离散数学习题解答

合集下载

离散数学课后习题及答案

离散数学课后习题及答案

离散数学课后习题及答案离散数学是计算机科学与数学的重要基础课程之一,它涵盖了很多重要的概念和理论。

为了更好地掌握离散数学的知识,课后习题是必不可少的一部分。

本文将介绍一些常见的离散数学课后习题,并提供相应的答案,希望对读者有所帮助。

一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}2. 设A={1,2,3},B={2,3,4},C={3,4,5},求(A∪B)∩C的结果。

答案:(A∪B)∩C={3,4}二、逻辑与命题1. 判断下列命题的真假:a) 若2+2=5,则地球是平的。

b) 若今天下雨,则我会带伞。

c) 若x>0,则x^2>0。

答案:a)假,b)真,c)真。

2. 用真值表验证下列命题的等价性:a) p∧(q∨r) ≡ (p∧q)∨(p∧r)b) p→q ≡ ¬p∨q答案:a)等价,b)等价。

三、关系与函数1. 给定关系R={(1,2),(2,3),(3,4)},求R的逆关系R^-1。

答案:R^-1={(2,1),(3,2),(4,3)}2. 设函数f(x)=x^2,g(x)=2x+1,求复合函数f(g(x))的表达式。

答案:f(g(x))=(2x+1)^2=4x^2+4x+1四、图论1. 给定图G,其邻接矩阵为:0 1 11 0 11 1 0求图G的度数序列。

答案:度数序列为(2,2,2)2. 判断下列图是否为连通图:a) G1的邻接矩阵为:0 1 11 0 01 0 0b) G2的邻接矩阵为:0 1 01 0 10 1 0答案:a)不是连通图,b)是连通图。

五、组合数学1. 从10个不同的球中,任选3个,求共有多少种选法。

答案:C(10,3)=120种选法。

2. 求下列排列的循环节:a) (123)(45)(67)b) (12)(34)(56)(78)答案:a)循环节为(123)(45)(67),b)循环节为(12)(34)(56)(78)。

离散数学习题解答

离散数学习题解答

习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2)5是无理数.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.x+<(4)235答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(15是有理数.5是无理数.p5是有理数.q5是无理数.其否定式q的真值为1.(2不是无理数.答:是有理数. p 不是无理数. q 是有理数. 其否定式q 的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值. (1)2与5都是素数答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数.答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧⌝,其真值为1. (4)3是偶素数.答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数.答:p :4是素数,q :4是偶数,符号化为p q ⌝∧⌝,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数.(4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数.答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ⌝∨⌝,其真值为1.(5) 符号化:r s ⌝∨⌝,其真值为0. 6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ⌝∧∨∧⌝. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.(1)只要,就有;(2)如果,则;(3)只有,才有;(4)除非,才有;(5)除非,否则;(6)仅当.答:设p:,则:;设q:,则:.符号化真值(1) 1(2) 1(3)0(4)0(5)0(6) 19.设p:俄罗斯位于南半球,q:亚洲人口最多,将下面命题用自然语言表述,并指出其真值:(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p为假命题,q为真命题.自然语言真值(1)只要俄罗斯位于南半球,亚洲人口就最多 1(2)只要亚洲人口最多,俄罗斯就位于南半球0(3)只要俄罗斯不位于南半球,亚洲人口就最多 1(4)只要俄罗斯位于南半球,亚洲人口就不是最多 1(5)只要亚洲人口不是最多,俄罗斯就位于南半球 1(6)只要俄罗斯不位于南半球,亚洲人口就不是最多0(7)只要亚洲人口不是最多,俄罗斯就不位于南半球 1 10.设p:9是3的倍数,q:英国与土耳其相邻,将下面命题用自然语言表述,并指出真值:(1);(2);(3);(4).答:根据题意,p为真命题,q为假命题.自然语言真值(1)9是3的倍数当且仅当英语与土耳其相邻0(2)9是3的倍数当且仅当英语与土耳其不相邻 1(3)9不是3的倍数当且仅当英语与土耳其相邻 1(4)9不是3的倍数当且仅当英语与土耳其不相邻011.将下列命题符号化,并给出各命题的真值:(1)若2+2=4,则地球是静止不动的;(2)若2+2=4,则地球是运动不止的;(3)若地球上没有树木,则人类不能生存;(4)若地球上没有水,则是无理数.命题1 命题2 符号化真值(1)p:2+2=4 q:地球是静止不动的0 (2)p:2+2=4 q:地球是静止不动的 1 (3)p:地球上有树木q:人类能生存 1 (4)p:地球上有树木q:人类能生存 112.将下列命题符号化,并给出各命题的真值:(1)2+2=4当且仅当3+3=6;(2)2+2=4的充要条件是3+36;(3)2+24与3+3=6互为充要条件;(4)若2+24,则3+36,反之亦然.答:设p:2+2=4,q:3+3=6.符号化真值(1) 1(2) 0(3) 0(4) 113.将下列命题符号化,并讨论各命题的真值:(1)若今天是星期一,则明天是星期二;(2)只有今天是星期一,明天才是星期二;(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.符号化真值讨论(1) 不会出现前句为真,后句为假的情况(2) 不会出现前句为真,后句为假的情况(3) 必然为1(4) 若p为真,则真值为0;若p为假,则真值为114.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2与4都是素数,这是不对的;(13)“2或4是素数,这是不对的”是不对的.答:命题1 命题2 命题3 符号化(1) p:刘晓月跑得快q:刘晓月跳得高-(2) p:老王是山东人q:老王是河北人-(3) p:天气冷q:我穿羽绒服-(4) p:王欢与李乐组成一个小组- -p:王欢与李乐组成一个小组(5) p:李辛与李末是兄弟- - p:李辛与李末是兄弟(6) p:王强学过法语q:刘威学过法语-(7) p:他吃饭q:他听音乐-(8) p:天下大雨q:他乘车上班-(9) p:天下大雨q:他乘车上班-(10) p:天下大雨q:他乘车上班-(11) p:下雪q:路滑r:他迟到了(12) p:2是素数q:4是素数-(13) p:2是素数q:4是素数- 15.设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q真值为1,r真值为0.(1)0,(2)0,(3)0,(4)116.当p,q的真值为0,r,s的真值为1时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“是无理数.并且,如果3是无理数,则也是无理数.另外,只有6能被2整除,6才能被4整除.”解:p:是无理数q: 3是无理数r:是无理数s: 6能被2整除t:6能被4整除符号化为:,该式为重言式,所以论述为真。

02324离散数学(课后习题解答(详细)

02324离散数学(课后习题解答(详细)

离散数学~习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。

⑴中国有四大发明。

⑵计算机有空吗?⑶不存在最大素数。

⑷21+3<5。

⑸老王是山东人或河北人。

⑹2与3都是偶数。

⑺小李在宿舍里。

⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。

⑾只有6是偶数,3才能是2的倍数。

⑿雪是黑色的当且仅当太阳从东方升起。

⒀如果天下大雨,他就乘班车上班。

解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。

2. 将下列复合命题分成若干原子命题。

⑴李辛与李末是兄弟。

⑵因为天气冷,所以我穿了羽绒服。

⑶天正在下雨或湿度很高。

⑷刘英与李进上山。

⑸王强与刘威都学过法语。

⑹如果你不看电影,那么我也不看电影。

⑺我既不看电视也不外出,我在睡觉。

⑻除非天下大雨,否则他不乘班车上班。

解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。

3. 将下列命题符号化。

⑴他一面吃饭,一面听音乐。

⑵3是素数或2是素数。

⑶若地球上没有树木,则人类不能生存。

⑷8是偶数的充分必要条件是8能被3整除。

⑸停机的原因在于语法错误或程序错误。

⑹四边形ABCD是平行四边形当且仅当它的对边平行。

⑺如果a和b是偶数,则a+b是偶数。

解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

离散数学课后习题答案

离散数学课后习题答案

1-1,1-2(1) 解:a) 是命题,真值为T。

b) 不是命题。

c) 是命题,真值要根据具体情况确定。

d) 不是命题。

e) 是命题,真值为T。

f) 是命题,真值为T。

g) 是命题,真值为F。

h) 不是命题。

i) 不是命题。

(2) 解:原子命题:我爱北京天安门。

A(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a) 设P:王强身体很好。

Q:王强成绩很好。

P∧Qb) 设P:小李看书。

Q:小李听音乐。

P∧Qc) 设P:气候很好。

Q:气候很热。

P∨Qd) 设P: a和b是偶数。

Q:a+b是偶数。

P→Qe) 设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

PQf) 设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a) P:天气炎热。

Q:正在下雨。

P∧Qb) P:天气炎热。

R:湿度较低。

P∧Rc) R:天正在下雨。

S:湿度很高。

R∨Sd) A:刘英上山。

B:李进上山。

A∧Be) M:老王是革新者。

N:小李是革新者。

M∨Nf) L:你看电影。

M:我看电影。

┓L→┓Mg) P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh) P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。

(2)解:a) A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

离散数学习题解答(耿素云屈婉玲)北京大学出版社

离散数学习题解答(耿素云屈婉玲)北京大学出版社

习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2)5是无理数.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.x+<(4)235答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:错误!未找到引用源。

是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5是有理数.答:否定式:5是无理数. p:5是有理数.q:5是无理数.其否定式q的真值为1.(2)25不是无理数.答:否定式:25是有理数. p :25不是无理数. q :25是有理数. 其否定式q 的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值. (1)2与5都是素数答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数.答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧⌝,其真值为1. (4)3是偶素数.答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数.答:p :4是素数,q :4是偶数,符号化为p q ⌝∧⌝,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数.(4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数.答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ⌝∨⌝,其真值为1.(5) 符号化:r s ⌝∨⌝,其真值为0. 6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ⌝∧∨∧⌝. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.(1)只要错误!未找到引用源。

《离散数学》题库及答案

《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。

答:某,y,某,z5、判断下列语句是不是命题。

若是,给出命题的真值。

((1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。

(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。

(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

《离散数学》部分习题答案

《离散数学》部分习题答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p) ⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p)) ⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1) (2) 主合取范式为: ⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7) 矛盾式的主析取范式为 0 (3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1 ⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)xF∀,在(a)中为假命题,在(b)中为真命题。

离散数学习题及解答

离散数学习题及解答

作业题与解答第一章19 (2)、(4) 、(6)21 (1)、(2) 、(3)19、(2)解答: (p→┐p)→┐q 真值表如下:所以公式(p→┐q)→┐q 为可满足式19、(4)解答: (p→q)→(┐q→┐p) 真值表如下:所以公式(p→q)→(┐q→┐p)为永真式19、(6)解答: ((p→q)∧(q→r))→(p→r) 真值表如下:所以公式((p→q)∧(q→r))→(p→r)为永真式21、(1)解答: ┐(┐p∧q)∨┐r 真值表如下:所以成假赋值为:01121、(2)解答: (┐q∨r)∧(p→q)真值表如下:所以成假赋值为:010,100,101,11021、(3)解答: (p→q)∧(┐(p∧r)∨p)真值表如下:所以成假赋值为:100,101第二章5、(1) (2) (3) 6、(1) (2) (3) 7、(1) (2) 8、(1) (2) (3)5、求下列公式的主析取范式,并求成真赋值(1) (┐p→q)→(┐q∨p)⇔┐(┐p→q) ∨(┐q∨p)⇔┐(┐(┐p) ∨q) ∨(┐q∨p)⇔(┐p ∧┐q) ∨(┐q∨p)⇔(┐p ∧┐q) ∨(p ∧┐q)∨(p ∧q)⇔m0 ∨m 2∨m3,所以00,10,11 为成真赋值。

(2) (┐p→q)∧(q∧r)⇔(┐┐p∨q)∧(q∧r)⇔(p∨q)∧(q∧r)⇔(p∧q∧r)∨(q∧r)⇔(p∧q∧r)∨(p∧q∧r)∨(┐p∧q∧r)⇔(p∧q∧r)∨(┐p∧q∧r)⇔m3∨m 7,所以011,111 为成真赋值。

(3) (p∨(q∧r))→(p∨q∨r)⇔┐(p∨(q∧r))∨(p∨q∨r)⇔(┐p∧(┐q∨┐r))∨(p∨q∨r)⇔(┐p∧┐q)∨(┐p∧┐r)∨(p∨q∨r)⇔(┐p∧┐q)∨((┐p∧┐r)∨(p∨q∨r))⇔(┐p∧┐q)∨((┐p∨p∨q∨r)∧(┐r∨p∨q∨r) )⇔(┐p∧┐q)∨(1∧1)⇔(┐p∧┐q)∨1⇔1⇔m0∨m1∨m 2∨m3∨m4∨m5∨m 6 ∨m 7,所以000, 001, 010, 011, 100, 101, 110, 111 为成真赋值。

离散数学习题答案

离散数学习题答案

离散数学习题答案离散数学习题答案习题⼀及答案:(P14-15) 14、将下列命题符号化:(5)⾟与末是兄弟解:设p :⾟与末是兄弟,则命题符号化的结果是p (6)王强与威都学过法语解:设p :王强学过法语;q :威学过法语;则命题符号化的结果是p q ∧(9)只有天下⼤⾬,他才乘班车上班解:设p :天下⼤⾬;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :⼤熊猫产在中国. r :太阳从西⽅升起. 求下列复合命题的真值:(4)()(())p q r p q r ∧∧∨?→解:p=1,q=1,r=0,()(110)1p q r ∧∧??∧∧??,(())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧∨?→19、⽤真值表判断下列公式的类型:(2)()p p q →?→?解:列出公式的真值表,如下所⽰:由真值表可以看出公式有3个成真赋值,故公式是⾮重⾔式的可满⾜式。

20、求下列公式的成真赋值:(4)()p q q ?∨→解:因为该公式是⼀个蕴含式,所以⾸先分析它的成假赋值,成假赋值的条件是:()10p q q ?∨p q 所以公式的成真赋值有:01,10,11。

习题⼆及答案:(P38)5、求下列公式的主析取式,并求成真赋值:(2)()()p q q r ?→∧∧解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取式,所以成真赋值为011,111。

6、求下列公式的主合取式,并求成假赋值:(2)()()p q p r ∧∨?∨解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取式,所以成假赋值为100。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学课后习题答案

离散数学课后习题答案

离散数学课后习题答案离散数学课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了诸多数学概念与技巧,为计算机科学的理论基础打下了坚实的基础。

在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。

然而,有时候我们会遇到一些难以解答的问题,需要参考一些答案来进行思考与学习。

本文将为大家提供一些离散数学课后习题的答案,希望能对大家的学习有所帮助。

一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}。

2. 证明:任意集合A和B,有(A-B)∪(B-A)=(A∪B)-(A∩B)。

答案:首先,对于任意元素x,如果x属于(A-B)∪(B-A),那么x属于A-B或者x属于B-A。

如果x属于A-B,那么x属于A∪B,但x不属于A∩B;如果x属于B-A,同样有x属于A∪B,但x不属于A∩B。

所以(A-B)∪(B-A)属于(A∪B)-(A∩B)。

另一方面,对于任意元素x,如果x属于(A∪B)-(A∩B),那么x属于A∪B,但x不属于A∩B。

所以x属于A或者x属于B。

如果x属于A,但x不属于B,那么x属于A-B;如果x属于B,但x不属于A,那么x属于B-A。

所以x属于(A-B)∪(B-A)。

所以(A∪B)-(A∩B)属于(A-B)∪(B-A)。

综上所述,(A-B)∪(B-A)=(A∪B)-(A∩B)。

证毕。

二、逻辑与证明1. 证明:如果p为真命题,那么¬p为假命题。

答案:根据命题的定义,命题要么为真,要么为假,不存在其他情况。

所以如果p为真命题,那么¬p为假命题。

2. 证明:对于任意整数n,如果n^2为偶数,则n为偶数。

答案:假设n为奇数,即n=2k+1(k为整数)。

那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。

根据偶数的定义,2(2k^2+2k)为偶数,所以n^2为奇数。

离散数学课后习题答案(第一章)

离散数学课后习题答案(第一章)

1-1,1-2(1)指出下列哪些语句是命题,那些不是命题,如果是命题,指出它的真值。

a)离散数学是计算机科学系的一门必修课。

是命题,真值为T。

b)计算机有空吗?不是命题。

c)明天我去看电影。

是命题,真值要根据具体情况确定。

d)请勿随地吐痰。

不是命题。

e)不存在最大的质数。

是命题,真值为T。

f)如果我掌握了英语,法语,那么学习其他欧洲语言就容易多了。

是命题,真值为T。

g)9+5≤12.是命题,真值为F。

h)X=3.不是命题。

i)我们要努力学习。

不是命题。

(2)举例说明原子命题和复合命题。

原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)设P 表示命题“天下雪。

”Q 表示“我将去镇上。

”R 表示命题“我有时间。

”以符号形式写出下列命题a)如果天不下雪和我有时间,那么我将去镇上。

(┓P ∧R)→Q b)我将去镇上,仅当我有时间时。

Q→R c)天不下雪。

┓P d)天下雪,那么我不去镇上。

P→┓Q(4)用汉语写出一些句子,对应下列每一个命题。

a)()Q R P ∧¬�Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q ↔(R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)R Q∧R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c)()()Q R R Q →∧→Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5)将下列命题符号化。

a)王强身体很好,成绩也很好。

设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)小李一边看书,一边听音乐。

设P:小李看书。

Q:小李听音乐。

P∧Qc)气候很好或很热。

设P:气候很好。

Q:气候很热。

P∨Qd)如果a 和b 是偶数,则a b +是偶数。

设P:a 和b 是偶数。

Q:a+b 是偶数。

P→Qe)四边形ABCD 是平行四边形,当且仅当它的对边平行。

离散数学习题解答(耿素云屈婉玲)北京大学出版社

离散数学习题解答(耿素云屈婉玲)北京大学出版社

离散数学习题解答(耿素云屈婉玲)北京大学出版社
习题一
1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪
些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.
答:此命题是简单命题,其真值为1.(2)5是无理数.
答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.
答:是命题,但不是简单命题,其真值为1.(4)2某35答:不是命题.
(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.
答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.
答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.
(9)吸烟请到吸烟室去!答:不是命题.
(10)圆的面积等于半径的平方乘以.答:此命题是简单命题,其真
值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简
单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2022年元旦下大雪.
答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的
命题符号化.解:(1)p:中国有四大发明.
(2)p:错误!未找到引用源。

是无理数.(7)p:刘红与魏新是同学.
(10)p:圆的面积等于半径的平方乘以π.(13)p:2022年元旦下大雪.
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5是有理数.
答:否定式:5是无理数.p:5是有理数.q:5是无理数.其否定式q 的真值为1.。

离散数学课后习题答案

离散数学课后习题答案

1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。

解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。

举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。

由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。

充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。

由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。

(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学习题答案习题一1. 判断下列句子是否为命题?若是命题说明是真命题还是假命题。

(1)3是正数吗?(2)x+1=0。

(3)请穿上外衣。

(4)2+1=0。

(5)任一个实数的平方都是正实数。

(6)不存在最大素数。

(7)明天我去看电影。

(8)9+5≤12。

(9)实践出真知。

(10)如果我掌握了英语、法语,那么学习其他欧洲语言就容易多了。

解:(1)、(2)、(3)不是命题。

(4)、(8)是假命题。

(5)、(6)、(9)、(10)是真命题。

(7)是命题,只是现在无法确定真值。

2. 设P表示命题“天下雪”,Q表示命题“我将去书店”,R表示命题“我有时间”,以符号形式写出下列命题。

(1)如果天不下雪并且我有时间,那么我将去书店。

(2)我将去书店,仅当我有时间。

(3)天不下雪。

(4)天下雪,我将不去书店。

解:(1)(┐P∧R)→Q。

(2)Q→R。

(3)┐P。

(4)P→┐Q。

3. 将下列命题符号化。

(1)王皓球打得好,歌也唱得好。

(2)我一边看书,一边听音乐。

(3)老张和老李都是球迷。

(4)只要努力学习,成绩会好的。

(5)只有休息好,才能工作好。

(6)如果a和b是偶数,那么a+b也是偶数。

(7)我们不能既游泳又跑步。

(8)我反悔,仅当太阳从西边出来。

(9)如果f(x)在点x0处可导,则f(x)在点x0处可微。

反之亦然。

(10)如果张老师和李老师都不讲这门课,那么王老师就讲这门课。

(11)四边形ABCD是平行四边形,当且仅当ABCD的对边平行。

(12)或者你没有给我写信,或者信在途中丢失了。

解:(1)P:王皓球打得好,Q:王皓歌唱得好。

原命题可符号化:P∧Q。

(2)P:我看书,Q:我听音乐。

原命题可符号化:P∧Q。

(3)P:老张是球迷,Q:老李是球迷。

原命题可符号化:P∧Q。

(4)P:努力学习,Q:成绩会好。

原命题可符号化:P→Q。

(5)P:休息好,Q:工作好。

原命题可符号化:Q→P。

(6)P:a是偶数,Q:b是偶数,R:a+b是偶数。

原命题可符号化:(P∧Q)→R。

(7)P:我们游泳,Q:我们跑步。

原命题可符号化:┐(P∧Q)。

(8)P:我反悔,Q:太阳从西边出来。

原命题可符号化:P→Q。

(9)P:f(x)在点x0处可导,Q:f(x)在点x0处可微。

原命题可符号化:P→←Q。

(10)P:张老师讲这门课,Q:李老师讲这门课,R:王老师讲这门课。

原命题可符号化:(┐P∧┐Q)→R。

(11)P:四边形ABCD是平行四边形,Q:四边形ABCD的对边平行。

原命题可符号化:P→←Q。

(12)P:你给我写信,Q:信在途中丢失了。

原命题可符号化:┐P←∣→(P∧Q)。

4. 判断下列公式哪些是合式公式,哪些不是合式公式。

(1)(Q→R∧S)(2)(P→←(R→S))(3)((┐P→Q) →(Q→P)))(4)(RS→F)(5)((P→(Q→R))→((P→Q) →(P→R)))解:(1)、(2)、(5)是合式公式,(3)、(4)不是合式公式。

5. 否定下列命题:(1)桂林处处山清水秀。

(2)每一个自然数都是偶数。

解:(1)桂林并非处处山清水秀。

(2)并不是每一个自然数都是偶数。

或:有些自然数不是偶数。

6. 给出下述每一个命题的逆命题、否命题和逆否命题。

(1)如果天下雨,我将不去。

(2)仅当你去我才不去。

(3)如果Δ=b2−4ac<0,则方程ax2+bx+c=0无实数解。

(4)如果我不获得奖学金,我就不能完成学业。

解:(1)逆命题:如果我不去,那么天下雨。

否命题:如果天不下雨,我就去。

逆否命题:如果我去,那么天不下雨。

(2)逆命题:如果你去,我将不去。

否命题:如果我去,你将不去。

逆否命题:如果你不去,我就去。

(3)逆命题:如果方程ax2+bx+c=0无实数解,则Δ=b2−4ac<0。

否命题:如果Δ=b2−4ac≥0,则方程ax2+bx+c=0有实数解。

逆否命题:如果方程ax2+bx+c=0有实数解,则Δ=b2−4ac≥0。

(4)逆命题:如果我不能完成学业,那么我没有获得奖学金。

否命题:如果我获得奖学金,我就能完成学业。

逆否命题:如果我就能完成学业,那么我就获得奖学金。

7. 求下列各式的真值表。

(1)P→(R∨S)(2)(P∧R) ∨(P→Q)(3)(P∨Q) →←(Q∨P)(4)(P∨┐Q) ∧R(5)(P→(Q→R))→((P→Q) →(P→R))解:(1)P→(R∨S)(2)(P∧R) ∨(P→Q)(3)(P∨Q) →(Q(4)(P∨┐Q)(5)(P→(Q→R))→((P→Q) →(P→R))8. 用真值表判断下列公式的类型:(1) P∨┐Q→Q(2) ((P→Q)∨(R→S))→((P∨R)→(Q∨S)) 解:(1) P∨┐Q→Q(1)为可满足式。

9. 证明下列等价式。

(1)P→(Q→P) ⇔┐P→(P→┐Q)(2)┐(P→←Q)⇔ (P∨Q) ∧┐(P∧Q)(3)┐(P→Q)⇔P∧┐Q(4)┐(P→←Q)⇔(P∧┐Q) ∨ (┐P∧Q)(5)P→(Q∨R) ⇔(P∧┐Q) →R(6)(P→R) ∧(Q→R)⇔ (P∨Q) →R(7)((P∧Q)→R) ∧(Q→(S∨R))⇔ (Q∧(S→P)) →R证明:(1)P→(Q→P) ⇔┐P∨(┐Q∨P) ⇔P∨(┐P∨┐Q)⇔┐P→(P→┐Q)(2)┐(P→←Q)⇔┐((P∧Q) ∨(┐P∧┐Q)) ⇔┐(P∧Q) ∧┐(┐P∧┐Q)) ⇔ (P∨Q) ∧┐(P∧Q) (3)┐(P→Q)⇔┐(┐P∨Q) ⇔P∧┐Q(4)┐(P→←Q)⇔┐((P→Q)∧(Q→P)) ⇔┐ (┐P∨Q) ∨┐ (┐Q∨P) ⇔(P∧┐Q) ∨ (┐P∧Q) (5)P→(Q∨R) ⇔┐P∨(Q∨R) ⇔┐(P∧┐Q) ∨R⇔(P∧┐Q) →R(6)(P→R) ∧(Q→R)⇔ (┐P∨R) ∧(┐Q∨R) ⇔ (┐P∧┐Q)∨R⇔┐(P∨Q)∨R⇔ (P∨Q) →R (7)((P∧Q)→R) ∧(Q→(S∨R))⇔ (┐(P∧Q) ∨R) ∧(┐Q∨(S∨R)) ⇔┐Q∨(┐P∧S)∨R ⇔┐(Q∧(┐S∨P)) ∨R⇔┐(Q∧(S→P)) ∨R⇔ (Q∧(S→P)) →R10. 使用恒等式证明下列各式,并写出它们对偶的公式。

(1)(┐(┐P∨┐Q)∨┐(┐P∨Q)) ⇔ P(2)(P∨┐Q) ∧(P∨Q)∧(┐P∨┐Q)⇔┐(┐P∨Q)(3)Q∨┐((┐P∨Q)∧P)⇔T证明:(1)(┐(┐P∨┐Q)∨┐(┐P∨Q))⇔ (P∧Q)∨(P∧┐Q)⇔P∧(Q∨┐Q)⇔P∧T⇔P(2)(P∨┐Q) ∧(P∨Q)∧(┐P∨┐Q)⇔P∨(┐Q∧Q)∧(┐P∨┐Q)⇔P∨F∧(┐P∨┐Q)⇔P∧(┐P∨┐Q)⇔(P∧┐P)∨(P∧┐Q)⇔F∨(P∧┐Q)⇔(P∧┐Q)⇔┐(┐P∨Q) (3)Q∨┐((┐P∨Q)∧P)⇔Q∨(┐(┐P∨Q)∨┐P)⇔ Q∨(P∧┐Q)∨┐P ⇔( Q∨┐P∨P) ∧(Q∨┐P∨┐Q)⇔ T∨T⇔T11. 试证明{∨},{→}不是全功能联结词集合。

证明:若{∨}是最小联结词组,则┐P⇔( P∨...)对所有命题变元指派T,则等价式左边为F,右边为T,等价式矛盾。

若{→}是最小联结词组,则┐P⇔ P→ ( P→( P→...)...)对所有命题变元指派T,则等价式左边为F,右边为T,等价式矛盾。

12. 证明下列蕴涵式:(1)P∧Q⇒(P→Q)(2)P⇒(Q→P)(3)(P→(Q→R))⇒ ( P→Q)→(P→R)证明:(1)P∧Q→(P→Q)⇔┐( P∧Q)∨(P→Q)⇔(┐P∨┐Q)∨(┐P∨Q)⇔┐P∨(┐Q∨Q)⇔T因为P∧Q→(P→Q)为永真式,所以P∧Q⇒(P→Q)。

(2)P→( Q→P)⇔┐P∨(┐Q∨P)⇔┐Q∨(┐P∨P)⇔T因为P→( Q→P)为永真式,所以P⇒(Q→P)。

(3)(P→(Q→R))→(( P→Q)→(P→R))⇔┐(┐P∨(┐Q∨R))∨(┐(┐P∨Q) ∨(┐P∨R))⇔(P∧(Q∧┐R))∨((P∧┐Q) ∨(┐P∨R))⇔ (P∧Q∧┐R)∨((P∨┐P∨R)∧(┐Q∨┐P∨R))⇔(P∧Q∧┐R)∨(┐P∨┐Q∨R)⇔((P∨(┐P∨┐Q∨R))∧(Q∨(┐P∨┐Q∨R))∧(┐R∨(┐P∨┐Q∨R) )⇔ T因为(P→(Q→R))→(( P→Q)→(P→R))为永真式,所以(P→(Q→R))⇒ ( P→Q)→(P→R)。

13. 对下列各公式,试仅用↑或↓表示。

(1)┐P(2)P∧Q(3)P∨Q(4)P→Q解:(1)┐P⇔┐(P∧P)⇔ P↑P(2)P∧Q⇔(P↑Q)↑(P↑Q)(3)P∨Q⇔┐(┐P∧┐Q)⇔(┐P↑┐Q)⇔(P↑P)↑(Q↑Q)(4)P→Q⇔┐P∨Q⇔(P↑P)∨Q⇔((P↑P)↑(P↑P))↑(Q↑Q)14. 将下列公式化成与之等值且仅含{┐,→}中联结词的公式。

(1)(P→┐Q)∧R(2)P →←(Q∧R)∨P解:(1)(P→┐Q)∧R⇔(┐P∨┐Q)∧R⇔(┐P∧R)∨(┐Q∧R)⇔┐(P∨┐R)∨┐(Q∨┐R) ⇔┐(R→P)∨┐(R→Q)⇔(R→P)→┐(R→Q)(2)P →←(Q∧R)∨P⇔(P→((Q∧R)∨P))∧(((Q∧R)∨P)→P)⇔(┐P∨((Q∧R)∨P))∧(┐((Q ∧R)∨P)∨P)⇔T∧(((┐Q∨┐R)∧┐P)∨P)⇔((┐Q∨┐R)∨P)⇔P∨(┐Q∨┐R)⇔P∨(Q→┐R)⇔┐P→(Q→┐R)15. 如果A(P,Q,R)由R↑(Q∧┐(R↓P))给出,求它的对偶A*(P,Q,R),并求出与A及A*等价且仅包含联接词“∧”,“∨”及“┐”的公式。

解:A*(P,Q,R):R↓ (Q∨┐(R↑P))R↑(Q∧┐(R↓P))⇔┐(R∧(Q∧(R∨P)))⇔┐R∨┐Q∨(┐R∧┐P)R↓ (Q∨┐(R↑P))⇔┐R∧┐Q∧(┐R∨┐P)16. 把P↑Q表示为只含有“↓”的等价公式。

解:P↑Q⇔┐(P∧Q)⇔┐((P↓P)↓(Q↓Q))⇔ ((P↓P)↓(Q↓Q))↓((P↓P)↓(Q↓Q))17. 证明:(1)┐(P↑Q)⇔┐P↓┐Q(2)┐(P↓Q)⇔┐P↑┐Q证明:(1)┐(P↑Q)⇔┐(┐(P∧Q)) ⇔(P∧Q)⇔┐(┐P∨┐Q)⇔┐P↓┐Q(2)┐(P↓Q)⇔┐(┐(P∨Q)) ⇔(P∨Q)⇔┐(┐P∧┐Q)⇔┐P↑┐Q18. 求公式P∧(P→Q)的析取范式和合取范式。

解:P∧(P→Q) ⇔ P∧(┐P∨Q) 合取范式⇔(P∧┐P)∨(P∧Q) 析取范式19. 求下列公式的主析取范式和主合取范式。

(1)(┐P→Q)→(┐Q∨P)(2)(P→ (P∨Q))∨R(3)(P→Q∧R)∧((┐P→ (┐Q∧┐R))解:(1)真值表法1 0 1 1 10 1 1 0 00 0 0 1 1主析取范式为:(P∧Q)∨(P∧┐Q)∨(┐P∧┐Q)主合取范式为:P∨┐Q公式化归法(┐P→Q)→(┐Q∨P)⇔┐(P∨Q)∨(┐Q∨P)⇔(┐P∧┐Q)∨(┐Q∨P)⇔(┐P∨┐Q∨P)∧(┐Q∨┐Q∨P) ⇔P∨┐Q主合取范式⇔(P∧Q)∨(P∧┐Q)∨(┐P∧┐Q) 主析取范式(2)真值表法(P→ (P∨Q))∨R原式为永真式,其主析取范式为所有小项的析取,即:m000∨m001∨m010∨m011∨m100∨m101∨m110∨m111不能表示为主合取范式。

相关文档
最新文档