点00(,)x y 可微,则函数(,)f x y 在点00(,)x y 连续
D. 若00(,)0x f x y =、00(,)0y f x y =,则点00(,)x y 是函数(,)f x y 的极值点 3. 交换二次积分1
23300
1
0(,)(,)y y dy f x y dx dy f x y dx -+⎰⎰
⎰⎰
的积分次序为( ).
A. 23102
(,)x x
dx f x y dy -⎰⎰ B. 231
02
(,)x x
dx f x y dy +⎰⎰ C.
2
31
1
2
(,)x x
dx f x y dy -⎰
⎰
D.
2
31
1
2
(,)x x
dx f x y dy +⎰
⎰
4. 幂级数1
n
n ∞=的收敛区间是( ).
A. (1,1)-
B. (4,6)
C. (1,4)-
D. (1,6)
5. 级数1
11
(1)21
n n n ∞
+=--∑( ). A. 绝对收敛
B. 发散
C. 条件收敛
D. 不确定
答案: 1. B
2. C
3. A
4. B
5. C
二、填空题 (共5小题,每小题3分,共计15分)
1. 向量x 与向量22a i j k =-+
,且18a x ⋅=- ,则x = ___________. 2.
00
x y →→=____________.
3. 函数y x
z e =,则dz =____________.
4. 三重积分(,,)f x y z dxdydz Ω
⎰⎰⎰(其中Ω是由曲面22z x y =+及平面1z =所围闭区域)
化为三次积分(直角坐标下)应为____________. 5. 级数(1)10
2
1(1)
2n n n
n n -∞
=-∑____________(填“收敛”或“发散”).
答案: 1. (4,2,4)-- 2. 8
3. 1y x y e dx dy x x ⎛⎫-- ⎪⎝⎭
4.
22
111
(,,)x y dx f x y z dz -+⎰
⎰
⎰
5. 收敛
三、 (8分) 求与两平面43x z -=和251x y z --=的交线平行且过点(3,2,5)-的直线的
方程.
解1 取12104(43)215i j k
s n n i j k =⨯=-=-++--
因此所求直线方程为
325
431
x y z +--== 解2 用数量积 解3
四、 (共2小题,每小题7分,共计14分) 计算下列偏导数.
1. 求函数22(,)xy u f x y e =-的一阶偏导数(其中f 具有一阶连续偏导数). 解:
121222xy xy u
f x f ye xf ye f x
∂''''=⋅+⋅=+∂
1212(2)2xy xy u
f y f xe yf xe f y
∂''''=⋅-+⋅=-+∂ 2. 设
ln x z z y =,求z x ∂∂及z
y
∂∂.
解:令(,)ln x z F x y z y
=
- 1x F z =
,21
y y z F z y y
⎛⎫=--= ⎪⎝⎭,221z x y x z F z z y z +=--⋅=- 所以x z F z z x F x z ∂=-=∂+,2
()
y z F z z y F y x z ∂=-=
∂+ 五、(共2小题,每小题7分,共计14分) 计算下列重积分.
1. 计算D
xyd σ⎰⎰,其中D 是由抛物线2y x =及直线2y x =-所围成的闭区域.
解:2
22225
1
1145[(2)]28
y y D
xyd dy xy dx y y y dy σ+--==
+-=⎰⎰⎰⎰
⎰ 2.
22
ln(1)D
x y d σ++⎰⎰
,其中D 是由圆周221x y +=及坐标轴所围成的在第一象限内的闭区域.
解:1
2
2
2
22
ln(1)ln(1)ln(1)D
D
x y d d d d d π
σρρρθθρρρ++=+=+⎰⎰⎰⎰⎰⎰
122
22000
11ln(1)(1)(2ln 21)22d d d ππ
θρρθ=++=-⎰⎰⎰
(2ln 21)4
π
=
-
六、 (12分) 求函数22(,)(2)x f x y e x y y =++的极值,并判断是极小值还是极大值.
解:由22
2(,)(2241)0(,)(22)0
x x x
y f x y e x y y f x y e y ⎧=+++=⎪⎨=+=⎪⎩解得驻点1,12⎛⎫
- ⎪⎝⎭ 22(,)(4484)x xx f x y e x y y =+++ 2(,)(44)
x xy f x y e y =+
2(,)2
x
yy f x y e =
因此,1,1202xx A f e ⎛⎫=-=> ⎪⎝⎭,1,102xy B f ⎛⎫=-= ⎪⎝⎭,1,122yy f e ⎛⎫
-= ⎪⎝⎭
由于2240AC B e -=>,因此函数(,)f x y 在点1,12⎛⎫
- ⎪⎝⎭
处取得极小值为
1,122e f ⎛⎫
-=- ⎪⎝⎭
七、(12分) 计算曲线积分3222(2cos )(12sin 3)L
xy y x dx y x x y dy -+-+⎰,其中L 为抛物线
22x y π=上由点(0,0)到,12π⎛⎫
⎪⎝⎭的一段弧.
解:设点,12A π⎛⎫ ⎪⎝⎭,点,02B π⎛⎫
⎪⎝⎭
,点(0,0)O
这里3222(,)2cos ,(,)12sin 3P x y xy y x Q x y y x x y =-=-+ 则
2262cos ,62cos P Q xy y x xy y x y x ∂∂=-=-∂∂,所以0P Q y x
∂∂-=∂∂ 在由点O B A →→围起来的闭区域上应用格林公式,得
0L OB BA D P Q Pdx Qdy Pdx Qdy Pdx Qdy d y x σ-
⎛⎫∂∂+++++=-= ⎪∂∂⎝
⎭⎰
⎰⎰⎰⎰ 因此
3222(2cos )(12sin 3)L
xy y x dx y x x y dy -+-+⎰
3222(2cos )(12sin 3)OB
xy y x dx y x x y dy =-+-+⎰ 3222(2cos )(12sin 3)BA
xy y x dx y x x y dy +-+-+⎰
22
1
2031244y y dy ππ⎛⎫=-+=
⎪⎝⎭
⎰ 八、(10分) 将函数21
()43
f x x x =++展开成(1)x -的幂级数.
解:211
()43(1)(3)f x x x x x =
=++++
11
2(1)2(3)x x =
-++
11
11418124x x =
---⎛⎫⎛⎫++ ⎪ ⎪
⎝⎭⎝
⎭
而011(1)(1),13142412n
n n n x x x ∞=-=--<<-⎛⎫+ ⎪
⎝
⎭∑
011(1)(1),35184814n
n n n x x x ∞=-=--<<-⎛⎫+ ⎪
⎝
⎭∑
所以2223011
1()(1)(1),134322n n n n n f x x x x x ∞
++=⎛⎫==----<< ⎪++⎝⎭
∑。