备战中考 2016年哈尔滨市初三5月统一调研测试数学试题 有答案

合集下载

【中考真题】2016年黑龙江省哈尔滨市中考数学试题(含答案解析)

【中考真题】2016年黑龙江省哈尔滨市中考数学试题(含答案解析)

2016年黑龙江省哈尔滨市中考数学真题一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A. B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤17.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700 000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin 60°+tan 45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.参考答案解析一、选择题(每小题3分,共计30分)1.B【解析】﹣6的绝对值是6.故选B.2.C【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选C.3.D【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选D.4.D【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.C【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选C.6.A【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选A.7.C【解析】设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C.8.D【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选D.9.A【解析】A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选A.10.B【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.5.7×106【解析】5700 000=5.7×106.故答案为:5.7×106.12.x≠【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.﹣2【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.a(x+a)2【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.6【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.﹣4【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.或【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.4【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF ,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.3【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin 60°+tan 45°=2×+1=+1时,原式==.22.解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DP A=90°∴△AQB≌△DP A(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.26.解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EP A′=90°,∴∠EP A′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴P A′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,∴P与H的纵坐标相等,∴PH∥x轴,∴∠HPQ=∠PQD,∠PGH=∠QGD,∵DG=GH,∴△PGH≌△QGD,∴PH=DQ,∵A(﹣4,0),C(2,0),∴Q(﹣1,0),∵D(﹣5,0),∴DQ=PH=4,∴﹣t+t2+t+1=4,t=±,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。

2016年黑龙江省哈尔滨市中考数学试卷及答案解析

2016年黑龙江省哈尔滨市中考数学试卷及答案解析

2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1 7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.【点评】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为 5.7×106.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700000=5.7×106.故答案为:5.7×106.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.(3分)函数y=中,自变量x的取值范围是x≠.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.【点评】本题考查了函数自变量的取值范围,利用分母不为零得出不等式是解题关键.13.(3分)计算2﹣的结果是﹣2.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)2【点评】本题考查了因式分解的知识,解题的关键是能够首先确定多项式的公因式,难度不大.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.【点评】本题考查了扇形面积的计算.正确理解公式是关键.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决本题的关键是证明四边形CDEF为矩形.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1黑2白1白2黑1黑1黑1黑1黑2黑1白1黑1白2黑2黑2黑1黑2黑2黑2白1黑2白2白1白1黑1白1黑2白1白1白1白2白2白2黑1白2黑2白2白1白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.20.(3分)如图,在菱形ABCD 中,∠BAD =120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =6,则FG 的长为3.【分析】首先证明△ABC ,△ADC 都是等边三角形,再证明FG 是菱形的高,根据2•S △ABC =BC •FG即可解决问题.【解答】解:∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形,∵EG ⊥AC ,∴∠AEG =∠AGE =30°,∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.【点评】本题考查的是扇形统计图和条形统计图,解题的关键是读懂统计图,从统计图中得到必要的信息.24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【点评】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ 的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED =即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.【点评】本题考查圆的综合问题,涉及圆周角定理,中位线的性质,锐角三角函数,勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H 的纵坐标相等,则PH与x轴平行,证明△PGH≌△QGD,得PH=DQ=4,列式可得t 的值,求出t的值并取舍,计算出点F的坐标.也可以利用线段中点公式求出结论.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,。

2016年黑龙江省哈尔滨市中考数学(有解析)

2016年黑龙江省哈尔滨市中考数学(有解析)

2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【解析】﹣6的绝对值是6.故选:B.2.下列运算正确的是()A.a2•a3=a6 B.(a2)3=a5 C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里).故选:D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2 B.150m2 C.330m2 D.450m2【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 5.7×106.【解析】5700 000=5.7×106.故答案为:5.7×106.12.函数y=中,自变量x的取值范围是x≠.【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.计算2﹣的结果是﹣2.【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF 对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【解】原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【解】(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【解】(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【解】(1)证明:∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)解:①AQ﹣AP=PQ ②AQ﹣BQ=PQ ③DP﹣AP=PQ ④DP﹣BQ=PQ 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【解】(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【解】(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【解】(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。

哈尔滨市2016年初中升学考试数学试题(7)含答案解析

哈尔滨市2016年初中升学考试数学试题(7)含答案解析

黑龙江省哈尔滨市2016年初中升学考试全新体验(7)数学试题一、选择题,每小题3分,共30分1.下列各数中,比﹣3小的数是()A.﹣3 B.﹣2 C.0 D.﹣42.下列计算正确的是()A.(﹣x2)3=x5B.x8÷x4=x2C.x3+3x3=3x6D.(﹣x2)3=﹣x63.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是45.若点(1,﹣3)在反比例函数y=的图象上,则k的值是()A.B.3 C.﹣ D.﹣36.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B. mC.4m D.2m7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.8.如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转80°得到△AB′C,则∠CAB′的度数为()A.30° B.40° C.50° D.80°9.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900 10.两辆汽车沿同一条路赶赴出发地480km的某地,甲匀速行驶一段时间出现故障,停车检修后继续行驶,图中折线OABC,线段DE分别表示甲、乙所行的路程y(km)与甲车出发时间x(h)间的函数关系,以下结论中错误的个数有()①乙车比甲车晚出发2h;②乙车的平均速度为60km/h;③甲车检修后的平均速度为120km/h;④两车第二次相遇时,它们距出发地320km;⑤图中EF=DF.A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,满分30分)11.保护水资源,人人有责,我国目前可利用的淡水资源总量仅为899000亿立方米,请用科学记数法表示这个数899000是.12.在函数y=中,自变量x的取值范围是.13.化简的结果是.14.把多项式x3﹣4x2y+4xy2分解因式,结果为.15.不等式组的解集是.16.某扇形的弧长为2π,圆心角为90°,此扇形的面积为.17.有一个正方体,6个面上分别标有1﹣6这6个整数,投掷这个正方体一次,则出现向上一面的数字不小于3的概率为.18.某商场对某种商品作调价,按原价8折出售,此时商品的利润率是10%,若商品的进价为1200元,则商品的原价是元.19.在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与BC边所在的直线相切,则∠BAC的度数是.20.如图,在△ABC中,AB=AC,BD⊥AC于点D,点E在AB边上,CE交BD于点F,BE=BF,EG⊥AC 于点G,若EG=2,CD=3,则线段EF的长为.三、解答题21.先化简,在求代数式÷(x﹣2﹣)的值,其中x=4sin30°+2cos45°.22.如图,网格中每个小正方形的边长均为1,线段AB的顶点在校正方形的顶点上,按要求画出图形.(1)画一个以线段AB为底边的锐角等腰三角形ABC,使得点C在小正方形的顶点上;(2)画出Rt△ABD和Rt△BCD使得△ABD和△BCD的面积相等,要求点D在小正方形的顶点上;(3)直接写出线段AD的长.23.教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分中学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次调查中共调查了多少名学生?(2)将频数分布直方图补充完整(3)我市九年级学生大约有50000人,请你计算参加户外活动不少于1.5小时的人数.24.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.25.某中学在教化电子大世界购进A、B两种品牌的平板电脑,购买A品牌的平板电脑用去了200000元,购买B品牌的平板电脑用去了150000元,且购买A品牌平板电脑的数量是购买B品牌平板电脑数量的2倍,已知购买一台A品牌平板电脑比购买一台B品牌平板电脑少用500元.(1)求购买一台A品牌平板电脑、一台B品牌平板电脑各需多少元?(2)该中学决定再次购进A、B两种品牌的平板电脑共500台.正逢教化电子大世界对两种品牌平板电脑的售价进行调整A品牌平板电脑售价比第一次购买提高了5%,B品牌的平板电脑按第一次购买时售价的8.5折出售.如果这所中学此次购买A、B两种品牌的平板电脑的总费用不超过600000元,求该中学此次最多可购买B品牌的平板电脑多少台?26.已知△ABC内接⊙O,半径OC平分∠ACB,射线CO交弦AB于点K.(1)如图1,求证:∠A=∠B.(2)如图2,点D在圆周上,它与搭建C位于弦AB的两侧,连接BO并延长BO,交弦AD于点E,连接BD,若∠BAD=2∠BAC,求证:AD=2AE;(3)如图3,在(2)的条件下,连接AO并延长AO,交⊙O于点F,交弦CB的延长线于点G,连接DG,若BG=CB,AC=,求线段DG的长.27.在平面直角坐标系中,O为坐标原点,抛物线y=a(x+3)(x﹣4)与x轴从左到有依次交于A,B两点,于y轴的正半轴交于点C,且AB﹣OC=1.(1)如图1,求a的值;(2)如图2,点D在y轴的负半轴上,BD=5,点E在第二象限的抛物线上,其横坐标为t,设△BDE 的面积为S求S与t间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,当S=15时,将ED沿直线BE折叠,DE折叠后所在的直线交抛物线于点G,求G点的坐标.黑龙江省哈尔滨市2016年初中升学考试全新体验(7)数学试题参考答案与试题解析一、选择题,每小题3分,共30分1.下列各数中,比﹣3小的数是()A.﹣3 B.﹣2 C.0 D.﹣4【考点】有理数大小比较.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【解答】解:∵﹣4<﹣3<﹣2<0,∴比﹣3小的数是﹣4,故选:D.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.2.下列计算正确的是()A.(﹣x2)3=x5B.x8÷x4=x2C.x3+3x3=3x6D.(﹣x2)3=﹣x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项法则;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x8÷x4=x4,此选项错误;C、x3+3x3=4x3,此选项错误;D、(﹣x2)3=﹣x6,此选项正确;故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、图形不是中心对称轴图形,是轴对称图形,此选项错误;B、图形即是中心对称轴图形,也是轴对称图形,此选项正确;C、图形是中心对称轴图形,不是轴对称图形,此选项错误;D、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4【考点】简单组合体的三视图.【专题】几何图形问题.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.【解答】解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.5.若点(1,﹣3)在反比例函数y=的图象上,则k的值是()A.B.3 C.﹣ D.﹣3【考点】反比例函数图象上点的坐标特征.【分析】先将点(1,﹣3)代入反比例函数y=,再求得k的值即可.【解答】解:∵点(1,﹣3)在反比例函数y=的图象上,∴将点(1,﹣3)代入反比例函数y=,可得k=﹣3×1=﹣3,即k的值是﹣3.故选(D)【点评】本题主要考查了反比例函数图象上点的坐标特征,反比例函数y=图象上的点(x,y)的横、纵坐标的积是定值k,即xy=k,这是解题的关键.6.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B. mC.4m D.2m【考点】解直角三角形的应用-坡度坡角问题.【分析】可利用勾股定理及所给的比值得到所求的线段长.【解答】解:∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选D.【点评】本题主要考查了勾股定理在直角三角形中的运用,i的定义,能从实际问题中整理出直角三角形是解答本题的关键.7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【考点】平行线分线段成比例;平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.【点评】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.8.如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转80°得到△AB′C,则∠CAB′的度数为()A.30° B.40° C.50° D.80°【考点】旋转的性质.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转80°得到△AB′C′,∴∠BAB′=80°,又∵∠BAC=50°,∴∠CAB′=∠BAB′﹣∠BAC=30°.故选A.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.解答此题的关键是要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.9.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】首先用x表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.【解答】解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=900.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,记住长方形面积=长×宽是解决本题的关键,此题难度不大.10.两辆汽车沿同一条路赶赴出发地480km的某地,甲匀速行驶一段时间出现故障,停车检修后继续行驶,图中折线OABC,线段DE分别表示甲、乙所行的路程y(km)与甲车出发时间x(h)间的函数关系,以下结论中错误的个数有()①乙车比甲车晚出发2h;②乙车的平均速度为60km/h;③甲车检修后的平均速度为120km/h;④两车第二次相遇时,它们距出发地320km;⑤图中EF=DF.A.1个B.2个C.3个D.4个【考点】函数的图象.【专题】函数的综合应用.【分析】因为(1)坐标系中横坐标表示时间(单位:时),纵坐标表示两车的行程(单位:米),故分析两图象始点坐标即可解①;(2)利用平均速度=可求;(3)求出F的纵坐标,即可求出甲在6时到8时的速度即可解决问题③④;(4)利用相似三角形的性质解决问题⑤.【解答】解:①∵点D(2,0)表示2时乙的行程为0米,即:乙车比甲车晚出发2h,∴①说法正确;②∵乙总行程为480米=0.48千米,用时10﹣2=8(小时),∴乙的平均速度=0.48÷8=0.06km/h,即:结论②错误③∵乙的平均速度=0.06km/h,当x=6h时,其行路程是:0.06×6=0.36千米=360米,∴甲检修后行驶480﹣360=120米=0.12千米,所用时间为2小时,故:甲车检修后的平均速度为:0.12÷2=0.06km/h;即:结论③错误④∵点F是两函数图象的交点,表示此刻甲乙两车相遇,∴由上述分析可知结论④错误⑤∵由题意可知:,即:DE=2DF,DF=EF,∴结论⑤正确故:选C【点评】本题考查了函数图象的性质及其应用,解题的关键是利用图象特点分析两车的运动状态,理清两车在运动过程中的位置、时间等关系.二、填空题(共10小题,每小题3分,满分30分)11.保护水资源,人人有责,我国目前可利用的淡水资源总量仅为899000亿立方米,请用科学记数法表示这个数899000是8.99×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将899000用科学记数法表示为:8.99×105.故答案为:8.99×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是x≠﹣3 .【考点】函数自变量的取值范围.【分析】根据分母不等于0解答即可.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故答案为:x≠﹣3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.化简的结果是2+.【考点】分母有理化.【专题】计算题.【分析】原式分子分母乘以有理化因式,计算即可得到结果.【解答】解:原式==2+.故答案为:2+【点评】此题考查了分母有理化,找出分母的有理化因式是解本题的关键.14.把多项式x3﹣4x2y+4xy2分解因式,结果为x(x﹣2y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式运用完全平方差公式继续分解.【解答】解:x3﹣4x2y+4xy2,=x(x2﹣4xy+4y2),=x(x﹣2y)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.15.不等式组的解集是.【考点】解一元一次不等式组.【专题】推理填空题.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.【解答】解:解不等式①,得x>,解不等式②,得x<,故原不等式组的解集是,故答案为:.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.16.某扇形的弧长为2π,圆心角为90°,此扇形的面积为4π.【考点】扇形面积的计算;弧长的计算.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【解答】解:设扇形的半径为r.则=2π,解得r=4,∴扇形的面积==4π.故答案为:4π.【点评】此题主要考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=;扇形的面积公式S=.17.有一个正方体,6个面上分别标有1﹣6这6个整数,投掷这个正方体一次,则出现向上一面的数字不小于3的概率为.【考点】概率公式.【分析】根据概率求法,找准两点:1,全部情况的总数;2,符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:投掷这个正方体一次,共有6种情况,其中出现向上一面的数字不小于3的情况有4种:3,4,5,6,故出现向上一面的数字不小于3的概率==.故本题答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.某商场对某种商品作调价,按原价8折出售,此时商品的利润率是10%,若商品的进价为1200元,则商品的原价是1650 元.【考点】一元一次方程的应用.【分析】设该商品的原价为每件x元,根据等量关系为:原价×80%﹣进价=进价×10%,列方程求解即可.【解答】解:设该商品的原价为每件x元,由题意得,0.8x﹣1200=1200×10%,解得:x=1650.答:该商品的原价为每件1650元.故答案为:1650.【点评】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与BC边所在的直线相切,则∠BAC的度数是15°或105°.【考点】切线的性质.【分析】首先通过作辅助线构建直角三角形,然后分别得出三角形各内角度数,进而得出答案.【解答】解:如图1,设圆A与BC切于点D,连接AD,则AD⊥BC,在直角△ABD中,AB=2,AD=1,则sinB==,∴∠B=30°,∴∠BAD=60°,同理,在直角△ACD中,tanC==,得到∠CAD=45°,因而∠BAC的度数是105°.如图2,设圆A与BC延长线切于点D,连接AD,则AD⊥BC,在直角△ABD中,AB=2,AD=1,则sinB==,∴∠B=30°,∴∠BAD=60°,同理,在直角△ACD中,tan∠ACD==,得到∠CAD=45°,因而∠BAC的度数是15°.故答案为:15°或105°.【点评】此题主要考查了切线的性质以及锐角三角函数关系,通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题是解题关键.20.如图,在△ABC中,AB=AC,BD⊥AC于点D,点E在AB边上,CE交BD于点F,BE=BF,EG⊥AC于点G,若EG=2,CD=3,则线段EF的长为.【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理.【分析】作CH⊥AB于H,EK⊥BD于K.首先证明△CEG≌△CEH,推出CH=CG,EH=EG=2,△ABD≌△ACH,推出BD=CH=CG,AH=AD,推出BH=CD=3,设EK=DG=x,则CG=BD=3+x,DK=EG=2,推出BK=x+1,在Rt△EKB中,利用勾股定理得到(x+1)2+x2=52,求出x的值,再利用勾股定理求出EC,然后证明EF=CF即可.【解答】解:作CH⊥AB于H,EK⊥BD于K.∵EG⊥AC,BD⊥AC,∴EG∥BD,∴∠GEC=∠BFE,∵BE=BF,∴∠BEC=∠BFE=∠GEC,在△CEG和△CEH中,,∴△CEG≌△CEH(AAS),∴CH=CG,EH=EG=2,在△ABD和△ACH中,,∴△ABD≌△ACH(AAS),∴BD=CH=CG,AH=AD,∴BH=CD=3,设EK=DG=x,则CG=BD=3+x,DK=EG=2,∴BK=x+1,在Rt△EKB中,(x+1)2+x2=52,∴x=3或﹣4(舍弃),∴DG=3,CG=6,∴CE=2,∵BD∥EG,CD=DG=3,∴EF=CF=,故答案为.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、勾股定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助线,属于中考常考题型.三、解答题21.先化简,在求代数式÷(x﹣2﹣)的值,其中x=4sin30°+2cos45°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,当x=4×+2×=2+时,原式=.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.22.如图,网格中每个小正方形的边长均为1,线段AB的顶点在校正方形的顶点上,按要求画出图形.(1)画一个以线段AB为底边的锐角等腰三角形ABC,使得点C在小正方形的顶点上;(2)画出Rt△ABD和Rt△BCD使得△ABD和△BCD的面积相等,要求点D在小正方形的顶点上;(3)直接写出线段AD的长.【考点】作图—应用与设计作图;三角形的面积;等腰三角形的判定与性质;正方形的判定与性质.【分析】(1)画BC=5,连接AC,再根据勾股定理可得AC=5;(2)首先以AB为边,A为顶点画∠BAD=90°,再连接AD,BD即可;(3)利用勾股定理计算出AD长即可.【解答】解:(1)如图所示:(2)如图所示:(3)AD==.【点评】此题主要考查了作图与应用设计,关键是根据网格正确画出直角.23.教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分中学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次调查中共调查了多少名学生?(2)将频数分布直方图补充完整(3)我市九年级学生大约有50000人,请你计算参加户外活动不少于1.5小时的人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据时间是0.5小时的人数是20,对应的百分比是20%,即可求得调查的总人数;(2)利用总人数乘以对应的频率求得时间是1.5小时的人数,补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)调查的总人数是10÷20%=50(人);(2)时间是1.5小时的人数是50×24%=12(人),;(3)参加户外活动不少于1.5小时的人数是50000×=20000(人).答:参加户外活动不少于1.5小时的人数是20000人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.频率=所求情况数与总情况数之比.24.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【考点】菱形的判定;线段垂直平分线的性质;平行四边形的判定.【专题】证明题.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF 是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.【点评】本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.25.某中学在教化电子大世界购进A、B两种品牌的平板电脑,购买A品牌的平板电脑用去了200000元,购买B品牌的平板电脑用去了150000元,且购买A品牌平板电脑的数量是购买B品牌平板电脑数量的2倍,已知购买一台A品牌平板电脑比购买一台B品牌平板电脑少用500元.(1)求购买一台A品牌平板电脑、一台B品牌平板电脑各需多少元?(2)该中学决定再次购进A、B两种品牌的平板电脑共500台.正逢教化电子大世界对两种品牌平板电脑的售价进行调整A品牌平板电脑售价比第一次购买提高了5%,B品牌的平板电脑按第一次购买时售价的8.5折出售.如果这所中学此次购买A、B两种品牌的平板电脑的总费用不超过600000元,求该中学此次最多可购买B品牌的平板电脑多少台?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设购买一台A品牌平板电脑x元,一台B品牌平板电脑(x+500)元,根据题意购买A品牌平板电脑的数量是购买B品牌平板电脑数量的2倍,列方程求解;(2)设购买B品牌的平板电脑y台,则购买A品牌的平板电脑(500﹣y)台,根据提价和打折之后两种品牌的平板电脑的总费用不超过600000元,列出不等式求解.【解答】解:(1)设购买一台A品牌平板电脑x元,一台B品牌平板电脑(x+500)元,由题意得, =2×,解得:x=1000,经检验,x=1000是原分式方程的解,且符合题意,则x+500=1500.答:购买一台A品牌平板电脑1000元,一台B品牌平板电脑1500元;(2)设购买B品牌的平板电脑y台,则购买A品牌的平板电脑(500﹣y)台,由题意得,1000×(1+5%)(500﹣y)+1500×0.85y≤600000,解得:y≤333.故向阳中学此次最多可购买333台B品牌的平板电脑.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解,注意检验.26.已知△ABC内接⊙O,半径OC平分∠ACB,射线CO交弦AB于点K.(1)如图1,求证:∠A=∠B.(2)如图2,点D在圆周上,它与搭建C位于弦AB的两侧,连接BO并延长BO,交弦AD于点E,连接BD,若∠BAD=2∠BAC,求证:AD=2AE;(3)如图3,在(2)的条件下,连接AO并延长AO,交⊙O于点F,交弦CB的延长线于点G,连接DG,若BG=CB,AC=,求线段DG的长.【考点】圆的综合题.【分析】(1)延长CO交圆O于点D,连结AD、BD.由角平分线的定义可知∠ACD=∠BCD,接下来,依据圆周角定理可知∠DAB=∠DBA,∠CAD=∠CBD=90°,依据等式的性质可得到∠CAB=∠CBA,从而可证明AC=BC.(2)连结OA、OD.先证明∠ADB=∠COB,然后再证明∠COB=∠BAD,从而得到AB=BD,接下来依据线段垂直平分线的判定定理证明OB是AD的垂直平分线即可;(3)连结BF、DF,过点D作DM⊥AG,垂足为M.由(1)可知AC=BC.依据等腰三角形三线合一的性质可证明AK=BK,CK⊥AB,从而可知OK是△ABF的中位线,然后结合平行线分线段成比例定理可得到OC=2BF=4OK.设OK=x.先求得AK的长,然后在△ACK中,依据勾股定理可求得k的值,从而得到OA=OC=OF=FG=4,BK=AK=,接下来依据锐角三角函数的定义求得AE、AM的长,最后在△AMD 和△GDM中依据勾股定理可求得DG的长.。

2016年黑龙江省哈尔滨市中考数学试卷-答案

2016年黑龙江省哈尔滨市中考数学试卷-答案

黑龙江省哈尔滨市2016年初中升学考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】根据负数的绝对值是它的相反数,6-的绝对值是6。

【提示】本题主要运用绝对值的定义。

规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

【考点】绝对值2.【答案】C【解析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案。

因为235a a a =,故选项A 错误;236(a )a =,故选项B 错误;22(2a 1)4a 4a 1+=++,故选项D 错误。

【提示】此题主要运用了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键。

【考点】幂的乘方与积的乘方,同底数幂的乘法,完全平方公式3.【答案】B【解析】依据轴对称图形的定义和中心对称图形的定义回答即可。

选项A 中的图形是轴对称图形,但不是中心对称图形,故A 错误。

选项B 中的图形是轴对称图形,也是中心对称图形,故B 正确。

选项C 中的图形是中心对称图形,但不是轴对称图形,故C 错误。

选项D 中的图形是轴对称图形,但不是中心对称图形,故D 错误。

【提示】本题掌握轴对称图形和中心对称图形的特点是关键。

【考点】中心对称图形,轴对称图形4.【答案】D【解析】由点(2,4)-在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k 值,再去验证四个选项中横纵坐标之积是否为k 值。

因为点(2,4)-在反比例函数k y x=的图象上,所以有k 2(4)8=⨯-=-。

选项A 中248⨯=,选项B 中1(8)8-⨯-=,选项C 中2(4)8-⨯-=,选项D 中4(2)8⨯-=-。

所以点(4,2)-在反比例函数k y x =的图象上。

故选D 。

【提示】本题运用了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k 。

哈尔滨市松北区2016年初中升学考试调研数学试卷(一)含答案

哈尔滨市松北区2016年初中升学考试调研数学试卷(一)含答案

2016年松北区一模数学调研测试答案一、选择题1 2 3 4 5 6 7 8 9 10A CB A B DC B B C二、填空题:11 12 13 1415 16 17 18 19 207105.6⨯22x≤1且x≠-2 108π()21--xx11<<x- 3323或61333三、解答题:21.原式=1(1)(1)x xx x x-⋅+--------------------------------3分=11x+-------------------------1分当21x=+时---------------------1分,原式=122211=-+--------------------------2分22.(2)画对一个点给一分。

结论不算分23.(1)D类:20-4-8-6=2----------------------------2分,补图1分(2)众数:5 中位数:5—————————————————2分(3)12722402027668544=⨯⨯+⨯+⨯+⨯------------------2分答:估计这240名学生共植树约为1272棵------------------------1分24.答案:(1)证明:∵AD ⊥BC ,GF ⊥BC 。

∴∠ADF=∠GFC=90°∴AE ∥GF………… 1分 在△ABG 和△FBG 中,∠BAG=∠BFG ,∠ABG=∠FBG ,BG=BG ∴△ABG ≌△FBG∴AG=FG………… 1分∵∠FBG+∠BED=90°∵∠BED=∠AEG ∴∠FBG+∠AEG=90°∵∠ABG+∠AGE=90°,∵∠ABG=∠FBG ∴∠AEG=∠AGE ∴AE=AG………………… 1分 ∴AE=FG ∴四边形AEFG 是平行四边形 ∵AE=AG ∴四边形AEFG 是菱形…………… 1分 (用其他方法,按步给分)(2)AB BF CF EM……………… 每个1分,计4分25.(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件由题意可得:2880013200102x x-=,-------------------------------------------------2分 解得120x =,------------------------------------------------------1分 经检验120x =是原方程的根.--------------------------------------------1分 (2)设每件衬衫的标价至少是a 元由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元/件)------1分由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯-------2分解得35052500a ≥,--------------------------------------2分所以150a ≥,-----------------------------------1分答:每件衬衫的标价至少是150元.-----------------------------------1分26.(1)连接OE ∵OB=OE ∴∠OBE=∠OEB∵DE 切⊙O 于点E ∴OE ⊥DE ∴∠OED=90°----------------------------------1分∴∠OEB+∠DEF=90°∵DO ⊥OB 于点O ∴∠DOB=90°∴∠OBE+∠OFB=90°∴∠OFB=∠DEF=∠DFE------------------------1∴DE=DF---------------------------1分(用其他方法,按步给分)(2)连接AE∵BA 为直径,∴∠AEB=90°∴∠ABE+∠EAB=90°∵∠OBF+∠OFB=90°∴∠OFB=∠EAB=x∵EK=EF ,∴∠EFK=∠EKF=x ,∴∠MKG=∠EKF=∠EFK=∠EAB=x------1分,因为四边形EABG 为圆内接四边形,对角互补,所以可证∠MGK=∠EAB------1分,∴∠MGK=∠MKG=x,∴∠OMB=180°-2x,∵∠ABE=90°-x,∴∠OMB=2∠ABE--------1分(用其他方法,按步给分)(3)过点E 作EH ⊥KF 于点H.可证∠EOA=∠OMB∴过点E 作ER ⊥OA 于点R ,设ER=3a,则OR=4a,OE=5a ,则AR=a,则tan ∠EAB=3,得tan ∠EBA=31 ∴OB=5a,又∵tan ∠OMB=43 ∴OM=a 320,EH=4a,tan ∠EDH=43,∴DH=a 316,OH=3a,∴MH=a 311,∴DM=a 35=2,∴a=56 易得EH=524,∴EF=1058 (方法不唯一,按步给分)27.∵OC=3,得C 点(0,-3)代入c bx x y ++=221得C=3----------------1 ∵D 点横坐标为4,代入x y 43=中的D (4,3)---------1分将D (4,3)代入3212++=bx x y 中得21-=b 、 ∴解析式为321212--=x x y -----------1分(2)由(1)得,321212--=x x y 设P (t,321212--t t ) t PE -=,由抛物线的对称性可知t EF -=1,EC=t t 21212- ∴()()2121121211tan 2=--=--⋅-=∠⋅t t t t t t tt ECF PE (3)∵∠OMN+∠PON=180°,∴∠POM=∠ONM ,作PG ⊥x 轴,MN ⊥ON当OP=MN 时,△PGO ≌△MHN ,∴MN=OG ,PG=NH ,由∠DOG=∠OMH ,设OH=3k,MN=4k ,OM=5k.∵ON=2OM ,∴ON=10k,HN=7k 。

2016年黑龙江省哈尔滨市中考全新体验数学试卷及解析答案word版(四)

2016年黑龙江省哈尔滨市中考全新体验数学试卷及解析答案word版(四)

2016年黑龙江省哈尔滨市中考全新体验数学试卷(四)一、选择题(每小题3分,共30分)1.(3分)下列各数中,最大的是()A.﹣2 B.﹣C.﹣3 D.﹣12.(3分)下列计算正确的是()A.3﹣1=﹣3 B.(a4)2=a8C.a6÷a2=a3D.﹣=3.(3分)如图,将“米”字正方形内涂上阴影,其中是中心对称图形,但不是轴对称图形的是()A. B.C. D.4.(3分)如图所示的几何体是由六个小正方体组合而成的,它的左视图是()A.B.C.D.5.(3分)对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6.(3分)如图,在△ABC中,∠B=90°,AC=5,BC=3,则下列三角函数表示正确的是()A.sinA=B.cosA=C.tanA=D.tanB=镖盘被平均分成8份),小明一次投镖能获得奖品的概率是()A.B.C.D.8.(3分)我省2013年的快递业务量为1.4亿件,2014年位居全国第一,2015年快递业务量达4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.4(1+x)+1.4(1+x)2=4.59.(3分)如图,AC∥BD,AD与BC交于点E,过点E作EF∥BD,交线段AB于点F,则下列各式错误的是()A.=B.=C.+=1 D.=10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S (km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共30分)11.(3分)PM2.5指的是直径小于或等于0.0000025米的可入肺的颗粒灰尘,将数据0.0000025用科学记数法表示为.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)计算:×+=.14.(3分)分解因式:ax2﹣ay2=.15.(3分)不等式组的解集是.16.(3分)已知扇形的弧长为2πcm,圆心角为120°,则扇形的面积为cm2.17.(3分)如图,四边形ABCD为矩形,AB=4,BC=6,点E是BC边的中点,将△ABE沿直线AE折叠,点B落在点F处,连接CF,则sin∠ECF的值为.18.(3分)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.19.(3分)在△ABC中,AD为BC边上的高,AC=5,BC=6,△ABC的面积为9,AB边的长为.20.(3分)在△ABC中,AC=BC,BD⊥AC,交AC边的延长线于点D,点E在AB 边上,EF⊥BD于点F,且EF=BD,若AC=,DF=1(BF>CD),则线段BE的长为.三、解答题(共60分,其中21、22题各7分,23、24题各8分,25、26、27题各10分)21.(7分)先化简,再求代数式1÷(+)的值,其中a=2sin45°﹣tan30°.22.(7分)图a、图b均为7×6的正方形网格,点A、B、C均在格点(小正方形的顶点)上,在图a、图b中确定格点D,并画出一个以A、B、C、D为顶点的四边形,并满足以下要求:(1)图a所画的四边形中,∠B为钝角,且四边形是轴对称图形.(2)图b所画的四边形中,∠B为钝角,且四边形是中心对称图形.23.(8分)某区教研部门对本区八年级学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课余上放手让学生提问和表达的频率()A.从不B.很少C.有时D.常常E.总是答题的学生在这个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.(1)求本次调查的学生的总数;(2)通过计算将条形统计图补充完整;(3)若全市共有32000名八年级学生,请你估计选择“有时”的学生有多少名.24.(8分)如图,已知点A、C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).25.(10分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?26.(10分)在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD.(1)如图1,求证:CD=BD;(2)如图2,设⊙O交AC边于点E,过D点作DG⊥AB,垂足为点G,交⊙O于点F,连接DE、EF,求证:∠DEC=∠AEF;(3)在(2)的条件下,若tan∠CED=,OG=,求△AED的面积.27.(10分)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣4ax﹣12a交x轴于点A、B(A左B右),交y轴于点C,直线y=﹣x﹣6a经过B点,交y轴于点D.(1)如图1,求a的值;(2)如图2,点P在第一象限内的抛物线上,过点A、B作x轴的垂线,分别交直线PD于点E、F,若PF=DE,求点P的坐标;(3)如图3,在(2)的条件下,点Q在第一象限内的抛物线上,过点Q作QE ⊥DP于点E,交直线BD于点R,当QE=ER时,求点Q、R的坐标.2016年黑龙江省哈尔滨市中考全新体验数学试卷(四)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中,最大的是()A.﹣2 B.﹣C.﹣3 D.﹣1【解答】解:∵1<<2<3,∴﹣1>﹣>﹣2>﹣3.故选:D.2.(3分)下列计算正确的是()A.3﹣1=﹣3 B.(a4)2=a8C.a6÷a2=a3D.﹣=【解答】解:A、3﹣1=,故此选项错误;B、(a4)2=a8,正确;C、a6÷a2=a4,故此选项错误;D、﹣无法计算,故此选项错误;故选:B.3.(3分)如图,将“米”字正方形内涂上阴影,其中是中心对称图形,但不是轴对称图形的是()A. B.C. D.【解答】解:A、图形是中心对称轴图形,不是轴对称图形,此选项正确;B、图形即是中心对称轴图形,也是轴对称图形,此选项错误;C、图形即不是中心对称轴图形,也不是轴对称图形,此选项错误;D、图形不是中心对称轴图形,是轴对称图形,此选项错误;故选A.4.(3分)如图所示的几何体是由六个小正方体组合而成的,它的左视图是()A.B.C.D.【解答】解:从左边看得到的图形,有两列,第一列有两个正方形,第二列有一个正方形,故选C.5.(3分)对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.6.(3分)如图,在△ABC中,∠B=90°,AC=5,BC=3,则下列三角函数表示正确的是()A.sinA=B.cosA=C.tanA=D.tanB=【解答】解:∵∠ACB=90°,AC=5,BC=3,∴AB===4,A、sinA==,故本选项正确;B、cosA==,故本选项错误.C、tanA==,故本选项错误;D、tanB是无穷大,故本选项错误;故选A.7.(3分)小明“六、一”去公园玩投掷飞镖的游戏,投中国中阴影部分由奖品(飞镖盘被平均分成8份),小明一次投镖能获得奖品的概率是()A.B.C.D.【解答】解:∵飞镖盘被平均分成8份分,阴影部分占3块,∴小明能获得奖品的概率是.故选B.8.(3分)我省2013年的快递业务量为1.4亿件,2014年位居全国第一,2015年快递业务量达4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.4(1+x)+1.4(1+x)2=4.5【解答】解:设2014年与2015年这两年的年平均增长率为x,由题意得,1.4×(1+x)2=4.5.故选C9.(3分)如图,AC∥BD,AD与BC交于点E,过点E作EF∥BD,交线段AB于点F,则下列各式错误的是()A.=B.=C.+=1 D.=【解答】解:∵AC∥BD,EF∥BD,∴EF∥AC,∴=,=,故A、B正确,∵=,=,∴+=+===1,故C正确,∵=,而DE≠EB,故D错误,故选D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S (km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个 B.2个 C.3个 D.4个【解答】解:①∵小亮到姥姥家用时10﹣8=2(小时),行程24千米,∴v==12km/h故:①正确.②∵妈妈9:30到家,而小亮10:00到家,∴妈妈比小亮提前半小时达到姥姥家,故:②正确.③∵二人在9:00相遇,此时小亮已骑车1小时而妈妈距出发0.5小时,∴妈妈的行程=×0.5=12(千米),小亮的行程==12(千米)∴妈妈在距家12km处追上小亮故:③正确.④∵图象中交点表示二人相遇,此时对应的时间t=9∴应该是9:00妈妈追上小亮的,即:④错误.故:选A二、填空题(每小题3分,共30分)11.(3分)PM2.5指的是直径小于或等于0.0000025米的可入肺的颗粒灰尘,将数据0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6.故答案为:2.5×10﹣6.12.(3分)在函数y=中,自变量x的取值范围是任意实数.【解答】解:∵分母上没有自变量x,∴自变量x的取值范围是任意实数.故答案为:任意实数.13.(3分)计算:×+=3.【解答】解:原式=2+=3.故答案为3.14.(3分)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).15.(3分)不等式组的解集是﹣1<x≤2.【解答】解:,由①得,x≤2;由②得,x>﹣1不等式组的解集为﹣1<x≤2.故答案为﹣1<x≤2.16.(3分)已知扇形的弧长为2πcm,圆心角为120°,则扇形的面积为3πcm2.【解答】解:设该扇形的弧长为λ,半径为μ,圆心角为α°,则,而α=120,解得:μ=3,∴该扇形的面积==3π(cm2),故答案为3π.17.(3分)如图,四边形ABCD为矩形,AB=4,BC=6,点E是BC边的中点,将△ABE沿直线AE折叠,点B落在点F处,连接CF,则sin∠ECF的值为.【解答】解:∵点E为BC的中点,∴BE=EC=3.在△ABE中,由勾股定理得:AE==5由翻折的性质可知:FE=BE,∠BEA=∠FEA,∴FE=EC.∴∠EFC=∠FCE.∵∠CFE+∠FCE=∠BEA+∠AEF,∴2∠ECF=2∠BEA.∴∠ECF=∠BEA.∴sinECF=sin∠BEA==.故答案为:.18.(3分)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.【解答】解:设当日售出成人票x张,儿童票(100﹣x)张,可得:50x+30(100﹣x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.19.(3分)在△ABC中,AD为BC边上的高,AC=5,BC=6,△ABC的面积为9,AB边的长为或.【解答】解:分两种情况考虑:∵AC=5,BC=6,△ABC的面积为9,∴AD=3,如图1所示,此时△ABC为锐角三角形,在Rt△ACD中,根据勾股定理得:DC==4;在Rt△ABD中,根据勾股定理得:AB=,如图2所示,此时△ABC为钝角三角形,在Rt△ACD中,根据勾股定理得:DC==4;在Rt△ABD中,根据勾股定理得:AB=,故答案为:或20.(3分)在△ABC中,AC=BC,BD⊥AC,交AC边的延长线于点D,点E在AB 边上,EF⊥BD于点F,且EF=BD,若AC=,DF=1(BF>CD),则线段BE的长为.【解答】解:如图,设BF=x,CD=y,在Rt△BCD中,∵BC2=CD2+BD2,∴y2+(x+1)2=()2①,∵EF⊥DE,AD⊥BD,∴EF∥AD,∴=,∴=②,由①②解得,∴EF=3,BF=2,在Rt△BEF中,BE===.故答案为.三、解答题(共60分,其中21、22题各7分,23、24题各8分,25、26、27题各10分)21.(7分)先化简,再求代数式1÷(+)的值,其中a=2sin45°﹣tan30°.【解答】解:原式=1÷==,当a=2×﹣×=﹣1时,原式=.22.(7分)图a、图b均为7×6的正方形网格,点A、B、C均在格点(小正方形的顶点)上,在图a、图b中确定格点D,并画出一个以A、B、C、D为顶点的四边形,并满足以下要求:(1)图a所画的四边形中,∠B为钝角,且四边形是轴对称图形.(2)图b所画的四边形中,∠B为钝角,且四边形是中心对称图形.【解答】解:(1)点D如图①所示,(2)点D如图②所示;23.(8分)某区教研部门对本区八年级学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课余上放手让学生提问和表达的频率()A.从不B.很少C.有时D.常常E.总是答题的学生在这个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.(1)求本次调查的学生的总数;(2)通过计算将条形统计图补充完整;(3)若全市共有32000名八年级学生,请你估计选择“有时”的学生有多少名.【解答】解:(1)本次调查的学生的总数=96÷3%=3200(人);(2)回答“有时”的人数为3200﹣96﹣320﹣736﹣1344=704(人),补全条形图为:(3)320000×=7040,所以估计选择“有时”的学生有704名.24.(8分)如图,已知点A、C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).【解答】(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AD=CB,∴四边形ABCD是平行四边形;(2)解:AD=BC、EC=AF、ED=BF、AB=DC;理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF,∵AE=CF,∴EC=AF,∵四边形ABCD是平行四边形,∴AB=DC.25.(10分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?【解答】解:(1)设B的进价为x元,则a的进价是(x+3)元由题意得=,解得x=15,经检验x=15是原方程的解.所以15+3=18(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具(100﹣a)个,由题意得:2a+10(100﹣a)≥1080,解得a≥40.答:至少购进A40个.26.(10分)在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD.(1)如图1,求证:CD=BD;(2)如图2,设⊙O交AC边于点E,过D点作DG⊥AB,垂足为点G,交⊙O于点F,连接DE、EF,求证:∠DEC=∠AEF;(3)在(2)的条件下,若tan∠CED=,OG=,求△AED的面积.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴CD=BD;(2)证明:∵AB⊥DF,∴=,∴∠ABD=∠AEF,∴∠ABD+∠AED=180°,∠DEC+∠AED=180°,∴∠DEC=∠ABD=∠AEF;(3)连接OD,由(2)知,∠DEC=∠AEF,∵∠AEF=∠ADF,∴∠DEC=∠ADF,∴tan∠ADF=tan∠DEC=,∵AB⊥DG,∴tan∠ADF==,设AG=4x,DG=3x,∵OG=,∴OD=OA=4x﹣,在Rt△ODG中,()2+(3x)2=(4x﹣)2,解得:x=,∴AG=,DG=4,过点D作DH⊥CE于点H,由(1)可知:AD平分∠BAC,∴DH=DG=4,AH=AG=,∵tan∠EDC=,∴EH=3,∴AE=﹣3=,=AE•DH=××4=.∴S△AED27.(10分)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣4ax﹣12a交x轴于点A、B(A左B右),交y轴于点C,直线y=﹣x﹣6a经过B点,交y轴于点D.(1)如图1,求a的值;(2)如图2,点P在第一象限内的抛物线上,过点A、B作x轴的垂线,分别交直线PD于点E、F,若PF=DE,求点P的坐标;(3)如图3,在(2)的条件下,点Q在第一象限内的抛物线上,过点Q作QE ⊥DP于点E,交直线BD于点R,当QE=ER时,求点Q、R的坐标.【解答】解:直线y=2kx﹣12k交x轴于点B,∴B(6,0),∵A(﹣2,0),B在抛物线上,∴,∴,(2)如图2,过点P作PL⊥x轴于L,过B做BT⊥OP,∵抛物线解析式为y=﹣x2+x+4,∴C(0,4),∴OC=4,∵D是OC中点,∴OD=2,∴D(0,2),tan∠ODB==3,∴tan∠OPB=tan∠ODB=3,∴BT=3PT,∵P(m,m)在第一象限,∴PL=OL=m,∴∠POL=45°,OP=m,∴BT=OT,∵OB=6,∴OT=BT=3PT=3,∴OP=4,∴m=4,∴P(4,4);此时点P在抛物线上,(3)如图3,连接PC,DQ,过点Q作QM⊥y轴,过R作RN⊥y轴,∵P(4,4),C(0,4),∴PC⊥y轴,∴∠PCD=∠PLB=90°,∵CD=BL=2,PC=PL=4,∴△PCD≌△PLB,∴∠CPD=∠LPB,PD=PB,∴∠DPB=∠DPL+∠LPB=∠DPL+∠CPD=90°,∴∠PDB=45°,∵QR⊥PD,QE=ER,∴DQ=DR,∴∠QDE=∠PDB=45°,∴∠QDR=90°,∴∠QDM+∠RDN=90°,∵∠QDM+∠DQM=90°,∴∠QDE=∠RDN,∵∠QMD=∠DNR=90°,∴△QMD≌△DNR,∴QM=DN,DM=NR,∵D(0,2)在直线y=2kx﹣12k上,∴﹣12k=2,∴k=﹣,∴直线解析式为y=﹣x+2,设R(n,﹣n+2),∴DM=NR=n,QM=DN=2﹣(﹣n+2)=n,Q(n,n+2),∵点Q在抛物线上,∴n+2=﹣(n)2+×n+4,∴n=3或n=﹣18(舍),∴Q(1,5),R(3,1)赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

黑龙江哈尔滨2016中考试题数学卷(解析版)

黑龙江哈尔滨2016中考试题数学卷(解析版)

一、选择题(共8小题,每小题3分,满分24分)1.﹣6的绝对值是( )A .﹣6B .6C .61D .61- 【答案】B.【解析】试题分析:负数的绝对值是它相反数,-6的绝对值是6.故选B.考点:绝对值.2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(﹣2a 2b )3=﹣8a 6b 3D .(2a+1)2=4a 2+2a+1【答案】C.考点:1幂的运算;2完全平方公式.3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可发现只有B 符合要求,故选B. 考点:1中心对称图形;2轴对称图形.4.点(2,﹣4)在反比例函数xk y =的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8) C .(﹣2,﹣4) D .(4,﹣2)【答案】D.【解析】试题分析:同一反比例函数图像上点的坐标满足:横纵坐标乘积相等.只有D :4×(-2)=2×(-4).故选D.考点:反比例函数.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .【答案】C.【解析】试题分析:主视图是从正面看到的图形.故选C.考点:三视图.6.不等式组⎩⎨⎧-≤->+32123x x 的解集是( ) A .x≥2 B .﹣1<x≤2 C .x≤2 D .﹣1<x≤1【答案】A.考点:一元一次不等式组.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C.【解析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可.故选C. 考点:一元一次方程.8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A .60海里B .45海里C .320海里D .330海里【答案】D.考点:1方位角;2直角三角形.9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE∥BC,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .AC AE AB AD = B .EC AE FC DF = C .BC DE DB AD = D .FCEF BF DF = 【答案】A.【解析】试题分析: ∵DE ∥BC ,∴ACAE AB AD =(平行线分线段成比例).故选A. 考点:平行线分线段成比例.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2【答案】B.【解析】考点:一次函数.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 .【答案】5.7×106.【解析】试题分析:科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,∴5700000=5.7×106.考点:科学计数法.12.函数122-=x y 中,自变量x 的取值范围是 . 【答案】21≠x 【解析】 试题分析:122-x 有意义只需满足2x-1≠0,即21≠x . 考点:函数自变量取值范围.13.计算18212-的结果是 . 【答案】22-.【解析】试题分析:2223221218212-=-⨯=- 考点:二次根式化简.14.把多项式ax 2+2a 2x+a 3分解因式的结果是 .【答案】a (x+a )2.考点:因式分解.15.一个扇形的圆心角为120°,面积为12πcm 2,则此扇形的半径为 cm .【答案】6.【解析】 试题分析: 设此扇形的半径为r ,则ππ123601202=⨯r ,解得r=6. 考点:扇形有关计算.16.二次函数y=2(x ﹣3)2﹣4的最小值为 .【答案】-4.【解析】试题分析:二次函数y=2(x ﹣3)2﹣4为顶点式,因此最小值为-4.考点:二次函数极值.17.在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 . 【答案】13或10.【解析】试题分析:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=31BC=1,∴CP=2,∴1322=+=PC AC AP ,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=31BC=1,∴1022=+=PC AC AP ,AP 的长为13或10.考点:1分类思想;2等腰直角三角形.18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD⊥l,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 .【答案】4.【解析】考点:1切线;2矩形的性质;3勾股定理.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 . 【答案】41. 【解析】试题分析:列表得:∴P (两次摸出是白球)=41164=. 考点:概率.20.如图,在菱形ABCD 中,∠BAD=120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG⊥AC,AB=26,则FG 的长为 .【答案】63.【解析】考点:1菱形;2等边三角形.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式11132122+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中a=2sin60°+tan45°. 【答案】11-a .33. 【解析】试题分析:先化简,再根据特殊角三角函数值求出a 得值,代入求值即可.试题解析:()()()()1113222111321211132122-=-+--=+⋅-++--=+÷⎪⎭⎫ ⎝⎛---+a a a a a a a a a a a a a .当a=2sin60°+tan45°=131232+=+⨯时,原式=331131=-+. 考点:1分式化简求值;2特殊角三角函数.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.【答案】(1)作图见解析;104;(2)作图见解析.【解析】考点:1轴对称;2勾股定理.23.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【答案】(1)60;(2)9,图形见解析;(3)150.【解析】试题解析:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)1501500606=⨯(名)答:该中学最喜爱律师职业的学生有150名. 考点:1条形统计图;2扇形统计图;3样本估计总体.24.已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ⊥BE 于点Q ,DP⊥AQ 于点P .(1)求证:AP=BQ ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.【答案】(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.【解析】考点:(1)正方形;(2)全等三角形的判定与性质.25.. 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【答案】(1)60;(2)240.【解析】试题分析:(1)此题等量关系为:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程求解即可;(2)此题等量关系为:小明步行时间=自行车时间×2,根据等量关系列出方程求解即可.试题解析:(1)设小明步行的速度是x 米/分,由题意得:103900900+=xx ,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y 米,根据题意可得:218090060⨯=y ,解得:y=240,答:小明家与图书馆之间的路程最多是240米.考点:1分式方程的应用;2一元一次方程的应用.26.26.已知:△ABC 内接于⊙O,D 是弧BC 上一点,OD⊥BC,垂足为H .(1)如图1,当圆心O 在AB 边上时,求证:AC=2OH ;(2)如图2,当圆心O 在△ABC 外部时,连接AD 、CD ,AD 与BC 交于点P ,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 、交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF⊥OE 于点R 交DE 于点G ,若∠ACD﹣∠ABD=2∠BDN,AC=55,BN=53,tan∠ABC=21,求BF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题解析:(1)在⊙O 中,∵OD ⊥BC ,∴BH=HC ,∵点O 是AB 的中点,∴AC=2OH ;(2)在⊙O 中,∵OD ⊥BC ,∴弧BD=弧CD ,∴∠PAC=∠BCD ,∵∠APB=∠PAC+∠ACP ,∠ACD=∠ACB+∠BCD ,∴∠ACD=∠APB ;(3)连接AO 延长交于⊙O 于点I ,连接IC ,AB 与OD 相交于点M ,连接OB ,∵∠ACD ﹣∠ABD=2∠BDN ,∴∠ACD ﹣∠BDN=∠ABD+∠BDN ,∵∠ABD+∠BDN=∠AND ,∴∠ACD ﹣∠BDN=∠AND ,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan ∠ABC=21,∴21=BN NQ ,∴253=NQ ,考点:1圆;2相似三角形;3三角函数;4直角三角形.27.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【答案】(1)4212+--=x x y ;(2)d=5+t ;(3)F ()65,64--. 【解析】试题解析:(1)由题意得⎩⎨⎧==+-40816c c a a ,解得⎪⎩⎪⎨⎧=-=421c a ,∴抛物线解析式为4212+--=x x y ;(2)分别过P 、F 向y 轴作垂线,垂足分别为A ′、B ′,过P 作PN ⊥x 轴,垂足为N ,当x=0时,y=5,∴E (0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA ′=90°,∴∠EPA ′=∠OEF ,∵PE=EF ,∠EA ′P=∠EB ′F=90°,∴△PEA ′≌△EFB ′,∴PA ′=EB ′=﹣t ,∴d=FM=OB ′=OE ﹣EB ′=5﹣(﹣t )=5+t ;(3)如图,由直线DE 的解析式为:y=x+5,∵EH ⊥ED ,∴直线EH 的解析式为:y=﹣x+5, ∴FB ′=A ′E=5﹣(﹣21t 2﹣t+4)=21t 2+t+1,∴F (21t 2+t+1,5+t ),∴点H的横坐标为:21t 2+t+1, y=﹣21t 2﹣t ﹣1+5=﹣21t 2﹣t+4,∴H (21t 2+t+1,﹣21t 2﹣t+4),∵G 是DH 的中点,∴G (2421,2121522+--+++-t t t t ),即G (41t 2+21t ﹣2,﹣41t 2﹣21t+2),∴PH ∥x 轴,∵DG=GH ,∴PG=GQ , ∴22141212-+=+-t t t ,解得t=6±,∵P 在第二象限,∴t <0,∴t=6-,∴F (()65,64--).考点:二次函数综合应用.。

2016哈尔滨中考数学试卷含答案

2016哈尔滨中考数学试卷含答案
13.化筒: - =.
14.分解因式:a +ab -2a b=.
15.不等式组 的解集是.
16.如图所示,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为米.
17.一个扇形的圆心角为60°,它所对的弧长为2 cm,则这个扇形的半径为cm.
(1)如图1,求证:CF=2EO;
(2)如图2,连接CE,在不添加其它线的条件下,直接写出图中的等腰三角形(等腰直角三角形除外)
25.(本题10分)
电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元、40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.
(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;
(2)在图2中,画△ABE,点E在小正方形的顶点上,△ABE有一个内角为45°,且面积为3.
23.(本题8分)
某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:
(3)在(2)的条件下,过B′作B′H⊥PF于H,点Q在OD下方的抛物线上,连接AQ与B′H交于点M,点G在线段AM上,使∠HPN+∠DAQ =135°,延长PG交AD于N.若AN+ B′M= ,求点Q的坐标.
答案
1、D 2、A 3、B 4、D 5、B 6、B 7、C 8、C 9、C 10、C
11、1.25× 12、X≠—413、 14、 15、-1≤X<316、

黑龙江省哈尔滨市 2016年中考数学真题试卷附解析

黑龙江省哈尔滨市 2016年中考数学真题试卷附解析

2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(2016·黑龙江哈尔滨)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.(2016·黑龙江哈尔滨)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.(2016·黑龙江哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.(2016·黑龙江哈尔滨)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.(2016·黑龙江哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.(2016·黑龙江哈尔滨)不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.(2016·黑龙江哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【考点】由实际问题抽象出一元一次方程.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.(2016·黑龙江哈尔滨)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【考点】勾股定理的应用;方向角.【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.9.(2016·黑龙江哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.(2016·黑龙江哈尔滨)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【考点】一次函数的应用.【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.(2016·黑龙江哈尔滨)将5700 000用科学记数法表示为 5.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700 000=5.7×106.故答案为:5.7×106.12.(2016·黑龙江哈尔滨)函数y=中,自变量x的取值范围是x≠.【考点】函数自变量的取值范围.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.(2016·黑龙江哈尔滨)计算2﹣的结果是﹣2.【考点】二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.(2016·黑龙江哈尔滨)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.(2016·黑龙江哈尔滨)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.(2016·黑龙江哈尔滨)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【考点】二次函数的最值.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x ﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.(2016·黑龙江哈尔滨)在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 或 . 【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP 的长为或,故答案为:或.18.(2016·黑龙江哈尔滨)如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 4 .【考点】切线的性质.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.(2016·黑龙江哈尔滨)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.14种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.(2016·黑龙江哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【考点】菱形的性质.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2•S△ABC=BC•FG即可解决问题.【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(2016·黑龙江哈尔滨)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.(2016·黑龙江哈尔滨)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【考点】作图-轴对称变换.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.(2016·黑龙江哈尔滨)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.(2016·黑龙江哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=B A,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.(2016·黑龙江哈尔滨)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.(2016·黑龙江哈尔滨)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【考点】圆的综合题.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.(2016·黑龙江哈尔滨)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H的纵坐标相等,则PH与x轴平行,根据平行线截线段成比例定理可得G也是PQ的中点,由此表示出点G的坐标并列式,求出t的值并取舍,计算出点F的坐标.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD 的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.(2016·广西南宁)计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.。

黑龙江省哈尔滨市道外区2016年初中数学升学考试调研测试试题一(扫描版)

黑龙江省哈尔滨市道外区2016年初中数学升学考试调研测试试题一(扫描版)

黑龙江省哈尔滨市道外区2016年初中数学升学考试调研测试试题一(名) ……2分 答:该校对50名学生进行抽样调查。

50%3015=道外区2016年一模数学参考答案及评分细则 选择题解答题21.解:原式= y x x x y x x x x x y x x y x +=-⋅+-=-÷⎥⎦⎤⎢⎣⎡+-+11)(11)(11 12212260cos 22-=⨯-=-= x ……1分 145tan =︒=y ……1分 ∴原式=22211121==+- 22.⑴正确画图……3分 ⑵正确画图……3分 CF=523.解:⑴⑵ 50-15-20-10=5 正确画图……1分 (3)名)(72050201800=⨯24.⑴证明: ∵MG ∥AD ,NF ∥AB ∴四边形AMEN 是平行四边形……1分 ∵四边形ABCD 是菱形 ∴AB=AD ∵BM=DN ∴AB -BM=AD -DN ∴AM=AN ⑵ 四边形MBFE 与四边形DNEG 四边形MBCE 与四边形DNEC 四边形MBCG 与四边形DNFC 四边形ABFE 与四边形ADGE 四边形ABFN 与四边形ADGM (写对一组得1分)25.⑴解:设乙工程队每天完成绿化的面积是xm 2,则甲工程队每天完成绿化的面积是1.5xm2根据题意,得xx 5.13001300=- 解得 x=100……3分 ……2分 ……1分答:本次抽样调查中最喜欢小说类的有5名学生。

……2分 答:估计全校学生中最喜欢动漫的人数约为720名 ……1分……1分 ∴四边形AMEN 是菱形……1分 ……2分 ……1分……1分……2分经检验 x=100是原方程的解1.5x=1.5×100=150答:甲工程队每天完成绿化的面积是150m 2,乙工程队每天完成绿化的面积是100m 2(2)解:设应安排甲队工作a 天 根据题意得 4.010015030005.0⨯-+aa ≤11解得 a ≥10答:至少应安排甲队工作10天 ……1分 ⑴证明:连接AD∵AC 是⊙O的直径 ∴∠ADC=90° ……1分 ∴∠DAC+∠ACD=90° ∴∠DEC=∠DAC 又∵∠DEC=∠EBC ∴∠DAC=∠EBC ……1分 ∴∠EBC+∠ACD=90° ∴ ∠BFC=90°……1分 (2)证明:连接AD 、连接GC∵AC 是⊙O的直径 ∴∠ADC=∠AGC=90° ∵AG ∥BC ∴∠GAD+∠ADC=180° ∴∠GAD=90° ……1分 即∠GAD=∠ADC=∠CGA=90°∴四边形GADC 是矩形 ……1分 ∴AG=DC ……1分(3)∵FH :HE =1:2 ∴设FH=a (a>0),则HE=2a由(1)知∠BFC=90° ∴ OF ⊥EG 于点F ∠HAF+∠AHF=90° ∴FG=FE=3a由(2)知 ∠HAF+∠FAG=90°∴∠AHF=∠FAG ∴tan ∠AHF=tan ∠FAG ∴AFFG HF AF = ∴AF 2=HF ·FG ∴=2)3(a ·3a ∴3a 2=3 ∵a>0 ∴a=1 ……1分 ∴HF=1 EH=2 FG=3 ∴GH=4 ∵AE=AE ∴∠ACE=∠AGE ∵AG ∥BC ∴∠AGE=∠EBC 又∵∠EBC=∠DEC ∴∠DEC=∠ACE ∴DE ∥AC ……1分 ∴HEHFDH AH = ∵AG ∥BC ∴BH GH DH AH = ∴21==HE HF BH GH ……1分 又∵GH=4 ∴HB=8 ∴BE=BH -HE=8-2=6 ……1分27(1)∵抛物线y=ax 2+bx +5交y 轴于点C 当x=0时,y=5 ∴C(0,5)∵CD ∥x 轴 ∴D 的纵坐标为5 当y=5时,x+2=5 ∴x=3 ∴D(3,5) ……1分 ∵y=x +2 交x 轴于A 当y=0时,x=-2 ∴ A(-2,0) ∵抛物线过A(-2,0) 、 D(3,5) ∴ 0=a(-2)2+b(-2)+5 ∴ a=21-5=a ×32+3b +5 b=23……1分 ……2分……2分……1分∴抛物线解析式为523212++-=x x y ……1分设F (t ,-523212++t t ) 过F 作FG ⊥x 轴于点G ,则G(t ,0) ∵tan ∠BAF=21 ∴21=AG FG ∴AG=2FG ……1分 ∴t -(-2)=2×⎥⎦⎤⎢⎣⎡++--)52321(02t 整理得 t 2-4t -12=0 t 1=-2 t 2=6 ……1分∵F 在第四象限 ∴t>0 ∴t=-2舍 ∴t=6 ∴F (6,-4) ……1分(3)∵A(-2,0) F(6,-4) 设直线AF 解析式y=k 1+b 1 ∴ 0=-2k 1+b 1 ∴ k 1=21--4=6k 1+b 1 b 1=-1 ∴直线AF 解析式为y=-21x -1 ……1分 ∵y=x+2 交y 轴于E 当x=0时,y=2 ∴ E(0,2) 设直线PE 交直线AF 于点Q ∵HE=PE ∴∠EHP=∠EPH∵PH ⊥AF 于H ∴∠PHA=90°∴∠PQH+∠QPH=90° ∠QHE+∠EHP=90° ∴∠EQH=∠EHQ ∴EQ=EH 又∵HE=PE ∴EQ=EP ……1分 即E 为PQ 中点设P (m ,523212++-m m ) ∵E(0,2) ∴Q (12321,2--m m m )∵Q 在直线AF 上 ∴1)(21123212---=--m m m 整理得m 2=4m ∴m 1=0 m 2=4 当m 1=0时 ∴P 1(0,5) ……1分当m 2=4时 ∴P 2(4,3) ……1分注:以上各解答题如有不同解法并且正确,请按相应步骤给分。

2016年黑龙江省哈尔滨市中考数学试卷有答案

2016年黑龙江省哈尔滨市中考数学试卷有答案

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前黑龙江省哈尔滨市2016年初中升学考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.6-的绝对值是( )A .6-B .6C .16D .16- 2.下列运算正确的是( )A .236•a a a =B .235()a a =C .2363(2)8a b a b=--D .22(21)421a a a +=++3.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD4.点(2,4)-在反比例函数ky x=的图象上,则下列各点在此函数图象上的是 ( )A .(2,4)B .(1,8)--C .(2,4)--D .(4,2)-5.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )ABCD 6.不等式组32,123x x +⎧⎨--⎩>≤的解集是( )A .2x ≥B .12x -<≤C .2x ≤D .11x -<≤7.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .21000(26)800x x ⨯-= B .1000(13)800x x -= C .1000(26)2800x x -=⨯D .1000(26)800x x -=8.如图,一艘轮船位于灯塔P 的北偏东60方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为 ( ) A .60海里 B .45海里 C.D.9.如图,在ABC △中,D ,E 分别为AB ,AC 边上的点,DE BC ∥,BE 与CD 相交于点F ,则下列结论一定正确的是( ) A .AD AE AB AC = B .DF AE FC EC =C .AD DE DB BC = D .DF EF BF FC = 10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:2m )与工作时间t (单位:h )之间的函数关系如图示.则该绿化组提高工作效率前每小时完成的绿化面积是 ( )A .2300mB .2150mC .2330mD .2450m第Ⅱ卷(非选择题 共90分)二、填空题(本大题共10小题,每小题3分,共30分.请把答案填在题中的横线上) 11.将5 700 000用科学记数法表示为 .12.函数1xyx =-中,自变量x 的取值范围是 . 13.计算的结果是 .14.把多项式2232ax a x a ++分解因式的结果是 .15.一个扇形的圆心角为120,面积为212πcm ,则此扇形的半径为cm .16.二次函数22(3)4y x =--的最小值为 .17.在等腰直角三角形ABC 中,90ACB ∠=,3AC=,点P 为边BC 的三等分点,连接AP ,则AP 的长为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)18.如图,AB 为O 的直径,直线l 与O 相切于点C ,AD l ⊥,垂足为D ,AD 交O 于点E ,连接OC ,BE .若6AE =,5OA =,则线段DC 的长为 .19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .20.如图,在菱形ABCD 中,120BAD ∠=,点E ,F 分别在边AB ,BC 上,BEF △与GEF △关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG AC ⊥,AB =,则FG 的长为 .三、解答题(本大题共7小题,共60分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本小题满分7分)先化简,再求代数式22231()111a a a a --÷+-+的值,其中2sin60tan 45a =+.22.(本小题满分7分)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ ,QC ,CP ,PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.23.(本小题满分8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有 1 500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ BE ⊥于点Q ,DP AQ ⊥于点P .(1)求证:AP BQ =;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)25.(本小题满分10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(本小题满分10分)已知:ABC △内接于O ,D 是BC 上一点,OD BC ⊥,垂足为H .(1)如图1,当圆心O 在AB 边上时,求证:2AC OH =;(2)如图2,当圆心O 在ABC △外部时,连接AD ,CD ,AD 与BC 交于点P .求证:ACD APB ∠=∠;(3)在(2)的条件下,如图3,连接BD ,E 为O 上一点,连接DE 交BC 于点Q 、交AB 于点N ,连接OE ,BF 为O 的弦,BF OE ⊥于点R 交DE 于点G ,若2ACD ABD BDN ∠-∠=∠,AC =,BN =,1an 2t ABC ∠=,求BF 的长.27.(本小题满分10分)如图,在平面直角坐标系中,O 为坐标原点,抛物线22y ax xa c =++经过0()4,A -,()0,4B 两点,与x 轴交于另一点C ,直线5y x =+与x 轴交于点D ,与y 轴交于点E .(1)求抛物线的解析式;(2)点P 是第二象限抛物线上的一个动点,连接EP ,过点E 作EP 的垂线l ,在l 上截取线段EF ,使EF EP =,且点F 在第一象限,过点F 作FM x ⊥轴于点M ,设点P 的横坐标为t ,线段FM 的长度为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点E 作EH ED ⊥交MF 的延长线于点H ,连接DH ,点G 为DH 的中点,当直线PG 经过AC 的中点Q 时,求点F 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)黑龙江省哈尔滨市2016年初中升学考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据负数的绝对值是它的相反数,6-的绝对值是6。

2016年黑龙江省哈尔滨市中考数学试卷含答案

2016年黑龙江省哈尔滨市中考数学试卷含答案

2016年黑龙江省哈尔滨市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.-6的绝对值是( )A .-6B .6C .61D .-61 2.下列运算正确的是( )A .a 2 • a 3=a 6B .(a 2)3=a 5C .(-2a 2b )3 = -8a 6b 3D .(2a +1)2=4a 2+2a +13.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D4.若点(2,-4)在反比例函数y =xk 的图像上,则下列各点在此函数图像上的是( ) A .(2,4) B .(-1,-8) C .(-2,-4) D .(4,-2)5.五个大小相同的正方体搭成的几何体如图,其主视图是( )(第5题图)A B C D6.不等式组⎩⎨⎧-≤->+32123x x ,的解集是( ) A .x ≥2 B .-1<x ≤2 C .x ≤2 D .-1<x ≤17.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1 000(26-x )=800xB .1 000(13-x )=800xC .1 000(26-x )=2×800xD .1 000(26-x )=800x8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )(第8题图)A .60海里B .45海里C .203海里D .303海里9.如图,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )(第9题图)A .AB AD =AC AE B .FC DF =EC AE C .DB AD =BC DE D .BF DF =FCEF 10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图,则该绿化组提高工作效率前每小时完成的绿化面积是( )(第10题图)A .300 m 2B .150 m 2C .330 m 2D .450 m 2二、填空题(本题共10小题,每小题3分,共30分)11.将5 700 000用科学记数法表示为 .12.在函数y =12 x x 中,自变量x 的取值范围是 . 13.计算221-18的结果是 . 14.把多项式ax 2+2a 2x +a 3分解因式的结果是 .15.若一个扇形的圆心角为120°,面积为12π cm 2,则此扇形的半径为 cm .16.二次函数y =2(x -3)2-4的最小值为 .17.在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 .18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC ,BE .若AE =6,OA =5,则线段DC 的长为 .(第18题图) 19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .20.如图,在菱形ABCD 中,∠BAD =120°,点E ,F 分别在边AB ,BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =62,则FG 的长为 .(第20题图)三、解答题(本题共7小题,共60分)21.(7分)先化简,再求代数式(12+a -1322--a a )÷11+a 的值,其中a =2sin 60°+tan 45°. 22.(7分)图①、图②是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图①,点P 在小正方形的顶点上,在图①中作出点P 关于直线AC 的对称点Q ,连接AQ ,QC ,CP ,P A ,并直接写出四边形AQCP 的周长;(2)在图②中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.① ②(第22题图) 23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图.(3)若海静中学共有1 500名学生,请你估计该中学最喜爱律师职业的学生有多少名.(第23题图)24.(8分)如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .(1)求证:AP =BQ .(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.(第24题图) 25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分)是多少.(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC 内接于⊙O ,D 是BC 上一点,OD ⊥BC ,垂足为H .(1)如图①,当圆心O 在AB 边上时,求证:AC =2OH .(2)如图②,当圆心O 在△ABC 外部时,连接AD ,CD ,AD 与BC 交于点P ,求证:∠ACD =∠APB .(3)在(2)的条件下,如图③,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF ⊥OE 于点R 交DE 于点G ,若∠ACD - ∠ABD =2∠BDN ,AC =55,BN =35,tan ∠ABC =21,求BF 的长.①②③(第26题图)27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的表达式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.(第27题图)参考答案一、1.B 【分析】-6的绝对值是6.故选B.2.C 【分析】A.a2 •a3=a5,故错误;B.(a2)3 = a6,故错误;C.(-2a2b)3 = -8a6b3,故正确;D.(2a+1)2=4a2+4a+1,故错误.故选C.3.D 【分析】A.是轴对称图形,但不是中心对称图形,故不符合题意;B.是中心对称图形,不是轴对称图形,故不符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D .既是轴对称图形,又是中心对称图形,故符合题意.故选D .4.D 【分析】∵点(2,-4)在反比例函数y =xk 的图像上,∴k =2×(-4)=-8.∵2×4=8,-1×(-8)=8,-2×(-4)=8,4×(-2)=-8,∴点(4,-2)在反比例函数y =x k 的图像上.故选D .5.C 【分析】从正面看第一层是三个小正方形,第二层左边是两个小正方形.故选C .6.A 【分析】解不等式x +3>2,得x >-1.解不等式1-2x ≤-3,得x ≥2.∴不等式组的解集是x ≥2.故选A .7.C 【分析】设安排x 名工人生产螺钉,则(26-x )名工人生产螺母.由题意,得1 000(26-x )=2×800x .故选C .8.D 【分析】由题意,得∠B =30°,AP =30海里,∠APB =90°,故AB =2AP =60(海里). 则此时轮船所在位置B 处与灯塔P 之间的距离为BP =AP AB -22=303(海里).故选D .9.A 【分析】A .∵DE ∥BC ,∴AB AD =AC AE ,故正确;B .∵DE ∥BC ,∴△DEF ∽△CBF ,∴FC DF =FB EF ,故错误;C .∵DE ∥BC ,∴AB AD =BCDE ,故错误;D .∵DE ∥BC ,∴△DEF ∽ △CBF ,∴FC DF =BFEF ,故错误.故选A . 10.B 【分析】设直线AB 的表达式为y =kx +b ,则⎩⎨⎧=+=+,,1650512004b k b k 解得⎩⎨⎧-==.600450b k ,故直线AB 的表达式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故该绿化组提高工作效率前每小时完成的绿化面积是150 m 2.故选B .二、11. 5.7×10612.x ≠21 【分析】由题意,得2x -1≠0,解得x ≠21. 13.-22 【分析】原式=2×22-32=2-32= -22. 14.a (x +a )2 【分析】ax 2+2a 2x +a 3=a (x 2+2ax +a 2)=a (x +a )2.15. 6 【分析】设该扇形的半径为R ,则360π1202R ⨯=12π,解得R =6.即此扇形的半径为 6 cm .16.-4 【分析】二次函数y =2(x -3)2-4的开口向上,顶点坐标为(3,-4),所以最小值为-4.17.13或10 【分析】如答图①,由题意知,∠ACB =90°,AC =BC =3.∵PB =31BC =1,∴CP =2,∴AP =PC AC +22=13.如答图②,由题意知,∠ACB =90°,AC =BC =3.∵PC = 31BC =1,∴AP =PC AC +22=10.① ②(第17题答图) 18. 4 【分析】如答图,OC 交BE 于点F .∵AB 为⊙O 的直径,∴∠AEB =90°.∵AD ⊥l , ∴BE ∥CD .∵CD 为⊙O 的切线,∴OC ⊥CD ,∴OC ⊥BE ,∴四边形CDEF 为矩形,∴CD =EF . 在Rt △ABE 中,BE =AE AB -22=61022-=8.∵OF ⊥BE ,∴BF =EF =4,∴CD =4.(第18题答图)19.41 【分析】列表如下:黑1 黑2白1 白2 黑1 黑1黑1 黑1黑2黑1白1 黑1白2 黑2 黑2黑1 黑2黑2黑2白1 黑2白2 白1 白1黑1 白1黑2白1白1 白1白2 白2 白2黑1 白2黑2 白2白1白2白2 ∵由表格可知,放回地摸取两次共有16种等可能的结果,其中两次摸出的小球都是白球的结果有4种,∴两次摸出的小球都是白球的概率为164=41. 20.36 【分析】∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形.∵EG ⊥AC ,∴∠AEG =∠AGE =30°. ∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG ⊥BC ,∴2S △ABC =BC • FG ,即2×43×(62)2=62FG ,解得FG =36.三、21.解:原式=[12+a -)1)(1(32-+-a a a ] •(a +1)=)1)(1(32)1(2-++--a a a a •(a +1)=)1)(1(3222-++--a a a a •(a +1)=)1)(1(1-+a a •(a +1)=11-a . 当a =2sin 60°+tan 45°=2×23+1=3+1时,原式=1131-+=33. 22.解:(1)如答图①,四边形AQCP 即为所求,它的周长为4×10=410.(2)如答图②,四边形ABCD 即为所求.① ②(第22题答图) 23.解:(1)共调查了12÷20%=60(名)学生.(2)最喜爱教师职业的人数为60-12-9-6-24=9.补全条形统计图如答图.(第23题答图)(3)606×1 500=150(名). 答:估计该中学最喜爱律师职业的学生有150名.24.(1)证明:∵四边形ABCD 是正方形,∴AD =BA ,∠BAD =90°,即∠BAQ +∠DAP =90°.∵DP ⊥AQ ,∴∠ADP +∠DAP =90°,∴∠BAQ =∠ADP .∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB =∠DP A =90°,∴△AQB ≌△DP A (AAS ),∴AP =BQ .(2)解:①AQ -AP =PQ ,②AQ -BQ =PQ ,③DP -AP =PQ ,④DP -BQ =PQ .25.解:(1)设小明步行的速度是x 米/分. 由题意,得103900900+=xx , 解得x =60.经检验,x =60是原分式方程的解.答:小明步行的速度是60米/分.(2)设小明家与图书馆之间的路程是y 米. 根据题意,得900260180y ≤⨯, 解得y ≤600.答:小明家与图书馆之间的路程最多是600米.26.(1)证明:∵OD ⊥BC ,∴由垂径定理可知,点H 是BC 的中点.∵点O 是AB 的中点,∴OH 是△ABC 的中位线,∴AC =2OH .(2)证明:∵OD ⊥BC ,∴由垂径定理可知,BD CD =.∴∠BAD =∠CAD .∵AC AC =,∴∠ABC =∠ADC ,∴180°-∠BAD -∠ABC =180°-∠CAD -∠ADC ,即∠ACD =∠APB .(3)解:如答图,连接AO 延长交⊙O 于点I ,连接IC ,AB 与OD 相交于点M . ∵∠ACD -∠ABD =2∠BDN ,∴∠ACD -∠BDN =∠ABD +∠BDN .∵∠ABD +∠BDN =∠AND ,∴∠ACD -∠BDN =∠AND .∵∠ACD +∠ABD =180°,∴∠ABD +∠BDN =180° -∠AND ,∴∠AND =180° -∠AND ,∴∠AND =90°.∵tan ∠ABC =21,BN =35,∴NQ =253. ∴由勾股定理,得BQ =215. ∵∠BNQ =∠QHD =90°,∴∠ABC =∠QDH .∵OE =OD ,∴∠OED =∠QDH .∵∠ERG =90°,∴∠OED =∠GBN ,∴∠GBN =∠ABC .∵AB ⊥ED ,∴BG =BQ =215,GN =NQ =253. ∵AI 是⊙O 的直径,∴∠ACI =90°.∵tan ∠AIC =tan ∠ABC =21, ∴IC AC =21,∴IC =105. 由勾股定理,得AI =25.连接OB ,设QH =x .∵tan ∠ABC =tan ∠ODE =21, ∴HD QH =21,∴HD =2x , ∴OH =OD -HD =225-2x ,BH =BQ +QH =215+x . 由勾股定理,得OB 2 =BH 2+OH 2, 即(225)2=(215+x )2+(225-2x )2, 解得x =29或x =25. 当QH =29时,QD =5QH =259, ∴ND =QD +NQ =65,∴MN =35,MD =15.∵MD >225,∴QH =29不符合题意,舍去.当QH =25时,QD =5QH =255, ∴ND =NQ +QD =45.由垂径定理,得ED =105,∴GD =GN +ND =2511,∴EG =ED -GD =259. ∵tan ∠OED =21,∴ER RG =21, ∴EG =5RG ,∴RG =29, ∴BR =RG +BG =12,∴由垂径定理可知,BF =2BR =24.(第26题答图) 27.解:(1)把点A (-4,0),B (0,4)的坐标分别代入y =ax 2+2xa +c ,得⎩⎨⎧==+-,,40816c c a a ,解得⎪⎩⎪⎨⎧=-=.421c a , 所以抛物线的表达式为y =-21x 2-x +4. (2)如答图①,分别过点P ,F 向y 轴作垂线,垂足分别为A′,B′,过点P 作PN ⊥x 轴,垂足为N .由直线DE 的表达式为y =x +5,得E (0,5),∴OE =5.∵∠PEO +∠OEF =90°,∠PEO +∠EP A′=90°,∴∠EP A′=∠OEF .又∵PE =EF ,∠EA′P =∠EB′F =90°,∴△PEA′ ≌△EFB′,∴P A′ =EB′ =-t .∴d =FM =OB′ =OE -EB′ =5-(-t )=5+t .(3)∵EH ⊥ED ,∴直线EH 的表达式为y =-x +5,∴FB′ =A′E =5-(-21t 2-t +4)=21t 2+t +1, ∴F (21t 2+t +1,5+t ), ∴点H 的横坐标为21t 2+t +1,纵坐标为-21t 2-t -1+5=-21t 2-t +4, ∴H (21t 2+t +1,-21t 2-t +4). 如答图②,连接PH 交y 轴于点A′,则点P 与H 的纵坐标相等, ∴PH ∥x 轴,∴∠HPQ =∠PQD ,∠PGH =∠QGD .∵DG =GH ,∴△PGH ≌△QGD ,∴PH =DQ .∵A (-4,0),C (2,0),∴Q (-1,0).∵D (-5,0),∴DQ =PH =4,即-t +21t 2+t +1=4,解得t =±6. ∵点P 在第二象限,∴t <0,∴t =-6.∴F (4-6,5-6).① ②(第27题答图)。

哈尔滨市2016届初中毕业学年5月统一调研测试数学试题含答案

哈尔滨市2016届初中毕业学年5月统一调研测试数学试题含答案

第 1 页 共 4页 (初四数学) 2016.05.06 初中毕业学年统一调研测试数学 学科试题一、选择题(每小题 3分,共计 30分) 1.4的平方根是( ) A .±2B .2C .±D .2. 下列运算中,结果正确的是( ) A .2a+3b=5abB .a 2•a 3=a 6C .(a+b )2=a 2+b 2D .2a ﹣(a+b )=a ﹣b3.下列图形中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个4. 下列几何体的主视图、左视图、俯视图都相同的是( )A .B .C .D .5.对于双曲线y =x3-k ,当x >0时,y 随x 的增大而减小,则k 的取值范围是 ( ) A. k <3 B. k≤3 C . k >3 D. k ≥3 6.下列关于x 的方程一定有实数解的是( )A. m x =2B. m x =2C.m x =+11D. m x =+1 7.如图,已知直线m∥n,直角三角板ABC 的顶点A 在直线m 上, 则∠α等于( ) A .2l° B .30° C .58° D .48°第 2 页 共 4页 (初四数学8.如图,AD∥BE∥CF,直线l 1、l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若AB=4.5,BC=3,EF=2,则DE 的长度是( ) A .B .3C .5D .9.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC=7m , 则树高BC 为(用含α的代数式表示)( ) A .7sin α B .7cos α C .7tan α D .10.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的长为x 米,宽为y 米,则可列方程(组)①y (y+10)=200,②x (x ﹣10)=200, ③ ,④ 以上4种列法中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题 3分,共计 30分)11. 某市常住人口约为5 245 000人,数字5 245 000用科学记数法表示为 . 12.在函数 中,自变量x 的取值范围是 . 13.计算: = . 14. 分解因式:a 2b ﹣4b= .15.不等式组 的解集是 .16.一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是 ___.17. 如图,将长为14cm 的铁丝AB 首尾相接围成半径为2cm 的扇形, 则S 扇形等于 cm 2.18.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下降的百分率是 .19.已知:等腰三角形ABC 的面积为302m ,AB=AC= 10m ,则底边BC 20. 如图,将正方形ABCD 沿直线MN 折叠,使B 点落在CD 边上,AB 边折叠后第 3 页 共 4页 (初四数学) 2016.05.06 与AD 边交于F ,若三角形DEF 与三角形ECM 的周长差为3,则DE 的长为 .三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共60分) 21.先化简.再求代数式1a a)1a 2a 1a 2(2-÷-+++的值.其中a =tan60°-2sin30°. 22. 如图,在平面直角坐标系中,△OAB 的三个顶点的坐标分别为A (6,3),B (0,5). (1)画出△OAB 绕原点O 逆时针方向旋转90°后得到的△OA 1B 1; (2)画出△OAB 关于原点O 的中心对称图形△OA 2B 2; (3)直接写出∠OAB 的度数.23.设中学生体质健康综合评定成绩为x 分,满分为100分,规定:85≤x≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取69中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了多少名学生; (2)补全条形统计图;(3)若该校共有2000名学生,请你估计该校D 级学生有多少名.24. 如图,△ABC 中,AB=AC ,∠BAC=90°,E 、G 为AC 上两点,且AE=CG ,△CD G 沿直线BC 翻折到△CDF,连结AF 交BC 于Q . (1)求证:AF⊥BE;(2)若AE=EG ,点D 是BC 的中点,求tan ∠DAQ 25. 某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元,购买两种球共100个,则该专卖店最多购买多少个篮球.26. 已知AB 为⊙O 的直径,C 为⊙O 上一点,AF 垂直过C 点的切线,垂足为F ,连接AC 、BC. (1)求证:∠FAC=∠BAC ;(2)过F 点作FD ⊥AC 交AB 于D ,过D 点作DE ⊥FD 交FC 延长线于E ,求证:CF=CE ; (3)在(2)的条件下,延长FA 交⊙O 于H ,连接OE ,若CD=2,AH=327、抛物线y=ax 2+bx-8与x 轴交于A 、B ,与y 轴交于C ,D 为抛物线的顶点,AB=2,D 点的横坐标为3.(1)求抛物线的解析式;(2)若H 为射线DA 与y 轴的交点,N 为射线AB 上一点,设N 点的横坐标为t ,△DHN 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,G 为线段DH 上一点,过G 作y 轴的平行线交抛物线于F ,Q 为抛物线上一点,连接GN 、NQ 、AF 、GF ,若NG=NQ ,NG ⊥NQ ,且∠AGN=∠FAG ,求GF 的长.第 5 页 共 4页 (初四数学) 2016.05.06六十九中教育集团毕业学年统一调研测试数学答案一、选择题:ADBCC ADBCD二、填空题:11、5.245×106;12、x ≠3;13、 ;14、b(a+2)(a-2);15、16、 ;17、10;18、40%;19、 ;20、3三、解答题:21、原式= =22、(1)(2)略;(3)45° 23、(1)50 ; (2)10; (3) 16024、(1)略;(2)25、(1)篮球25,排球20;(2)最多35; 26(1)略;(2)略;(3)27、(1)y=-x 2+6x-8 ; (2)S= x-3 (3)GH=2。

数学05-08答案(3)

数学05-08答案(3)
∴AF=CD. ----------------------------------------------------------1 分 ∴BD=CD-------------------------------------------------------------1 分 (2).∵AF∥BD,AF=BD ∴四边形 AFBD 是平行四边形-------------------------------------2 分 ∵AB=AC,BD=CD ∴AD⊥BC,∴∠ADB=90°--------------------------------------------1 分 ∴四边形 FNDA 为矩形------------------------------------------------1 分 25.(1)设乙单独完成需 x 天
23.(1)1-25%-25%-20%=30% ------------------------------------------------1 分 答:百分比为 30%---------------------------------------------------------1 分
(2)100-35-30-5=30------------------------2 分。画图------------------------1 分 (3)2000×20%-2000×5%=300 答:约少 300 人------------------------2 分 24.(1)∵AF∥BD,AF=BD,易证△AEF≌△CED. ----------------------------2 分
哈尔滨市 2016 年初中升学考试全新体验(05)
数学参考答案
一、选择题
1.D 2.A 3.C 4.D 5.A 6.D 7.C 8.D 9.B 10.C 二、填空题

黑龙江省哈尔滨市南岗区2016年中考数学复习情况调研试题(四)(扫描版)

黑龙江省哈尔滨市南岗区2016年中考数学复习情况调研试题(四)(扫描版)

黑龙江省哈尔滨市南岗区2016年中考数学复习情况调研试题(四)2016年中考复习情况调研(四)数学参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10二、填空题(每小题3分,共计30分)三、解答题(其中21—22题各7分,23—24题各8分,25—27题各10分,共计60分) 21.解:原式=2(1)(1)(2)1121(1)211a a a a a a a a a a +--+-?-=---- .........................................4'13123245tan 60sin 2+=+⨯=︒+︒=a Θ...................................................................2' ∴原式=3321132=-+........................................................................................................1'22. 解:(1)画图正确.............................................................................................3'(2)画图正确.....................................................................................................3'31..............................................................................................1' 选项 A C D C D B B C D A 题号11 12 13 14 15 答案61067.5⨯ 3-≥x 425 2)1(3-x a 32≤<-x 题号 16 17 18 19 20 答案 30 63.0+=x y 31 42454++288+或 1323.解:(1)40%5.6225=÷(人)........................................2'(2)40-25-5=10(人)..............................................................2'画图正确....................................................................................1'(3)由样本估计总体得, 1907604010=⨯(个)......................................................2' 答:报考普高的学生约有190个.......................................................1' 24.解:(1)∵E 是AD 的中点∴AE=ED........................................................1'∵AF ∥BC ∴∠AFE=∠DBE ,∠FAE=∠BDE∴△AFE ≌△DBE∴AF=BD..............................................................1'∵AD 是BC 边中线 ∴CD=BD ∴AF=CD.....................................................1'∴四边形CDAF 是平行四边形.................................................................1'(2)过F 点作FG ⊥AB 交BA 的延长线于点G.∵∠CAB=90°,AD 是BC 边中线 ∴AD=CD又∵AC=AF ,AF=CD ∴AC=AD=CD ∴△ACD 是等边三角形..............................................1'∴∠ACB=60°∴∠ABC=30° 又∵AF ∥BC ∴∠ABC=∠FAG=30°∵AE=2∴AD=AC=AF=4........................................................1'∴在Rt △FAG 和Rt △CAB 中,FG=FAG FA ∠⨯sin =︒⨯30sin 4=2,AG=FAG FA ∠⨯cos =︒⨯30cos 4=32,AB=ACB AC ∠⨯tan =︒⨯60tan AC =34⨯=34 ∴GB=AG+BG=36....................................................................1'∴在Rt △FBG 中,22GB FG BF +==22)36(2+=74................................1'25.解:(1)设A 种型号背包进货单价为x 元,B 种型号背包进货单价为y 元.依题意得(第24题答案图)⎩⎨⎧=-=+300153022000)400y x y x (.........................................................................3'解得⎩⎨⎧==3025y x ............................................................................................2'答:A 种型号背包进货单价为25元,B 种型号背包进货单价为30元.(2)设团购的背包数量为m 个.依题意得 500.750(4002)2200010500m m 创+创--?..........................3'解得500≤m ,m 的最大值为500,即团购的背包数量最多是500个.................................................2'答:批发的背包数量最多为500个.26.(1)证明:∵AB ⊥CD ,∴∠AEC=90°,∴∠CAE+∠ACD=90°.........................................................1'∵弧BC=弧BC , ∴∠CAE=∠CDB∵弧AD=弧AD ,∴∠AOD=2∠ACD................................................................1'∵∠ACD=∠CDB+∠P ∴∠AOD=∠ACD+(∠CDB+∠P)=∠ACD+∠CAE+∠P=90°+∠P...................1'(2)如图1,连接OB.∵弧BC=弧BC ∴设∠CAE=∠CDB=∠α∵∠CAE+∠ACD=90°,∠ACD=∠CDB+∠P ,∴∠CAE+∠CDB+∠P=90°∴2∠α+∠P=90°......................................................................................................1'∵AB 平分∠CAO ∴∠CAE=∠OAB=∠α ∵OA=OB ∴∠OAB=∠OBA=∠α∴∠AOB=180°-2∠α∴∠AOB=90°+∠P ,∴∠AOB=∠AOD..............................................................1' ∴AD=AB.........................................................................(第26题答案图1) (第26题答案图2)..........................................1'(3)如图2,过点O 作OF ⊥AB ,与AC 相交于点H ,连接HB.∴∠OFA=90°,AF=BF ∴HA=HB ∴∠CAE=∠HBA=∠α, ∴∠CHB=2∠α∴∠HBP=180°-2∠α -∠P=90°......................................................................1' ∵∠CAE=∠OAB ,∠OFA=90°∴∠AOF=∠AHF ∴AO=AH=HB 又∵OA=5,PB=415 ∴在Rt △HBP 中,PH=22PB HB +=22)415(5+=425..........................................1' ∴43tan ==∠HB PB CHB ∵∠A OD=∠AOB=180°-2∠α,OA=OD ,∴∠OAD=∠α, ∴∠DAE=2∠α,即∠DAE=∠CHB=2∠α ∴43tan =∠DAE ∴设DE=3m ,AE=4m ∵∠AED=90° ∴AD=5m ∴AB=5m ,AF=m 25 ∴EB=AB -AE=m ∴31tan tan ==∠=∠ED EB a BDE ∴CE=43m ∴31tan =∠OAF ∴OF=m 65 在Rt △AOF 中,222FO AF OA += ∴222)65()25(5m m += ∴m=5103.................................... ....1' ∴CD=131310m=35AB=5m=103 ∴1=3922ABC ABD ACBD AB CD S S S AB CE BE ´=+=创+=△△四边形()........................ ............1'27.解:(1)由038312=+--c x x 可得对称轴为x =-4 ∵AB=10,点A 的坐标为(1,0)........................................................................1'∴01381312=+⨯-⨯-c ∴ c =3∴抛物线的解析式为338312+--=x x y ............................................................................1'(2)如图1,作EM ⊥x 轴,垂足为点M ,FN ⊥x 轴,垂足为点N ,FT ⊥EM ,垂足为点T. ∴∠TMN=∠FNM=∠MTF=90° ∴四边形FTMN 为矩形 ∴EM ∥FN ,FT ∥BD.∵34tan =∠BDE ∴34tan =∠EFT .................................................1' 设E (-3m ,y E ),F (-m ,y F )∴43(3)E F y y m m -=---............................................................................1'∵338312+--=x x y 过点E 、F , 则y E -y F =)33831()383(3822++--++-=m m m m m , 解得m=0(舍去)或m=1∴E (-3,8)........................................................................................1'(3)如图2,作EM ⊥x 轴,垂足为点M ,过点K 作KR ⊥ED ,与ED 相交于点R ,与x 轴相交于点Q.∵∠KER+∠EDH=90°,∠EGM+∠GEM=90°,∠EDH=∠EGM ∴∠KER=∠GEM 又∵EK=EG ,∠GME=∠KRE=90°∴△EGM ≌△EKR ∴EM=ER=8....................................................1'∵34tan =∠BDE ∴ED=10 ∴DR=2 ∴DQ=310 ∴Q (31-,0),可求R (59,58).......................................................................2′ ∴RQ:4143+=x y ...................................................................1'设点K 的坐标为(4143,+x x )代入抛物线解析式可得x =-11 ∴K (-11,-8)...................................................................1'(第27题答案图1)(第27题答案图2)。

(2021年整理)黑龙江省哈尔滨市平房区2016届九年级数学下学期调研测试试题(一)

(2021年整理)黑龙江省哈尔滨市平房区2016届九年级数学下学期调研测试试题(一)

(一)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)黑龙江省哈尔滨市平房区2016届九年级数学下学期调研测试试题(一))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)黑龙江省哈尔滨市平房区2016届九年级数学下学期调研测试试题(一)的全部内容。

试试题(一)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)黑龙江省哈尔滨市平房区2016届九年级数学下学期调研测试试题(一)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)黑龙江省哈尔滨市平房区2016届九年级数学下学期调研测试试题(一)> 这篇文档的全部内容。

黑龙江省哈尔滨市平房区2016届九年级数学下学期调研测试试题(一) 考生须知:1。

本试卷满分为120分,考试时间为120分钟.2。

答题前,考生先将自己的“姓名”、“考场”、“座位号"在答题卡上填写清楚,将“条形码"准确粘贴在条形码区域内。

3。

请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题纸上答题无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、字迹清楚。

5。

保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 4页 (初四数学) 2016.05.06 初中毕业学年统一调研测试
数学 学科试题
一、选择题(每小题 3分,共计 30分) 1.4的平方根是( ) A .±2
B .2
C .±
D .
2. 下列运算中,结果正确的是( ) A .2a+3b=5ab
B .a 2•a 3=a 6
C .(a+b )2=a 2+b 2
D .2a ﹣(a+b )=a ﹣b
3.下列图形中,既是轴对称图形,又是中心对称图形的有( )
A .1个
B .2个
C .3个
D .4个
4. 下列几何体的主视图、左视图、俯视图都相同的是( )
A .
B .
C .
D .
5.对于双曲线y =
x
3
-k ,当x >0时,y 随x 的增大而减小,则k 的取值范围是 ( ) A. k <3 B. k≤3 C . k >3 D. k ≥3 6.下列关于x 的方程一定有实数解的是( )
A. m x =2
B. m x =2
C.
m x =+1
1
D. m x =+1 7.如图,已知直线m∥n,直角三角板ABC 的顶点A 在直线m 上, 则∠α等于( ) A .2l° B .30° C .58° D .48°
第 2 页 共 4页 (初四数学
8.如图,AD∥BE∥CF,直线l 1、l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若AB=4.5,BC=3,EF=2,则DE 的长度是( ) A .
B .3
C .5
D .
9.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC=7m , 则树高BC 为(用含α的代数式表示)( ) A .7sin α B .7cos α C .7tan α D .
10.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,
设花圃的长为x 米,宽为y 米,则可列方程(组)①y (y+10)=200,②x (x ﹣10)=200, ③ ,④ 以上4种列法中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
二、填空题(每小题 3分,共计 30分)
11. 某市常住人口约为5 245 000人,数字5 245 000用科学记数法表示为 . 12.在函数 中,自变量x 的取值范围是 . 13.计算: = . 14. 分解因式:a 2
b ﹣4b= .
15.不等式组 的解集是 .
16.一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是 ___.
17. 如图,将长为14cm 的铁丝AB 首尾相接围成半径为2cm 的扇形, 则S 扇形等于 cm 2.
18.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下降的百分率是 .
19.已知:等腰三角形ABC 的面积为302m ,AB=AC= 10m ,则底边BC 20. 如图,将正方形ABCD 沿直线MN 折叠,使B 点落在CD 边上,AB 边折叠后
第 3 页 共 4页 (初四数学) 2016.05.06 与AD 边交于F ,若三角形DEF 与三角形ECM 的周长差为3,则DE 的长为 .
三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共60分) 21.先化简.再求代数式1
a a
)1a 2a 1a 2(
2-÷
-+++的值.其中a =tan60°-2sin30°. 22. 如图,在平面直角坐标系中,△OAB 的三个顶点的坐标分别为A (6,3),B (0,5). (1)画出△OAB 绕原点O 逆时针方向旋转90°后得到的△OA 1B 1; (2)画出△OAB 关于原点O 的中心对称图形△OA 2B 2; (3)直接写出∠OAB 的度数.
23.设中学生体质健康综合评定成绩为x 分,满分为100分,规定:85≤x≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取69中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了多少名学生; (2)补全条形统计图;
(3)若该校共有2000名学生,请你估计该校D 级学生有多少名.
24. 如图,△ABC 中,AB=AC ,∠BAC=90°,E 、G 为AC 上两点,且AE=CG ,△CD G 沿直线BC 翻折到△CDF,连结AF 交BC 于Q . (1)求证:AF⊥BE;
(2)若AE=EG ,点D 是BC 的中点,求tan ∠DAQ 25. 某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.
(1)求每个篮球和每个排球的销售利润;
(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元,购买两种球共100个,则该专卖店最多购买多少个篮球.
26. 已知AB 为⊙O 的直径,C 为⊙O 上一点,AF 垂直过C 点的切线,垂足为F ,连接AC 、BC. (1)求证:∠FAC=∠BAC ;
(2)过F 点作FD ⊥AC 交AB 于D ,过D 点作DE ⊥FD 交FC 延长线于E ,求证:CF=CE ; (3)在(2)的条件下,延长FA 交⊙O 于H ,连接OE ,若CD=2,AH=3
27、抛物线y=ax 2
+bx-8与x 轴交于A 、B ,与y 轴交于C ,D 为抛物线的顶点,AB=2,D 点的横坐标为3.
(1)求抛物线的解析式;
(2)若H 为射线DA 与y 轴的交点,N 为射线AB 上一点,设N 点的横坐标为t ,△DHN 的面积为S ,求S 与t 的函数关系式;
(3)在(2)的条件下,G 为线段DH 上一点,过G 作y 轴的平行线交抛物线于F ,Q 为抛物线上一点,连接GN 、NQ 、AF 、GF ,若NG=NQ ,NG ⊥NQ ,且∠AGN=∠FAG ,求GF 的长.
第 5 页 共 4页 (初四数学) 2016.05.06
六十九中教育集团毕业学年统一调研测试
数学答案
一、
选择题:ADBCC ADBCD
二、填空题:11、5.245×106
;12、x ≠3;13、 ;14、b(a+2)(a-2);15、
16、 ;17、10;18、40%;19、 ;20、3
三、解答题:
21、原式= =
22、(1)(2)略;(3)45° 23、(1)50 ; (2)10; (3) 160
24、(1)略;(2)
25、(1)篮球25,排球20;(2)最多35; 26(1)略;(2)略;(3)
27、(1)y=-x 2+6x-8 ; (2)S= x-3 (3)GH=2。

相关文档
最新文档