离散数学第四版1-2章课后习题答案
离散数学课后习题答案(第二章)

(3) 寻求下列各式的真假值。 A) (∀x)( P( x) ∨ Q( x)) ,其中 P( x) : x = 1, Q( x) : x = 2 ,且论域是 {1, 2} B) (∀x)( P → Q( x)) ∨ R( a) , 其中 P : 2 > 1, Q( x) : x ≤ 3, R( x) : x > 5 而 a : 5 , 论域是 {−2,3, 6} 解:a) (x)(P(x)∨Q(x))⇔(P(1)∨Q(1))∧(P(2)∨Q(2)), 但 P(1)为 T,Q(1)为 F,P(2)为 F,Q(2)为 T, 所以(x)(P(x)∨Q(x))⇔(T∨F)∧(F∨T) ⇔T。 b) (x)(P→Q(x))∨R(a)⇔ ((P→Q(−2))∧(P→Q(3))∧(P→Q(6)))∨R(a) 因为 P 为 T,Q(−2)为 T,Q(3)为 T,Q(6)为 F,R(5)为 F, 所以(x)(P→Q(x))∨R(a)⇔((T→T)∧(T→T)∧(T→F))∨F⇔ F (4) 对下列谓词公式中的约束变元进行换名。 A) ∀x∃y ( P ( x, z ) → Q ( y ) � S ( x, y ) B) (∀xP( x) → ( R( x) ∨ Q( x))) ∧ ∃xR( x)) → ∃zS ( x, z) 解:a)(u)(v)(P(u,z)→Q(v))S(x,y) b)(u)(P(u)→ (R(u)∨Q(u))∧(v)R(v))→(z)S(x,z) (5) 对下列谓词公式中的自由变元进行代入。 A) (∃yA( x, y ) → ∀xB ( x, z )) ∧ ∃x∀zC ( x, y , z ) B) (∀yP( x, y ) ∧ ∃zQ( x, z )) ∨ ∀xR( x, y) 解:a)((y)A(u,y)→(x)B(x,v))∧(x)(z)C(x,t,z) b)((y)P(u,y)∧(z)Q(u,z))∨(x)R(x,t) 习题 2-5 (1)考虑以下赋值,论域:
离散数学第1章习题答案

#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define MAX_STACK_SIZE 100 typedef int ElemType; typedef struct{ElemType data[MAX_STACK_SIZE];int top;} Stack;void lnitStack(Stack *S){S->top=-1;}int Push(Stack *S,ElemType x){if(S->top==MAX_STACK_SIZE-1){printf("\n Stack is full!");return 0;}S->top++;S->data[S->top]=x;return 1;}int Empty(Stack *S){return (S->top==-1);}int Pop(Stack *S,ElemType *x){if(Empty(S)){printf("\n Stack is free!");return 0;}*x=S->data[S->top];S_>top__;return 1;}void conversion(int N){int e;Stack *S=(Stack*)malloc(sizeof(Stack));InitStack(S); while(N){Push(S,N%2);"}while(!Empty(S)){Pop(S, &e);printf("%d ",e);}}void main(){ int n;printf(" 请输入待转换的值n: \n");scanf ("%d",&n);conversion(n);1. 判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1) 离散数学是计算机专业的一门必修课。
离散数学课后答案(第1-2-4章)武汉大学出版社

离散数学课后答案(第1-2-4章)武汉大学出版社习题1.11、(1)否(2)否(3)是,真值为0(4)否(5)是,真值为12、(1)P:天下雨Q:我去教室┐P →Q(2)P:你去教室Q:我去图书馆P →Q (3)P,Q同(2)Q →P(4)P:2是质数Q:2是偶数P∧Q3、(1)0(2)0(3)14、(1)如果明天是晴天,那么我去教室或图书馆。
(2)如果我去教室,那么明天不是晴天,我也不去图书馆。
(3)明天是晴天,并且我不去教室,当且仅当我去图书馆。
习题1.21、(1)是(2)是(3)否(4)是(5)是(6)否2、(1)(P →Q) →R,P →Q,R,P,Q (2)(┐P∨Q) ∨(R∧P),┐P ∨Q,R∧P,┐P,Q,R,P(3)((P →Q) ∧(Q →P)) ∨┐(P →Q)),(P →Q) ∧(Q →P),┐(P →Q),P →Q,(Q →P),P →Q,P,Q,Q,P,P,Q3、(1)((P →Q) →(Q →P)) →(P →Q) (2)((P →Q) ∨((P →Q) →R))→((P →Q) ∧((P →Q) →R))(3)(Q →P∧┐P) →(P∧┐P →Q)4、(P →Q) ∨((P∧Q) ∨(┐P∧┐Q)) ∧(┐P∨Q)习题1.31、(1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1(2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐(0∨1)) = 0∨(0∧0) = 0 (3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0(4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨┐1) = 1←→1 = 1(5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1←→┐1)→(0∨┐1)) = 0∨1∨1 = 12、(1)P Q P→Q Q∧(P→Q) Q∧(P→Q)→P0 0 1 0 10 1 1 1 01 0 0 0 11 1 1 1 1(2)P Q R Q∧R ┐(P∨(Q∧R)) P∨Q P∨R(2)原式<=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐P)<=> (P∧┐Q)∨┐(P∧┐Q) <=> T 原式为永真式(3)原式<=> ┐(P∧Q) ←→┐(P∧Q) <=> T 原式为永真式(4)原式<=> P∧(Q∨R) ←→P∧(Q∨R) <=> T 原式为永真式(5)原式<=> ┐(P∨┐Q)∨Q <=> (┐P∧Q)∨Q <=> Q 原式为可满足式(6)原式<=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> T 原式为永真式(7)原式<=> (┐P∨P∨Q)∧┐P <=> (T∨Q)∧┐P<=> T∧┐P <=> ┐P 原式为可满足式(8)原式<=> ┐((P∨Q) ∧(┐Q∨R))∨(┐P ∨R) <=> (P∧┐Q)∨(Q∧┐R)∨(┐P∨R)<=> ((P∧┐Q)∨┐P)∨((Q∧┐R)∨R)<=>(( P∨┐P)∧(┐Q∨┐P))∨(( Q∨R)∧(┐R ∨R))<=> (┐Q∧┐P)∨( Q∨R) <=> T 原式为永真式4、(1)左<=> ┐P∨┐Q∨P <=> ┐┐P∨(┐P ∨┐Q) <=> 右(2)左<=> ┐(┐P∨Q) <=> 右(3)左<=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> 右(4)左<=> ┐(P→Q)∨┐(Q→P) <=> (P∧┐Q)∨(Q∧┐P) <=> 中<=> ((P∧┐Q)∨Q)∧((P∧┐Q)∨┐P)<=> (P∨Q)∧(┐Q∨Q)∧(P∨┐P)∧(┐Q∨┐P)<=> (P∨Q)∧┐(P∧Q) <=> 右(5)左( P Q) ( R Q) (P Q) Q 右5.(1)左Q P Q 右(2)(P (Q R)) ((P Q) (P R))( P Q R) ( P Q) ( P R)(P Q R) (P Q) P R(P Q R) ((P P) ( Q P)) R(P Q R) ( Q P R)(P Q R) (P Q R)T故P (Q R) (P Q) (P R)(3).(P Q) (P P Q)( P Q) P (P Q)( P Q) ( P P) ( P Q)( P Q) ( P Q)T故P Q P P Q(4).((P Q) Q) P Q( ( P Q) Q) P Q(( P Q) Q) P Q( P Q) (Q Q) P Q(P Q) (P Q)T故(P Q) Q P Q(5).((P P) Q) ((P P) R) (Q R) (( T Q) ( T R)) Q R(Q R) Q RQ R Q RQ TT故((P P) Q) ((P P) R) Q R(6)左(Q F) (R F)( Q F) ( R F)Q RRR Q 右6.(1)原式( P Q R)(2)原式P Q P (P Q P)(3)原式P (Q R P) P Q R ( P Q R)7.(1)原式( P Q P)(2)原式( P Q R) P Q ( ( P Q R) P Q)(3)原式P Q (R P) (P Q (R P))8. (1) (P Q) (( P ( P Q)) R) P(2)(P Q R) ( P R)(3)(P F) (Q T)习题1.41.(1)原式( P Q) (( P Q) (Q P))( P Q) (Q P)(P Q) Q PQ P,既是析取范式又是合取范式(2)原式(( P Q) ( P Q)) ( ( P Q) ( P Q))(P Q) (P Q) 析取范式P (Q Q)合取范式(3)原式P Q S ( P Q)析取范式( P ( P Q)) Q SP Q S合取范式(4)原式P P Q Q R既是析取范式又是合取范式2.(1)原式P Q R为真的解释是:000,001,011,100,101,110,111故原式的主析取范式为:( P Q R) ( P Q R) ( P Q R) (P Q R) (P QR) (P Q R) (P Q R)(2)原式(P Q) R(P Q (R R)) ((P P) R)(P Q R) (P Q R) (P Q) ( P R)(P Q R) (P Q R) (P (Q Q) R) ( P (Q Q) R)(P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R)(P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R)为真的解释是101,100,111,011,001(3)原式( P (Q R)) (P ( Q R))(( P (Q R)) P) (( P (Q R)) ( Q R))( P P) (Q P R) ( P Q R) (Q R Q R)(P Q R) ( P Q R)为真的解释是:000,111(4)原式P P Q Q R P Q R为真的解释是:001,010,011,100,101,110,111故原式的主析取范式为:( P Q R) ( P Q R) ( P Q R) (P Q R) (P QR) (P Q R) (P Q R)3.(1)原式P Q P Q T主合取范式,无为假的解释。
离散数学答案第二章习题解答

习题与解答1. 将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧∃→∀。
(2) 取论域为所有物质的集合。
令x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧∃→∀。
(3) 论域和谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →∀∧∃。
(4) 取论域为所有事物的集合。
令x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧∃→∀(5)论域和谓词与(4)同。
“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →∀∧∃。
2. 取论域为正整数集,用函数+(加法),•(乘法)和谓词<,=将下列命题符号化:(1) 没有既是奇数,又是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不是偶数。
解 先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =•∃。
x x J :)(是奇数,)(x J 可表示为)2(x v v =•⌝∃。
离散数学第2章习题解答

2.4(1)对所有的x,存在着y,使得x y 0,在(a), (b)中为真命题,在(c),(d)中为假命题。
(2)存在着x,对所有的y,都有x y 0,在(a),(b)中为真命题,在(c),(d)中为假命题。
3)对所有x,存在着y,使得x y 1,在(a),(b)(c)中均为假命题,而在(d)中为真命题。
(F(a) yG(y)) (F(b) yG(y)) F(c) yG(y))
(F(a) (G(a) G(b) G(c)
(F(b) (G(a) G(c))
(F(c) (G(a) G(b) G(c))
(F(a) (F(b) (G(a) G(b) (c)).
显然这个演算比原来的演算麻烦多了
2.13在I下
(F( 2) G( 2)) (F(3) G(3)) F(6) G(6))
在一阶逻辑中,将命题符号化时,当引入特性谓词(如题中的F(x))之后,
全称量词后往往使用联结词→而不使用,而存在量词 后往往使用 ,而不使用→,如果用错了,会将真命题变成假命题,或者将假命题变成真命题。
2.6在解释R下各式分别化为
(1)x( x 0);
(2)x y(x y x);
(3)x y z(x y) (x z y z));
x(F(x) (G(x) H (x))
(2)令F(x):x是人,G(y):y是化,H (x) : x喜欢,命题符号化为x(F(x) y(G(y) H ( x, y)))
(3)令F(x):x是人,G(x) : x犯错误,命题符号化为
x(F(x) G(x)),
或另一种等值的形式为
x(F(x) G(x)
离散数学课后习题答案一

§1.1 命题和逻辑连接词习题1.11. 下列哪些语句是命题,在是命题的语句中,哪些是真命题,哪些是假命题,哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)你喜欢计算机吗? (3)地球上海洋的面积比陆地的面积大。
(4)请回答这个问题! (5)632=+。
(6)107<+x 。
(7)园的面积等于半径的平方乘以圆周率。
(8)只有6是偶数,3才能是2的倍数。
(9)若y x =,则z y z x +=+。
(10)外星人是不存在的。
(11)2020年元旦下大雪。
(12)如果311=+,则血就不是红的。
解是真命题的有:(1)、(3)、(7)、 (9) 、(12) ;是假命题的有:(5)、 (8) ;是命题但真值现在不知道的有: (10)、 (11);不是命题的有:(2)、(4)、(6)。
2. 令p 、q 为如下简单命题:p :气温在零度以下。
q :正在下雪。
用p 、q 和逻辑联接词符号化下列复合命题。
(1)气温在零度以下且正在下雪。
(2)气温在零度以下,但不在下雪。
(3)气温不在零度以下,也不在下雪。
(4)也许在下雪,也许气温在零度以下,也许既下雪气温又在零度以下。
(5)若气温在零度以下,那一定在下雪。
(6)也许气温在零度以下,也许在下雪,但如果气温在零度以上就不下雪。
(7)气温在零度以下是下雪的充分必要条件。
解 (1)q p ∧;(2)q p ⌝∧;(3)q p ⌝∧⌝;(4)q p ∨; (5)q p →;(6))()(q p q p ⌝→⌝∧∨;(7)q p ↔。
3. 令原子命题p :你的车速超过每小时120公里,q :你接到一张超速罚款单,用p 、q 和逻辑联接词符号化下列复合命题。
(1)你的车速没有超过每小时120公里。
(2)你的车速超过了每小时120公里,但没接到超速罚款单。
(3)你的车速若超过了每小时120公里,将接到一张超速罚款单。
(4)你的车速不超过每小时120公里,就不会接到超速罚款单。
离散数学第四版课后答案(第2章)

离散数学课后答案第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域. (1) 令x(是鸟F:)x(会飞翔.G:)xx命题符号化为xFx→∀.))G((x)((2)令x(为人.xF:)(爱吃糖G:)xx命题符号化为GxFx→⌝∀(x))()(或者xFx⌝∧∃(xG))(()(3)令xF:)(为人.xG:)(爱看小说.xx命题符号化为xF∃.Gx∧(x()))((4) x(为人.xF:)G:)(爱看电视.xx命题符号化为Fx⌝⌝∃.x∧(x))()G(分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。
(1)-(4)中的)(x F 都是特性谓词。
2° 初学者经常犯的错误是,将类似于(1)中的命题符号化为))()((x G x F x ∧∀即用合取联结词取代蕴含联结词,这是万万不可的。
将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。
”因而符号化应该使用联结词→而不能使用∧。
若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。
”这显然改变了原命题的意义。
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。
2.2 (1)d (a),(b),(c)中均符号化为)(x xF ∀其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。
(2) 在)(),(),(c b a 中均符号化为)(x xG ∃其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。
(3)在)(),a中均符号化为b(c(),∃xH)(x其中.1(bH此命题在)(),a中均为假命题,在(c)中为(=5:)xx真命题。
分析 1°命题的真值与个体域有关。
2°有的命题在不同个体域中,符号化的形式不同,考虑命题“人都呼吸”。
离散数学第1-2章参考答案-命题逻辑谓词逻辑

Page 49 第17题解:(1)令①P:李明学习努力;②Q:李明成绩好;③R:李明不热衷于玩扑克;(2)已知条件符号化,即①P→Q:如果李明学习努力,那么他成绩好;②R→P:如果李明不热衷于玩扑克,那么他就努力学习;(3)所求结论符号化,即①¬Q→¬R:李明成绩不好,所以李明热衷于玩扑克;(4)证明:原命题符号化为P→Q,R→P ¬Q→¬R;①P→Q P规则;②R→P P规则;③R→Q T规则①②;④Q∨¬R T规则③;⑤¬Q→¬R T规则④;(5)得证。
Page 50 第32题(2)解: P∨(¬P→(Q∨(¬Q→R)));⇔ P∨(P∨(Q∨(Q∨R)));⇔P∨Q∨R;①主合取范式为:P∨Q∨R;因为 P∨Q∨R ⇔∏M0 ⇔∑m1,2,3,4,5,6,7;②主析取范式为:∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R);Page 50 第32题(4)解: (P∧¬Q∧R)∨(¬P∧Q∧¬S);⇔ ((P∧¬Q∧R)∧(S∨¬S))∨((¬P∧Q∧¬S)∧(R∨¬R));⇔(P∧¬Q∧R∧S)∨(P∧¬Q∧R∧¬S)∨(¬P∧Q∧R∧¬S)∨(¬P∧Q∧¬R∧¬S);①主析取范式为:(¬P∧Q∧¬R∧¬S)∨(¬P∧Q∧R∧¬S)∨(P∧¬Q∧R∧¬S)∨(P∧¬Q∧R∧S) ⇔∑m4,6,10,11⇔∏M0,1,2,3,5,7,8,9,12,13,14,15;②主合取范式为:(¬P∨¬Q∨¬R∨¬S)∧(¬P∨¬Q∨¬R∨S)∧(¬P∨¬Q∨R∨¬S) ∧(¬P∨¬Q∨R∨S)∧(¬P∨Q∨¬R∨S)∧(¬P∨Q∨R∨S)∧(P∨¬Q∨¬R∨¬S) ∧(P∨¬Q∨¬R∨S)∧(P∨Q∨¬R∨¬S)∧(P∨Q∨¬R∨S)∧(P∨Q∨R∨¬S)∧(P∨Q∨R∨S);Page 50 第32题(6)解: (P→Q)→(P∨R);⇔¬(¬P∨Q)∨(P∨R);⇔(P∧¬Q)∨(P∨R);⇔(P∨R)∧(P∨¬Q∨R);⇔ ((P∨R)∨(¬Q∧Q))∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R)∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R);①主合取范式为:(P∨¬Q∨R)∧(P∨Q∨R);⇔∏M0,2;⇔∑m1,3,4,5,6,7;①主合取范式为:(¬P∨¬Q∨R)∧(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R);Page 51 第37题(2)解: P→Q P→(P∧Q)①P P规则(附加前提);②P→Q P规则;③Q T规则①,②,I;④P∧Q T规则①,③,I;⑤P→(P∧Q) CP规则;Page 51 第37题(4)解: (P∨Q)→R ⇒ (P∧Q)→R①P∧Q P规则(附加前提);②P T规则①,I;③P∨Q T规则②,I;④(P∨Q)→R P规则;⑤R T规则③,④,I;⑥(P∧Q)→R CP规则;Page 51 第38题(3)解:﹁(P→Q)→﹁(R∨S),((Q→P)∨﹁R),R ⇒ P↔Q①﹁(P↔Q) P规则(假设前提);②﹁((P→Q)∧(Q→P)) T规则①,I;③R P规则;④((Q→P)∨﹁R) P规则;⑤R→(Q→P) T规则④,I;⑥(Q→P) T规则③⑤,I;⑦R∨S T规则③,I;⑧﹁(P→Q)→﹁(R∨S) P规则;⑨(R∨S)→(P→Q) T规则⑧,I;⑩(P→Q) T规则⑦⑨,I;⑪(P→Q)∧(Q→P) T规则⑥⑩,I;⑫得证间接证明法②⑪;Page 51 第39题(1)解:(1)符号化已知命题①P:明天是晴天;②Q:明天下雨;③R:我去看电影;④S:我不看书;条件符号化:P∨Q,P→R,R→S;结论符号化:①﹁S→Q(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P→R P规则;②R→S P规则;③P→S T规则①②;④﹁S→﹁P T规则③,I;⑤P∨Q P规则;⑥﹁P→Q T规则⑤,I;⑦﹁S→Q T规则④⑥,I;Page 51 第39题(2)解:(1)符号化已知命题①P:明天不下雨;②Q:能够买到车票;③R:我去参观计算机展览会;条件符号化:P∧Q→R;结论符号化:①﹁R→﹁P(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P∧Q→R P规则;②﹁R P规则(附加前提);③﹁(P∧Q) T规则①②;④﹁P∨﹁Q T规则③,I;⑤也就是说或者明天下雨或者买不到票,所以原命题说不能参加计算机展览的原因只是明天下雨是不完全的,故原命题无效。