七年级上数学上册 第二章 有理数的除法教案
湘教版数学七年级上册1.5.2《有理数的除法》教学设计2
湘教版数学七年级上册1.5.2《有理数的除法》教学设计2一. 教材分析《有理数的除法》是湘教版数学七年级上册1.5.2的内容,本节内容是在学生已经掌握了有理数的加减乘除的基础上进行学习的。
有理数的除法是数学中的一种基本运算,它与我们的生活实际密切相关,同时也有广泛的应用。
本节课的主要内容是让学生掌握有理数除法的基本运算方法,并能够灵活运用。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的加减乘除,对有理数的运算已经有了一定的认识和理解。
但是,学生在进行有理数除法运算时,可能会对一些特殊情况产生困惑,如除以0的情况。
因此,在教学过程中,教师需要针对这些特殊情况加以解释和引导。
三. 教学目标1.知识与技能目标:让学生掌握有理数除法的基本运算方法,能够正确进行有理数除法运算。
2.过程与方法目标:通过实例讲解和练习,让学生能够理解有理数除法的运算规律,提高运算能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.教学重点:有理数除法的基本运算方法。
2.教学难点:理解有理数除法的运算规律,能够灵活运用。
五. 教学方法采用讲解法、实例分析法、练习法、讨论法等教学方法。
通过实例讲解和练习,让学生掌握有理数除法的运算方法,通过讨论法让学生在课堂上积极思考,提高学生的学习兴趣和参与度。
六. 教学准备教师准备PPT、教案、练习题等教学材料。
学生准备笔记本、笔等学习用品。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如“小明有5个苹果,他想把这5个苹果平均分给他的5个朋友,每个朋友能分到几个苹果?”让学生思考并回答问题,引出有理数除法的重要性。
2.呈现(10分钟)教师通过PPT展示有理数除法的基本运算方法,并进行讲解。
讲解内容包括:(1)有理数除法的定义和运算规则;(2)除以正数、负数和0的情况;(3)有理数除法的运算步骤。
3.操练(10分钟)教师给出一些例题,让学生在课堂上进行练习。
《有理数的除法》教案(精选9篇)
《有理数的除法》教案《有理数的除法》教案(精选9篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编整理的《有理数的除法》教案,欢迎大家分享。
《有理数的除法》教案篇1学习目标1. 理解除法的意义,理解除法是乘法的逆运算,理解倒数的意义,掌握有理数的除法法则.2. 熟练地进行有理数的除法运算;3. 借助有理数乘法知识,通过归纳、类比等方法获得有理数的除法法则.重点有理数的除法法则难点理解商的符号及其绝对值与被除数和除数的关系教学过程一、自主学习(一)、自学课文(二)、导学练习1. 小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?2.请找出下列有理数的倒数-4 3 -8 - -1 -3.53.比较大小:8(-4)_______8 (-15)3_______(-15)(-1 )(-2) (-1 )(- )计算:(1)(-15)(-3)= (2)(-12)(- )=(3)(-8)(- )= (4)0(- )=通过比较、计算,你能归纳出有理数的除法法则吗?有理数的除法法则:(或换一种表达方法为):用字母表示除法法则:4.课本第35页练习题(三)自学疑难摘要:组长检查等级:组长签名:二、合作探究例1 计算:(1)(-18)6 (2) (- )(3) (4)-3.5 (- )注意:乘除混合运算该怎么做呢?例2化简下列分数:(1) (2)请思考:商的符号及绝对值同被除数和除数有什么关系?三、展示提升1、每个同学自主完成二中的练习后先在小组内交流讨论。
2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。
3、每个组在展示的过程中其他组的同学认真听作好补充和提问。
北师大版数学七年级上册2.8《有理数的除法》教学设计
北师大版数学七年级上册2.8《有理数的除法》教学设计一. 教材分析《有理数的除法》是北师大版数学七年级上册第2章“数的概念”的最后一个知识点。
学生在学习了有理数的加减乘除、正负数的概念以及绝对值等知识点的基础上,进一步学习有理数的除法。
本节内容主要包括有理数的除法法则、除法运算的性质以及应用。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够运用除法解决实际问题。
二. 学情分析学生在进入七年级之前,已经初步掌握了整数和分数的运算,但对于有理数的除法运算,部分学生可能会感到困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的困惑进行有针对性的讲解和辅导。
同时,学生对于数学知识的理解和运用能力参差不齐,教师需要因材施教,鼓励学生积极参与课堂讨论,提高学生的学习兴趣和自信心。
三. 教学目标1.知识与技能目标:使学生掌握有理数的除法运算方法,能够熟练进行有理数的除法运算。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生体会数学运算的规律,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:有理数的除法运算方法。
2.难点:有理数除法运算的性质及其应用。
五. 教学方法1.情境教学法:通过生活实例引入有理数的除法,激发学生的学习兴趣。
2.引导发现法:教师引导学生观察、分析、归纳有理数除法的运算规律。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队合作能力。
4.实践操作法:让学生通过动手操作,加深对有理数除法运算的理解。
六. 教学准备1.教学课件:制作课件,展示有理数除法的运算过程和实例。
2.教学素材:准备一些有关有理数除法的实际问题,用于课堂练习和巩固。
3.教学设备:多媒体投影仪、黑板、粉笔等。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入有理数的除法,如“小明有3个苹果,他想把这3个苹果平均分给3个朋友,每个朋友能得到几个苹果?”引导学生思考,引出有理数的除法运算。
七年级数学上册第2章《有理数的除法》精品教案(北师大版)
《2.8 有理数的除法》教案教学重点和难点教学重点:1.掌握有理数的除法法则,能够熟练地进行除法运算.2.通过将除法运算转化为乘法运算,培养学生的转化的思想.教学难点:寻找有理数除法转化为有理数乘法的方法和条件.学情分析认知基础:有理数除法的学习是在前面已学过有理数加、减、乘法的基础上进行的,这些运算的学习为学习有理数除法作了铺垫,学生已经开始熟悉“符号优先”的原则,即先确定符号,再求绝对值的算理.而除法在小学已经接触过,学生已掌握了倒数的意义,也知道除法是乘法的逆运算,知道0不能作除数的规定.活动经验基础:学生通过探索有理数的加、减、乘法的运算法则和运算律的过程,亲身经历了归纳、猜测、验证、推理、计算、交流等数学活动,理解了有理数的算理,初步体会了化归的思想方法,体验了数学与现实世界的密切联系及数学活动的探索性及创造性.教学目标1.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程;掌握有理数的除法法则,并能够熟练地进行除法运算.2.通过将除法运算转化为乘法运算,培养学生的转化的思想.教学方法本节课采用“自学——辅导”的教学模式,将学生自主学习与教师辅导相结合.创设问题情境后,首先教师提出要求,引导学生带着与有理数的除法有关的问题自学,然后学生讨论交流,教师鉴疑讲解,最后通过练习巩固提高.这样有利于学生通过经历从具体情境中抽象出法则的过程,发现其中的规律,掌握必要的运算技能.在有理数除法运算的学习中继续发展数感,在符号法则的学习中增强符号感,从而在自学中学会学习,掌握学习方法.根据学生的认知水平,既要注重安排学生的自主探究活动,又要及时地加以引导、讲解,鼓励学生从学习中发现问题,并用所学知识解决它,从而激发学生的学习兴趣和参与数学活动的积极性.教学过程一、创设情境有四名同学参加数学测验,以90分为标准,超过的分数记为正数,不足的分数记为负数,评分记录如下:+5、-20、-19、-14.求:这四名同学的平均成绩是超过80分还是不足80分?引导学生独立思考,然后列式(+5-20-19-14)÷4,进一步化简得出:(-48)÷4=?(但不知如何计算)从而揭示本节课题.二、自学设计说明教师通过引导学生带着问题自学,不但有利于调动学生的积极性,而且能培养学生的自主意识,增强他们的自信心.请学生带着下面的问题自学本节教材内容:问题1:举例说明什么是倒数?如何求一个数的倒数?问题2:有理数的除法有几种算法?它们有什么相同与不同之处?问题3:怎样选择算法最简便?学生看书,边看边思考,时间大约为5分钟.教学说明在学生自学的过程中,教师要充分参与到学生的学习过程中去,同学生一起思考、计算、讨论、交流.要尊重学生的个体差异,尤其对于学习有困难的学生,及时予以关照与帮助,适当的点拨引导.根据学生的实际情况,自学时间可适当调整.三、讨论交流、鉴疑讲解1.总结乘法法则教师提问,引导学生自己归纳:问题1:乘积为1的两个数互为倒数.例如,2×12=1,所以2与12互为倒数. 又如,⎝⎛⎭⎫-23×⎝⎛⎭⎫-32=1,所以-23与-32互为倒数. 一般地,a ·1a =1,所以a 与1a互为倒数. 这里a ≠0,同小学一样在有理数范围内,0不能作除数,或者说0为分母时分数无意义. 整数可以看成分母是1的分数,求分数的倒数是把这个分数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分数,再求倒数;特殊的数π,它的倒数就可以表示成1π,或化成近似分数再求倒数. 问题2:有理数的除法有2种算法.法则1:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0.法则2:除以一个数,等于乘以这个数的倒数.它们的相同之处是都遵循“符号优先”原则,即先确定符号,再求绝对值.它们的不同之处是法则1确定符号后直接相除,法则2是将除法转化为乘法.问题3:一般能整除时用法则1,确定符号后直接除,在不能整除或有较复杂的分数及小数时采用法则2,将除法转化为乘法.教学说明 在解答两个问题的过程中,教师要尽可能地引导学生勇于发表自己的见解,并先请其他的学生予以评价.在学生思维的障碍点再适当的点拨引导,如研究两种法则的共性时可请学生思考两种法则都需要先算什么,后算什么,在两种法则的选择上可先举出几个具体的例子请学生思考用哪种方法合适,再进行规律的总结.2.例题分析设计说明本例题通过学生自己动手解决,不但能考查学生是否真正理解和掌握了两种法则的内在联系,而且能培养学生的自主意识,增强他们的自信心.例1 计算:(1)(-18)÷6;(2)(-12)÷⎝⎛⎭⎫-14;(3)⎝⎛⎭⎫-15÷⎝⎛⎭⎫-25;(4)625÷⎝⎛⎭⎫-45;(5)65÷⎝⎛⎭⎫-310. 解:(1)(-18)÷6=-18÷6=-3;(2)(-12)÷⎝⎛⎭⎫-14=+⎝⎛⎭⎫12÷14=48;(3)⎝⎛⎭⎫-15÷⎝⎛⎭⎫-25=+⎝⎛⎭⎫15×52=12; (4)625÷⎝⎛⎭⎫-45=-⎝⎛⎭⎫625×54=-310; (5)65÷⎝⎛⎭⎫-310=-⎝⎛⎭⎫65×103=-4. 先请学生观察、讨论几个小题用哪种法则比较适合,在学生口述的基础上,再请学生动手自己解决.设计说明本例题不但是对例1的深化,而且通过对多个数的乘除混合运算的分析,进一步寻找乘除法符号的一般规律,为今后研究有理数的混合运算打下基础.例2 计算:(1)-3.5÷78×⎝⎛⎭⎫-34;(2)⎝⎛⎭⎫-35×⎝⎛⎭⎫-312÷⎝⎛⎭⎫-114÷3. 解:(1)-3.5÷78×⎝⎛⎭⎫-34=72×87×34=3; (2)⎝⎛⎭⎫-35×⎝⎛⎭⎫-312÷⎝⎛⎭⎫-114÷3=-⎝⎛⎭⎫35×72×45×13=-1425. 首先引导学生联想多个有理数的乘法法则,因为除法可以转化为乘法,类比可以得出多个有理数的乘除混合运算的具有一般性的算法,即多个非零有理数的乘除混合运算,结果的符号由负因数的个数决定,负因数有奇数个时结果为负,负因数有偶数个时结果为正,结果的绝对值可由将除法转化为乘法求得.在学生独立解决本例题的基础上,请学生对比例1和例2,联系前面学习的有理数的乘法,得出乘除法的更具有一般性的算法,即不管是两个数还是多个非零有理数,不管是乘法、除法、还是乘除混合运算,结果的符号都由负因数的个数决定.3.课堂练习、巩固提高(1)写出下列各数的倒数:①-47;②0;③-5;④-1;⑤3.2. (2)计算:①84÷(-7);②(-65)÷0.13;③⎝⎛⎭⎫-35÷⎝⎛⎭⎫-25;④0.25÷⎝⎛⎭⎫-23×⎝⎛⎭⎫-135;⑤⎝⎛⎭⎫-34×⎝⎛⎭⎫-112÷⎝⎛⎭⎫-214. 答案:(1)①-74;②0没有倒数;③-15;④-1;⑤516. (2)①-12;②-500;③32;④35;⑤-12. 四、总结反思1.以学生讨论的方式对本节课进行总结:你有哪些收获?得到哪些启示?2.你还需要我的帮助吗?。
北师大版七年级数学上册教案:第2章8有理数的除法
-实际问题中的应用:结合生活实例,运用有理数除法解决平均分、速度等问题。
举例:在讲解有理数除法概念时,可以通过具体的数字例子(如$-6 \div 2$)来强调规则,并通过图形表示来加深理解。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过平均分配或速度问题?”(如:将一块蛋糕平均分给4个朋友)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数除法的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数除法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决实际问题时的除法应用:将实际问题转化为数学模型,然后应用除法求解,对部分学生来说可能存在难度。
举例:对于负数除以正数的难点,可以引入情景,比如温度下降(如$-5$℃)每天下降$2$℃,问需要多少天才能下降$-10$℃,通过这种实际例子帮助学生理解负数除以正数的意义。
对于除法运算步骤的难点,可以通过以下步骤来突破:
在学生小组讨论环节,我作为引导者,努力帮助同学们发现问题、分析问题并解决问题。但我发现,有时候我的问题设置可能还不够精准,导致部分同学在讨论时稍显迷茫。为了提高教学效果,我需要在今后的教学中,更加精心设计问题,让同学们在讨论中能够有针对性地思考和解决问题。
人教版数学七年级上册1.2《有理数的除法》教学设计1
人教版数学七年级上册1.2《有理数的除法》教学设计1一. 教材分析人教版数学七年级上册1.2《有理数的除法》是学生在学习了有理数的概念和加减乘法运算后,进一步学习有理数除法运算的重要内容。
本节内容通过实例引入有理数的除法运算,让学生掌握有理数除法的基本法则,理解除法运算与乘法运算的互逆关系,为后续学习更高级的数学运算打下基础。
二. 学情分析学生在七年级上册之前已经学习了整数的四则运算,对运算有一定的理解和掌握。
但是,对于有理数的除法运算,学生可能还存在一定的困难,特别是在理解除法运算的实质和法则方面。
因此,在教学过程中,需要引导学生从具体实例出发,理解有理数除法的实质,掌握有理数除法的基本法则。
三. 教学目标1.理解有理数除法的基本法则,能正确进行有理数的除法运算。
2.理解除法运算与乘法运算的互逆关系,提高运算能力。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.有理数除法的基本法则。
2.除法运算与乘法运算的互逆关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体实例引入有理数除法,引导学生从实际问题中抽象出有理数除法的规则,并通过小组合作学习,让学生在实践中掌握有理数除法运算。
六. 教学准备1.教学课件。
2.练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个具体实例,如“小明有3个苹果,他想把这3个苹果平均分给3个朋友,每个朋友能得到几个苹果?”引导学生思考,引出有理数除法运算的概念。
2.呈现(15分钟)呈现有理数除法的基本法则,如“两数相除,同号得正,异号得负,并把绝对值相除”。
同时,通过具体例子,让学生理解除法运算与乘法运算的互逆关系。
3.操练(15分钟)让学生进行有理数除法的练习,教师巡回指导,及时纠正学生在运算过程中存在的问题。
4.巩固(10分钟)通过小组合作学习,让学生进一步巩固有理数除法运算。
例如,让学生分组解决一些实际问题,如“某商品原价为200元,打8折后,售价是多少?”5.拓展(5分钟)引导学生思考除法运算在实际生活中的应用,如“在购物时,如何计算折扣后的价格?”6.小结(5分钟)对本节课的内容进行总结,强调有理数除法的基本法则和除法运算与乘法运算的互逆关系。
人教版七年级数学上册:1.4.2《有理数的除法》教学设计
人教版七年级数学上册:1.4.2《有理数的除法》教学设计一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》是学生在学习了有理数的加减乘除运算后,进一步学习有理数除法运算的章节。
本节内容通过实例引入有理数的除法运算,让学生掌握有理数除法的基本法则,理解除法的运算律,为后续学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经掌握了有理数的加减乘运算,对数学运算有一定的认识。
但在除法运算方面,可能还存在对除法运算的理解不够深入,对除以负数、零除以任何非零数等特殊情况的处理不够熟练的问题。
因此,在教学过程中,需要针对这些问题进行讲解和操练。
三. 教学目标1.让学生掌握有理数除法的基本法则。
2.让学生理解除法的运算律。
3.培养学生解决实际问题的能力。
四. 教学重难点1.有理数除法的基本法则。
2.除法的运算律。
3.特殊情况的处理。
五. 教学方法采用问题驱动法、案例教学法、分组合作法、引导发现法等多种教学方法,引导学生通过自主学习、合作交流,掌握有理数的除法运算。
六. 教学准备1.PPT课件2.教学案例3.分组合作学习材料七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的除法实例,如分配物品、计算利率等,引导学生回顾除法的概念,为新课的学习做好铺垫。
2.呈现(10分钟)通过PPT课件,介绍有理数除法的基本法则,如除以正数、除以负数、零除以任何非零数等。
同时,解释除法的运算律,让学生初步理解有理数除法的运算规则。
3.操练(10分钟)让学生分组合作,解决一些有关有理数除法的问题。
教师在这个过程中,要及时引导学生,解答他们遇到的问题,帮助他们掌握有理数除法的运算方法。
4.巩固(10分钟)教师通过PPT课件,给出一些有关有理数除法的练习题,让学生独立完成。
然后,教师选取一些学生的作业进行讲解,加深学生对有理数除法的理解。
5.拓展(10分钟)教师引导学生运用有理数除法解决实际问题,如计算购物时的折扣、计算利息等。
人教版七年级数学上册1.4.2《有理数的除法》教案
一、教学内容
本节课选自人教版七年级数学上册1.4.2《有理数的除法》。教学内容主要包括以下两个方面:
1.掌握有理数除法的运算方法,能够熟练进行除法运算,包括正数、负数以及0的除法。
-例题:计算-6÷2,5÷(-3),(-8)÷(-4),0÷(-5)等。
2.了解有理数除法的运算性质,如“同号得正,异号得负”,并能应用于实际问题中。
-习题:根据除法的运算性质,判断以下各式的符号:12÷(-3),(-16)÷4,(-9)÷(-3)等。
二、核心素养目标
1.培养学生运用数学语言进行有效表达的能力,通过有理数除法的运算过程,提升学生逻辑思维和抽象思维能力。
2.强化学生解决实际问题的能力,使学生能够将有理数除法应用于生活情境中,增强数学与现实生活的联系。
3.重点难点解析:在讲授过程中,我会特别强调同号得正、异号得负的规律以及0不能作为除数这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用实际物品来模拟除法过程,演示如何平均分配。
2.教学难点
-除法运算符号的处理:学生容易在处理不同符号组合的除法运算时出错,需要通过大量练习和讲解帮助学生掌握符号的处理规则。
-举例:解释为什么(-8)÷(-2)=4,而(-8)÷2=-4,通过图示或具体情境帮助学生理解。
- 0的除法问题:0作为除数的概念对学生来说是新的,需要明确0不能作为除数的规则,并解释其原因。
-举例:讨论0作为除数时的情况,为什么0不能作为除数,可以通过数轴或逻辑推理来说明。
2.2.2 有理数的除法(第1课时)人教版数学七年级上册教案
第一章有理数2.2有理数的乘除法2.2.2 有理数的除法第1课时有理数的除法一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃.某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃.请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?例如8÷(-4).师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以 8÷(-4)=-2 ①另外,我们知道,8×(-)=-2 ②由①、②得 8÷(-4)=8×(-)③③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4, 等于乘以-4的倒数-.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,4,-8;右边组由上到下5答案依次为:-2,-6,4,-8;5教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨:从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·(b≠0),其中a、b表示任意有理数(b≠0)例如:教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9);(2)(–27) ÷3;(3)0 ÷ (–7);(4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) ―123 ;(2)―45―12 .师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2)师生共同解答如下:解:(1)原式=====点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式== 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A.3B.–3 C.13D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a,b互为相反数,且a ≠ b,则ab=________;(2)当a < 0时,|a|a=_______;(3)若a>b,ab<0,则a,b的符号分别是__________.(4)若–3x=12,则x =_____.4.若|2x+6|+|3―y|=0,则xy=_________.5. (1)计算;(2). 计算;(3)计算参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x+6|+|3―y|=0,解得x=-3,y=3,所以xy =―33=-1.5.解:(1)原式==(2)原式==(3)原式==(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
七年级数学北师大版上册 第2章《2.8有理数的除法》教学设计 教案
有理数除法学科:数学课题:《有理数的除法》教科书:北师版七年级上册 第二章有理数及其运算 第8节一、教学目标1、熟练有理数除法运算2、熟练有理数除法法则二、教学内容1、 教学重点:有理数除法法则2、 教学难点:运用有理数的除法运算解决实际问题三、教学过程(一)、有理数的除法法则1、学生阅读教材,理解除法法则2、小组讨论并总结除法法则3、教师板书有理数的除法法则注意:先定号,再相除;零不能作除数(二)例题讲解1.同号两数相除(1) (-15)÷(-3)=(2) 24 ÷ 3 =2.异号两数相除(1)(-24)÷ 3 =(2)8 ÷ (-27)=3、零除以任何非零的数都得零(1)0 ÷(-72) =(2) 0 ÷ 8 =4.除以一个数等于乘以这个数的倒数(1) -18 ÷(- 35) =(2) 16÷ (-4) =(三)巩固提升(1)-0.75÷0.25(2)(-1)÷(-1.5)(3)(-3)÷ (-34)÷(-89) (4)(-31)÷(-3)÷(-31)四、随堂练习(一)基础练习(1)12÷(-4)(2)(-5.2)÷(-1.3)(3)0 ÷(-78)(4) 2011 ÷(-2022) ÷21÷ 2(二)提高练习(1)已知|a|=2,|b|=3,且b a 2<0,求a+2b(2)如果a ≠0,b ≠0,则||ab ab +||a a +||b b=___五、课堂作业课本习题1、2六、课堂小结1、学生自我总结所学内容2、两位同学分享新得体会七、板书设计1、有理数除法则2、例题3、提高讲解4、知识小结八、教学反思。
人教版数学七年级上册1.2《有理数的除法》教案
人教版数学七年级上册1.2《有理数的除法》教案一. 教材分析《有理数的除法》是初中数学的重要内容,人教版七年级上册第1.2节主要介绍有理数的除法法则。
学生在学习了有理数的加减乘法之后,进一步学习有理数的除法,有助于加深对有理数运算规律的理解。
本节内容通过具体的例子,引导学生掌握有理数除法的基本法则,为学生以后学习更复杂的数学运算打下基础。
二. 学情分析学生在进入七年级之前,已经掌握了整数的除法运算,但对负数的除法了解不多。
因此,在教学过程中,教师需要利用学生已有的知识,通过具体的实例,引导学生理解负数除法的规律。
同时,学生需要在学习过程中,培养运算的准确性,以及解决问题的能力。
三. 教学目标1.了解有理数除法的基本概念,掌握有理数除法的法则。
2.能够正确进行有理数的除法运算。
3.培养学生的运算能力,提高学生解决问题的能力。
四. 教学重难点1.教学重点:有理数除法的基本法则,有理数除法的运算过程。
2.教学难点:负数除法运算的理解,以及运算过程的准确性。
五. 教学方法采用问题驱动法,通过实例引导学生自主探究有理数除法的规律,以小组合作交流的方式,共同解决问题。
同时,结合讲授法,对学生的疑问进行解答,帮助学生深入理解有理数除法。
六. 教学准备1.教学PPT,包括有理数除法的定义,除法法则,以及相关的实例。
2.练习题,包括不同类型的有理数除法题目。
3.教学黑板,用于板书关键知识点和运算过程。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾整数的除法运算,激发学生的学习兴趣。
例如:5除以3等于多少?引导学生思考,引出有理数除法的学习。
2.呈现(10分钟)教师通过PPT展示有理数除法的定义,除法法则,以及相关的实例。
让学生初步了解有理数除法的基本概念。
3.操练(10分钟)教师提出练习题目,让学生独立完成。
例如:计算以下有理数除法题目:(1)8除以3;(2)-6除以4;(3)7除以-2。
教师在这个过程中,对学生的疑问进行解答,帮助学生掌握有理数除法的运算过程。
有理数的除法人教版数学七年级上册教案
有理数的除法人教版数学七年级上册教案教学目标:1. 理解有理数的除法定义。
2. 掌握有理数的除法的计算方法。
3. 能够应用有理数的除法解决实际问题。
教学重点:1. 有理数除法的定义。
2. 有理数除法的计算方法。
教学难点:1. 应用有理数的除法解决实际问题。
教学准备:1. 教材《人教版数学七年级上册》。
2. 教学课件或黑板。
教学过程:一、导入新知识(5分钟)通过提问和简单的情境引入有理数的除法,并复习有理数的概念。
二、讲解有理数的除法的定义(10分钟)1. 有理数的除法定义:对于两个非零有理数a和b(a≠0, b≠0), 除法运算a÷b是指找出一个有理数,使得乘以b之后得到a,这个有理数就是商,记作a÷b。
三、讲解有理数除法的计算方法(20分钟)1. 同号相除得正,异号相除得负。
2. 除法可以转化为乘法,即a÷b可以转化为a×(1÷b)。
3. 除法可以转化为小数。
4. 除法可以转化为分数。
四、练习与巩固(15分钟)1. 练习有理数的除法计算。
2. 解决实际问题,应用有理数的除法。
五、归纳总结(5分钟)总结有理数的除法的定义和计算方法。
六、作业布置(5分钟)1. 完成课本上的相关练习。
2. 准备下节课的预习内容。
板书设计:有理数的除法定义:对于两个非零有理数a和b(a≠0, b≠0),除法运算a÷b是指找出一个有理数,使得乘以b之后得到a,这个有理数就是商,记作a÷b。
有理数除法的计算方法:1. 同号相除得正,异号相除得负。
2. 除法可以转化为乘法,即a÷b可以转化为a×(1÷b)。
3. 除法可以转化为小数。
4. 除法可以转化为分数。
湘教版数学七年级上册1.5.2《有理数的除法》教学设计
湘教版数学七年级上册1.5.2《有理数的除法》教学设计一. 教材分析湘教版数学七年级上册1.5.2《有理数的除法》是学生在掌握了有理数的概念、加法、减法、乘法的基础上,进一步学习有理数的除法运算。
本节内容通过实例让学生了解有理数除法的基本法则,理解除法运算的实质,并能够熟练地进行有理数的除法运算。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念、加法、减法、乘法有一定的了解。
但是,对于有理数的除法运算,学生可能存在一定的困难,因为除法运算涉及到相反数的概念,以及除以一个数等于乘以这个数的倒数等概念。
三. 教学目标1.知识与技能:理解有理数除法的基本法则,能够熟练地进行有理数的除法运算。
2.过程与方法:通过实例分析,让学生理解除法运算的实质,培养学生的运算能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:有理数除法的基本法则,有理数除法运算的实质。
2.难点:理解除以一个数等于乘以这个数的倒数,以及如何处理除以0的情况。
五. 教学方法采用启发式教学法、实例教学法和小组合作学习法。
通过启发式教学法引导学生思考,通过实例教学法让学生理解除法运算的实质,通过小组合作学习法让学生在合作中探讨,在探讨中发现问题、解决问题。
六. 教学准备1.准备相关的实例,用于引导学生理解除法运算的实质。
2.准备练习题,用于巩固所学内容。
3.准备PPT,用于展示相关内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容:某班有男生20人,女生15人,问男生是女生的几分之几?让学生思考如何解答这个问题,从而引出有理数的除法运算。
2.呈现(10分钟)通过PPT展示有理数除法的基本法则,以及除法运算的实质。
让学生理解除以一个数等于乘以这个数的倒数,并通过实例进行解释。
3.操练(10分钟)让学生进行有理数除法的运算练习,教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生解决一些实际问题,如:某商品的原价是100元,打八折后的价格是多少?让学生运用所学的有理数除法知识进行计算。
七年级数学教案有理数的除法
七年级数学教案:有理数的除法1. 教学目标本节课的主要教学目标如下:1.理解有理数的除法原理;2.掌握有理数的除法规则;3.进一步巩固有理数四则运算的知识。
2. 教学重点和难点本节课的教学重点是有理数的除法原理和规则,教学难点是对于复杂的有理数除法问题的计算。
3. 教学内容3.1 有理数的除法原理有理数的除法原理如下:两个有理数相除,就相当于将这两个有理数相乘的结果除以被除数。
即:$\\dfrac{a}{b} \\div \\dfrac{c}{d} = \\dfrac{a}{b} \\times \\dfrac{d}{c}$ 其中,分母不能为 0。
3.2 有理数的除法规则有理数的除法规则如下:1.正数和正数相除,其结果为正数。
2.负数和负数相除,其结果为正数。
3.正数和负数相除,其结果为负数。
例如:$\\dfrac{6}{3} = 2$,$\\dfrac{6}{-3} = -2$,$\\dfrac{-6}{-3} = 2$3.3 有理数除法的练习在教学过程中,教师应该为学生们提供一些有理数除法的练习题,帮助他们巩固所学内容,加深对有理数除法的认识。
下面是一些典型的例题:例题 1$\\dfrac{15}{-3} \\div (-5) = ?$解题思路:$\\dfrac{15}{-3} \\div (-5) = \\dfrac{15}{-3} \\times \\dfrac{-1}{5} = -3$例题 2$\\dfrac{12}{-6} \\div \\dfrac{-2}{3} = ?$解题思路:$\\dfrac{12}{-6} \\div \\dfrac{-2}{3} = \\dfrac{12}{-6} \\times \\dfrac{3}{-2} = -18$例题 3$\\dfrac{-5}{4} \\div (-\\dfrac{2}{3}) = ?$解题思路:$\\dfrac{-5}{4} \\div (-\\dfrac{2}{3}) = \\dfrac{-5}{4} \\times \\dfrac{-3}{2} = \\dfrac{15}{8}$3.4 常见问题的解答在本次教学中,老师还应引导学生,解答一些常见的问题,例如:问题 1:为什么要将除法转换为乘法运算?答:因为有理数的除法运算中,很容易出现分母为 0 的情况,而分母为 0 是没有意义的。
有理数的除法-人教版七年级数学上册教案
有理数的除法-人教版七年级数学上册教案教学目标1.了解有理数的概念和符号;2.掌握有理数的加减乘除运算规律;3.学会有理数的除法运算方法。
教学重点1.掌握有理数的加法和减法运算规则;2.掌握有理数的乘法运算规则;3.学会有理数的除法运算方法。
教学难点1.掌握有理数的除法运算方法。
教学内容1. 有理数的概念和符号复习•有理数定义;•有理数的符号;•有理数的大小比较。
2. 有理数的加减乘法运算复习•有理数的加法运算规律;•有理数的减法运算规律;•有理数的乘法运算规律。
3. 有理数的除法运算1.正数除以正数:–如果除数的倍数是被除数,商为倍数;–如果不能整除,商为余数和除数的分数形式。
2.负数除以正数:–把负数除数变为正数,然后按正数运算方法计算;–商的符号取决于被除数的符号。
3.正数除以负数:–把负数除数变为正数,然后按正数运算方法计算;–商的符号取决于被除数的符号。
4.负数除以负数:–把负数除数变为正数,然后按正数运算方法计算;–商的符号为正号。
教学方法1.归纳法:通过例题的练习,引出有理数除法运算的步骤和规律。
2.练习法:通过大量的练习,学生能够掌握有理数除法运算的方法。
3.讲解法:通过讲解,帮助学生理解有理数除法运算的相关概念和符号。
教学过程一、引入介绍有理数的概念和符号,让学生对有理数有更深刻的理解。
二、讲解有理数的除法运算方法并举例说明通过归纳法和练习法,让学生掌握有理数的除法运算方法。
三、练习让学生进行大量的练习,巩固有理数除法运算的方法。
四、作业1.让学生完成课堂练习;2.布置有理数除法运算的作业。
教学评价1.检查学生的课堂练习;2.对学生的作业进行评价。
人教版七年级数学上册:1.4.2《有理数的除法》说课稿
人教版七年级数学上册:1.4.2 《有理数的除法》说课稿一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》这一节,是在学生掌握了有理数的概念、加减乘除法的基础上进行讲解的。
本节内容主要介绍有理数的除法运算规则,使学生能够熟练掌握有理数的除法运算,并能够灵活运用到实际问题中。
教材从生活实例出发,引导学生学习有理数的除法,让学生通过观察、分析、归纳等过程,自己发现并总结有理数除法的运算规则。
然后,通过大量的练习,使学生熟练掌握有理数的除法运算,提高学生的数学运算能力。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,具备了一定的数学运算能力,能够理解和掌握有理数的加减乘除法。
但是,对于有理数的除法,由于生活中的除法实例与数学中的除法存在一定的差异,学生可能对此部分内容的理解存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的疑难点进行重点讲解,引导学生通过观察、分析、归纳等方法,自主发现并总结有理数除法的运算规则。
三. 说教学目标1.知识与技能目标:使学生理解有理数除法的概念,掌握有理数除法的运算规则,能够熟练地进行有理数的除法运算。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主学习的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:有理数除法的运算规则,有理数除法运算的步骤。
2.教学难点:理解有理数除法的本质,掌握有理数除法的运算规则,能够灵活运用到实际问题中。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生自主学习,发现并总结有理数除法的运算规则。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件、网络资源等现代教育技术手段,提高课堂教学效果。
六. 说教学过程1.导入新课:通过生活实例,引导学生学习有理数的除法,激发学生的学习兴趣。
人教版七年级数学上册:1.4.2 《有理数的除法》教学设计
人教版七年级数学上册:1.4.2 《有理数的除法》教学设计一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》是学生在掌握了有理数的概念、加法、减法、乘法的基础上进行学习的。
本节课主要介绍了有理数的除法运算,通过实例让学生理解有理数除法的运算方法,并能够熟练地进行计算。
教材通过简单的例子引入有理数除法,然后逐步引导学生理解和掌握有理数除法的运算规则,最后通过大量的练习使学生熟练掌握有理数除法的运算方法。
二. 学情分析七年级的学生已经掌握了有理数的概念、加法、减法、乘法,对数学运算有一定的认识和理解。
但是,由于有理数除法与整数除法在运算规则上有很大的不同,学生可能会感到困惑。
因此,在教学过程中,教师需要通过实例和练习,让学生理解和掌握有理数除法的运算规则。
三. 教学目标1.理解有理数除法的概念和运算规则。
2.能够熟练地进行有理数除法的计算。
3.能够解决实际问题,运用有理数除法解决生活中的问题。
四. 教学重难点1.有理数除法的运算规则。
2.有理数除法计算的准确性。
五. 教学方法1.实例教学:通过具体的例子,让学生理解和掌握有理数除法的运算规则。
2.练习法:通过大量的练习,使学生熟练掌握有理数除法的运算方法。
3.问题解决法:引导学生运用有理数除法解决实际问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作课件,展示有理数除法的运算规则和实例。
2.练习题:准备适量的练习题,用于课堂练习和巩固。
七. 教学过程1.导入(5分钟)利用实例引入有理数除法,如:计算2/3÷4/3,引导学生思考如何进行计算。
2.呈现(10分钟)讲解有理数除法的运算规则,如:同号相除为正,异号相除为负;除以一个数等于乘这个数的倒数。
并通过课件展示实例,让学生理解和掌握有理数除法的运算方法。
3.操练(10分钟)让学生进行有理数除法的计算练习,教师巡回指导,及时纠正错误。
4.巩固(10分钟)让学生解答一些有关有理数除法的实际问题,如:小华有2/3千克苹果,平均分给4个小朋友,每个小朋友分得多少千克?5.拓展(10分钟)引导学生思考:有理数除法在实际生活中有哪些应用?让学生举例说明,进一步拓宽学生的视野。
七年级数学上册《有理数除法》教案、教学设计
2.强调本节课的重难点,提醒学生注意在后续学习中加强练习。
-教师总结:“有理数除法是初中数学的基础内容,希望大家能够熟练掌握运算规则和性质,并在实际应用中灵活运用。”
3.布置课后作业,巩固本节课所学知识。
-教师布置适量的课后作业,要求学生在规定时间内完成,并对作业进行批改和反馈。
1.对除法法则的理解不够深入,容易混淆正负数的运算;
2.在解决实际问题时,难以将问题抽象为有理数除法模型;
3.部分学生对数学学习存在恐惧心理,缺乏自信心,影响学习效果。
针对以上学情,教师在教学过程中应关注以下几点:
1.注重启发式教学,引导学生主动发现和总结除法运算规律;
2.创设生活情境,激发学生的学习兴趣,提高学生将实际问题抽象为数学模型的能力;
难点:将实际问题抽象为有理数除法模型,培养学生的数学建模能力。
3.重点:培养学生正确的数学思维方式,提高运算能力。
难点:克服学生对数学学习的恐惧心理,增强学生的自信心。
(二)教学设想
1.教学方法:
(1)采用情境教学法,通过引入生活实例,让学生在实际问题中感受有理数除法的应用,激发学生学习兴趣;
(2)运用问题驱动法,引导学生自主探究、发现和总结有理数除法的运算规律,提高学生的数学思维能力;
5.组织小组讨论和交流,培养学生的团队合作精神和表达沟通能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热爱,使学生体会到数学学习的乐趣;
2.培养学生的自信心和自主学习能力,使学生养成良好的学习习惯;
3.培养学生面对问题积极思考、主动探究的精神,提高学生解决问题的能力;
4.培养学生的团队合作意识,使学生学会尊重他人、倾听他人意见;
初中数学初一数学上册《有理数的除法》教案、教学设计
1.通过小组合作、讨论交流等形式,引导学生探索有理数除法的运算规律,培养学生主动探究、合作学习的能力。
2.设计多样化的练习题,让学生在实际操作中掌握有理数除法的运算方法,提高解决问题的能力。
3.引导学生总结有理数除法的运算技巧,培养学生的归纳总结能力。
4.结合生活实际,设计具有情境性的问题,让学生在实际情境中感受数学的魅力,提高学生运用数学知识解决实际问题的能力。
3.演示讲解,突破难点
针对学生在探究过程中遇到的难点,如负数的处理方法、运算定律的应用等,教师进行针对性讲解,帮助学生理解和掌握。
4.巩固练习,分层提高
设计不同难度的练习题,让学生在课堂练习中巩固所学知识。针对学生的个体差异,实施分层教学,使每位学生都能在原有基础具有情境性的问题,让学生在实际情境中运用有理数除法知识解决问题,提高学生的问题解决能力和数学思维。
二、学情分析
初一学生在学习有理数除法之前,已经掌握了有理数的加、减、乘法运算,具备了一定的运算基础。但在实际操作中,学生可能会对有理数除法的运算规律和运算方法产生困惑,对除法与乘法、加减法之间的关系理解不够深入。此外,学生在解决实际问题时,可能难以将数学知识灵活运用到具体情境中。因此,在教学过程中,教师应关注以下方面:
5.注重培养学生的合作意识和团队精神,鼓励学生在小组讨论中积极参与,相互学习,共同提高。
三、教学重难点和教学设想
(一)教学重点
1.有理数除法的运算规律和运算方法。
2.有理数除法与乘法、加减法之间的关系。
3.应用有理数除法解决实际问题。
(二)教学难点
1.理解除法运算中负数的处理方法。
2.灵活运用运算定律简化有理数除法计算过程。
接着,我会让学生尝试用他们已知的数学知识来解决这个新问题。在学生尝试解答的过程中,我会引导他们发现,除法实际上是一种乘法的逆运算。通过这个导入过程,学生不仅能够感受到数学与生活的紧密联系,还能够激发他们对新知识的探索欲望。
人教新版(2024)七年级数学上册-2.2.2 有理数的除法(教案)
2.2.2有理数的除法第1课时【教学目标】1.理解有理数除法法则,会进行有理数的除法运算.2.能够熟练地进行有理数乘法与有理数除法的相互转化,会进行分数的化简.3.根据有理数的除法,进一步理解有理数的定义.4.让学生经历有理数除法法则的探究过程,培养学生的观察、归纳、概括、运算及逆向思维能力.【教学重点难点】重点:探究有理数除法法则的形成过程,熟记两则有理数除法法则,能有根据地、有步骤地进行有理数除法运算.难点:有理数除法法则的灵活运用.【教学过程】一、创设情境课件出示:李明从家里到学校,每分钟走50米,共走了20分钟,问李明家离学校有多远?放学后,李明仍然以每分钟50米的速度回家,应该走多少分钟?1.师:从上面的例子你可以发现,有理数除法与乘法之间满足怎样的关系?生:除法与乘法之间有互逆关系.2.学生回答完问题后,教师提出课题——有理数的除法.3.你能很快地说出下列各数的倒数吗?原数-5 -98 7 0 -1 -123 倒数【让学生回顾之前学过的倒数知识,为学习有理数除法做好准备.】二、探究归纳探究点1:有理数的除法及分数化简问题1:根据“除法是乘法的逆运算”填空:(-4)×(-2)=8 8÷(-4)=6×(-6)=-36 -36÷6=-1225÷(-35)= (-1225)×(-53)= -72÷9= -72×(19)= 问题2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 要点归纳:有理数除法法则(一):除以一个不等于0的数,等于乘这个数的 .用字母表示为a ÷b =a ×1b (b ≠0). 问题3:利用上面的除法法则计算下列各题:(1)-54÷(-9);(2)-27÷3;(3)0÷(-7);(4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?你能类比有理数乘法法则,给出除法法则的另一种说法吗?要点归纳:有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 .0除以任何一个不等于0的数,都得 .两个有理数相除(除数不为0),商是一个有理数.【典例剖析】例1:(1)(-18)÷6.(2)(-15)÷(-25). (3)625÷(-45). 解:(1)原式=(-18)÷6=-(18÷6)=-3;(2)原式=(-15)÷(-25)=(-15)×(-52)=12; (3)原式=625÷(-45)=625×(-54)=-310. 【针对性训练】教材P45练习T1【典例剖析】例2:教材P44【例5】【点拨】带分数线的数可以理解为分子除以分母.【针对性训练】教材P45练习T2探究点2:有理数的定义的再认识结合例5及训练的计算,思考以下问题:问题1:计算中,我们得到-23=-23,这表明-23是什么数?反之-23=-23,又表明-23可以写成什么形式?问题2:整数可以看成什么样的分数?归纳总结:有理数是形如p q (p ,q 是整数,q ≠0)的数. 探究点3:有理数的乘除混合运算例3:教材P45【例6】方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算性质简化运算.(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(3)有理数乘除混合运算按从左到右的顺序进行计算.【针对性训练】教材P47练习T1三、检测反馈1.填空:(1)(-27)÷9= .(2)(-925)÷(-310)= . (3)1÷(-9)= .(4)0÷(-7)= .(5)43÷(-1)= . (6)-0.25÷34= . 2.化简下列分数:(1)-162. (2)12-48. (3)-54-6. (4)-9-0.3.3.计算:(1)(-12311)÷4.(2)(-24)÷(-2)÷(-115). 4.计算:(1)(-0.75)÷54÷(-0.3). (2)(-0.33)÷(-13)÷(-11). 5.计算:(1)-2.5÷58×(-14). (2)-27÷214×49÷(-24). (3)(-35)×(-312)÷(-114)÷3. (4)-4×12÷(-12)×2. 四、本课小结一、有理数除法法则:1.a ÷b =a ×1b (b ≠0).2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.二、有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.三、乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).五、布置作业P48T6、8、9六、板书设计七、教学反思1.注重知识迁移,做到以旧带新.“数学教学是数学活动的教学”.我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程.也只有在数学活动的教学中,学生学习的主动性,才能得以发挥.2.注重自主探索,体验知识的产生过程.这一节课,从有理数除法问题的产生,到有理数除法法则的形成,以及归纳有理数除法的解题步骤等,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的.第2课时【教学目标】1.能按照有理数加减乘除的运算顺序正确熟练地进行运算.2.能运用有理数加减乘除运算解决简单的实际问题.3.会用计算器进行比较复杂的有理数加减乘除法计算.4.经历观察、比较、计算、概括、交流等过程,提高学生的运算能力,培养数感.【教学重点难点】重点:熟练掌握有理数的加减乘除混合运算.难点:按照有理数的运算顺序,正确而合理地进行计算,并能利用混合运算解决实际问题.【教学过程】一、创设情境复习导入:同学们,我们在前几节课中已经学习了有理数的加法、减法、乘法、除法,并且已经学习了加减混合运算、乘除混合运算,你知道这两种混合运算的运算顺序吗?【学生回答】我们今天要学习的是有理数的加减乘除四则混合运算,根据在小学时我们学习过的非负数的四则混合运算顺序,你能说一说有理数四则运算的运算顺序吗?【师】实际上,这个顺序在有理数范围内同样适用.二、探究归纳探究点1:有理数的加减乘除混合运算问题1:小学的四则混合运算的顺序是怎样的?先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号外.括号计算顺序:先小括号,再中括号,最后大括号.问题2:我们目前都学习了哪些运算?加法、减法、乘法、除法.师生活动:先由学生尝试说明,再由教师补充、归纳,最后得出:一个运算式中,含有有理数的加、减、乘、除等多种运算,则其称为有理数的混合运算.问题3:下列式子含有哪几种运算?先算什么,后算什么?3+50÷2×(-15)-1=? 师生活动:先由学生叙述,教师帮助完善.【归纳总结】有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的.应用:【典例剖析】例1:教材P46【例7】(补充(3) [1124-(38+16-34)×24]÷5. ) 教师引导学生分析:本例3个小题都是有理数加减乘除法混合运算.1.第(1)(2)小题没有要先运算的括号,则运算应该是:先乘除、后加减.2.第(3)小题有小括号、中括号,则应先小括号、后中括号.在同一个括号内,应先乘除、后加减.3.能利用加法与乘法运算律的,应利用运算律.师生活动:先由学生独立思考,再由学生口述解题过程,教师先板书示范第(1)小题,然后学生口述,教师板书共同完成第(2)(3)小题.在这个过程中教师注意联系讲解法则的运用,追问每一步的依据是什么.【针对性训练】1.教材P47练习T22.下面两题的计算过程是否正确?若不正确,错误出现在哪一步? 解:(1)16÷(13-12) =16÷13-16÷12=16×3-16×2=12-13=16.(2)-3÷6×(-16) =-3÷(-1)=3.探究点2:有理数混合运算的应用【典例剖析】例2:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利32万元,7~10月平均每月盈利21.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?【思路点拨】师:有的月份亏损,有的月份盈利,我们如何表示? 生:用正数表示盈利,用负数表示亏损师:求全年的盈亏情况,就应该把12个月的全加起来,那有没有简单的方法呢?生:【自主解答】解:记盈利额为正数,亏损额为负数,公司去年全年盈亏额为:(-1.5)×3+32×3+21.7×4+(-2.3)×2=-4.5+96+86.8-4.6=173.7.答:这个公司去年全年盈利173.7万元.【教师引导学生应用有理数解决实际问题,体验有理数的加减乘除混合运算在实际生活中的应用】新知应用(1)计算器是一种方便实用的计算工具,用计算器进行比较复杂的计算比笔算要快捷得多.(2)提倡在明确算理的情况下,恰当地使用计算器进行一些比较复杂的有理数加减乘除法的混合运算.【针对训练】用两种方法计算(笔算与计算器)教材P47练习T3(1)(2)比较上面两种计算方法,你有什么体会?三、检测反馈).1.(1)18-6÷(-2)×(-13(2)11+(-22)-3×(-11).×(-100).(3)(-0.1)÷12(4)215×(13-12)×311÷(-114). 2.中国民航规定:乘坐飞机经济舱的旅客,一人最多可免费携带20千克行李,超过部分每千克按飞机票的1.5%购买行李票.一位乘坐经济舱的旅客付了120元的行李票,他所乘航班的机票为800元,这个旅客携带了多少千克的行李?四、本课小结1.有理数的加减乘除混合运算顺序先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的.2.利用运算律进行简便计算.五、布置作业P48T10、P49T13六、板书设计七、教学反思有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标,在加减乘除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题,教师应告诉学生这几种运算可以分成三级:其中加减是第一级运算;乘除是第二级运算;有括号的先算括号内的.组织学生讨论有理数混合运算顺序,在教学时,要注意结合学生平时练习中出现的问题,及时纠正学生在运算上出现的问题,特别是加入乘方以后,学生对乘方运算不熟悉,容易算成加法或底数与指数相乘.学生在运算符号多的时候容易出错,需要进行针对性讲解.对于有理数混合运算,关键要把握好两点,运算顺序和符号,不必让学生训练太繁琐、太复杂的计算.反思本节课,存在以下问题:教学方式单一,由于教师总是担心学生忽略计算基本要点,又担心学生做题很慢,影响教学进度,因此给学生单独练习的时间很少,基本上都是老师带着学生一起算,这样并不能看出学生在计算中存在的问题,也就没能及时给予纠正.站在更高的角度去认识教材,站在平等的角度去对待学生.认真钻研教材,增加自己的知识储备量,把教材钻深、吃透真正理解教材的本意,然后去发展、延伸,只有这样才能达到事半功倍的效果,教师不能只停留在教材的表面,知其义而不知其理,这样只能是依样画瓢.再就是我觉得不能以教师的眼光去看学生,要和他们站在同一高度上去看待问题,发现学生出错的真正原因,共同去解决出现的问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章有理数及其运算9.有理数的除法
-、学生起点分析:
学生的知识技能基础:学生在小学时已熟知乘法与除法互为逆运算,而且也熟悉“除一个数等于乘以它的倒数的运算”的法则,这些知识和技能对于本节课的学习是必备的基础,另外前几节学过的有理数乘法法则以及运算律、倒数的概念等等,也是本节课学习的重要基础,尤其是前几节课采用的探索、猜想、验证的手段,更是本节课继续学习的研究方法.
学生的活动经验基础:学生在小学经历了除法向乘法的转化过程,并体验到了转化的作用,甚至掌握了转化的方法.这对本节课完成有理数的除法向乘法的转化是非常有利的,可以预见,也许学生就会利用小学学过的“除以一个数等于乘以一个数的倒数”的法则直接进行有理数的除法运算,对此教师应加以肯定,并明确此法则在有理数范围内同样成立.另外在前几节课对运算法则及运算律的语言表达过程中也积累了一些有用的数学语言,这对本节课除法法则的表达也是一个重要的语言基础.
二、学习任务分析:
教科书在学生掌握了有理数的加法、减法、乘法运算以及五条运算规律的基础上.特别是在学生有了一定的探究意识、方法、能力的基础上,提出了本节课的具体学习任务:探索发现有理数除法的法则,会进行有理数的除法运算.
本节课的教学目标:
1、经历探索发现有理数除法法则的过程,发展观察、归纳、猜想、验证、表达能力.
2、学会进行有理数的除法运算;掌握多个数相乘;商的符号判定方法.
3、会求有理数的倒数,会用“除以一个数等于乘以它的倒数”法则进行有理数的除法
运算,提高灵活解题的能力.
三、教学过程设计:
本节课设计了六个环节:第一环节:复习提问,引入新课;第二环节:特例归纳,猜想规律;第三环节:例题练习,巩固新知;第四环节:探究猜想,发现法则;第五环节:课堂小结;第六环节:布置作业;
第一环节:复习提高,引入新课
活动内容:(1)复习提问:“有理数的乘法法则如何叙述?”
(2)运用有理数乘法法则,请同学们回答下列各题计算结果:(投影片展示题目)
⑴(-2)×3 ;⑵4×(-1/4);⑶(-7)×(-3);
⑷ 6×(-8);⑸(-6)×(-8);;⑹(-3)×0.
(3)提问:已知两个因数的积和其中一个因数,要求另一个因数,应该用什么运算进行计算呢?
活动目的:复习巩固有理数的乘法法则,为本节课有理数除法的应用做准备工作,利用提问及回答,引出本节课的课题:有理数的除法.
活动的注意事项:在活动(2)中,不仅要回答计算结果,而且要说明理由,即叙述所依据的法则内容,另外因为题目简单,所以教师应把机会全部留给学习有困难的学生,让他们来回答并适当鼓励,以增强他们的自信.
第二环节:特例归纳,猜想规律
活动内容:(1)以提问的形式,让学生明确乘法与除法互为逆运算在有理数范围内也成立.
问题1:8÷4是什么运算?商等于多少?
问题2:0÷4等于多少?
问题3:(-12)÷(-3)是什么运算?商等于多少?
(2)在活动(1)的基础,请同学们想一想,分析讨论计算以下各题:
⑴(-18)÷6=_____;⑵5÷(-1÷5)=_____;
⑶(-27)÷(-9)=_____;⑷0÷(-2)=_____.
(3)观察以上算式,看看商的符号及商的绝对值与被除数和除数有何关系?如果有,请大家从特例中归纳猜想出一般规律,并用自己的语言叙述规律.
活动目的:用算术数除法类比有理数除法,从而明确除法是乘法的逆运算在有理数范围内也适用,所以活动(1)是活动(2)的准备,活动(2)是活动(1)的继续,也是活动(3)的准备,通过这一系列的活动,就为学生从特例中归纳猜想想出有理数的除法法则作好了充
分的铺垫工作.
活动的注意事项:(1)其中活动(1)与教科书稍有差别,这里设计它是起一个台阶作用,有利于学生活动(2)的进行.
(2)活动(2)的计算,一定要用活动(1)的方法进行,要让学的充分的讨论、分析、转化成乘法计算后得出结果,而不能条理的去归纳猜想,教师要适当引导,类比乘法法则,先确定结果的符号,再确定结果的绝对值,同时要注意除法与乘法的区别:0不能作除数的规定,总之,除法的运算法则要由学生归纳得出,教师适当补充和修正,最后板书规范内容并要求学生熟记.
第三环节:例题练习,巩固新知
活动内容:(1)用投影片展示教科书第80页
例1:计算:⑴(-15)÷(-3);⑵(-12)÷(-1÷4);
⑶(-0.75)÷0.25 ;⑷(-12)÷(-1÷12)÷(-100).
(2)用投影片展示一组练习题:
计算:⑴(-64)÷4;⑵(-3÷5)÷(-3);
⑶ 0÷(-16);⑷(-15)÷(-1÷5)÷(-2).
活动目的:对有理数除法法则的巩固和运用,练习和提高,例题和练习题中的第(4)题是为了得到多个数相除商的符号判定方法设计的.
活动的注意事项:(1)例题讲解时,要注意板书规范,体现除法法则的应用步骤.要一边板书,一边讲述法则的内容,当然可不要求书写每一步的依据,但应做到心中有数.
(2)关于例题中第(4)题的讲解时,一是讲清楚多个数相除时,可按顺序依次两个数相除进行;二是要讲清楚多个数相除时,也可以类比多个数相乘确定符号的方法进行,从而转化成非负数相除的情形.
(3)应设计一组练习题供学生巩固新知,不要因为教科书中没有练习而忽略这个程序.
第四环节:探究猜想,发现法则,巩固提高.
活动内容:(1)做一做(用投影片展示)
计算:⑴1÷(-2/5); 1×(-5/2);
⑵0.8÷(-3/10); 0.8×(-10/3);
⑶(-1/4)÷(-1/60); (-1/4)×(-60).
(2)计算出结果后,请同学们比较每一组小题中两个结果,并用语言叙述其中的规律.
(3)想一想:负数的倒数如何求?
(4)巩固提高:
1.计算:
(1)(-18)÷6;(2)(-63)÷(-7); (3)(-36)÷6; (4)1÷(-9);
(5)0÷(-8); (6)16÷(-3).
2.计算
(1)( 94-
)÷(32- );(2)(-6.5)÷0.13;
(3)( 53-
)÷( 52- );(4) 54 ÷(-1). 3. 计算
(1)( 7624
- )÷(-6);
(2)-3.5÷
87 ×( 43- );
(3)(-6)÷(-4)×(5
11- ).
活动目的:活动⑴一方面是除法法则的进一步巩固练习,以熟练运用技能,另一方面主要是为活动⑵提供问题素材,活动⑵是让学生通过观察每一小题的结果,发现规律,并思考得出除法的另一个法则:除以一个数等于乘以这个数的倒数;活动⑶是为下一步运用法则进行除以计算时做准备工作,即首先学会负数的倒数的求法,才有可能去做除法运算,活动⑷是为了掌握除法第2法则的练习题.
活动的注意事项:(1)活动⑵)中用语言叙述除法的第二法则一般没问题,因为这一法则在小学就已熟知.这里需要注意的是不能因为学生已经知道,就忽略了活动(1)的计算和观察比较,而必须让学生经历⑴⑵,并由学生把法则叙述出来,教师千万不能代替.
(2)活动⑶中怎样求负数的倒数,要让学生观察活动⑴中的计算,总结出求负数的倒数的方法,并概括有理数的倒数的求法.
(3)在巩固练习时,首先要练习除法的第二法则,同时应让学生知道,在计算时,可根据具体的情况选用两个法则,一般而言,两个数能整除时,应用第一法则,两个数不能整除时或除数为分数时,应用第二法则,这种选择意识的培养应不失时机的随时进行.
第五环节:课堂小结
活动内容:(1)由提问的方式进行课堂小结,如⑴请同学们叙述除法的两个法则;⑵有理数的倒数的求法.
(2)由教师总结有理数四则运算的步骤以及运用法则进行计算的注意事项.
活动目的:培养学生课堂主人翁精神,提高语言表达能力和概括能力,另外因为有理数的四则运算已告段落,教师提纲携领地总结一些计算的注意事项,可以帮助学生更好地掌握有理数的运算法则.
活动的注意事项:教师在总结有理数运算法则的应用时,不需要把每一条法则都复述一次,而应指明运算的共性,还应指明进行有理数除法时,要根据题目特点,恰当选择有理数除法法则进行计算.另外要指明有理数除法转化成乘法后,还要注意利用乘法的运算律简化计算过程,等等.
第六环节:布置作业
活动内容:教科书第82页习题2.12知识技能1、2、3问题解决.
活动目的;复习巩固检测本节知识,训练提高运算技能,应用有理数运算解决实际问题.
活动注意事项:对知识技能第1题的计算,应要求学生不能直接写出结果,而应写出过程,体现运用除法法则的步骤,以巩固有理数除法法则,培养言之有理,落笔有据的思维习惯,对问题解决中的应用题,是混合运算的应用.要提醒学生注意格式和单位,另外,可有选择的布置作业或分层适量,区别对待等等.
四、教学反思:
1、数学的教学活动必须建立在学生的认识发展水平和已有的知识经验基础上,本节课正是考虑和分析到了这一事实,向学生提供了充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中真正理解和掌握有理数的除法法则,并在活动中获得了一定的数学活动经验.这一做法已在最近几节课中都有所体现,而且收到了较好的效果,所以在有理数四则运算即将结束之时,有必要对这一段的教学经验加以总结,以便于更好地进行下一单元的教学.
2、要关注学生数学学习的过程,要关注学生在数学活动中所表现出来的态度,帮助学生建立信心、展示自我,要坚持这一做法.。