九年级上第一次月考数学试卷含案解析 (150)

合集下载

九年级数学第一次月考卷(沪科版)(解析版)【测试范围:第二十一章】

九年级数学第一次月考卷(沪科版)(解析版)【测试范围:第二十一章】

2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:150分钟试卷满分:120分)考前须知:1.本卷试题共23题,单选10题,填空4题,解答9题。

2.测试范围:第二十一章(沪科版)。

第Ⅰ卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列函数:①y=32;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有( )A.1个B.2个C.3个D.4个【分析】利用二次函数定义进行分析即可.【解答】解:①y=3―2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数,共3个,故选:C.2.(4分)已知反比例函数y=―6x,下列说法中正确的是( )A.该函数的图象分布在第一、三象限B.点(2,3)在该函数图象上C.y随x的增大而增大D.该图象关于原点成中心对称【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x的增大而增大,再逐个判断即可.【解答】解:A.∵反比例函数y=―6x中﹣6<0,∴该函数的图象在第二、四象限,故本选项不符合题意;B.把(2,3)代入y=―6x得:左边=3,右边=﹣3,左边≠右边,∴点(2,3)不在该函数的图象上,故本选项不符合题意;C.∵反比例函数y=―6x中﹣6<0,∴函数的图象在每个象限内,y随x的增大而增大,故本选项不符合题意;D.反比函数y=―6x的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D.3.(4分)如果将抛物线y=x2﹣2平移,使平移后的抛物线与抛物线y=x2﹣8x+9重合,那么它平移的过程可以是( )A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【解答】解:∵抛物线y=x2﹣8x+9=(x﹣4)2﹣7的顶点坐标为(4,﹣7),抛物线y=x2﹣2的顶点坐标为(0,﹣2),∴顶点由(0,﹣2)到(4,﹣7)需要向右平移4个单位再向下平移5个单位.故选:D.4.(4分)已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:x…﹣1012…y…﹣5131…则下列判断正确的是( )A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x>1时,y随x的增大而减小D.方程ax2+bx+c=0的正根在3与4之间【分析】结合图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是直线x=1,顶点坐标为(1,3),借助(0,1)两点可求出二次函数解析式,从而得出抛物线的性质.【解答】解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是直线x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故B错误;∵当x>1时,y随x的增大而减小时正确的,故C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,由表正根在2和3之间;故选:C.5.(4分)若点(x1,y2)、(x2,y2)和(x3,y3)分别在反比例函数y=―2x的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1【分析】根据所给反比例函数解析式,得出y随x的变化情况,据此可解决问题.【解答】解:因为反比例函数的解析式为y=―2 x ,所以反比例函数的图象位于第二、四象限,且在每一个象限内y随x的增大而增大.因为x1<x2<0<x3,所以0<y1<y2,y3<0,所以y3<y1<y2.故选:B.6.(4分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是( )x…﹣3﹣2 ﹣1 0 1 …y…﹣11﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2B.﹣2<x1<﹣1C.﹣1<x1<0D.0<x1<1【分析】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【解答】解:当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0,故选:C.7.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a―b+cx的图象在同一坐标系中大致为( )A.B.C.D.【分析】先根据二次函数的图象开口向下和对称轴可知b<0,由抛物线交y的正半轴,可知c>0,由当x=﹣1时,y<0,可知a﹣b+c>0,然后利用排除法即可得出正确答案.【解答】解:∵二次函数的图象开口向下,∴a<0,∵―b2a<0,∴b<0,∵抛物线与y轴相交于正半轴,∴c>0,∴直线y=bx+c经过一、二、四象限,由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,∴反比例函数y=a―b+cx的图象必在一、三象限,故B、C、D错误,A正确;故选:A.8.(4分)若二次函数y=ax2+bx+c的图象经过A(x1,y1)、B(x2,y2)、C(2﹣m,n)、D(m,n)(y1≠n)则下列命题正确的是( )A.若a>0且|x1﹣1|>|x2﹣1|,则y1<y2B.若a<0且y1<y2,则|1﹣x1|<|1﹣x2|C.若|x1﹣1|>|x2﹣1|且y1>y2,则a<0D.若x1+x2=2(x1≠x2),则AB∥CD【分析】根据D(m,n)、C(2﹣m,n)两点可确定抛物线的对称轴,再利用二次函数的性质一一判断即可.【解答】解:∵抛物线过点D(m,n),C(2﹣m,n)两点,∴抛物线的对称轴为x=2―m+m2=1,若a>0且|x1﹣1|>|x2﹣1|,则y1>y2,故选项A错误,若a<0且y1<y2,则|1﹣x1|>|1﹣x2|,故选项B错误,若|x1﹣1|>|x2﹣1|且y1>y2,则a>0,故选项C错误,若x1+x2=2(x1≠x2),则AB∥CD,故选项D正确.故选:D.9.(4分)如图,抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣1,0),B两点,与y轴的交点C在(0,3),(0,4)之间(包含端点),抛物线对称轴为直线x=1,有以下结论:①abc>0;②3a+c=0;③―43≤a≤―1;④a+b≤am2+bm(m为实数);⑤方程ax2+bx+c﹣3=0必有两个不相等的实根.其中结论正确有( )A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:由函数图象可知,a<0,b>0,c>0,所以abc<0.故①错误.因为抛物线与x轴的一个交点坐标为(﹣1,0),所以a﹣b+c=0.又因为抛物线的对称轴为直线x=1,所以―b2a=1,即b=﹣2a,所以a﹣(﹣2a)+c=0,即3a+c=0.故②正确.因为点C在(0,3),(0,4)之间(包含端点),所以3≤c≤4.又因为c=﹣3a,则3≤﹣3a≤4,解得―43≤a≤―1.故③正确.因为抛物线开口向下,且对称轴为直线x=1,所以当x=1时,函数取得最大值:a+b+c.则抛物线上的任意一点(横坐标为m)的纵坐标都不大于a+b+c,即am2+bm+c≤a+b+c,故a+b≥am2+bm.故④错误.方程ax2+bx+c﹣3=0的根可看成函数y=ax2+bx+c与直线y=3交点的横坐标,显然两个图象有两个不同的交点,所以方程ax2+bx+c﹣3=0必有两个不相等的实根.故⑤正确.故选:C.10.(4分)在平面直角坐标系中,我们把横坐标和纵坐标互为相反数的点称为“相反点”,例如点(1,﹣1),(―…,都是“相反点”,若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”(2,﹣2),当﹣1≤x≤m时,二次函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―74,则m的取值范围为( )A.﹣1≤m≤4B.―1≤m≤32C.32≤m≤4D.32≤m≤5【分析】把(2,﹣2)代入y=ax2+3x+c,求出a、c的关系,再根据二次函数图象上有且只有一个“相反点”,结合Δ=b2﹣4ac求出a、c的值,得出y=﹣x2+3x﹣4,化为顶点式,可得出该二次函数的最值,再根据当y=﹣8时,求出x的值即可.【解答】解:∵点(2,﹣2)是二次函数y=ax2+3x+c(a≠0)的“相反点”,∴﹣2=4a+6+c,∴c=﹣4a﹣8,∵二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”,∴ax2+3x+c=﹣x(即ax2+4x+c=0)有且只有一个根,∴Δ=16﹣4ac=0,∴16﹣4a(﹣4a﹣8)=0,解得,a=﹣1,c=﹣4×(﹣1)﹣8=﹣4∴y=﹣x2+3x﹣4=﹣(x―32)2―74,二次函数图象的对称轴为直线x=32,函数的最大值为―74,当y=﹣8时,﹣x2+3x﹣4=﹣8,解得,x1=﹣1,x2=4,当32≤m ≤4时,函数的最大值为―74,最小值为﹣8.故选:C .二.填空题(共4小题,满分20分,每小题5分)11.(5分)若函数y =(m +2)x 3―m 2是反比例函数,则m 的值为  .【分析】形如y =kx(k 为常数,k ≠0)的函数叫做反比例函数,也可写成y =kx ﹣1(k 为常数,k ≠0),由此解答即可.【解答】解:若函数y =(m +2)x 3―m 2是反比例函数,则3﹣m 2=﹣1,解得m =±2,∵m +2≠0,∴m ≠﹣2,∴m =2,故答案为:2.12.(5分)若抛物线y =x 2+2x +c 的顶点在x 轴上,则c = .【分析】根据x 轴上点的,纵坐标是0,列出方程求解即可.【解答】解:∵抛物线的顶点在x 轴上,∴y =4ac―b 24a =4c―224×1=0,解得c =1.故答案为:1.13.(5分)如图,在△OAB OA 在y 轴上.反比例函数y =kx(x >0)的图象恰好经过点B ,与边AB 交于点C .若BC =3AC ,S △OAB =10.则k 的值为  .【分析】根据BC =3AC ,S △OAB =10可得S △COB =152,再根据反比例函数k 值的几何意义列出方程12×(k m +k 4m )×(4m ―m)=152求出k 即可.【解答】解:∵BC =3AC ,S △OAB =10.∴S△COB =34×10=152,设点C(m,km),则B(4m,k4m),∵S△COB =S梯形BCDE=152,∴12×(km+k4m)×(4m―m)=152,解得:k=4.故答案为:4.14.(5分)抛物线y=ax2﹣4x+5的对称轴为直线x=2.(1)a= ;(2)若抛物线y=ax2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,则m的取值范围是 .【分析】(1)由抛物线y=ax2﹣4x+5的对称轴为直线x=2,得――42a=2,即有a=1;(2)①抛物线y=x2﹣4x+5+m的顶点是(2,0),可得0=4﹣4×2+5+m,解得m=﹣1,②当x=﹣1和x=6时,对应的函数值异号,故10+m>017+m<0或10+m<017+m>0,解得﹣17<m<﹣10,当m=﹣17时,抛物线y=x2﹣4x+5+m在﹣1<x<6没有交点,当m=﹣10时,抛物线y=x2﹣4x+5+m 在﹣1<x<6有一个交点(5,0),即可得m=﹣1或﹣17<m≤﹣10.【解答】解:(1)∵抛物线y=ax2﹣4x+5的对称轴为直线x=2.∴――42a=2,∴a=1;故答案为:a=1;(2)由(1)知:a=1,∴抛物线y=ax2﹣4x+5+m为y=x2﹣4x+5+m,∴由Δ≥0得m≤﹣1,∵对称轴为直线x=2,∴抛物线y=x2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,分两种情况:①抛物线y=x2﹣4x+5+m的顶点是(2,0),∴0=4﹣4×2+5+m,解得m=﹣1,②当x=﹣1和x=6时,对应的函数值异号,而当x=﹣1时,y=10+m,x=6时,y=17+m,∴10+m>017+m<0或10+m<017+m>0,解得﹣17<m<﹣10,当m=﹣17时,抛物线y=x2﹣4x+5+m在﹣1<x<6没有交点,当m=﹣10时,抛物线y=x2﹣4x+5+m在﹣1<x<6有一个交点(5,0),符合题意,综上所述,m取值范围是m=﹣1或﹣17<m≤﹣10,故答案为:m=﹣1或﹣17<m≤﹣10.三.解答题(共9小题,满分90分)15.(8分)已知:y=y1+y2,并且y1与(x﹣1)成正比例,y2与x成反比例.当x=2时,y=5;当x=﹣2时,y=﹣9.(1)求y关于x的函数解析式;(2)求当x=8时的函数值.【分析】(1)首先设y1=k1(x﹣1),y2=k2x,再根据y=y1+y2可得y=k1(x﹣1)+k2x,然后把x=2时,y=5;当x=﹣2时,y=﹣9代入可得关于k1、k2的方程组,解出k1、k2的值,可得函数解析式;(2)把x=8代入函数解析式可得答案.【解答】解:(1)∵y1与(x﹣1)成正比例,y2与x成反比例,∴设y1=k1(x﹣1),y2=k2 x,∵y=y1+y2,∴y=k1(x﹣1)+k2 x,∵当x=2时,y=5;当x=﹣2时,y=﹣9.∴5=k1+k22―9=―3k1―k22,解得:k1=2k2=6,∴y关于x的函数解析式为y=2(x﹣1)+6 x(2)当x=8时,原式=2×7+34=1434.16.(8分)已知二次函数y=x2﹣(m+2)x+2m﹣1.(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数图象与y轴交于点(0,3),求该函数的图象与x轴的交点坐标.【分析】(1)令y=0,则x2﹣(m+2)x+2m﹣1=0,计算判别式即可得出结论.(2)先根据图象与y轴交于点(0,3),求出m的值,得出其解析式,再求出y=0时x的值.【解答】(1)证明:令y=0,则x2﹣(m+2)x+2m﹣1=0,∴Δ=[﹣(m+2)2]﹣4(2m﹣1),=m2+4m+4﹣8m+4,=m2﹣4m+8=(m﹣2)2+4≥4,∴Δ>0,∴方程总有两个不相等的实数根,即抛物线与x轴总有两个交点;(2)∵函数的图象与y轴交于点(0,3).∴2m﹣1=3,∴m=2,∴抛物线的解析式为:y=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,当y=0时,0=(x﹣2)2﹣1,∴x1=3,x2=1,∴该函数的图象与x轴的交点坐标(3,0)或(1,0).17.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根: ;(2)写出不等式ax2+bx+c<0的解集: ;(3)写出y随x的增大而减小的自变量x的取值范围 ;(4)若方程ax2+bx+c=k有两个不相等的实数根,直接写出k的取值范围: .【分析】(1)根据图象可知x=1和3是方程的两根;(2)找出函数值小于0时x的取值范围即可;(3)首先找出对称轴,然后根据图象写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围.【解答】解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为x=1和x=3,故答案为:1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;故答案为:x<1或x>3;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为直线x=2,开口向下,即当x>2时,y随x的增大而减小;故答案为:x>2.(4)由图象可知,二次函数y=2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c (a≠0)的最大值,故答案为:k<2.18.(8分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2),B(﹣2,n)两点.(1)求反比例函数和一次函数的表达式;(2)连接OA,OB,求△ABO的面积;(3)不等式k1x+b>k2x的解集是 .【分析】(1)把A (4,﹣2)代入反比例函数y =k 2x得出k 2的值,进而求得B 的坐标,再把A 、B 的坐标代入y =k 1x +b ,运用待定系数法分别求其解析式;(2)设一次函数与x 轴交于点C ,由y =﹣x +2即可求得点C 的坐标,把三角形AOB 的面积看成是三角形AOC 和三角形OCB 的面积之和进行计算即可求得;(3)根据图象即可求解.【解答】解:(1)将A (4,﹣2)代入反比例函数解析式得:k 2=﹣8,则反比例解析式为y =―8x;将B (﹣2,n )代入反比例解析式得:n =4,即B (﹣2,4),将A 与B 坐标代入y =k 1x +b 中,得:4k 1+b =―2―2k 1+b =4,解得:k 1=―1b =2,则一次函数解析式为y =﹣x +2;(2)如图所示,设一次函数与x 轴交于点C ,对于一次函数y =﹣x +2,令y =0,得到x =2,即OC =2,则S △AOB =S △AOC +S △BOC =12×22+12×2×4=6.(3)根据函数图象可知:不等式k 1x +b >k 2x的解集为x <﹣2或0<x <4,故答案为:x <﹣2或0<x <4.19.(10分)如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB 为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.(1)求此桥拱截面所在抛物线的表达式;(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.【分析】(1)先求出点A,点B,点P的坐标,再把抛物线解析式设为顶点式进行求解即可;(2)求出当y=5时x的值,然后计算出两个对应的x的值之间的差的绝对值即可得到答案.【解答】解:(1)由题意知,A(0,2),P(10,6),B(20,2),设抛物线解析式为y=a(x﹣10)2+6,把A(0,2)代入解析式得,100a+6=2,解得a=―1 25,∴此桥拱截面所在抛物线的表达式为y=―125(x―10)2+6;(2)此船不能通过,理由:当y=2+3=5时,―125(x―10)2+6=5,解得x=5或x=15,∵15﹣5=10<12,∴此船不能通过桥洞.20.(10分)为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y(mg)与x(min)成反比例,如图所示,现测得药物9min燃毕,此时室内空气每立方米的含药量为5mg.请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物燃烧后y关于x的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?【分析】(1)直接利用待定系数法分别求出函数解析式;(2)利用y =3时分别代入求出答案.【解答】解:(1)设药物燃烧时y 关于x 的函数关系式为y =k 1x (k 1>0),代入(9,5)得5=9k 1,∴k 1=59,设药物燃烧后y 关于x 的函数关系式为y =k 2x(k 2>0),代入(9,5)得5=k 29,∴k 2=45,∴药物燃烧时y 关于x 的函数关系式为y =59x (0≤x ≤9),药物燃烧后y 关于x 的函数关系式为:y =45x(x >9),∴y =≤x ≤8)(x >8);(2)无效,理由如下:把y =3代入y =59x ,得:x =275,把y =3代入y =45x,得:x =15,∵15―275=485,485<10,∴这次消毒是无效的.21.(12分)在函数的学习中,我们经历了列表、描点、连线画出函数图象,并结合函数图象研究函数性质及其应用的过程,以下是我们研究函数y=(x+1)2―1,x≤11,x>1的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012…y…a2―14﹣1―142b…(1)写出表中a,b的值:a= ,b= ;(2)请根据表中的数据在平面直角坐标系中画出该函数的图象,并根据函数图象写出该函数的一条性质: ;(3)若此函数与直线y=m﹣2有2个交点,请结合函数图象,直接写出m的取值范围 .【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质.(3)根据图象即可求解.【解答】解:(1)当x=﹣4时,y=34(﹣4+1)2﹣1=234∴a=23 4,当x=2时,y=2+1=3,∴b=3,故答案为:234,3;(2)画出函数图象如图所示:由图象得:x>1时,y随x的增大而增大;故答案为:x>1时,y随x的增大而增大;(3)由图象可知,若此函数与直线y=m﹣2有2个交点,m的取值范围:m﹣2>﹣1,即m>1.故答案为:m>1.22.(12分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为 .(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?【分析】(1)利用待定系数法求出一次函数解析式即可;(2)当x=200时,代入y=―110x+110,确定批发单价,根据总价=批发单价×200,进而求出答案;(3)首先根据服装厂获利w元,当100≤x≤300且x为10整数倍时,得出w与x的函数关系式,进而得出最值,再利用当300<x≤400时求出最值,进而比较得出即可.【解答】解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:100k+b=100300k+b=80,解得:k=―110 b=110,∴y与x的函数关系式为:y=―110x+110,故答案为:y=―110x+110;(2)当x=200时,y=﹣20+110=90,∴90×200=18000(元),答:某零售商一次性批发A品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(―110x+110﹣71)x=―110x2+39x=―110(x﹣195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:―110(200﹣195)2+3802.5=3800;②当300<x≤400时,w=(80﹣71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190或200时,w最大,最大值是3800元.23.(14分)如图,已知:抛物线y=―14x2+bx+c经过点A(0,2)点C(4,0),且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求△ACM面积的最大值及此时点M的坐标;(3)M点坐标为(2)中的坐标,若抛物线的图象上存在点P,使△ACP的面积等于△ACM面积的一半,则P点的坐标为 .【分析】(1)用待定系数法可得抛物线的解析式为y=―14x2+12x+2;(2)过M作MK∥y轴交AC于K,设M(m,―14m2+12m+2),△ACM面积为S,求出直线AC解析式为y=―12x+2,知K(m,―12m+2),KM=(―14m2+12m+2)﹣(―12m+2)=―14m2+m,故S=12KM•|x C﹣x A|=12×(―14m2+m)×4=―12m2+2m=―12(m﹣2)2+2,根据二次函数性质可得答案;(3)过P作PN∥y轴交AC于N,设P(n,―14n2+12n+2),则N(n,―12n+2),PN=|(―14n2+12n+2)﹣(―12n+2)|=|―14n2+n|,故S△ACP=12PN•|x C﹣x A|=12×|―14n2+n|×4=|―12n2+2n|=12S△ACM=1,解方程组可得答案.【解答】解:(1)把A(0,2)、C(4,0)代入y=―14x2+bx+c得:c=2―4+4b+c=0,解得b=12 c=2,∴抛物线的解析式为y=―14x2+12x+2;(2)过M作MK∥y轴交AC于K,如图:设M(m,―14m2+12m+2),△ACM面积为S,由A(0,2)、C(4,0)得直线AC解析式为y=―12x+2,∴K(m,―12m+2),∴KM=(―14m2+12m+2)﹣(―12m+2)=―14m2+m,∴S=12KM•|x C﹣x A|=12×(―14m2+m)×4=―12m2+2m=―12(m﹣2)2+2,∵―12<0,∴当m =2时,S 取最大值2,此时M (2,2);∴△ACM 面积的最大值是2,此时点M 的坐标为(2,2);(3)过P 作PN ∥y 轴交AC 于N ,设P (n ,―14n 2+12n +2),则N (n ,―12n +2),∴PN =|(―14n 2+12n +2)﹣(―12n +2)|=|―14n 2+n |,∴S △ACP =12PN •|x C ﹣x A |=12×|―14n 2+n |×4=|―12n 2+2n |=12S △ACM=1,解得n =2+22+2―∴P 点的坐标为(22―2+2―故答案为:(2+)或(2―22―。

2023-2024学年河南省郑州实验中学九年级(上)第一次月考数学试卷+答案解析

2023-2024学年河南省郑州实验中学九年级(上)第一次月考数学试卷+答案解析

2023-2024学年河南省郑州实验中学九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程是一元二次方程的是()A. B.C. D.、b、c为常数2.若关于x的一元二次方程的一个根为0,则m的值为()A. B.0 C.2 D.或23.输一组数,按下程序进行计,输出结果表:/空格x206207208/空出析格中的据,估计方程一个数解x的大致范围为()A.B.C.D.4.关于x的方程为常数的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根5.有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A. B.C. D.6.如图,四边形ABCD是平行四边形,下列说法能判定四边形ABCD是菱形的是()A. B.C. D.7.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路图中阴影部分,余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽x米,则可列方程为()A. B.C. D.8.如图,矩形ABCD的对角线AC,BD交于点O,,,过点O作,交AD于点E,过点E作,垂足为F,则的值为()A. B. C. D.9.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点,则下列说法:①若,则四边形EFGH为矩形;②若,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;其中正确的个数是()A.0B.1C.2D.310.如图,菱形ABCD中,点E、F分别在边BC、CD上,且若,则的面积为()A.B.C.D.二、填空题:本题共5小题,每小题3分,共15分。

11.已知m是关于x的方程的一个根,则______.12.若关于x的一元二次方程有实数根,则实数k的取值范围是______.13.如图,已知菱形ABCD的对角线AC,BD的长分别是4cm,6cm,,垂足为E,则AE的长是______14.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且,,则______.15.如图,在菱形ABCD中,,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,,,则______.三、解答题:本题共8小题,共64分。

九年级数学第一次月考卷01(全解析)【九年级上册第二十一章~第二十二章】人教版-初中上学期第一次月考

九年级数学第一次月考卷01(全解析)【九年级上册第二十一章~第二十二章】人教版-初中上学期第一次月考

2024-2025学年九年级数学上学期第一次月考卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版九年级上册第二十一章~第二十二章。

5.难度系数:0.8。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,属于一元二次方程的是()A.x―2y=1B.x2―2x+1=0C.x2―2y+4=0D.x2+3=2x2.将方程x2―8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.―8,―10B.―8,10C.8,―10D.8,10【答案】A【详解】将x2―8x=10化为一般形式为:x2―8x―10=0,∴一次项系数、常数项分别是-8,-10.故选A.3.对于二次函数y=3(x+4)2,其图象的顶点坐标为()A.(0,4)B.(0,―4)C.(4,0)D.(―4,0)【答案】D【详解】解:因为二次函数y=3(x+4)2,所以其图象的顶点坐标为(―4,0).故选:D.4.一元二次方程x2―2x+3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根【答案】C【详解】∵Δ=(―2)2―4×1×3=―8<0,∴一元二次方程没有实数根.故选:C.5.淄博烧烤火爆出圈,各地游客纷纷“进淄赶烤”.某烧烤店5月1日收入约为5万元,之后两天的收入按相同的增长率增长,5月3日收入约为9.8万元,若设每天的增长率为x,则x满足的方程是()A.5(1+x)=9.8B.5(1+2x)=9.8C.5(1―x)2=9.8D.5(1+x)2=9.86.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是ℎ=30t―5t2.小球运动到最高点所需的时间是( )A.2s B.3s C.4s D.5s【答案】B【详解】解:ℎ=30t―5t2=―5(t―3)2+45,∵―5<0,∴当t=3时,ℎ有最大值,最大值为45.故选:B.7.中秋节当天,某微信群里的每两个成员之间都互发一条祝福信息,共发出72条信息,设这个微信群的人数为x,则根据题意列出的方程是()A .x(x ―1)=72B .12x(x +1)=72 C .x(x +1)=72D .12x(x ―1)=72【答案】A【详解】解:根据题意可得x (x ―1)=72,故选:A .8.如果三点P 1(1,y 1),P 2(3,y 2)和P 3(4,y 3)在抛物线y =―x 2+6x +c 的图象上,那么y 1,y 2与y 3之间的大小关系是( )A .y 1<y 3<y 2B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3【答案】A【详解】解:∵y =-x 2+6x +c =-(x -3)2+9+c ,∴图象的开口向下,对称轴是直线x =3,P 1(1,y 1)关于对称轴的对称点为(5,y 1),∵3<4<5,∴y 2>y 3>y 1,故选:A .9.对于二次函数y =(x ―1)2―2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =―110.如图是抛物线y =a(x +1)2+2的一部分,该抛物线在y 轴右侧部分与x 轴的交点坐标是( )A.(1,0)B.(1,0)C.(2,0)D.(3,0)211.二次函数y=x―+3的图象(1≤x≤3)如图所示,则该函数在所给自变量的取值范围内,函数值y4的取值范围是()A.y≥1B.1≤y≤3C.3≤y≤3D.0≤y≤3412.定义新运算“a⊗b”:对于任意实数a,b,都有a⊗b=(a﹣b)2﹣b,其中等式右边是通常的加法、减法和乘法运算,如3⊗2=(3﹣2)2﹣2=﹣1.若x⊗k=0(k为实数)是关于x的方程,且x=2是这个方程的一个根,则k的值是( )A.4B.﹣1或4C.0或4D.1或4【答案】D【详解】解:∵a⊗b=(a﹣b)2﹣b,∴关于x的方程x⊗k=0(k为实数)化为(x―k)2―k=0,∵x=2是这个方程的一个根,∴4-4k+k2-k=0,解得:k1=4,k2=1,故选:D.二、填空题(本题共6小题,每小题2分,共12分.)13.把方程x2=2x―3化为一般形式是.【答案】x2―2x+3=0【详解】解:由x2=2x―3得:x2―2x+3=0,故答案为:x2―2x+3=0.14.已知x=1是方程x2+bx―2=0的一个根,则b的值为.15.若x1,x2是一元二次方程x2+2x―5=0的两个根,则x1+x2=.【答案】―2【详解】解:∵x1,x2是一元二次方程x2+2x―5=0的两个根,方程中二次项系数a=1,一次项系数b=2,常数项c=―5,∴x1+x2=―2.故答案为:―2.16.若抛物线y=(m―1)x m2―2―mx有最小值,则常数m的值为.【答案】2【详解】解:∵抛物线y=(m―1)x m2―2―mx有最小值,∴m―1>0(开口向上),m2―2=2,解得m>1,m=±2,即m=2,故答案为:2.17.已知等腰三角形的底边长为7,腰长是x2―8x+15=0的一个根,则这个三角形周长为.【答案】17【详解】解:x2―8x+15=0,(x―5)(x―3)=0,x―5=0,x―3=0,x1=5,x2=3,即①等腰三角形的三边为7,5,5,此时符合三角形三边关系定理,三角形的周长是5+5+7=17;②等腰三角形的三边为3,3,7,此时不符合三角形三边关系定理,故答案为:17.18.已知二次函数y=ax2+bx+c的图象如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是.故答案为k<5.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)x(2x+1)=2x+1;(2)4x2﹣3x=x+1.20.(6分)已知关于x的方程x2+ax+a―2=0.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.△=a2―4×1×(a―2)=a2―4a+8=(a―2)2+4,(4分)∵(a―2)2≥0,∴(a―2)2+4≥4,∴不论a取何实数,该方程都有两个不相等的实数根;(6分)21.(10分)已知二次函数y=―x2+2x+3;(1)把该二次函数化成y=a(x+m)2+k的形式为______;(2)当x______时,y随x的增大而增大;(3)若该二次函数的图像与x轴交于点A、B,与y轴交于点C,求△ABC的面积.22.(10分)如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,(2分)解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(5分)(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,(7分)整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.(10分)23.(10分)为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下:收集数据:9791899590999097919890909188989795909688整理、描述数据:数据分析:样本数据的平均数、众数、中位数和极差如表:平均数中位数众数极差93b c d(1)a=______,b=______,c=______,d=______;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数、中位数和极差如表:平均数中位数众数极差95939410结合相关数据,从一个方面评价10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.24.(10分)杭州亚运会的三个吉祥物“琮琮”“宸宸”“莲莲”组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.某商店以每件35元的价格购进某款亚运会吉祥物,以每件58的价格出售.经统计,4月份的销售量为256件,6月份的销售量为400件.(1)求该款吉祥物4月份到6月份销售量的月平均增长率;(2)经市场预测,7月份的销售量将与6月份持平,现商场为了减少库存,采用降价促销方式,调查发现,该吉祥物每降价1元,月销售量就会增加20件.当该吉祥物售价为多少元时,月销售利润达8400元?【详解】(1)设该款吉祥物4月份到6月份销售量的月平均增长率为m,则6月份的销售量为256(1+m)2,根据题意得:256(1+m)2=400,解得:m1=0.25=25%,m2=―2.25(不符合题意,舍去),答:该款吉祥物4月份到6月份销售量的月平均增长率为25%;(4分)(2)设该吉祥物售价为y元,则每件的销售利润为(y―35)元,月销售量为400+20(58―y)=(1560―20y)(件),根据题意得:(y―35)(1560―20y)=8400,(7分)整理得:y2―113y+3150=0,解得:y1=50,y2=63(不符合题意,舍去),答:该款吉祥物售价为50元时,月销售利润达8400元.(10分)25.(10分)如图,点E,F,G,H分别在边长为6的正方形ABCD的四条边上运动,四边形EFGH也是正方形.(1)求证:△AEH≌△BFE;(2)设AE的长为x,正方形EFGH的面积为y,求y关于x的函数解析式;(3)在(2)的条件下,当AE的长为多少时,正方形EFGH的面积最小?最小值是多少?26.(10分)如图,在平面直角坐标系xOy中,抛物线y=―x2+bx+c交x轴于C(1,0),D(―3,0)两点,交y轴于点E,连接DE.(1)求抛物线的解析式及顶点坐标;(2)在线段DE上,是否存在一点P,使得△DCP是等腰直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点A(―3,5),B(0,5),连接AB,若二次函数y=―x2+bx+c的图象向上平移m(m>0)个单位时,与线段AB有一个公共点,结合函数图象,直接写出m的取值范围.∠PCM=45°,时,5=―9+6+3+m,解得m=5,∴当m=1,或2<m≤5时,函数图象与线段AB有一个公共点.(10分)。

2022-2023学年北师大版九年级数学上册第一次月考测试卷含答案

2022-2023学年北师大版九年级数学上册第一次月考测试卷含答案

九年级数学上册第一次月考试卷(满分150分 时间:120分钟)一.单选题。

(每小题4分,共48分)1.方程:①2x 2-13x=1,②2x 2-5xy+y 2=0,③7x 2+1=0,④y22=0,其中是一元二次方程是( )A.①②B.②③C.③④D.①③ 2.矩形,菱形,正方形具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角 3.下列命题中,不正确的是( )A.顺次连接菱形各边中点所得的四边形是矩形B.有一个角是直角的菱形是正方形C.对角线相等且垂直的四边形是正方形D.有一个角是60°的等腰三角形是等边三角形 4.不解方程,判断方程2x 2-4x -1=0的根的情况是( )A.没有实数根B.有两个相等实数根C.有两个不相等实数根D.无法确定 5.在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( ) A.频率就是概率 B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得的频率的值也相同D.随着试验次数的增加,频率一定会逐步稳定在概率数值附近6.若m ,n 是一元二次方程x 2+2x -2021=0的两个实数根,则2m+2n -mn 的值为( ) A.2021 B.2019 C.2017 D.20157.用配方法解方程2x 2+4x+1=0,配方后的方程是( )A.(2x+2)2=﹣2B. (2x+2)2=﹣3C.(x+12)2=12D.(x+1)2=12 8.某公司今年一月产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元,设这个百分数为x ,则可列方程为( )A.200(1+x )2=1400B.200+200(1+x )+200(1+x )2=1400C.1400(1+x )2=200D.200(1+x )3=14009.有一个不透明的口袋中,装有5个红球和3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ) A.15 B.13 C.58 D.3810.根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=√2,当∠B=90°时,如图2,AC=().A.√2B.2C.2√2D.√3(第10题图)(第11题图)(第12题图)11.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数为()A.50°B.55°C.70°D.75°12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,下列结论:①EF=2BE,②PF=2PE,③FQ=2EQ,④△PBF是等边三角形,其中正确的是()A.①②B.②③C.①③D.①④二.填空题。

九年级数学第一次月考试卷分析【含答案】

九年级数学第一次月考试卷分析【含答案】

九年级数学第一次月考试卷分析【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()(1分)A. -5B. 3C. 0D. 22. 下列哪个数是偶数?()(1分)A. 21B. 4C. 9D. 173. 下列哪个数是无理数?()(1分)A. √9B. √16C. √3D. √254. 下列哪个数是整数?()(1分)A. 1.5B. -2.3C. 3/2D. -55. 下列哪个数是质数?()(1分)A. 27B. 29C. 35D. 49二、判断题1. 2是偶数。

()(1分)2. -3是正数。

()(1分)3. 0是有理数。

()(1分)4. √2是无理数。

()(1分)5. 1/2是整数。

()(1分)三、填空题1. -3的相反数是______。

()(1分)2. 8的平方根是______。

()(1分)3. 27的立方根是______。

()(1分)4. 5和7的最小公倍数是______。

()(1分)5. 15和20的最大公约数是______。

()(1分)四、简答题1. 请解释有理数的定义。

()(2分)2. 请解释无理数的定义。

()(2分)3. 请解释整数的定义。

()(2分)4. 请解释质数的定义。

()(2分)5. 请解释偶数的定义。

()(2分)五、应用题1. 计算下列各式的值:√9 + √16 √25。

()(2分)2. 计算下列各式的值:3^2 2^2。

()(2分)3. 计算下列各式的值:4!。

()(2分)4. 计算下列各式的值:5! 3!。

()(2分)5. 计算下列各式的值:6 + 1/2 + 2/3 + 3/4 + 4/5。

()(2分)六、分析题1. 请分析下列各式的类型:√9, √16, √3, √25。

()(5分)2. 请分析下列各式的类型:3.14, 2.5, 1.2, 0.3333。

()(5分)七、实践操作题1. 请用直尺和圆规作出一个边长为5cm的正方形。

()(5分)2. 请用直尺和圆规作出一个半径为3cm的圆。

苏州中学2024年九年级上学期第一次月考数学试卷(原卷版)

苏州中学2024年九年级上学期第一次月考数学试卷(原卷版)

2024-2025学年第一学期九年级数学第一次月考卷(范围:九上第1、2章、九下第6章 考试时间:120分钟试卷满分:150分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程一定是关于 x 一元二次方程的是( ) A. 22350x x −−= B. 2220x xy y ++=C. ()()()213x x x x +=−+D. 250x =2. 下列各条件中,能判断ABC A B C ′′′∽△△的是( )A. 3AB A B ′′=,A A ′∠=∠B. AB BCA B A C =′′′′ ,B B ∠=∠′ C. ABA B BC B C ′′=′′,∠+∠=∠+∠′′A C A CD. 40A ∠=°,80B ∠=°,80∠′=°A ,70B ′∠=°3. 如图,四边形ABCD 内接于O ,它的一个外角70CBE ∠=°,则ADC ∠的度数为( )A. 55°B. 70°C. 110°D. 140° 4. 定义运算21m n mn mn =−−☆,例如242424217=×−×−=☆,则方程20x =☆的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根 5. 如图,AB 、CD 是O 的弦,且AB CD =,若84BOD ∠=°,则ACO ∠的度数为( )A. 42°B. 44°C. 46°D. 48° 6. 如图,ABC 与DEF 是位似三角形,位似比为2:3,已知3AB =,则DDDD 的长等于( )的A. 49B. 2C. 92D. 2747. “读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A. 250(1)80x +=B. 250(1%)80x +=C. 250(12)80x +=D. 25050(1)50(1)80x x ++++= 8. 如图,a b c ∥∥,若32AD DF =,则下面结论错误的是( ).A 35AD AF =B. 32C. 23AB EF =D. 35BC BE = 9. 如图,ABC 的内切圆O 与AB BC AC 、、相切于点D 、E 、F ,已知435AB AC BC ===,,,,则DE 的长是( )A.B.C.D. 10. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,分别作射线BD 、CE ,它们交于点M .以点A 为旋转中心,将ADE 按顺时针方向旋转,若AE 的长为2,则MBC △面积的最小值是( ).A. 4B. 8C. 2+D. 二、填空题:本题共8小题,每小题3分,共24分.11. 方程 250x =的解是____.12. 若32a b=,则22a b a b +−的值为____. 13. 已知点P 是线段AB 的一个黄金分割点,且AP BP >,那么:AP AB 的比值为________. 14. 如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为__________.15. 已知四边形ABCD 是矩形,2AB =,BC =B 为圆心BC 为半径的圆交AD 于点E ,则图中阴影部分的面积为__________.16. 如图,AD 是O 的直径,将弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O .若6BD =,则O 的半径长是___.17. 已知A 是方程2201010x x −+=的一个根,试求22201020091A A A −++的值______. 18. 如图,AB 为O 的直径,C 为O 上一点,其中6120AB AOC =∠=°,,P 为O 上的动点,连接AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为______.三、解答题:本题共10小题,共96分.解答应写出文字说明、证明过程或演算步棸. 19. 用指定方法解下列一元二次方程(1)23(21)120x −−=(直接开平方法) (2)22470x x −−=(配方法)(3)210x x +−=(公式法)(4)22(21)0x x −−=(因式分解法) 20. 如图,AAAA 是⊙O 的弦,C 是⊙O 上的一点,且60ACB ∠=°,OD AB ⊥于点E ,交⊙O 于点D .若⊙O 的半径为6,求弦AAAA 的长.21. 如图,在正方形ABCD 中,E 为边AD 中点,点F 在边CD 上,且3CF FD =,求证:ABE DEF △△∽.的22. 已知ABC 三边a b c ,,满足()()()271a c a b c b −+−=−∶∶∶∶,且24a b c ++=.(1)求a b c ,,的值;(2)判断ABC 的形状.23. 已知关于x 一元二次方程22230x mx m m ++−=.(1)若方程有两个实数根,求m 取值范围;(2)设22230x mx m m ++−=的两个实数根为1x ,2x ,若221212364x x x x =++,求m 的值. 24. 图Ⅰ是大拇指广场示意图及测量其高度的方案,图Ⅱ是求大拇指高度AB 的示意图.如图Ⅱ,在C 处放置一根高度为2m 且与地平线BF 垂直的竹竿IC ,点A ,I ,D 在同一直线上,测得CD 为3m .将竹竿3m 平移5m 至E 处,点A ,G ,F 在同一直线上,测得EF 为5m .求大拇指的高度.25. 如图,已知O 是ABC 的外接圆,AB 是O 的直径,P 是AB 的延长线上的点,弦CE 交AB 于点D .2POE CAB ∠=∠,P E ∠=∠.(1)求证:CE AB ⊥;(2)求证:PC 是O 的切线;(3)若BD OD =,9PB =,求O 的半径.26. 某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了尽量减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.的的(1)若11月份每箱饮料降价2元,则该超市11月份可获得的利润是多少?(2)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(3)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由. 27. 按要求利用无刻度直尺作图(保留作图痕迹).(1)如图1,由小正方形构成的66×网格,每个小正方形的顶点叫做格点,且每个小正方形的边长为1,O 经过A ,B ,C 三个格点,用无刻度的直尺作出圆心O ;(2)如图2,在平行四边形ABCD 中,45A ∠=°,以AB 为直径的圆与CD 相切于点D .请仅用无刻度直尺在图中作出ABD △的重心M .28. 新定义:如果一个四边形的对角线相等,我们称这个四边形为美好四边形.【问题提出】(1)如图1,若四边形ABCD AD BD =,90ABC ∠=°,4AB =,3BC =,求四边形ABCD 的面积;【问题解决】(2)如图2,某公园内需要将4个信号塔分别建在A ,B ,C ,D 四处,现要求信号塔C 建在公园内一个湖泊的边上,该湖泊可近似看成一个半径为200m 的圆,记为E .已知点A 到该湖泊的最近距离为500m ,是否存在这样的点D ,满足AC BD =,使得四边形ABCD 的面积最大?若存在,求出最大值;若不存在,请说明理由.。

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

新】人教版九年级数学上册第一次月考试卷含答案

新】人教版九年级数学上册第一次月考试卷含答案

新】人教版九年级数学上册第一次月考试卷含答案九年级(上)第一次月考数学试卷(解析版)一、选择题:1.下列方程中,是关于x的一元二次方程的有()A。

x(2x-1)=2x^2 B。

-2x=1 C。

ax^2+bx+c=0 D。

x^2=02.方程x^2=x的解是()A。

x=1 B。

x=0 C。

x1=-1,x2=0 D。

x1=1,x2=03.用配方法解方程x^2-2x-5=0时,原方程应变形为()A。

(x+1)^2=6 B。

(x-1)^2=6 C。

(x+2)^2=9 D。

(x-2)^2=94.设a,b是方程x^2+x-2015=0的两个实数根,则a^2+2a+b的值为()A。

2012 B。

2013 C。

2014 D。

20155.为了庆祝教师节,市教育工会组织篮球比赛,赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛,则这次参加比赛的球队个数为()A。

8 B。

9 C。

10 D。

116.等腰三角形两边长为方程x^2-7x+10=0的两根,则它的周长为()A。

12 B。

12或9 C。

9 D。

77.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A。

200(1+x)^2=1000 B。

200+200×2x=1000 C。

200+200×3x=1000 D。

200[1+(1+x)+(1+x)^2]=10008.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm^2,设金色纸边的宽为xcm,那么x满足的方程是()A。

x^2+130x-1400=0 B。

x^2+65x-350=0 C。

x^2-130x-1400=0 D。

x^2-65x-350=09.已知a,b是方程x^2-6x+4=0的两实数根,且a≠b,则a+b的值是()A。

7 B。

-7 C。

11 D。

2022-2023学年北师大版九年级数学第一学期第一次月考测试卷含答案

2022-2023学年北师大版九年级数学第一学期第一次月考测试卷含答案

九年级数学上册第一次月考检测试题(满分:150分 时间:120分钟)一.选择题。

(每小题4分,共48分)1.如图,已知AB ∥CD ∥EF ,AD :AF =3:5,BC =6,CE 的长为( ) A.2 B.4 C.3 D.5(第1题图) (第3题图) (第5题图) 2.若△ABC ∽△A'B'C',∠A=55°,∠B=100°,则∠C'的度数是( ) A .100° B .55° C .25° D .不能确定3.如图,已知菱形ABCD 的边长为2,∠DAB=60°,则对角线BD 的长是( ) A.1 B.3 C.2 D.234.关于x 的方程0242=+-x kx 有两个不相等的实数根,则k 的取值范围是( ) A.k ≤2 B.k>2 C.k<2且k ≠0 D.k ≤2且k ≠05.如图,在△ABC 中,D 是边AB 上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为( ) A .2 B .4 C .6 D .86.如图,在△ABC 中,EF ∥BC ,AE EB =23,四边形BCFE 的面积为21,则△ABC 的面积是( )A .913 B .25 C .35 D .63(第6题图) (第7题图) (第10题图)7.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.∠ADB=90°B.BE ⊥DCC.AB=BED.CE ⊥DE8.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会和平,国家决定大幅增加退休人员退休金,企业退休职工李师傅2020年月退休金为4500元,2022年达到5445元,设李师傅的月退休金从2020年到2022年年平均增长率为x ,可列方程为( ) A.54452)1(x -=4500 B.45002)1(x +=5445C.45002)1(x -=5445 D.4500+4500(1+x )+45002)1(x +=54459.在平面直角坐标系中,已知点E (-4,2)F (-2,-2),以原点O 为位似中心,相似比为2:1,把△EFO 放大,则点E 对应点'E 的坐标是( )A.(-2,1)B.(-8,4)C.(-2,1)或(2,-1)D.(-8,4)或(8,-4) 10.如图,在正方体网格上,与△ABC 相似的三角形是( ) A.△AFD B.△AED C.△FED D.不能确定11.如图所示,一电线杆AB 的影子落在地面和墙壁上,同一时刻,小明在地面上竖立一根1米高的标杆(PQ ),量得其影长(QR )为0.5米,此时他又量得电线杆AB 落在地面上的影子BD 长为3米,墙壁上的影子CD 高为2米,小明用这些数据很快算出了电线杆AB 的高为( ) A .5米 B .6米 C .7米 D .8米(第11题图) (第12题图)12.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①21FD AF =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( ) A .①②③④ B .①④ C .②③④ D .①②③ 二.填空题。

人教版九年级上册数学月考试卷(带详解答案)

人教版九年级上册数学月考试卷(带详解答案)

人教版九年级上册数学月考试卷(带详解答案)九年级上册第一次月考试卷数学注意事项:1.本试卷分试题卷和答题卡两部分。

2.请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效。

3.考生务必将姓名、准考证号填写在答题卡第一面的指定位置上。

一、选择题1.已知关于x的一元二次方程x^2+2x-a=0有两个相等的实数根,则a的值是()A。

4B。

-4C。

1D。

-12.如果x^2+x-1=0,那么代数式x^3+2x^2-7的值是()A。

6B。

8C。

-6D。

-83.如图,抛物线y=ax^2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,4),则a-b+c的值为()A。

-1B。

1C。

24.已知二次函数的图象如图所示,则这个二次函数的表达式为()A。

y=x^2-2x+3B。

y=x^2-2x-3C。

y=x^2+2x-3D。

y=x^2+2x+35.用配方法解方程x^2+4x-1=0,下列配方结果正确的是().A。

(x+2)^2=5B。

(x+2)^2=1C。

(x-2)^2=1D。

(x-2)^2=56.如图,在一次函数y=-x+5的图象上取点P,作PA⊥x 轴于A,PB⊥y轴于B,且长方形OAPB的面积为6,则这样的点P个数共有()A。

4B。

3C。

2D。

17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图象可能是()8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是二、填空题9.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是______________________。

10.如图,二次函数y=ax^2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。

新人教版2024届九年级上学期月考数学试卷(含解析)

新人教版2024届九年级上学期月考数学试卷(含解析)

2023—2024学年第一学期自主学习反馈一九年级数学试题注意事项:考试时间120分钟,满分120分.一、单选题(1-6题每题3分,7-16题每题2分,共38分)1. 关于的方程中:①;②;③;④;其中一定是一元二次方程的个数有()A. 1B. 2C. 3D. 4解析:解:①当是一元一次方程,故不符合题意;②是一元二次方程,故符合题意;③是一元二次方程,故符合题意;④是分式方程,故不符合题意;所以是一元二次方程有②③,共2个.故选:B.2. 已知,则下列比例式成立的是()A. B. C. D.解析:解:∵,∴,,,则A、C、D选项均不正确,B正确,故选:B3. 如图,如果,那么下列结论不成立的是()A. B. C. D.解析:解:∵,∴,故A选项成立;∴,即,故B选项成立;∴,即,故C选项成立;∴,故D选项不成立;故选:D.4. 解方程最合适的方法是()A. 直接开平方法B. 配方法C. 公式法D. 因式分解法解析:解:,移项得,,因式分解得,,即,∴最合适的方法是因式分解法,故选:D.5. 若一元二次方程的常数项是,则等于()A. -3B. 3C. ±3D. 9解析:∵一元二次方程的常数项是,∴,≠0,∴m=3.故选B.6. 下列用配方法解方程的四个步骤中,出现错误的是( )A. ①B. ②C. ③D. ④解析:解:解方程,去分母得:,即,配方得:,即,开方得:,解得:,则四个步骤中出现错误的是④.故选:.7. 如图,△ABC中,∠A=65°,AB=6,AC=3,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不构成相似的是()AB.C.D.解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C、两三角形的对应角不一定相等,故两三角形不相似,故本选项符合题意;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意.故选:C.8. 根据下表确定方程的解的取值范围是( ) (456)135 (513)A. 或B. 或C. 或D. 或解析:解:根据表格,当和时,,当和时,,∴该方程的解的取值范围为或,故选:A.二次方程的近似解是解答的关键.9. 如图,在中,,,,,则长为()A. B. C. D.解析:解:∵在中,,,,,∴,即:,∴AE=4,故选B.10. 如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为()A. 40°B. 50°C. 65°D. 75°解析:∵∠A=75°,∠APC=65°,∴∠ACP=40,∵△ABC∽△ACP,∴∠B=∠ACP=40°,故选A.11. 四边形中,点在边上,的延长线交的延长线于点,下列式子中能判断的式子是()解析:解:A.,结合不能证明,不能推出,因此不能判断,不合题意;B.,结合,可证,可得,可以判断,不能判断,不合题意;C.,结合,不能证明,不能判断,也不能判断,不合题意;D.,结合可证,推出,能够判断,符合题意;故选D.12. 三角形的两边长分别为和,第三边的长是方程的一个根,则这个三角形的周长是()A. B. C. D. 或解析:解:解方程得,∴,故第三边边长为或.设第三边的长为m,∵三角形的两边长分别为和,∴,第三边的边长为,这个三角形的周长是.故选:C.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13. 对于实数,定义新运算:,若关于的方程有两个不相等的实数根,则的取值范围()且解析:解:∵,∴,即,∵关于的方程有两个不相等的实数根,∴,解得:,故A正确.故选:A.14. 某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是( )A. B. C. D.解析:设种植物主支干长出x个,小分支数目为个,依题意,得:,解得:(舍去),.故选C.15. 在直角坐标系中,已知点、、,过点C作直线交x轴于点D,使得以D、O、C为顶点的三角形与相似,这样的直线最多可以作()A. 2条B. 3条C. 4条D. 6条解析:解:∵、、,∴,,,若,则,∴,则或.若,则,∴,则或.所以可以作出四条直线.故选:C.16. 对于一元二次方程,下列说法:①若,则;②若方程有两个不相等的实根,则方程必有两个不相等的实根;③若c是方程的一个根,则一定有成立;④存实数,使得;其中正确的( )A. ①②③B. ①②④C. ②③④D. ①③④解析:解:∵∴是一元二次方程的一个解,即方程有解,∴,①正确;方程有两个不相等的实根,则,即方程的判别式为,∴方程必有两个不相等实根,②正确;若c是方程的一个根,则,即∴或,③错误;由可得,即∵∴∴所以只需要满足即可得到,④正确;故选:B二、填空题(每空2分,共10分)17. 若==(b+d0),则=____.解析:已知==(b+d0),根据等比性质可得=.18. 若一元二次方程满足;则有一个根为_______.若,则有一个根为_______.解析:解:∵,∴,∴原方程可化为,∴,∵,∴,,∴满足时,有一个根为.∵,∴,原方程可化为,∴,∵,∴,,∴满足时,有一个根为.故答案为:,19. 如图,是的中线.①若为的中点,射线交于点,则的值为______;②若为上的一点,且,射线交于点,则的值为_______.解析:解:①过点D作于点G,∴,,∵是的中线,∴,∴,即,∵为的中点,∴,∴,即,∴,∴,∴;故答案为:②∵,,∴,即,∵,∴,∴.故答案为:三、解答题(共7个小题,共72分)20. 解下列方程:(1);(2).【小问1解析】解:,移项得,,因式分解得,,∴或,∴或;【小问2解析】解:,移项得,,因式分解得,,∴或,∴或.21. 已知关于x的一元二次方程x2+(2a+1)x+a2=0.(1)若方程有两个不相等的实数根,求a的取值范围;(2)若方程有两个相等的实数根,求a的值,并求出这两个相等的实数根.【小问1解析】解:∵关于x的一元二次方程x2+(2a+1)x+a2=0有两个不相等的实数根,,解得:,即当时,方程有两个不相等的实数根;【小问2解析】解:∵方程有两个相等的实数根,,解得:,即当时,方程有两个相等的实数根;把代入原方程得:,即,解得:.22. 如图,在中,点,,分别在,,边上,,.求证:解析:证明:∵,∴,∵,∴,∴.23. 随着正定旅游业的快速发展,外来游客对住宿的需求明显增大,某宾馆拥有的床位数不断增加.(1)该宾馆床位数从2016年底的200个增长到2018年底的288个,求该宾馆这两年(从2016年底到2018年底)拥有的床位数的年平均增长率;(2)根据市场表现发现每床每日收费40元,288张床可全部租出,若每床每日收费提高10元,则租出床位减少20张.若想平均每天获利14880元,同时又减轻游客的经济负担每张床位应定价多少元?解析:解:(1)设该宾馆这两年床位的年平均增长率为x,依题意,得:200(1+x)2=288,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该宾馆这两年床位的年平均增长率为20%.(2)设每张床位定价m元,依题意,得:m(288﹣20•)=14880,整理,得:m2﹣184m+7440=0,解得m1=60,m2=124.∵为了减轻游客的经济负担,∴m2=124(舍去).答:每张床位应定价60元.24. 定义:若关于x的一元二次方程的两个实数根为和,分别以为横、纵坐标得到点,则称点P为该一元二次方程的“两根点”.(1)请你直接写出方程的“两根点”P的坐标:(2)点P是关于x的一元二次方程的“两根点”,若点P在直线上,求k的值.【小问1解析】解:解得,,∴;【小问2解析】解:∵,∴,∵,∴,,∴,∵点P在直线上,∴,∴.25. 如图所示,A、B、C、D是矩形的四个顶点,,动点P、Q分别从点A、C同时出发,点P以的速度向点B移动,一直到达点B为止,点Q以的速度向点D移动一直到达点B为止,点Q以的速度向点D移动.(1)P、Q两点从出发开始到几秒时,四边形的面积为?(2)P、Q两点从出发开始到几秒时,点P和点Q的距离第一次是?【小问1解析】解:当运动时间为t秒时,,,由题意得,,解得,答:P、Q两点从出发开始到5秒时,四边形的面积为;【小问2解析】解:过点Q作于点M,如图,∵,,∴,即,解得,(舍),答:P、Q两点从出发开始到秒时,点P和点Q的距离第一次是.26. 如图,正方形的边长为4,是边的中点,点在射线上.过点作于点.(1)判断与的大小关系:______(填“>”、“<”“=”);(2)与相似吗?说明理由.(3)当点在射线上运动时,设,是否存在实数,使以为顶点三角形与相似?若存在,请求出的值;若不存在,请说明理由.【小问1解析】解:∵正方形,,∴,,∵,∴,故答案为:;【小问2解析】解:相似,理由如下:由(1)可知,,∵,∴;【小问3解析】解:由题意知,分,,两种情况求解:①当时,如图1,∴,,即,,由勾股定理得,,∵,∴,∴,∴,∵,∴,由勾股定理得,,即;②当,如图2,∴,∴,∴,∴四边形是矩形,∴,即;综上所述,存在,的值为2或5.。

2024-2025学年河南省郑州四中九年级(上)第一次月考数学试卷(含答案)

2024-2025学年河南省郑州四中九年级(上)第一次月考数学试卷(含答案)

2024-2025学年河南省郑州四中九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程是一元二次方程的是( )A. 3x+2=0B. x+y2=−2C. ax2+2x−1=0D. x2=7x2.如图,已知DE//BC,EF//AB,则下列比例式中错误的是( )A. ADAB =AEACB. CECF=EAFBC. DEBC=ADBDD. EFAB=CFCB3.学校联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,A盘被分成面积相等的几个扇形,B盘中蓝色扇形区域所占的圆心角是120°.同学们同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色,赢得游戏.若小李同学同时转动A盘和B盘,她赢得游戏的概率是( )A. 13B. 16C. 25D. 194.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是( )A. 25°B. 30°C. 35°D. 40°5.如图所示的网格是正方形网格,A,B,C,D是网格线交点,AC与BD相交于点O,则△ABO的面积与△CDO的面积的比为( )A. 1:2B. 2:2C. 1:4D. 2:46.如图,已知D是△ABC的边AC上一点,根据下列条件,不能判定△CAB∽△CBD的是( )A. ∠A=∠CBDB. ∠CBA=∠CDBC. AB⋅CD=BD⋅BCD. BC2=AC⋅CD7.如图,将矩形ABCD对折,使AB与CD边重合,得到折痕MN,再将点A沿过点D的直线折叠到MN上,对应点为A′,折痕为DE,AB=10,BC=6,则A′N的长度为( )A. 10−33B. 4C. 10−23D. 38.操场上有一根竖直的旗杆AB,它的一部分影子(BC)落在水平地面上,另一部分影子(CD)落在对面的墙壁上,经测量,墙壁上的影高为1.2m,地面的影长为2.8m,同时测得一根高为2m的竹竿OM的影长是ON=1.4m,请根据以上信息,则旗杆的高度是( )A. 4.5mB. 104.7mC. 5.2mD. 5.7m9.如图,正方形ABCD的边长为22,P为对角线BD上动点,过P作PE⊥BC于E,PF⊥CD于F,连接EF,则EF的最小值为( )A. 2B. 4C. 2D. 110.如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为( )A. (23,0)B. (25,0)C. (23+1,0)D. (25+1,0)二、填空题:本题共5小题,每小题3分,共15分。

河南省郑州枫杨外国语学校2024-2025学年九年级上学期第一次月考数学试卷(含答案解析)

河南省郑州枫杨外国语学校2024-2025学年九年级上学期第一次月考数学试卷(含答案解析)

10
答案
A
B
B
D
B
A
D
C
A
B
1.A
【分析】本题主要考查了轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁
的部分能够互相重合,这个图形就叫做轴对称图形.根据轴对称图形的定义进行逐一判断即
可.
【详解】解:A.平行四边形不是轴对称图形,故 A 符合题意;
B.矩形是轴对称图形,故 B 不符合题意;
故选:B
【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化 1;第二步移项,
把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完
全平方式;第五步,直接开方即可.
4.D
答案第 1页,共 17页
【分析】本题主要考查了矩形的判定,频率估计概率,正方形的判定和性质,等腰三角形的
(2)若小红和小丽-起去食堂用餐时 4 个窗口都没有人,求小红和小丽在相邻窗口取餐的概
率.(请用画树状图或列表等方法说明理由)
20.如图,四边形 ABCD 是平行四边形, AE BD 于点 E , CG BD 于点 F , FG CF ,
连接 AG .
(1)求证:四边形 AEFG 是矩形;
5.0 x 5.5
5.5 x 6.0
6.0 x 6.5
x 6.5
稻穗个数
5
8
16
14
7
根据以上数据,估计此试验田的 3 万棵水稻中“良好”(穗长在 5.5 x 6.5 范围内)的水稻
数量为
万棵.
13.方程 x 2 9 x 18 0 的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为

2023-2024学年四川省泸州市龙马潭区龙马高中学士山学校九年级(上)第一次月考数学试卷(含解析)

2023-2024学年四川省泸州市龙马潭区龙马高中学士山学校九年级(上)第一次月考数学试卷(含解析)

2023-2024学年四川省泸州市龙马潭区龙马高中学士山学校九年级(上)第一次月考数学试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A. B. C. D.2.下列计算正确的是( )A. b 6+b 3=b 2B. b 3⋅b 3=b 9C. a 2+a 2=2a 2D. (a 3)3=a 63.在平面直角坐标系中,点M (−2,6)关于原点对称的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.已知1是关于x 的一元二次方程(m−1)x 2+x +1=0的一个根,则m 的值是( )A. 1B. −1C. 0D. 无法确定5.若方程(m−1)x m2+1−2x−m =0是关于x 的一元二次方程,则m 的值为( )A. −1 B. 1 C. 5 D. −1或16.华为Mate 20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−97.若关于x 的一元二次方程kx 2−x−34=0有实数根,则实数k 的取值范围是( )A. k =0B. k ≥−13且k ≠0C. k ≥−13D. k >−138.一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.将抛物线y=2(x−4)2−1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A. y=2x2+1B. y=2x2−3C. y=2(x−8)2+1D. y=2(x−8)2−310.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为( )A. 10°B. 15°C. 20°D. 25°11.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A. 116B. 144C. 145D. 15012.已知二次函数y=x2−2mx(m为常数),当−1≤x≤2时,函数值y的最小值为−2,则m的值是( )A. 32B. 2 C. 32或2 D. −32或2二、填空题:本题共4小题,每小题3分,共12分。

2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷+答案解析

2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷+答案解析

2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程是一元二次方程的是()A. B.C.D.2.用配方法解方程,则配方正确的是()A. B.C.D.3.抛物线的顶点坐标是()A.B.C. D.4.关于x 的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.将抛物线向下平移5个单位长度,再向左平移2个单位长度,所得的抛物线为()A. B. C.D.6.2020年年无锡居民人均可支配收入由万元增长至万元,设人均可支配收入的平均增长率为x ,下列方程正确的是()A. B.C.D.7.已知关于x 的一元二次方程有两个不相等的实数根,则实数k 的取值范围是()A.B.C.且D.且8.二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.9.抛物线上有两点,,若,则下列结论正确的是()A. B.C.或D.以上都不对10.如图,已知开口向下的抛物线与x轴交于点,对称轴为直线则下列结论正确的有()①;②;③函数的最大值为;④若关于x的方程无实数根,则A.1个B.2个C.3个D.4个二、填空题:本题共5小题,每小题3分,共15分。

11.将二次函数化成的形式,结果为______.12.已知关于x的一元二次方程没有实数根,那么a的取值范围是______.13.一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了10次手,则这次会议到会的人数是______人.14.若是关x的方程的解,则的值为______.15.已知二次函数,当时,函数值y的最小值为1,则a的值为______.三、解答题:本题共9小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16.本小题6分解方程配方法;公式法17.本小题6分已知二次函数的图象经过,两点.求b和c的值;试判断点是否在此函数图象上?18.本小题6分2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数如图所示,若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数请用方程知识解答19.本小题8分已知关于x的一元二次方程有两个不等实数根,求k的取值范围;若,求k的值.20.本小题8分有一个人患了流感,经过两轮传染后,共有121人患了流感.每轮传染中平均一个人传染几个人?如果按照这样的传染速度,经过三轮传染后共有______个人患流感.21.本小题8分已知函数是关于x 的二次函数.求m 的值;函数图象的两点,,若满足,则此时m 的值是多少?22.本小题10分某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙墙的长度为,另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m ,设较小矩形的宽为如图若矩形养殖场的总面积为,求此时x 的值;当x为多少时,矩形养殖场的总面积最大?最大值为多少?23.本小题11分2022北京冬奥会期间,某网店直接从工厂购进A 、B 两款冰墩墩钥匙扣,进货价和销售价如下表:注:利润=销售价-进货价类别价格A 款钥匙扣B 款钥匙扣进货价元/件3025销售价元/件4537网店第一次用850元购进A 、B 两款钥匙扣共30件,求两款钥匙扣分别购进的件数;第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A 、B 两款冰墩墩钥匙扣共80件进货价和销售价都不变,且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?24.本小题12分如图,在平面直角坐标系中,直线l与x轴交于点,与y轴交于点,抛物线经过点A,B,且对称轴是直线求直线l的解析式;求抛物线的解析式;点P是直线l下方抛物线上的一动点,过点P作轴,垂足为C,交直线1于点D,过点P作,垂足为求PM的最大值及此时P点的坐标.答案和解析1.【答案】B【解析】解:A、当时,方程为是一元一次方程,该选项不合题意;B、方程是一元二次方程,该选项符合题意;C、方程的左边不是整式,方程不是一元二次方程,该选项不合题意;D、方程整理为,是一元一次方程,该选项不合题意;故选:据此即可判定求解.本题考查了一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.2.【答案】B【解析】解:,,,故选:先移项、然后再给等式两边同时加上16,然后再化简即可解答.本题考查运用配方法解一元二次方程,掌握配方法是解题的关键.3.【答案】A【解析】【分析】本题主要考查了求抛物线的顶点坐标.熟记二次函数的顶点式的形式是解题的关键.直接利用顶点式的特点可写出顶点坐标.【解答】解:顶点式,顶点坐标是,抛物线的顶点坐标是故选4.【答案】A【解析】解:,方程有两个不相等的实数根.故选:根据一元二次方程根的判别式解答即可.本题考查的是一元二次方程根的判别式,熟知一元二次方程中,当时,方程有两个不相等的实数根是解题的关键.5.【答案】C【解析】解:抛物线向下平移5个单位长度,再向左平移2个单位长度,所得的抛物线为故选:根据图象的平移规律,可得答案.本题主要考查了二次函数与几何变换问题,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6.【答案】A【解析】解:由题意得:故选:根据2020年的人均可支配收入年平均增长率年的人均可支配收入,列出一元二次方程即可.此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】C【解析】【分析】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.利用一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【解答】解:根据题意得且,解得且故选8.【答案】A【解析】解:一次函数经过点,二次函数图象的对称轴是直线,一次函数经过二次函数对称轴与x轴的交点,故选:由二次函数的图象得到对称轴与x轴的交点,由一次函数的图象得到与x轴的交点,对比即可得到答案.本题考查二次函数和一次函数的图象,解题的关键是明确一次函数和二次函数性质.9.【答案】D【解析】解:抛物线上有两点,,且,,,或或,故选:根据二次函数的性质判断即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.10.【答案】C【解析】【分析】①根据抛物线的开口方向与位置分别判断出a,b,c的正负,即可得结论;②根据抛物线的对称轴判断即可;③设抛物线的解析式为,可知当时,y的值最大,最大值为;④根据③中的最大值以及二次函数与方程的关系即可得出答案.本题考查二次函数的性质,二次函数与方程的关系,二次函数的最值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:抛物线开口向下,,抛物线交y轴于正半轴,,,,,故①错误;抛物线的对称轴是直线,,,故②正确;抛物线交x轴于点,由对称性可知抛物线与x轴的另一交点为,可设抛物线的解析式为,当时,y的值最大,最大值为,故③正确;关于x的方程无实数根,由③可知,函数最大值为,,解得,又,,故④正确.综上,正确的结论有②③④共3个.故选:11.【答案】【解析】解:,故答案为:直接利用配方法确定答案即可.本题考查了二次函数的解析式之一般式化为顶点式,利用配方法整理求解即可.解题的关键在于利用配方法先提出二次项的系数,凑成完全平方式.12.【答案】【解析】解:关于x的一元二次方程没有实数根,,即,解得:,故答案为:由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.13.【答案】5【解析】解:设这次会议到会的人数是x人,根据题意得:,整理得:,解得:,不符合题意,舍去,这次会议到会的人数是5人.故答案为:设这次会议到会的人数是x人,利用握手总次数=参会人数参会人数,可得出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】2019【解析】解:把代入方程得:,即,则原式故答案为:把代入方程求出的值,代入原式计算即可求出值.此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.【答案】【解析】解:,二次函数的顶点坐标为,且二次函数的图象开口向下,当时,,,当时,,解得或舍去,故答案为:根据二次函数的解析式求出顶点坐标,再根据二次函数的性质求出a的值即可.本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.16.【答案】解:,,,,;这里,,,,,则,【解析】利用平方根的定义开方转化为两个一元一次方程来求解;找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.此题考查了解一元二次方程-公式法,以及配方法,熟练掌握解法是解本题的关键.17.【答案】解:把,两点代入二次函数得,解得,;由得,把代入,得,点P在不在此函数图象上.【解析】已知了抛物线上两点的坐标,可将其代入抛物线中,通过联立方程组求得b、c的值;将P点坐标代入抛物线的解析式中,即可判断出P点是否在抛物线的图象上.本题考查了用待定系数法求函数表达式的方法,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键.18.【答案】解:设这个最小数为x,则最大数为,依题意得:,整理得:,解得:,不合题意,舍去答:这个最小数为【解析】设这个最小数为x,则最大数为,根据最小数与最大数的乘积为65,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.【答案】解:根据题意得,整理得,解得;根据根与系数的关系得,,,解得,,,【解析】本题考查了一元二次方程根与系数的关系,根的判别式,解一元一次不等式,解一元二次方程等知识,熟练掌握相关知识是解题关键.根据判别式的意义得到,然后解不等式即可;根据根与系数的关系得到,再利用得到,然后解关于k的方程,最后利用k的范围确定k的值.20.【答案】1331【解析】解:设每轮传染中平均一个人传染x个人,由题意得:,解得:,,,不合题意,舍去,,答:每轮传染中平均一个人传染10个人.则第三轮的患病人数为:故答案为:设第一个人传染了x人,根据两轮传染后共有121人患了流感;列出方程,求解,然后求出三轮之后患流感的人数.本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.21.【答案】解:由题意得,,,解得,或,的值为1或二次函数的对称轴为y轴,数图象的两点,,若满足,时,y随x的增大而减小,,,此时m的值是【解析】根据二次函数的定义列式计算,得到答案;根据二次函数的性质即可判断,从而得出此时m的值是本题考查了二次函数的定义,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.22.【答案】解:如图:,矩形CDEF的面积是矩形BCFA面积的2倍,,,,依题意得:,解得:,不合题意,舍去,答:此时x的值为设矩形养殖场的总面积为S,由得:,墙的长度为10,,,,时,S随着x的增大而增大,当时,S有最大值,最大值为答:当时,矩形养殖场的总面积最大,最大值为【解析】根据题意知:较大矩形的宽为2xm,长为,可得,解方程取符合题意的解,即可得x的值为2;设矩形养殖场的总面积是,根据墙的长度为10,可得,而,由二次函数性质即得当时,矩形养殖场的总面积最大,最大值为本题考查了二次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.23.【答案】解:设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:答:购进A款钥匙扣20件,B款钥匙扣10件.设购进m件A款钥匙扣,则购进件B款钥匙扣,依题意得:,解得:设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则,随m的增大而增大,当时,w取得最大值,最大值,此时答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.设B款钥匙扣的售价定为a元,则每件的销售利润为元,平均每天可售出件,依题意得:,整理得:,解得:,答:将销售价定为每件30元或34元时,才能使B 款钥匙扣平均每天销售利润为90元.【解析】设购进A 款钥匙扣x 件,B 款钥匙扣y 件,利用总价=单价数量,结合该网店第一次用850元购进A 、B 两款钥匙扣共30件,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;设购进m 件A 款钥匙扣,则购进件B 款钥匙扣,利用总价=单价数量,结合总价不超过2200元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设再次购进的A 、B 两款冰墩墩钥匙扣全部售出后获得的总利润为w 元,利用总利润=每件的销售利润销售数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题;设B 款钥匙扣的售价定为a 元,则每件的销售利润为元,平均每天可售出件,利用平均每天销售B 款钥匙扣获得的总利润=每件的销售利润平均每天的销售量,即可得出关于a 的一元二次方程,解之即可得出结论.本题考查了二元一次方程组的应用、一元一次不等式的应用、一元二次方程的应用以及一次函数的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,找出w 关于m 的函数关系式;找准等量关系,正确列出一元二次方程.24.【答案】解:设直线l 的解析式为,直线l 与x 轴交于点,与y 轴交于点,,解得:,直线l 的解析式为;设抛物线的解析式为,抛物线的对称轴是直线,,抛物线经过点A ,B ,,解得:,抛物线的解析式为;,,,在中,,,轴,,,在中,,,,,在中,,,,,,设点,,,,当时,PD有最大值是,此时PM最大,,当时,,,的最大值是,此时点【解析】运用待定系数法即可求得答案;根据抛物线的对称轴是直线,可设,利用待定系数法即可求得答案;由,,可得,利用解直角三角形可得,设点,则,可得,利用二次函数的性质即可求得答案.本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,解直角三角形等,本题难度适中,熟练掌握待定系数法和二次函数的图象和性质是解题关键.。

九年级上册数学第一次月考试卷(含答案)

九年级上册数学第一次月考试卷(含答案)

九年级月考(一)数学试题一.选择题(10×4)1.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x =-+的图象的顶点坐标是( ) A .(13),B .(13)-,C .(13)-,D .(13)--,4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6. 如图所示,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数xy 1=的图象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ) A .S 1<S 2<S 3 B .S 3 <S 2< S 1C .S 2< S 3< S 1D .S 1=S 2=S 37.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) A (-a ,-b ) B (a ,-b ) C (-a ,b ) D (0,0)8.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、 向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2y–1 33O xP1 xy C OA B9.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .2- C .4 D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③C .②③D .①②③五、填空题(5×5)11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:x… 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(x<0)的图象上,有点P 1(x 1,y 1),p 2(x 2,y 2)若x 1<x 2,则y 1___y 2 .15.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .(第10(第7题)ox13y OxC A (1,2)B (m ,n )三.解答题(85分)16.(8分)已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.17.(8分)已知二次函数y=x 2-2x-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的结构用钢量从 5.4 万吨减少到 4.2 万吨.若设平均每次用钢量降低的百分率为 x ,则根据题意,可得方程
( )
A. 5.4(1 x)2 4.2 B. 5.4(1 x2 ) 4.2 C. 5.4(1 2x) 4.2 D. 4.2(1+x)2 4.2
156 601 13
A. B.6 C. D.
25 96 2
12.如图,半圆 O 的直径是 6 cm,∠BAC=30°,则阴影部分的面积是( )
2
A.1 个 B.2 个 C.3 个 D.4 个
16.二次函数 y ax2 bx c 的图象如图所示,则下面四个结论中正确的结论有( )
y
O 1 x
的边长为 1,则扇形纸板的面积是 .
三、解答题(本大题共 6 个小题,共 66 分,解答应写出文字说明、证明过程或
演算步骤)
3
① ac 0 ;② ab>0 ;③ 2a<b ;④ a c b ;⑤ 4a 2b c>0 ;⑥ a b c>0 。
A.2 个 B.3 个 C.4 个 D.5 个

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
28m.则 AB 的长为 m.
19.已知抛物线 y=x2﹣k 的顶点为 P,与 x 轴交于点 A,B,且△ABP 是正三角
形,则 k 的值是 .
20.如图,一张圆心角为 45°的扇形纸板按如图方式剪得一个正方形,正方形
k
轴、y 轴上,反比例函数 y k 0四 x > 0 的图象与正方形的两边 AB、BC 分别交于点
x
M、N,ND⊥x 轴,垂足为 D,连接 OM、ON、MN。下列结论:
A.50° B.100°或 50° C.130°或 50° D.130°
1 2
7.在△ABC 中,若 cosA 1 tanB 0 ,则∠C 的度数是( )
22.(本题 10 分)某校为了解 2014 年八年级学生课外书籍借阅情况,从中随机抽取了 40 名学生课外书籍
借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这 40 名学生
2
A.45° B.60° C.75° D.105°
8.如图,DE∥BC,则下列不成立的是( )
AD AE AB AC AC EC AD DE
3
π- 3 )cm2
4
k
13.如图,直线 y=mx 与双曲线 y= 交于 A、B 两点,过点 A 作 AM⊥x 轴,垂足为 M,连结 BM,若 S =2,
x ABM



第 II 卷(非选择题) 二、填空题(本大题共 4 个小题,每小题 3 分,把答案写在题中横线上)
9 9
A.(12π-9 3 ) cm2 B.(3π- 3 )cm2 C.(3π- 3 )cm2 D.(3
4 2
A k 1 B. k 1且 k 0 C. k 1 D. k 1且 k 0
10.如图,AB 是⊙O 的直径,且 AB=10,弦 MN 的长为 8,若弦 MN
的两端在圆周上滑动,始终与 AB 相交.记点 A,B 到 MN 的距离为
15.如图,AB 是⊙O 的直径,⊙O 交 BC 的中点于 D,DE⊥AC 于 E,连接 AD,则下列结论正确的个数是
( )
1
①AD⊥BC;②∠EDA=∠B;③OA= AC;④DE 是⊙O 的切线.
①△OCN≌△OAM;②ON=MN; ③四边形 DAMN 与△MON 面积相等;④若∠MON=450,
MN=2,则点 C 的坐标为 0四 2 1 .其中正确的个数是( )
A.1 B.2 C.3 D.4w W w .x K b 1.c o M
第 I 卷(选择题)
一、选择题(本大题共 16 个小题,1-6 小题,每小题 2 分;7-16 小题,每小题 3 分,共 42 分,在每小题给
21.(1)(5 分)解方程 2x 2 3x 0 ;(2)(5 分)计算: 21 ( 3.14) sin 60 .
2
册数(本) 128 80 m 48
17.在植树节当天,某校一个班同学分成 10 个小组参加植树造林活动,10 个小组植树的株数见下表:
则这 10 个小组植树株数的方差是______.
18.如图,A、B 两点被池塘隔开,在 AB 外任选一点 C,连接 AC、BC 分别取其三等分点 M、N 量得 MN=
A、 B、 C、 D、
BD EC AD AE AB DB BD BC
9.若关于 x 的方程 kx2 2x 1 0 有两个不相等的实数根,则 k 的取值范围是( )
2.对一个图形进行放缩时,下列说法中正确的是( )
A.图形中线段的长度与角的大小都会改变;
B.图形中线段的长度与角的大小都保持不变;
C.图形中线段的长度保持不变、角的大小可以改变;
D.图形中线段的长度可以改变、角的大小保持不变.
3.北京奥运会的主会场“鸟巢”让人记忆深刻.据了解,在鸟巢设计的最后阶段,经过了两次优化,鸟巢
出的四个选项中,只有一项符合题目要求的)
1.体育课上,九年级 2 名学生各练习 10 次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这
两名学生立定跳远成绩的( )
A.平均数 B.众数 C .中位数 D.方差
4.如图,已知直线 a∥b∥c,直线 m、n 与 a、b、c 分别交于点 A、C、E、B、D、F,AC=4,CE=6,BD=
3,则 BF=( )
A.7 B.7.5 C.8 D.8.5
5.下列命题中,正确的是( )
①顶点在圆周上的角是圆周角;②90°的圆周角所对的弦是直径;③圆周角度数
等于圆心角度数的一半;④三点确定一个圆;⑤同弧所对的圆周角相等.
A.①②③ B.③④⑤ C.②⑤ D.②③
6.已知⊙O 中,圆心角∠AOB=100°,则圆周角∠ACB 等于( )
则 k 的值是( )
A.2 B.m-2 C.m D.4
14.如图,在直角坐标系中,正方形 OABC 的顶点 O 与原点重合,顶点 A。C 分别在 x
h1,h2.则|h1-h2|等于( )
A.5 B.6 C.7 D.8
11.如图,△ABC 中,∠B=90°,AB=5,BC=12,将△ABC 沿 DE 折
叠,使点 C 落在 AB 边上的 C 处,并且 CD ∥BC,则 CD 的长是( )
借阅总册数的 40%.
类别 科普类 教辅类 文艺类 其他
相关文档
最新文档