勾股定理的应用(用)

合集下载

关于勾股定理的八大应用

关于勾股定理的八大应用

关于勾股定理的八大应用
对于勾股定理的八大应用,具体如下:
1)判断是否超速:利用勾股定理可以判断司机是否超速。

2)求旗杆高度:利用勾股定理可以求旗杆高度。

3)折叠问题:利用勾股定理可以解决折叠问题,例如折叠矩形
纸张的问题。

4)求树高:利用勾股定理可以求树的高度。

5)求梯子最省力的位置:利用勾股定理可以求梯子最省力的位
置。

6)求面积问题:利用勾股定理可以解决一些求面积的问题。

7)求台风问题:利用勾股定理可以解决台风问题,例如台风眼
里是否有平地的问题。

8)九章算术问题:利用勾股定理可以解决九章算术中的一些问
题。

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理作为数学中著名的定理之一,广泛应用于各个领域。

它是数学中的基础定理之一,也是几何学中三角形研究的重要工具。

本文将从几个应用角度介绍勾股定理在实际生活中的运用。

一、建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。

举个例子,我们在修建某一斜坡时,需要确定其坡度,勾股定理可以帮助我们准确计算出坡度。

此外,在设计斜面道路、楼梯等结构时,勾股定理也能帮助我们确保结构的稳定与安全。

二、航海导航中的应用在航海导航中,勾股定理被广泛用于测量船只的航向和航速。

通过测量船只相对于岸上两个点的距离,结合勾股定理可以计算出船只的位移和速度,为航海者提供准确的导航信息。

三、地理测量中的应用在地理测量中,勾股定理被用于测量两个相隔较远的地点之间的距离。

通过在地面上进行三角测量,即测量两个点与另一个点的夹角以及距离,再利用勾股定理求解,可以得到精确的距离数据,为地理测量和地图绘制提供重要支持。

四、天文学中的应用在天文学中,勾股定理被用于测量遥远星体之间的距离和角度。

天文学家通过观测星体的位置和角度,结合勾股定理的计算方法,可以确定天体的距离和大小,进而推断宇宙的形态和结构。

五、计算机图形学中的应用计算机图形学中,勾股定理被广泛应用于图形处理和渲染。

图形引擎通过勾股定理来计算线段的长度、图形的形状和倾斜度等信息,为计算机生成的图像提供基础数学支持。

综上所述,勾股定理作为数学中一项重要的基础定理,在实际生活中有着广泛的应用。

它在建筑工程、航海导航、地理测量、天文学和计算机图形学等领域中都起着重要的作用。

通过勾股定理的运用,我们可以提高工作效率,确保工程安全,促进科学发展。

因此,深入理解和应用勾股定理对我们的日常生活和社会发展都具有重要意义。

勾股定理的实际运用

勾股定理的实际运用

勾股定理的实际运用一、勾股定理内容回顾勾股定理是指在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别为和,斜边长度为,那么。

二、勾股定理实际运用的常见类型1. 工程测量中的应用测量建筑物高度例如,想要知道一座垂直于地面的大楼的高度。

我们可以在大楼旁边的平地上选一点,从点向大楼底部点拉一条绳子,测量出的距离。

然后在点用测角仪测量出大楼顶部点与点连线和地面的夹角。

此时在直角三角形中,,如果我们知道和,可以求出。

然后再根据勾股定理求出大楼的高度。

测量两点间的距离(不可直接测量的情况)假设在一个池塘的两边有、两点,我们要测量、两点间的距离。

我们可以在池塘边找一点,使得。

测量出的长度和的长度,然后根据勾股定理,就可以得到、两点间的距离。

2. 航海问题中的应用一艘船从港口出发,向正东方向航行海里后到达点,然后改变航向,向正南方向航行海里到达点。

此时船从港口到点的距离就是直角三角形的斜边长度。

根据勾股定理,海里。

航海中利用勾股定理可以计算船只的航行轨迹和距离等信息。

3. 生活中的简单应用梯子问题有一个长度为的梯子靠在墙上,梯子底部与墙的距离为,梯子顶端与地面的垂直高度为。

如果梯子底部向外滑动了距离,那么顶端下滑的距离可以通过勾股定理来计算。

初始时,滑动后,通过这两个等式联立求解可以得到的值。

电视屏幕尺寸问题电视屏幕的尺寸是按照对角线长度来衡量的。

如果屏幕的长为单位,宽为单位,那么对角线长度就满足。

我们可以根据这个关系来判断不同尺寸屏幕的实际大小关系等。

三、勾股定理实际运用的解题步骤总结1. 分析问题,确定是否为直角三角形问题。

如果是,找出直角三角形的三条边(已知边和未知边)。

2. 根据勾股定理(为斜边)列方程。

3. 解方程求出未知边的值。

4. 检验答案的合理性,看是否符合实际问题的情境。

四、练习题1. 在一个直角三角形中,一条直角边的长度为米,斜边长度为米,求另一条直角边的长度。

勾股定理在生活中的应用

勾股定理在生活中的应用

勾股定理在生活中的应用
勾股定理又称勾股论,即毕达哥拉斯设计的一个无理定理:“任意三角形的两边之积等于另外一边的平方之和”。

这个定理具有广泛的应用:
1、勾股定理在日常生活中可以用来确定三角形各边之间的关系:例如可以判断其中一边是不是一个倍数关系或者一个反比例关系。

通过建立对应方程,容易得到三角形三边的数值,作为三角形的参数。

2、也可以依据勾股定理来测量距离。

例如,构建一个直角三角形,让其一条边固定为一个值,我们使用两个斜边长度表示其他边的长度。

可以用i中国的三角测量法来求得某个距离的长度。

3、另外可以用勾股定理判断特殊的三角形。

例如可以判断一个三角形是不是等腰三角形、等边三角形或是直角三角形,只需要判断两边之积是否等于另外一边的平方之和。

4、勾股定理在空间中也有极大的作用,尤其是研究四面体或是更高维度的几何图形时。

例如可以用它来判断四面体的面面角是否都相等,以及求出该四面体的各个角。

另外还可以用它来求棱锥的体积、双曲线的起始点和极点等。

5 、另外勾股定理在物理学中也有广泛的应用,比如可以分析绳子长度或梯形长宽间的关系等。

总之,勾股定理由其卓越的简洁得到广泛应用,从日常生活到飞空实验都能发挥着无穷的作用,它被越来越多的人向科学家们赞美。

勾股定理的应用的例子

勾股定理的应用的例子

勾股定理的应用的例子:
一、圆柱侧面上两点间的最短距离圆柱侧面的展开图是一个矩形,圆柱上两点之间最短距离的求法,是把圆柱展开成平面图形,依据两点之间线段最短,以最短路线为构造直角三角形,利用勾股定理求解.
二、长方体(或正方体)表面上两点间的最短距离长方体每个面都是平面图形,所以计算同一个面上的两点之间的距离比较容易,若计算不同平面上的两点之间的距离,就变成了两个面之间的问题,必须将它们转化到同一平面内,即把四棱柱设法展开成一个平面图形,再构造直角三角形利用勾股定理解决,正方体的展开图从哪一面上展开都一样,而长方体的展开图一定要注意打开哪一个侧面,并且向上、下与向左、右展开会出现长度不的路线,应通过尝试从几条路线中选一条符合要求的.
三、折叠问题关于折叠问题的解题步骤:(1)利用重叠的图形传递数据(一般不用重叠的图形进行计算);(2)选择或构造直角三角形,这个直角三角形一般一边已知,另两边可通过重叠图形找到数量关系,从而利用勾股定理列方程求解.。

勾股定理简介及应用

勾股定理简介及应用

勾股定理简介及应用勾股定理是古希腊数学家毕达哥拉斯在公元前6世纪提出的一条三角形重要的几何定理,它可以用来计算三角形的边长或角度。

勾股定理的表述是:在一个直角三角形中,直角边的平方等于斜边的两个边的平方和。

即a²+ b²= c²,其中a和b是直角三角形的两个直角边,c是斜边。

勾股定理的应用非常广泛,可以用来解决各种实际问题,以下是一些典型的应用:1. 面积计算:勾股定理可以用来计算三角形的面积。

根据定理,面积等于直角边的乘积的一半。

例如,一个直角边长为a,另一个直角边长为b的直角三角形的面积为1/2 * a * b。

2. 边长计算:勾股定理可以用来计算三角形的边长。

如果已知两个边长a和b,可以用勾股定理求解斜边的长度c。

例如,已知一个直角三角形的两条直角边长分别为3和4,可以用勾股定理计算出斜边的长度为5。

3. 角度计算:勾股定理可以用来计算三角形的角度。

根据定理,如果已知三角形的两个边长a和b,并且要求斜边与其中一个直角边之间的角度,可以使用反正弦函数求解。

例如,已知一个直角三角形的两条直角边长分别为3和4,可以用反正弦函数求解出斜边与边长为3的直角边之间的角度。

4. 判断三角形类型:勾股定理可以用来判断三角形的类型。

如果三个边长满足勾股定理,即a²+ b²= c²,那么这个三角形是直角三角形;如果两个边长的平方和小于第三个边长的平方,即a²+ b²< c²,那么这个三角形是钝角三角形;如果两个边长的平方和大于第三个边长的平方,即a²+ b²> c²,那么这个三角形是锐角三角形。

5. 应用于解决实际问题:勾股定理可以用来解决很多实际问题,例如在建筑工程中计算屋顶的坡度和高度、在导航中确定航程和航向、在物理中计算物体的运动轨迹等等。

总结来说,勾股定理是一条非常重要和实用的几何定理,它不仅可以用来计算三角形的边长和角度,还可以用来解决各种实际问题。

勾股定理的应用及方法

勾股定理的应用及方法

勾股定理的应用及方法勾股定理是数学中的一个重要定理,它描述了直角三角形中,直角边的平方和等于斜边的平方。

具体表述为:在一个直角三角形中,设直角边的长度分别为a 和b,斜边的长度为c,则有a²+ b²= c²。

勾股定理的应用非常广泛,在几何学、物理学和工程学等领域都有重要的应用。

下面我将介绍一些常见的勾股定理的应用及解题方法。

1. 求解三角形的边长和角度:勾股定理可以用于求解三角形的边长和角度。

当我们已知两条边长,可以利用勾股定理计算出第三条边长。

而已知两边长和夹角时,可以利用勾股定理计算出第三边长或者求解夹角的大小。

例如,已知直角三角形的斜边长为5,一条直角边长为3,我们可以利用勾股定理计算出另一条直角边的长度:3²+ b²= 5²9 + b²= 25b²= 16b = 4同样地,已知直角三角形的两条直角边长度为3和4,可以利用勾股定理计算斜边的长度:3²+ 4²= c²9 + 16 = c²c²= 25c = 52. 解决实际问题:勾股定理也可以应用于解决实际问题。

例如,在测量中,我们经常需要通过已知的边长计算其他未知边长的问题。

有一道经典的应用题是“房子问题”:如果一个房子的两堵墙的长度分别为6米和8米,房子的对角线长度是多少?根据勾股定理可知,对角线的长度即斜边的长度c,可以通过勾股定理求解:6²+ 8²= c²36 + 64 = c²c²= 100c = 10因此,房子的对角线长度为10米。

3. 判断三角形的形状:勾股定理还可以用来判断三角形的形状。

根据勾股定理,如果一个三角形的三条边满足a²+ b²= c²,那么这个三角形就是直角三角形。

例如,如果一个三角形的三条边长分别为3、4和5,我们可以通过勾股定理验证这个三角形是否为直角三角形:3²+ 4²= 5²9 + 16 = 2525 = 25由此可见,三角形的三条边满足勾股定理,所以这个三角形是一个直角三角形。

勾股定理与生活

勾股定理与生活

勾股定理与生活
勾股定理是数学中一个基本的定理,主要描述了在直角三角形中,两条直角边的平方和等于斜边的平方。

这个定理在生活中有非常广泛的应用:
1. 建筑和工程:在建筑和工程领域,勾股定理被用来确保结构的准确性和稳定性。

例如,工人会用它来检查墙壁、地板是否垂直或水平,或者在测量电线杆、塔等的高度时。

2. 装修设计:在室内设计中,比如确定家具的位置,计算最佳视角等,都会用到勾股定理。

3. 体育运动:在篮球、足球、田径等运动中,运动员利用勾股定理来判断投篮角度、传球距离等。

4. 导航和地理:在地图制作和导航系统中,勾股定理用于计算两点之间的最短距离。

5. 电子设备:手机、电脑等电子设备的屏幕尺寸,往往通过勾股定理来计算对角线长度。

6. 日常生活:比如测量窗户、门的尺寸,计算梯子的安全角度等,都会用到勾股定理。

7. 交通:驾驶员在倒车入库时,可以通过勾股定理判断车尾与障碍物的距离。

这些都是勾股定理在我们日常生活中的实际应用,体现了数学的实用性和普遍性。

勾股定理的实际测量应用

勾股定理的实际测量应用

勾股定理的实际测量应用勾股定理是一条数学定理,描述了直角三角形中边长之间的关系。

在实际测量中,勾股定理被广泛应用于各种领域,包括建筑、地理测量、导航和天文学等。

本文将探讨勾股定理在实际测量中的应用,并介绍一些相关案例。

1. 地理测量在地理测量中,勾股定理被用于测量地面的距离和高度。

例如,当我们需要测量一个山峰的高度时,可以利用勾股定理计算斜边和水平距离之间的关系。

通过测量斜边和水平距离,我们可以确定山峰的高度。

类似地,在航空测量中,通过测量飞机和地面上两个点的距离和角度,可以使用勾股定理计算出高度差。

2. 建筑在建筑领域,勾股定理常用于测量建筑物的水平和垂直距离。

例如,在建造一座大楼时,工程师可以利用勾股定理计算建筑的高度和斜边之间的关系。

通过这些测量,工程师可以确保建筑物的各个方面都符合设计要求。

3. 导航勾股定理在导航中也有广泛应用。

当我们使用地图和指南针导航时,可以利用勾股定理计算出两个点之间的直线距离。

这在航海、飞行和汽车导航等领域都非常有用。

此外,当我们需要确定一个目标的方位角时,也可以利用勾股定理计算出相对方位的关系。

4. 天文学在天文学中,勾股定理被用于测量星体之间的距离和角度。

通过测量星体的视差和角度,可以使用勾股定理计算它们的真实距离。

这对于研究星系和宇宙的结构非常重要。

总结:勾股定理作为一条基本的数学定理,被广泛应用于实际测量中。

无论是地理测量、建筑、导航还是天文学,勾股定理都发挥着重要的作用。

它不仅帮助我们测量距离、高度和角度,还为各个领域的科学研究提供了重要的数学工具。

在未来,勾股定理的应用将继续推动科学技术的发展,帮助我们更好地理解和利用世界的各个方面。

勾股定理生活中的应用

勾股定理生活中的应用

勾股定理生活中的应用
勾股定理是数学中的一条重要定理,它在生活中有着广泛的应用。

勾股定理是
指直角三角形中,直角边的平方和等于斜边的平方。

这个简单的公式在我们的日常生活中有着很多实际的应用。

首先,勾股定理在建筑设计中起着重要作用。

在设计房屋或其他建筑物时,建
筑师需要使用勾股定理来计算房屋的结构和角度。

这有助于确保建筑物的结构稳固,同时也能够确保建筑物的外观符合设计要求。

其次,勾股定理在地理测量中也有着重要的应用。

地理学家和测量员们经常使
用勾股定理来计算地球上不同地点之间的距离和角度。

这有助于我们更好地理解地球的形状和大小,同时也能够帮助我们更准确地进行地图绘制和导航。

此外,勾股定理在工程领域也有着广泛的应用。

工程师们经常使用勾股定理来
计算机械设备的角度和距离,以确保设备能够正常运行并且安全稳定。

这对于工程项目的顺利进行至关重要。

最后,勾股定理还在日常生活中有着一些小小的应用。

比如在装修房屋时,我
们可能需要使用勾股定理来确保墙角的垂直度;在购买家具时,我们可能需要使用勾股定理来计算家具的尺寸和摆放位置。

总之,勾股定理在我们的生活中有着广泛的应用,它不仅帮助我们更好地理解
世界,同时也为我们的生活和工作提供了便利。

因此,我们应该更加重视数学知识的学习,以便更好地应用数学知识解决实际问题。

勾股定理在生活中的运用——数学勾股定理应用教案

勾股定理在生活中的运用——数学勾股定理应用教案

勾股定理在生活中的运用——数学勾股定理应用教案。

一、勾股定理在生活中的应用1.测量直角三角形的边长勾股定理可以用于测量一个直角三角形的边长。

取三角形的两条直角边为a和b,斜边长度为c。

根据勾股定理,有a²+b²=c²。

如果已知a和b的长度,可以通过勾股定理计算出斜边的长度,如果已知a 和c或者b和c的长度,也可以利用勾股定理计算出另一边的长度。

这个应用非常广泛,无论是建筑、土木工程,还是日常生活中用于测量,勾股定理都有着不可替代的作用。

2.判断角度大小在三角函数中,角度的大小很重要。

而勾股定理可以用于计算一个角度的大小。

根据勾股定理,a²+b²=c²,可以得到三角形中任意一个角的正弦、余弦、正切值。

在数学的科学研究中,这个应用也非常广泛,特别是对于现代科学、工程和技术的研究,这个应用有着很重要的意义。

3.设计三角形的家具和工具当设计三角形的家具和工具时,勾股定理是非常有用的。

例如,如果需要设计一个墙角柜,可以使用勾股定理测量角度。

同样的,如果需要设计一个三角梳妆台,也可以使用勾股定理来测量角度大小。

4.数学课堂教学教授勾股定理是数学教育中的一个重要部分。

勾股定理是中学数学中的一个基本概念,高中阶段的数学教育中也会涉及到勾股定理的相关理论,其中包括证明以及数学运用。

在教授勾股定理时,老师可以通过生活实例让学生更好地理解它的实际应用。

二、教授勾股定理的方法1.理论教学在进行理论教学时,老师应该注重理论的系统性和逐步性。

要让学生领会勾股定理的核心理念,关注证明过程和推导过程,让学生了解勾股三角形的性质,懂得勾股定理从何而来,以及如何在实际生活中应用。

2.图像教学图象教学是另一种教授勾股定理的方法。

通过绘制三角形和斜边,将图像和实际应用结合起来,让学生可以更好地理解和记忆勾股定理的实际应用。

在绘制三角形和斜边时,要注重教授如何标注三角形中的角度、边长等重要信息。

勾股定理在实际生活中的应用

勾股定理在实际生活中的应用

勾股定理在实际生活中的应用
勾股定理是古希腊数学家勾股所提出的,它表明了一个有三个正整
数组成的三角形的三条边(a,b,c)之间的关系,即a^2+b^2=c_2,主要
用于计算三角形中各边的长度,这个定理应用广泛。

1. 三棱锥和其他几何体
勾股定理在解决三角形问题的同时也有助于计算立体几何图面的表面
积和体积,特别是可以用来计算三棱锥的表面积和体积,对于任何一
个具有两个边长的三棱锥,可以使用勾股定理来求解它的底面和顶面
之间的距离,从而算出它的表面积和体积。

2. 建筑计算
勾股定理在建筑计算中也有用到,它可以帮助计算建筑物外墙和屋顶
坡度的高度,或者确定其他三角形形状建筑物的高度。

同时,屋面的
坡度也可以使用勾股定理来计算,因为屋面的坡度也是一个三角形,
勾股定理可以用来确定屋面的高度和角度。

3. 水利
建纳水利也是勾股定理的常用应用,它可以用来计算水渠或水坝底开
口的高度。

由于受水库底部和上部水平面之间的水头高度受到引水渠
容积受限,进一步受到引水渠斜度限制,那么可以使用勾股定理来求
解引水渠底开口高度。

因此,可以用勾股定理确定引水渠中水的流量,从而计算出正确的储水渠的容积。

4. 导航测量
导航测量中也使用到勾股定理,比如用它来计算从某一特定点到特定方位的垂直距离。

对角线距离也可以通过使用勾股定理来进行计算,这是由于当测量站和要测量的点之间存在着三角形关系,用勾股定理就可以求出两点之间的距离。

勾股定理应用实例

勾股定理应用实例

勾股定理应用实例
1. 建筑工程中:勾股定理可以用于测量和计算建筑物中的角度和边长。

例如,可以使用勾股定理来计算屋顶的倾斜角度或墙壁之间的角度。

2. 地理测量学中:勾股定理可以用于计算地面上两个点之间的直线距离。

例如,可以使用勾股定理来计算一个城市中两个建筑物之间的距离。

3. 飞行导航中:勾股定理可以用于计算飞机的航向和距离。

例如,可以使用勾股定理来计算两个导航点之间的航向和距离,以帮助导航员正确引导飞机。

4. 游戏开发中:勾股定理可以用于计算游戏中角色之间的距离或检测游戏中的碰撞。

例如,可以使用勾股定理来判断玩家角色是否与敌人角色发生碰撞。

5. 三角形解析几何中:勾股定理被广泛应用于解决三角形的各种问题,例如计算三角形的面积、边长或未知角度。

通过应用勾股定理,可以解决和证明许多三角形的性质和关系。

勾股定理及其应用

勾股定理及其应用

勾股定理及其应用勾股定理是中国古代数学的一大发明,也是数学中最基础、最重要的定理之一。

它描述了直角三角形中三边的关系,被广泛应用于几何学、物理学、工程学等领域。

本文将介绍勾股定理的原理以及它在实际问题中的应用。

一、勾股定理的原理勾股定理可以用数学公式表示为:在直角三角形中,直角边的平方等于两条直角边的平方和。

设直角三角形的两条直角边分别为a和b,斜边为c,根据勾股定理可以得出以下公式:a² + b² = c²这个公式是勾股定理的基本表达式,它是通过对直角三角形的三边进行数学推导得出的。

二、勾股定理的应用1. 解决几何问题勾股定理在几何学中有广泛的应用。

例如,可以通过已知直角边的长度来计算斜边的长度,或者通过已知斜边和一个直角边的长度来计算另一个直角边的长度。

通过勾股定理,我们可以解决诸如直角三角形的边长计算、角度计算等几何问题,对于建筑设计、地理测量等领域都有重要意义。

2. 测量地理距离在地理学中,我们often需要计算地球表面上两点之间的直线距离。

由于地球是球状的,所以实际距离不能直接通过直线距离计算得出。

但是在较小的地理范围内(例如一个城市、一个国家等),可以将地球表面近似为平面,这样就可以使用勾股定理来计算两点之间的近似直线距离。

3. 解决物理问题勾股定理也在物理学中得到了广泛的应用。

例如,在力学中,我们可以通过勾股定理计算一个斜面上物体的重力分量和斜面的角度之间的关系;在光学中,勾股定理可以用来计算光的传输路径和折射角度等。

4. 三角函数的应用勾股定理与三角函数之间存在紧密的关系。

通过勾股定理,我们可以定义正弦、余弦和正切等三角函数。

这些三角函数在科学计算、电子工程、信号处理等领域中有广泛的应用,例如在无线通信中,计算机图形学中,音频信号处理中等。

总结:勾股定理作为数学中的重要定理,不仅仅是理论的产物,更是实践中的有力工具。

它的应用广泛涉及到几何学、物理学、工程学等多个领域。

勾股定理的应用(3种题型)

勾股定理的应用(3种题型)

第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。

勾股定理在实际问题中的应用

勾股定理在实际问题中的应用

勾股定理在实际问题中的应用勾股定理是数学中的重要定理.它揭示了直角三角形三边之间的数量关系,把数与形统一起来.勾股定理不仅在数学的发展中起着重要的作用,而且在现实世界中有着广泛的应用.下面举例说明勾股定理在实际生活中的应用.一、少走几步路例1.如图1,学校有一块长方形花铺,有极少数人从A 走到B ,为了避开拐角C 走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 分析:由图可见,走出来的“路”是直角边分别为3m和4m的直角三角形的斜边,由勾股定理,得该“路”的长为5m,因此,行人仅仅少走了2米(即10步)路.点评:爱护花草人人有责,仅仅因为少走10步而不惜踩伤花草,破坏环境的确是大不应该的。

由此可见,只有懂得“三角形两边之和大于第三边”的人才知道走“捷径”的比经过拐角处的路程近些,但掌握的数学知识如果不能用正当的行为上,那将是数学的悲哀。

二、票价为多少元呢?例2.如图2,A 、B 、C 、D 是四个小镇,它们之间(除B 、C 外)都有笔直的公路相连接,公共汽车行驶于城镇之间,其票价与路程成正比.已知各城镇间的公共汽车票价如下:A ↔B :10元;A ↔C :12.5元;A ↔D :8元;B ↔D :6元;C ↔D :4.5元.为了B 、C 之间的交通方便,要在B 、C 之间建成笔直公路,请按上述标准计算出B 、C 之间的公路的票价为多少元.分析:因为票价与路程成正比,故可将票价视为路程来处理,即AB=10,AD=8,BD=6,AC=12.5,CD=4.5,利用勾股定理求解.解:因为票价与路程成正比,故可把票价视为路程来处理.已知:AB=10,AD=8,BD=6,AC=12.5,CD=4.5.因为AD 2+BD 2=82+62=64+36=100=102=AB 2,所以△ABD 为直角三角形,且∠ADB=90°. 连接BC ,在Rt △BDC 中,CD=4.5,BD=6,所以224.567.5BC =+=.故B 、C 之间公共汽车票价为7.5元.点评:本题是利用勾股定理来解决生活中的实际问题.本题的技巧是将票价视为路程来处理,这一点与代数中的换元法极为相似.三、最短路程是多少例3如图3,一圆柱的底面周长为24cm ,高AB 为4cm ,BC 是直径,一只蚂蚁从点A 出发沿着圆柱体的表面爬行到点C 的最短路程大约是( )A .6cmB .12cmC .13cmD .16cm分析:把圆柱沿直径BC 剪开成两半,展开成平面后可得如图4,则蚂蚁从点A 爬行到“路”4m 3m 图1 AB C 图2 A B图3AC 图4 B点C 的最短路程是矩形的对角线AC 的长,由已知,AB=4,BC=12,故AC=22412+≈12.6≈13(cm ),故选C .点评:解立体图形问题的基本思想是把立体图形平面化,因此,圆柱问题通常要把它沿一条母线剪开,然后铺展为矩形,这里要注意到蚂蚁从点A 出发到点C ,当圆柱沿母线AB 展开成矩形时,点C 对应的是矩形一边的中点。

勾股定理的应用和原理

勾股定理的应用和原理

勾股定理的应用和原理一、勾股定理的定义勾股定理是数学中一个重要的几何定理,它描述了直角三角形的两个直角边的平方和等于斜边的平方。

勾股定理的数学表达式为:a2+b2=c2其中,a和b是直角三角形的两条直角边,c是直角三角形的斜边。

二、勾股定理的应用勾股定理在实际生活和工作中有着广泛的应用,常见的应用包括:1. 测量和计算勾股定理可以用来测量和计算各种物理量。

例如,在测量一个不可直接测量的距离时,可以通过测量两个已知的距离,然后应用勾股定理计算出未知距离。

勾股定理也可以用于计算地面上两点的距离、三维空间中的距离等。

2. 建筑和设计勾股定理在建筑和设计中有着广泛的应用。

例如,在建造一个直角墙角时,可以利用勾股定理来保证墙角的精确度。

在设计一些几何图形、景观和艺术品时,也常常需要使用勾股定理进行计算和布局。

3. 导航和定位勾股定理在导航和定位系统中也起着重要的作用。

例如,在导航系统中,可以通过测量两个已知位置的距离,然后应用勾股定理计算出当前位置与目标位置的相对位置。

勾股定理也可以用于计算地图上两个点之间的距离和方向。

4. 计算机图形学在计算机图形学中,勾股定理被广泛应用于三维图形的渲染、空间变换和光线追踪等算法中。

例如,在计算机游戏中渲染一个三角形表面时,可以利用勾股定理计算出每个像素的亮度和颜色。

勾股定理也可以用于计算图像的旋转、缩放和平移等变换操作。

三、勾股定理的原理勾股定理的原理可以通过几何推导和代数证明两种方式来解释。

1. 几何推导几何推导是一种直观的方法来证明勾股定理。

可以通过构造一个与直角三角形相似的几何图形,来展示勾股定理的原理。

简单来说,勾股定理的原理是基于几何形状和比例的关系。

2. 代数证明代数证明是一种基于数学符号和方程的方法来证明勾股定理。

可以通过代数运算和等式推导,来证明勾股定理的原理。

简单来说,勾股定理的原理是基于代数表达式和等式的关系。

四、总结勾股定理是数学中的一个重要定理,它描述了直角三角形的两个直角边的平方和等于斜边的平方。

勾股定理的八大应用

勾股定理的八大应用

勾股定理的八大应用
1. 测量直角三角形边长和角度:勾股定理可以用来确定直角三角形的斜边长,也可以用来计算两侧的直角边的长度。

它还可以用来计算三角形角度。

2. 计算斜率和距离:勾股定理可以用来计算误差,比如在工程学中,测量仪器的精度可以通过勾股定理来检验。

3. 计算面积和体积:勾股定理可以用来计算任意形状的物体的表面积和体积。

4. 面对三角形和圆形的圆角问题,勾股定理可以帮助我们解决。

5. 在游泳、篮球和足球比赛中,勾股定理可以帮助我们预测运动员的最终目标。

6. 在数学中,勾股定理是三角函数的基础,可以用来证明一些三角函数的恒等式。

7. 勾股定理可以用来推导其他数学和物理方程的解,如波动方程。

8. 勾股定理也可以用于解决实际问题,例如构建建筑物或在电路中设计电路。

勾股定理应用(含解答)

勾股定理应用(含解答)

勾股定理点击一:勾股定理勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2 = c 2. 即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;(2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长. 即c 2= a 2+b 2,a 2= c 2-b 2,b 2= c 2-a 2. 点击二:学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明.如上图示,在图(1)中,利用图1边长为a ,b ,c 的四个直角三角形拼成的一个以c 为边长的正方形,则图2(1)中的小正方形的边长为(b -a ),面积为(b -a )2,四个直角三角形的面积为4×21ab = 2ab .(图1)(2)(3)由图(1)可知,大正方形的面积 =四个直角三角形的面积+小正方形的的面积,即c 2 =(b -a )2+2ab ,则a 2+b 2 = c 2问题得证.请同学们自己证明图(2)、(3). 点击三:在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点. 点击四:直角三角形边与面积的关系及应用直角三角形有许多属性,除边与边、边与角、角与角的关系外,边与面积也有内的联系.设a 、b 为直角三角形的两条直角边,c 为斜边,S ∆为面积,于是有:222()2a b a ab b +=++,222a b c +=,12442ab ab S ∆=⨯=,所以22()4a b c S ∆+=+.即221[()]4S a b c ∆=+-.也就是说,直角三角形的面积等于两直角边和的平方与斜边平方差的四分之一.利用该公式来计算直角三角形的有关面积、周长、斜边上的高等问题,显得十分简便.点击五:熟练掌握勾股定理的各种表达形式.如图2,在Rt ABC ∆中,90=∠C 0,∠A 、∠B 、∠C 的对边分别为a 、b 、c,则c 2=a 2+b 2, a 2=c 2-b 2 , b 2=c 2-a 2, 点击六:勾股定理的应用(1)已知直角三角形的两条边,求第三边; (2)已知直角三角形的一边,求另两条边的关系; (3)用于推导线段平方关系的问题等.(4)用勾股定理,在数轴上作出表示2、3、5的点,即作出长为n 的线段.类型之一:勾股定理例1:如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积是 cm 2.解析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可. 根据勾股定理公式的变形,可求得.解:由勾股定理,得132-52=144,所以另一条直角边的长为12. 所以这个直角三角形的面积是21×12×5 = 30(cm 2). 例2: 如图3(1),一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到 顶点B,则它走过的最短路程为( )A .a 3B .a )21(+C .3aD .a 5 解析:本题显然与例2属同种类型,思路相同.但正方体的 各棱长相等,因此只有一种展开图.解:将正方体侧面展开得,如图3⑵. 由图知AC=2a,BC=a .根据勾股定理得.a 5a 5a )a 2(AB 222==+= 故选D .类型之二:在数轴上表示无理数例3:在数轴上作出表示出两直角边的长度后即可在数轴上作出.解:3和1,所以需在数轴上找出两段分别长为3和1的线段,如图所示,然后即可确定斜边长,线段即可.∙ ∙AB C图3⑵∙ AB图3⑴下面的问题是关于数学大会会标设计与勾股定理知识的综合运用例5:阅读材料,第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.解:2;3;2;5;6;7;22;3;这8条线段的长的乘积是7072例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么()2b a +的值为( )(A )13 (B )19 (C )25 (D )169解析:由勾股定理,结合题意得a 2+b 2=13 ①. 由题意,得 (b-a)2=1 ②. 由②,得 a 2+b 2-2ab =1 ③. 把①代入③,得 13-2ab=1 ∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab =13+12=25. 因此,选C.说明:2002年8月20日~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如下图所示:它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》. 类型之四:勾股定理的应用(一)求边长例1:已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长..(二)求面积例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积)①观察图1-1.正方形A中含有__________个小方格,即A的面积是__________个单位面积;正方形B中含有__________个小方格,即B的面积是__________个单位面积;正方形C中含有__________个小方格,即C的面积是__________个单位面积.②在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?③你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(2)做一做:①观察图1-3、图1-4,并填写下表:②三个正方形A,B,C的面积之间有什么关系?(3)议一议:①你能用三角形的边长表示正方形的面积吗?②你能发现直角三角形三边长度之间存在什么关系吗?③分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度,②中的规律对这个三角形仍然成立吗?解析:注意到图中每个小方格代表一个单位面积,通过观察图形不能得到答案:①99 9 9 18 18;②A中含4个,B中含4个,C中含8个,面积分别为4,4,8;③A与B的面积之和等于C,图1-2中也是A与B的面积之和等于C.(2)①答案:②答案:.(3)答案:①设直角三角形三边长分别为a,b,c(如图);②,.③成立.(三)作线段例3 作长为、、的线段.解析:作法:1.作直角边长为1(单位长)的等腰直角三角形ACB(如图);2.以斜边AB为一直角边,作另一直角边长为1的直角三角形ABB1;3.顺次这样作下去,最后作到直角三角形AB2B3,这时斜边AB、AB1、AB2、AB3的长度就是、、、.证明:根据勾股定理,在Rt△ACB中,∵AB>0,∴AB=.其他同理可证.,、点评证明线段的平方差或和,常常要考虑到运用勾股定理;若无直角三角形,则可通过作垂线的方法,构成直角三角形,以便为运用勾股定理创造必要的条件.(五)实际应用例5:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?解析 (1)由点A 作AD⊥BC 于D , 则AD 就为城市A 距台风中心的最短距离 在Rt△ABD 中,∠B=30º,AB =220,∴AD=21AB=110.由题意知,当A 点距台风(12-4)20=160(千米)时,将会受到台风影响. 故该城市会受到这次台风的影响.(2)由题意知,当A 点距台风中心不超过60千米时,将会受到台风的影响,则AE =AF =160.当台风中心从E 到F 处时, 该城市都会受到这次台风的影响.由勾股定理得∴EF=2DE =6015.因为这次台风中心以15千米/时的速度移动,所以这次台风影响该城市的持续时间为154151560 小时. (3)当台风中心位于D 处时,A 城市所受这次台风的风力最大,其最大风力为12-20110=6.5级.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我怎么走 会最近呢?
A
D
议一议:分组讨论、合作交流、动手实践。
请观察
为什么这样走最短?
两点之间线段最短
C B
A
C
B
C
B
A
A
2 2
解:如上图,在Rt△ABC中,BC=πr= 9cm, ∴ AB= AC BC
2 2 9 12 = =15 (cm)(勾股定理). 答: 最短路程约为15cm.
A
D
通过这节课的学习谈谈你的收获:
这节课我们探索了…… 使我感触最深的是…… 我学会了…… 我发现生活中…… 我还感到疑惑的是…… 我还想……
1.必作题:(1)课本P60习题14.2第1、3题; (2)填写数学日志。 2.选作题: 如图,是一个三级台阶,它的每一级的 长、宽、高分别为2m、0.3m、0.2m,A和B是台 阶上两个相对的顶点,A点有一只蚂蚁,想到B点 去吃可口的食物,问蚂蚁沿着台阶爬行到B点的 最短路程是多少?
C
A
D
(4)如果盒子换成长为40cm,宽为30cm,高为120cm 的金鱼缸,如果鱼缸中的A点有一条金鱼,它想尽快吃 到B点的食物,那么金鱼游的最短路程又是多少呢?
B
解: AC2 AD2 CD2 2500
∴AB= AC2 BC2 = 502 1202

16900
=130
C 答:最短路程是130cm.
B
北 东 南
西
好奇是人的本性! 探索勾股定理 想一想(误差在10内为正常) 我们有: a=46
b=58 由勾股定理得:
c2=a2+b2 =462+582误差范围内
如图,从电线杆离地面6 m处向地面拉 一条长10 m的固定缆绳,这条缆绳在地 面的固定点距离电线杆底部有 m.
A
D
E
C
B
C
F
如图,一只蜘蛛在一块长方体木块的一个顶点A 处,一只苍蝇在这个长方体的对角顶点G处, 若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎 样的路线爬行,才能最快抓到苍蝇?这时蜘蛛 走过的路程是多少厘米?
H G E F
D
C
转化:立体图形 到 平面图形
A
B
C
B
C
B
A
A
C
B
例1:如图所示,圆 柱体的底面直径为 6cm,高AC为12cm, 一只蚂蚁从A点出 发,沿着圆柱的侧 面爬行到点B,试求 出爬行的最短路 程.(π取3.14)
B
A
分析:蚂蚁由A爬到B过程中较短的路线有 多少种情况?
B
(1)经过前面和上底面; (2)经过前面和右面; (3)经过左面和上底面.
G
B
2 1
A
3
C B 1 D
B
F
H
A
E
D
A
3
2
2
A 1 3 E
C
开学了,小华的妈妈为她准备了一把长为85cm的雨 伞和一个行李箱,行李箱长为40cm,宽为30cm,高为 70cm,问能否把雨伞放进这个行李箱中? B
解:由已知AF=FC 设AF=x,则FB=9-x
在R t △ABC中,根据勾股定 理FC2=FB2+BC2
D
E
C
则有x2=(9-x)2+32 解得x=5 A 同理可得DE=4 ∴GF=1 ∴以EF为边的正方形的面积 =EG2+GF2=32+12=10
G
F
B
一张长方形纸片宽AB=8cm,长BC=10cm. 现将纸片折叠,使顶点D落在BC边上的点F 处(折痕为AE),求EC的长.
1.能运用勾股定理解决实际问题。 2.进一步发展有条理思考和表达的能 力,培养解决实际问题的能力。 3.通过实际问题的解决让学生体会 “转化”和“方程”的数学思想。
问题1:请说一说勾股定理的具体内容。
∵ 在Rt△ABC中, ∠C=90º ,AB=c,AC=b,BC=a,
a2+b2=c2. c
A
解:AC = 6 – 1 = 5 , BC = 24 × 1 2 = 12,
如果圆柱换成棱长为10cm的正方体盒子,蚂 蚁沿着表面从A点爬行到B点需要的最短路程 又是多少呢?
B
B B
A
A
B
B
10
C
A
A
10
10
C
AB=
AC BC = 202 102 = 500
2 2
(3)如果盒子换成长为30cm,宽为20cm,高为 10cm的长方体盒子,蚂蚁沿着表面从A点爬行 到B点的最短路程又是多少呢?
3.思考题:笨人持竿要进屋,无奈门框拦 住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角。笨伯 依言试一试,不多不少刚抵足。借问竿长 多少数,谁人算出我佩服。 ——(当代数学教育家清华大学教授 许莼舫著作《古算题味》)
4、预习课本58页例2及做一做。
再见
b
C
①已知a、b,则c= ②已知a、c,则b= ③已知c、b,则a=
B
a
问题2:勾股定理应用的条件有哪些?
开学了,小华的妈妈为她准备了一把长为85cm的雨 伞和一个行李箱,行李箱长为40cm,宽为30cm,高为 70cm,问能否把雨伞放进这个行李箱中?
问题3:日常生活中常见的垂直关系有哪些?
A
C
2
AB 13
答: 旋梯至少需要13米长.
例2、 有一圆形油罐底面圆的周长为24m,高为6m, 一只老鼠从距底面1m的A处爬行到对角B处 吃食物,它爬行的最短路线长为多少?
B
C A
B
A
分析:由于老鼠是沿着圆 柱的表面爬行的,故需把 圆柱展开成平面图形.根据 两点之间线段最短,可以 发现A、B分别在圆柱侧面 展开图的宽1m处和长24m 的中点处,即AB长为最短 路线.(如图)
B
0.2 0.3
2
A
章节: 日期: 姓名: (1)这节课我学习的基础知识是: (2)对于这节课,我喜欢的是: (3)对于这节课,我还不太清楚的是: (4)对于这节课,我做得好的地方是: (5)对于这节课,我需要改进的地方是: (6)通过学习,我学会的解题方法是: (7)这种解题方法可以推广应用到: (8)我还有其它的解决方法: (9)本节课所学的内容与以前学习过的知识的联系有: (10)我认为本节课所学的内容还可用于解决的问题 是:
A
C
B
3.学校有一块长方形花圃,有极少数人为了避开拐 角走“捷径”,在花圃内走出了一条“路”.他们 仅仅少走了 步路(假设2步为1米),却踩伤了 4 花草。
C
4 米 “路”
B
5
芳草青青,足下留情!
3 米 A
如图,一架长为10m的梯子AB斜靠在墙上,梯子的顶端 距地面的垂直距离为8m.如果梯子的顶端下滑1m,那 么它的底端是否也滑动1 m?
变式1、有一圆柱形油罐,要以A点环绕油罐建 旋梯,正好到A点的正上方B点,问旋梯最短要多 少米?(己知油罐周长是12米,高AB是5米) 提示:把问题看成蚂蚁从点A 出发绕圆柱侧面一周到达点B, 此时它需要爬行的最短路程 又是多少?
C
B
A
解: AB 5 12 169 13
2 2 2
D B 解:连结BE
由已知可知:DE是AB的中垂线, ∴AE=BE 设AE=xcm,则EC=(10-x)cm 在Rt△ABC 中,根据勾股定理:
A E
C
BE2=BC2+EC2 x2=62+ (10-x)2 解得x=6.8 ∴EC=10-6.8=3.2cm
10、如图,把长方形纸片ABCD折叠,使顶 点A与顶点C重合在一起,EF为折痕。若 AB=9,BC=3,试求以折痕EF为边长的正 方形面积。
E
A
C
图⑴
B
图⑵
解:如图
BC为荷花长, AB为水深, AC为荷花偏离中心点的水平距离。
3
设AB =x尺,则BC =(x+1)尺, x 根据勾股定理得: x2+32=(x+1)2 即 (x+1)2- x2 =32 解得:x=4 所以荷花长为:4+1=5(尺) 答:水深为4尺,荷花长为5尺。
X+1
8、如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AC=10cm,BC=6cm,你能求出CE的长吗?
A
A 8
10
所以梯子的顶端下滑1m,它的底 端不是滑动1m.
C
B B
平平湖水清可鉴,荷花一尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
D
湖面之上不复见,入秋渔翁始发现。 残花离根三尺远,试问水深尺若干。
E
A
C
图⑴
B
图⑵
D
在平静的湖面上,有一支红莲, 高出水面 1尺,一阵风吹来,红莲 吹到一边,花朵齐及水面,已知 红莲移动的水平距离为 3尺,求这 里的水深是多少米?
相关文档
最新文档