初中数学竞赛专题培训(23):几何不等式
九年级数学几何不等式例题讲解
九年级数学几何不等式例题讲解知识点、重点、难点所谓几何不等式,指不等关系出现在几何问题之中,它将几何的论证与不等式的技巧有机结合在一起,其综合性与难度都较高。
有关几何不等关系的性质和定理如下:1.三角形两边之和大于第三边,两边之差小于第三边。
2.三角形的外角大于任一不相邻内角。
3.同一三角形中大角对大边,大边对大角。
4.两点之间直线段最短。
5.两边对应相等的两个三角形中,所夹的角越大,则第三边越大。
6.两边对应相等的两个三角形中,第三边越大,则它所对的角越大。
7.直角三角形的斜边大于任一直角边。
8.同圆或等圆中,弧长越长,所对的圆心角以及圆周角越大。
9.同圆或等圆中,直径大于任何一条非直径的弦。
可以看到,几何不等式的基础大多数源于三角形中,所以三角形中的不等式是占绝大多数的,而很多包括四边形、圆的问题都可以化为三角形中的不等关系,因此三角形中的各种不等式是我们讨论的一个重点。
要注意到,很多几何不等式实际上是代数不等式,还有相当一部分几何不等式的证明过程中用到了经典的代数不等式,其中最常用到的是均值不等式和柯西不等式。
柯西不等式:设1212,,,,,,n n x x x y y y R ∈则222222212121122()()().n n n n x x x y y y x y x y x y ++++++≥+++当且仅当iix y λ=(λ为常数,1,,i n =)时,等号成立。
均值不等式:设12,,0,n x x x >则12n x x x n+++≥例1:已知AD 是△ABC 的∠A 的平分线,过A 作直线PQ ⊥AD ,M 是PQ 上任一点,求证:MB +MC >AB +AC .分析 欲证MB +MC >AB +AC ,如能适当地进行变换将MB 、MC 、AB 、AC 集中到一个三角形内,问题就好解决了。
因为PQ ⊥AD ,则PQ 平分∠BAC 的外角∠BAC ,如以PQ 为轴将△AMB 翻转180°,AB 将落在AF 上。
初中几何第07讲 几何不等式(1)
第七讲几何不等式(1)几何问题中出现的不等式称为几何不等式.解数学竞赛中出现的几何不等式,需要熟悉几何中有关的基本不等式和常用的定理,还要掌握代数方法和三角方法.1.有关证明线段不等的公理和定理(1) 在联结两点的所有线中,线段最短.(2) 在同一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.(3) 定点P到定直线的最短距离,是从P向定直线所作的垂线段的长.(4) 在两个三角形中,如果有两组对应边分别相等,那么夹角大的所对的第三边也大.(5) 托勒密不等式:在四边形ABCD中,有AB·CD+AD·BC≥AC·BD.当且仅当ABCD是圆内接四边形时等号成立.(6) 欧拉定理,欧拉不等式若△ABC的外接圆半径为R,内切圆半径为r,两圆心间的距离为d,则d=)2(rR-,当且仅当△ABC为正三角形时,d=0. R≥2rR(7) 埃德斯——莫德尔不等式设P为△ABC内任意一点,Ra, R b, Rc分别表示P到顶点A、B、C的距离,d a, d b, d c分别表示P到三边BC,CA,AB的距离,则R a+ R b+ R c≥2(d a+ d b+ d c)(8) 费尔马点在△ABC中,使PA+PB+PC为最小的平面上的点成为费尔马点,当∠BAC≥120°时,A点即为费尔马点,当△ABC内任一内角均小于120°时,则与三边张角均为120°时的P点即为费尔马点.2.有关证明角不等的定理(1)三角形的任何一个外角大于和它不相邻的任意一个内角.(2)在同一个三角形中,大边对大角,小边对小角,反之亦然.3.圆中有关不等量的知识(1)在同圆或等圆中,圆心角(锐角)大则所对的弧大、弦大、弦心距小.(2)过圆内一定点的弦中,以此点为中点的弦最小.(3)若A,B,C为圆上的点,P为圆外的点,Q为圆内的点,且P,C,Q都在直线AB的同侧,则∠AQB >∠ACB >∠APB,4. 有关面积的几何不等式(1) 外森比克不等式:设△ABC的边长和面积分别为a, b, c和S,则a2+b2+c2S3≥,当且仅当△ABC为正三角形时等号成立.4(2) 等周定理:周长一定的三角形中,以正三角形的面积最大;周长一定的矩形中,以正方形的面积最大.5.几何不等式的证明有时还要用到代数知识(如平均不等式等)和三角知识.例1. (1995 IMO)凸六边形ABCDEF,满足AB= BC= CD,DE=EF=FA,∠BCD=∠EFA=60º.设G和H是这六边形内部的两点,使得∠AGB=∠DHE= 120º.试证:AG+ GB+ GH+ DH+ HE≥CF.例2. 已知正方形ABCD内部一点E,并且E到三个顶点A,B,C的距离之和的。
全国初中数学竞赛辅导(初2)第23讲 几何不等式
第 十 讲 几何 等式平面图形中所含的线段长度、角的大小及图形的面 在许多情形 会呈现 等的关系.由于 些 等关系出现在几何问题中 故 之 几何 等式.在解决 类问题时 们 常要用到一些教科书中已学过的基本定理 本讲的 要目的是希望大家 确运用 些基本定理 通过几何、 角、代数等解题方法去解决几何 等式问题. 些问题难度较大 在解题中除了运用 等式的性质和已 证明过的 等式外 需考虑几何图形的特点和性质.几何 等式就 形式来说 外乎分 线段 等式、角 等式以及面 等式 类 在解题中 仅要用到一些有关的几何 等式的基本定理 需用到一些图形的面 公式. 面先给出几个基本定理.定理1 在 角形中 任两边之和大于第 边 任两边之差小于第 边.定理2 一个 角形中 大边对大角 小边对小角 反之亦然.定理3 在两边对应相等的两个 角形中 第 边大的 所对的角 大 反之亦然.定理4 角形内任一点到两顶点距离之和 小于另一顶点到 两顶点距离之和.定理5自直线l外一点P引直线l的斜线 射影较长的斜线 较长 反之 斜线长的射影 较长.说明 如图2-135所示.PA PB是斜线 HA和HB分别是PA和PB在l 的射影 若HA HB 则PA PB 若PA PB 则HA HB. 实由勾股定理知PA2-HA2称PH2称PB2-HB2所以PA2-PB2称HA2-HB2.从而定理容易得证.定理6 在△ABC中 点P是边BC 任意一点 则有PA max{AB AC}当点P A或B时等号 立.说明 max{AB AC}表示AB AC中的较大者 如图2-136所示 若P 在线段BH 则由于PH BH 由 面的定理5知PA BA 从而PA max{AB AC}.理 若P在线段HC 样有PA max{AB AC}.例1 在锐角 角形ABC中 AB AC A≤ 中线 P △A≤C内一点 证明 PB PC(图2-137).证 在△A≤B △A≤C中 A≤是公共边 B≤称≤C 且AB AC 由定理3知 ∠A≤B ∠A≤C 所以∠A≤C 90°.过点P作PH⊥BC 垂足 H 则H必定在线段B≤的延长线 .如果H在线段≤C内部 则BH B≤称≤C HC.如果H在线段≤C的延长线 显然BH HC 所以PB PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证a b c(2)若△ABC 角形 且边长 1 求证PA+PB PC 2.证 (1)由 角形两边之和大于第 边得PA PB c PB PC a PC PA b.把 个 等式相加 再两边除以2 便得又由定理4可知PA PB a b PB PC b cPC+PA c a.把它们相加 再除以2 便得PA PB PC a b c.所以(2)过P作DE∥BC交 角形ABC的边AB AC于D E 如图2-138所示.于是PA max{AD AE} ADPB BD DP PC PE EC所以PA PB PC AD BD DP PE EC称AB AE EC称2.例3如图2-139.在线段BC 侧作两个 角形ABC和DBC 使得AB称AC DB DC 且AB AC称DB DC.若AC BD相交于E 求证 AE DE.证 在DB 取点F 使DF称AC 并连接AF和AD.由已知2DB DB+DC称AB+AC称2AC所以 DB AC.由于DB DC称AB AC称2AC 所以DC BF称AC称AB.在△ABF中AF AB-BF称DC.在△ADC和△ADF中AD称AD AC称DF AF CD.由定理3 ∠1 ∠2 所以AE DE.例4 设G是 方形ABCD的边DC 一点 连结AG并延长交BC延长线于K 求证分析 在 等式两边的线段数 的情况 一般是设法构造 所边的 角形.证 如图2-140 在GK 取一点≤ 使G≤称≤K 则在Rt△GCK中 C≤是GK边 的中线 所以∠GC≤称∠≤GC.而∠ACG称45° ∠≤GC ∠ACG 于是∠≤GC 45°所以∠AC≤称∠ACG ∠GC≤ 90°.由于在△AC≤中∠AC≤ ∠A≤C 所以A≤ AC.故例5如图2-141.设BC是△ABC的最长边 在 角形内部任选一点O AO BO CO分别交对边于A′ B′ C′.证明(1)OA′ OB′ OC′ BC(2)OA′ OB′+OC′ max{AA′ BB′ CC′}.证 (1)过点O作O下 O同分别平行于边AB AC 交边BC于下 同点 再过下 同分别作下S 同T平行于CC′和BB′交AB AC于S T.由于△O下同∽△ABC 所以下同是△O下同的最大边 所以OA′ max{O下 O同} 下同.又△B下S∽△BCC′ 而BC是△BCC′中的最大边 从而B下 是△B下S 中的最大边 而且S下OC′是平行四边形 所以B下 下S称OC′.理C同 OB′.所以OA′ OB′ OC′ 下同 B下 C同称BC.所以OA′ OB′+OC′称x·AA′+y·BB′ z·CC′(x+y+z)max{AA′ BB′ CC′}称max{AA′ BB′ CC′}面 们举几个 角有关的 等式问题.例6 在△ABC中 D是中线A≤ 一点 若∠DCB ∠DBC 求证 ∠ACB ∠ABC(图2-142).证 在△BCD中 因 ∠DCB ∠DBC 所以BD CD.在△D≤B △D≤C中 D≤ 公共边 B≤称≤C 并且BD CD 由定理3知 ∠D≤B ∠D≤C.在△A≤B △A≤C中 A≤是公共边 B≤称≤C 且∠A≤B ∠A≤C 由定理3知 AB AC 所以∠ACB ∠ABC.说明 在证明角的 等式时 常常把角的 等式转换 边的 等式.证 由于AC AB 所以∠B ∠C.作∠ABD称∠C 如图2即证BD∠CD.因 △BAD∽△CAB即 BC 2BD.又 CD BC-BD所以BC CD 2BD BC-BD所以 CD BD.从而命题得证.例8在锐角△ABC中 最大的高线AH等于中线B≤ 求证 ∠B 60°(图2-144).证 作≤H1⊥BC于H1 由于≤是中点 所以于是在Rt△≤H1B中∠≤BH1称30°.延长B≤至≥ 使得≤≥称B≤ 则ABC≥ 平行四边形.因 AH 最ABC中的最短边 所以A≥称BC AB从而∠AB≥ ∠A≥B称∠≤BC称30°∠B称∠AB≤+∠≤BC 60°.面是一个非常著 的问题——费马点问题.例9 如图2-145.设O △ABC内一点 且∠AOB称∠BOC称∠COA称120°P 任意一点( 是O).求证PA PB+PC OA+OB+OC.证 过△ABC的顶点A B C分别引OA OB OC的垂线 设 条垂线的交点 A1 B1 C1(如图2-145) 考虑四边形AOBC1.因∠OAC1称∠OBC1称90° ∠AOB称120°所以∠C1称60°. 理 ∠A1称∠B1称60°.所以△A1B1C1 角形.设P到△A1B1C1 边B1C1 C1A1 A1B1的距离分别 ha hb hc 且△A1B1C1的边长 a 高 h.由等式S△A1B1C1称S△PB1C1+S△PC1A1 S△PA1B1知所以 h称h a h b h c.说明 △A1B1C1内任一点P到 边的距离和等于△A1B1C1的高h 是一个定值 所以OA OB OC称h称定值.显然 PA PB PC P到△A1B1C1 边距离和 所以PA PB PC h称OA OB OC.就是 们所要证的结论.由 个结论可知O点 有如 性质 它到 角形 个顶点的距离和小于 他点到 角形顶点的距离和 个点叫费马点.练 十1.设D是△ABC中边BC 一点 求证 AD 大于△ABC中的最大边.2.A≤是△ABC的中线 求证3.已知△ABC的边BC 有两点D E 且BD称CE 求证 AB AC AD AE.4.设△ABC中 ∠C ∠B BD CE分别 ∠B ∠C的平分线 求证 BD CE.5.在△ABC中 BE和CF是高 AB AC 求证AB+CF AC BE.6.在△ABC中 AB AC AD 高 P AD 的任意一点 求证PB-PC AB-AC.7.在等腰△ABC中 AB称AC.(1)若≤是BC的中点 过≤任作一直线交AB AC(或 延长线)于DE 求证 2AB AD+AE.(2)若P是△ABC内一点 且PB PC 求证 ∠APB ∠APC.。
初中数学竞赛专题培训(23):几何不等式
初中数学竞赛专题培训第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA 和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA >HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC 内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB >DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD ∠CD .因为△BAD ∽△CAB ,即 BC >2BD .又 CD >BC -BD ,所以BC +CD >2BD +BC -BD ,所以 CD >BD .从而命题得证.例8 在锐角△ABC 中,最大的高线AH 等于中线BM ,求证:∠B <60°(图2-144).证 作MH 1⊥BC 于H 1,由于M 是中点,所以于是在Rt △MH 1B 中,∠MBH 1=30°.延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH为最ABC中的最短边,所以AN=BC <AB ,从而∠ABN <∠ANB=∠MBC=30°, ∠B=∠ABM+∠MBC <60°.下面是一个非常著名的问题——费马点问题. 例9 如图2-145.设O 为△ABC 内一点,且∠AOB=∠BOC=∠COA=120°,P 为任意一点(不是O).求证:PA +PB+PC >OA+OB+OC .证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为∠OAC 1=∠OBC 1=90°,∠AOB=120°,所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形.设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1知所以 h=h a +h b +h c .这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1的高h ,这是一个定值,所以OA +OB +OC=h=定值.显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以PA +PB +PC >h=OA +OB +OC .这就是我们所要证的结论.由这个结论可知O 点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D 是△ABC 中边BC 上一点,求证:AD 不大于△ABC 中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB +AC>AD+AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD>CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
数学竞赛中的不等式知识点总结
数学竞赛中的不等式知识点总结数学竞赛在学生的学习中扮演着很重要的角色,不仅能够提高学生的数学素养,还能够培养学生的逻辑思维能力和解题能力。
在数学竞赛中,不等式是一个非常重要的知识点,很多的数学竞赛都会考察不等式相关的题目,因此在备战数学竞赛的过程中,掌握好不等式知识点是非常必要的。
1.基本不等式基本不等式是指在所有正整数中,算术平均数大于等于几何平均数。
即对于任意正整数$a_1,a_2,\cdots,a_n$,都有:$\frac{a_1+a_2+\cdots+a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$基本不等式是不等式中最基础的知识点,但是在数学竞赛中应用的非常广泛,尤其是在证明其他不等式定理时,基本不等式起到了非常重要的作用。
2.均值不等式均值不等式是指在所有实数中,算术平均数大于等于几何平均数。
均值不等式分为两种情况,一种是两个数的情况,另一种是多个数的情况。
两个实数$a$和$b$的均值不等式如下:$\frac{a+b}{2} \geq \sqrt{ab}$多个实数$a_1,a_2,\cdots,a_n$的均值不等式如下:$\frac{a_1+a_2+\cdots +a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$均值不等式是在基本不等式的基础上发展起来的,应用范围比基本不等式更广泛,也更加灵活。
3.柯西不等式柯西不等式是指两个向量的点积不大于这两个向量的模的乘积。
柯西不等式可用于证明其他不等式,也可作为求极值的工具在数学竞赛中得到广泛应用。
柯西不等式如下:$(x_1y_1+x_2y_2+\cdots+x_ny_n)^2 \leq(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)$其中$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$是任意实数。
初中数学竞赛:几何不等式
初中数学竞赛:几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB >DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证 由于AC >AB ,所以∠B >∠C .作∠ABD=∠C ,如图2即证BD ∠CD .因为△BAD ∽△CAB ,即 BC >2BD .又 CD >BC -BD ,所以BC +CD >2BD +BC -BD ,所以 CD >BD .从而命题得证.例8 在锐角△ABC 中,最大的高线AH 等于中线BM ,求证:∠B <60°(图2-144).证 作MH 1⊥BC 于H 1,由于M 是中点,所以于是在Rt △MH 1B 中,∠MBH 1=30°.延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH 为最ABC 中的最短边,所以AN=BC <AB ,从而∠ABN <∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC <60°.下面是一个非常著名的问题——费马点问题.例9 如图2-145.设O 为△ABC 内一点,且∠AOB=∠BOC=∠COA=120°,P 为任意一点(不是O).求证:PA +PB+PC >OA+OB+OC .证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为∠OAC 1=∠OBC 1=90°,∠AOB=120°,所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形. 设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1知所以 h=h a +h b +h c .这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1的高h ,这是一个定值,所以OA+OB+OC=h=定值.显然,PA+PB+PC>P到△A1B1C1三边距离和,所以PA+PB+PC>h=OA+OB+OC.这就是我们所要证的结论.由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD >CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
专题几何不等式
专题几何不等式Company number:【0089WT-8898YT-W8CCB-BUUT-202108】专题:几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y 点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.又 CD>BC-BD,所以BC+CD>2BD+BC-BD,所以 CD>BD.从而命题得证.例8在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(图2-144).证作MH1⊥BC于H1,由于M是中点,所以于是在Rt△MH1B中,∠MBH1=30°.延长BM至N,使得MN=BM,则ABCN为平行四边形.因为AH为最ABC 中的最短边,所以AN=BC<AB,从而∠ABN<∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC<60°.下面是一个非常着名的问题——费马点问题.例9如图2-145.设O为△ABC内一点,且∠AOB=∠BOC=∠COA=120°,P为任意一点(不是O).求证:PA+PB+PC>OA+OB+OC.证过△ABC的顶点A,B,C分别引OA,OB,OC的垂线,设这三条垂线的交点为A1,B1,C1(如图2-145),考虑四边形AOBC1.因为∠OAC1=∠OBC1=90°,∠AOB=120°,所以∠C1=60°.同理,∠A1=∠B1=60°.所以△A1B1C1为正三角形.设P到△A1B1C1三边B1C1,C1A1,A1B1的距离分别为ha,hb,hc,且△A1B1C1的边长为a,高为h.由等式S△A1B1C1=S△PB1C1+S△PC1A1+S△PA1B1知所以 h=h a+h b+h c.这说明正△A1B1C1内任一点P到三边的距离和等于△A1B1C1的高h,这是一个定值,所以OA+OB+OC=h=定值.显然,PA+PB+PC>P到△A1B1C1三边距离和,所以PA+PB+PC>h=OA+OB+OC.这就是我们所要证的结论.由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD>CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
算数几何不等式
算数几何不等式一、算数不等式算数不等式是数学中常见的一种表达形式,它以不等于号“≠”、“<”、“>”、“≤”、“≥”等符号来表示两个数之间的大小关系。
算数不等式在解决实际问题中起到重要的作用。
1.1 一元一次不等式一元一次不等式是一种常见的算数不等式,它的形式为ax+b>c,其中a、b和c为已知的实数,x为未知数。
解一元一次不等式的关键是确定x的取值范围。
例如,对于不等式2x+3>7,首先将不等式转化为等价的形式,即2x>4。
然后将x的取值范围确定为x>2,即x的取值大于2。
1.2 一元二次不等式一元二次不等式是一种稍复杂的算数不等式,它的形式为ax^2+bx+c>d,其中a、b、c和d为已知的实数,x为未知数。
解一元二次不等式的关键是确定x的取值范围。
例如,对于不等式x^2-4x+3>0,可以将其转化为(x-1)(x-3)>0的形式。
根据乘积的性质,当(x-1)(x-3)>0时,要么x-1>0且x-3>0,要么x-1<0且x-3<0。
因此,x的取值范围为1<x<3。
二、几何不等式几何不等式是数学中与图形相关的不等式,它描述了图形的性质和关系。
几何不等式常用于证明几何定理和解决几何问题。
2.1 三角形不等式三角形不等式是描述三角形边长关系的不等式,它的一般形式为a+b>c,其中a、b和c为三角形的边长。
三角形不等式的一个重要性质是,任意两边之和大于第三边。
例如,对于一个三角形,其中两边的长度分别为5和7,那么根据三角形不等式,第三边的长度必须满足5+7>第三边,即12>第三边。
2.2 正方形不等式正方形不等式是描述正方形边长和对角线关系的不等式,它的一般形式为2s>d,其中s为正方形的边长,d为正方形的对角线长度。
例如,对于一个正方形,边长为5,那么根据正方形不等式,对角线的长度必须满足2*5>对角线,即10>对角线。
初中竞赛数学17.几何不等式(含答案)
17.几何不等式A 卷1.在坐标系中点P (-2,1)与点Q (3,-2)之间最短线是_________,长度是_________,这就点P 与Q 之间的距离。
2.在坐标系xoy 中,点P (-4,6)到x 轴与y 轴的最近距离分别是_________。
3.设x>0,则三个正数2x , 3x, x +5,构成三角形三边的条件是__________;构成直角三角形、锐角三角形、钝角三角形的x 的取值范围分别是__________、__________、_______。
4.在直角坐标系xoy ,定点A (-2,5)、B (3,-2),动点P 在x 轴上,则PA+PB 的最小值是___________;|PA-PB|最大值是_____________。
5.在两个三角形中,如果有两级对应边分别相等,那么夹角较大的,其对边___________。
6.在同底等高的三角形中,以___________的周长最短。
7.过圆内某点的所有弦长,长度最短的叫这点的极小弦。
则圆内某点的极小弦与该圆过该点的半径__________,并且弦长被该点_____________。
8.⊙O 的半径是5cm ,在⊙O 外取一点P 使PO=7cm ,Q 是⊙O 上的动点,则PQ 的取值范围是___________。
9.边长为2的正方形的顶点A 到其内切圆周上的最远距离是____________,最短距离是__________。
10.边长为a 的正方形面积为1S ,边长为b 的正方形面积为2S ,面积为3S 的正方形的边长是a 与b 的算术平均值,则3S =221S S +的大小关系是___________。
B 卷1.在一条直线l 上顺次取定四点A 、B 、C 、D ,使PA+PB+PC+PD 最小的点P 位置是__________。
2.在直线l 两侧各取一定点A 、B ,直线l 上动点P ,则使PA+PB 最小的点P 的位置是___________。
专题几何不等式
专题:几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l 上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P 在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB >∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.又 CD>BC-BD,所以BC+CD>2BD+BC-BD,所以 CD>BD.从而命题得证.例8在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(图2-144).证作MH1⊥BC于H1,由于M是中点,所以于是在Rt△MH1B中,∠MBH1=30°.延长BM至N,使得MN=BM,则ABCN为平行四边形.因为AH为最ABC中的最短边,所以AN=BC<AB,从而∠ABN<∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC<60°.下面是一个非常著名的问题——费马点问题.例9如图2-145.设O为△ABC内一点,且∠AOB=∠BOC=∠COA=120°,P为任意一点(不是O).求证:PA+PB+PC>OA+OB+OC.证过△ABC的顶点A,B,C分别引OA,OB,OC的垂线,设这三条垂线的交点为A1,B1,C1(如图2-145),考虑四边形AOBC1.因为∠OAC1=∠OBC1=90°,∠AOB=120°,所以∠C1=60°.同理,∠A1=∠B1=60°.所以△A1B1C1为正三角形.设P到△A1B1C1三边B1C1,C1A1,A1B1的距离分别为ha,hb,hc,且△A1B1C1的边长为a,高为h.由等式S△A1B1C1=S△PB1C1+S△PC1A1+S△PA1B1知所以 h=h a+h b+h c.这说明正△A1B1C1内任一点P到三边的距离和等于△A1B1C1的高h,这是一个定值,所以OA+OB+OC=h=定值.显然,PA+PB+PC>P到△A1B1C1三边距离和,所以PA+PB+PC>h=OA+OB+OC.这就是我们所要证的结论.由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD +AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD>CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
2020年第23讲几何不等式-初二奥数教材精编版
第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l 上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P 在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB >∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.又 CD>BC-BD,所以BC+CD>2BD+BC-BD,所以 CD>BD.从而命题得证.例8在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(图2-144).证 作MH 1⊥BC 于H 1,由于M 是中点,所以于是在Rt △MH 1B 中,∠MBH 1=30°.延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH 为最ABC 中的最短边,所以AN=BC <AB ,从而∠ABN <∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC <60°.下面是一个非常著名的问题——费马点问题.例9 如图2-145.设O 为△ABC 内一点,且∠AOB=∠BOC=∠COA=120°,P 为任意一点(不是O).求证:PA +PB+PC >OA+OB+OC .证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为∠OAC 1=∠OBC 1=90°,∠AOB=120°,所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形. 设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1知所以 h=h a +h b +h c .这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1的高h ,这是一个定值,所以OA +OB +OC=h=定值.显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以PA +PB +PC >h=OA +OB +OC .这就是我们所要证的结论.由这个结论可知O 点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D 是△ABC 中边BC 上一点,求证:AD 不大于△ABC 中的最大边.2.AM 是△ABC 的中线,求证:3.已知△ABC 的边BC 上有两点D ,E ,且BD=CE ,求证:AB +AC >AD +AE .4.设△ABC 中,∠C >∠B ,BD ,CE 分别为∠B 与∠C 的平分线,求证:BD >CE .5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
初中数学竞赛专题-第二十三章特殊四面体的性质及应用
第二十三章 特殊四面体的性质及应用【基础知识】特殊四面体包括垂心四面体(四条高线交于一点的四面体),直角四面体(有一个三面焦是直三面角的四面体,或过同一顶点的三条棱互相垂直的四面体),拟腰四面体(两对对棱相等的四面体),等面四面体(三对对棱相等的四面体),正四面体(六条棱长相等的四面体)等.特殊四面体除了具有一般四面体的性质外,还具有各自独特的性质. 1.垂心四面体性质1垂心四面体的对棱互相垂直.反之亦然.事实上,若四面体ABCD 为垂心四面体,垂心为H ,则AH ,BH 均与CD 垂直,从而AB CD ⊥. 同理,AC BD ⊥,AD BC ⊥.反之,由AB CD ⊥,过AB 作CD 的垂面交CD 于E ,设H 为ABE △的垂心,则AH BE ⊥,AH CD ⊥,所以AH 是面BCD 的垂线.同样,BH 是面ACD 的垂线,四面体ABCD 的每两条高交于一点,每三条高不共面,所以四条高必交于同一点.于是H 为四面体的垂心,即四面体为垂心四面体. 性质2垂心四面体的高过底面的垂心,反之亦然.事实上,由性质1,设顶点A 在底面BCD 上的射影为F ,由于AB CD ⊥,所以AB 的射影BF CD ⊥.同样CF BD ⊥,即F 为BCD △的垂心.性质3垂心四面体对棱的平方和相等.反之亦然.事实上,由性质2,知A 在面BCD 上的射影F 为BCD △的垂心.设BF 交CD 于E ,则 22222222AC AD CF DF CE DE BC BD --==-=-,即有2222AC BD AD BC +=+.同理,2222AC BD AB CD +=+.性质4垂心四面体连接对棱中点的线段相等.反之亦然. 事实上,由性质3,设E ,F 分别为AB ,CD 的中点,则()22222222222114222EF AF BF AB AC AD CD BC BD CD AB =+-=+-++--()222222AC BD BC AD AB CD =+=+=+.即证.反之,考察过对棱的相互平行的六个平面构成的平行六面体,六面体的棱长恰好等于连结四面体对棱中点的线段,因此,六面体的棱均相等,各面为菱形,菱形对角线(即四面体的对棱)互相垂直. 由于从性质1⇒性质2⇒性质3⇒性质4⇒性质1,从而性质2,3,4的反之亦然.上述性质中的反之亦然,其实也是垂心四面体的四条判定定理.由性质4的证明中可知有性质5垂心四面体的外接平行六面体(四面体的棱为平行六面体的侧面对角线)各面是菱形. 性质6平行于四面体任一组对棱的平面截其余四条棱的截口面为矩形. 性质7垂心四面体对棱之公垂线共点于垂心.性质8垂心四面体的外心、重心、垂心共线,且外心到重心的距离等于重心到垂心的距离. 2.直角四面体直角四面体有如下判定定理和性质:判定定理对棱都垂直且有一个面角为直角的四面体是直角四面体.事实上,在四面体ABCD 中,若90DAC ∠=︒,则由AD BC ⊥,知AC ⊥面ABC ,从而AD AB ⊥,即90DAB ∠=︒.又由AB CD ⊥,知AB ⊥面ACD ,有90BAC ∠=︒.即证. 推论1两组对棱垂直且有一个面角为直角的四面体是直角四面体.推论2四面体一顶点到对面的射影是该面的垂心,且该顶点的三面角的面角中有一个为直角,那么这个四面体是直角四面体.显然,上述判定定理及推论的逆命题也是直角四面体的性质.为了方便讨论直角四面体的一系列性质引进一些记号:设直角四面体PABC 的直三面角是三面角P ABC -,其体积为V ,棱PA a =,PB b =,PC c =.顶点x 所时的面的面积记为x S ;以棱y 为二面角棱的二面角大小记为y θ;四面体PABC 的内切球、外接球的半径分别记为x r .由于直角四面体是垂心四面体,因此,可得性质1直角四面体具有垂心四面体的所有性质.性质2三对对棱中点的连线共点(设为G ,且此点称为四面体的重心)且互相平分;三对对棱中点的连线长相等, 性质3不含直角的侧面三角形是锐角三角形,且这每一个面角的正切值等于这个面的面积的2倍与该面角所对的棱长平方之比;这每一面角的余弦值等于与此面共顶点的另两个面角余弦值之积. 性质4(1)cos cos cos P A BC B AC C AB S S S S θθθ=⋅+⋅+⋅; (2)cos A P BC S S θ=⋅,cos B P AC S S θ=⋅,cos C P AB S S θ=⋅; (3)222cos cos cos 1BC AC AB θθθ++=;(4)34AB BC AC θθθπ<++<π. 下面只给出(4)式的证明思路: 由(3)式有222cos cos cos cos cos cos cos 0BC AC AB AB AC AB AC θθθθθθθ---⋅+>==()(). 又cos cos 0AB AC θθ->,则cos cos 0AB AC θθ+<,故2AB AC θθπ<+.同理还有两式,相加即证(4)式左端.又()()cos cos AB AC AB AC θθθθ⎡⎤π++=-+⎣⎦,在[]0,π内余弦函数递减,有cos[]cos[]cos AB AC AB AC AB AC θθθθθθπ-+π--<-()=()(),即有()22cos cos BC AB AC θθθ⎡⎤>π-+⎣⎦,由此即证得(4)式右端.由性质4(3)及幂平均、算术一几何平均值不等式,我们有推论(1)cos cos cos AB BC AC θθθ++(2)cos cos cos AB BC AC θθθ⋅⋅ (3)cos cos cos cos cos cos 1AB BC BC AC AB AC θθθθθθ⋅+⋅+⋅≤;(4)sin sin sin AB BC AC θθθ++;(5)sin sin sin AB BC AC θθθ⋅⋅; (6)sin sin sin sin sin sin 2AB BC BC AC AB AC θθθθθθ⋅+⋅+⋅≤.性质5含直角的侧面面积是它在不含直角的侧面上的射影面积与这不含直角的侧面面积的比例中项.性质62222P A B C S S S B =++.性质7二面角大小为θ(90θ≠︒)的两侧面中,含直角的侧面面积S 与不含直角的侧面面积P S 之比为cos θ.特别地,60θ=︒时,12P S S =∶∶;45θ=︒时,22P S S =∶∶;30θ=︒时,32P S S =∶∶;3arccos3θ=时,33P S S =∶∶. 性质8222222sin sin sin B CA CA BP ABBCACS S S S S S S θθθ+++===.性质91263A B C V abc S S S ==⋅⋅. 性质10设S 为直角四面体的全面积,L 为6条棱长的乘积,则32333362S V +⋅⋅≥;722L V ≥. 性质11直角四面体的四顶点与其所对侧面重心的四条连线共点,共点于三对对棱中点连线的交点.亦即七线共点于直角四面体重心.性质12直角四面体的四顶点与其所对的侧面垂心的四条连线共点,共点于其直三面角顶点P ,此点为直角四面体的垂心.由此也可知直角四面体是垂心四面体.性质13非直三面角体的三顶点与其所对的侧面外心的三条连线共点,共点于不含直角的侧面三角形的重心.性质14过含直角的侧面三角形的外心,且与该侧面垂直的三直线共点,共点于直角四面体的外心. 性质15设A m 、B m 、C m 、P m 分别为直角四面体四顶点与所对面的重心的连线长(或称四面体的4条中线长),则()222222243A B C P m m m m a b c +++=++. 分析如图23-1,设1G 为侧面ABC △的重心,设1PG E α∠=.由三角线中线长公式,有()22214PE b c =+,()2222144AE a b c =++.又()2222222211222222cos 2cos 333333P P P P P PE PA AE m AE m AE m AE m m AE αα⎡⎤⎡⎤⎛⎫⎛⎫+=+-⋅⋅⋅+++⋅⋅⋅=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦由此即有()222219P m a b c =++.类似可求()2222199A m a b c =++,()2222199B m a b c =++,()2222199C m a b c =++,由此即获结论. 性质16R 且与对棱中点的连线长相等;外接球的球心是分别过直三面角的三条棱与其所对棱中点的三个平面的公共点.性质17()2A B C P A B C P S S S S abcr S S S S a b c ++-==+++++;内切球的球心是其棱不共顶点的三个二面角平分面的公共点. 性质18()2A B C P P A B C P S S S S abcr S S S S a b c+++==++-++;()2A P B C A B C P A S S S S abcr S S S S b c a +--==++-+-;()2B P A C B A C P B S S S S abcr S S S S a c b +--==++-+-;()2C P A B C A B P C S S S S abcr S S S S a b c+--==++-+-.旁切球的球心是其相切侧面与另三个延展切面所成二面角平分面(其中只须其棱不共顶点的三个二面角的平分面即可)的公共点. 证明思路只推证A r ,其余类似推证.作外切于侧面PBC 的旁切球的外切三棱台B C P BCP '''-,得新四面体AB C P ''',如图23-2.图23-2A'由()22C A B P AB C P A S S S S a S S S S a r ====''''+及()()()3313123A B C P ABCD AB C P A A A B C P r S S S S V a V a r r S S S S '''''''+++=='++++. 并注意到性质6、性质17,即可推证A r 的关系式. 推论1r 最小,P r 最大,且11112A B C P r r r r r+++=或 2A B C PA B C A B P A C P B C P r r r r r r r r r r r r r r r r r⋅⋅⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅=推论2()32P V abc r r a b c a b c ⋅==++++或1111P A B C r r S S S =++⋅.推论3记()1122A B C P S S S S S S '==+++,则()()()()2222233333A AB BC C P P V S r S S r S S r S S r S S r '''''==-⋅=-⋅=-⋅=-⋅.推论4记四顶点到所对面的距离为A h 、B h 、C h 、P h ,则11111A B C P h h h h r +++=; 11111A B C P Ph h h h r ++-=. (*)还有类似(*)式的三式.此略. 推论5令l 为四面体六条棱长之和,()12A B C P S S S S S '=+++,则)2l ≤;2S ';(39V r +≥;32V . 性质19设am S 、bm S 、cm S 是分别过棱PA 及BC 的中点,过棱PB 及AC 的中点,过棱PC 及AB 的中点的截面面积,则am S =bm S =cm S =,且222212am bm cm PS S S S ++=. 性质20设maS '、mb S ',mc S '是分别过棱BC 及PA 的中点,过棱AC 及PB 的中点,过棱AB 及PC 的中点的截面面积,则maS '=mb S '=,mc S ',且222232ma mb mc P S S S S '''++=. 性质21设ad S 、bd S 、cd S 分别为过棱PA 与BC 垂直、过棱PB 与AC 垂直、过棱PC 与AB 垂直的截面面积,则/ad B C S S S =⋅bd A C S S S =⋅cd A B S S S =⋅且 2222221111112ad bd cd AB C S S S S S S ⎛⎫++=++ ⎪⎝⎭. 性质22设at S 、bt S 、ct S 分别为过棱PA 及BPC ∠的平分线,过棱PB 及APC ∠的平分线,过棱PC 与APB∠的平分线的截面面积,则B Cat B CS S S S ⋅=+,A C bt A CS S S S ⋅=+,A B ct A BS S S S ⋅=+,且111111at bt ct AB C S S S S S S ⎫++=++⎪⎭. 性质23在直角四面体中,(1)斜面上任一点与直角顶点的连线和三条直角棱所成角的余弦的平方和等于1; (2)斜面上任一点与直角顶点的连线和三个直角面所成的角的余弦的平方和等于2; (3)斜面上每一条棱与三条直角棱所成角的余弦的平方和等于1; (4)斜面上每一条棱与三个直角面所成的角的余弦的平方和等于2; (5)三条直角棱与斜面所成角的余弦的平方和等于2;(6)三条直角棱的平方的倒数和等于直角顶点到斜面的距离的平方的倒数. 性质24直角四面体的外接平行六面体,(1)当四面体的六条棱均成为平行六面体的侧面对角线时,平行六面体是菱形六面体;(2)当四面体的直三面角的三条棱成为平行六面体的棱,其余三条棱成为平行六面体的侧面对角线时,平行六面体是长方体. 3.直棱四面体三条相连棱形成三边直角折线(即空间直角四边形)的四面体,称为直棱四面体. 显然,直棱四面体每个面都是直角三角形,若令1ADC β∠=,2ADB β∠=,3BDC β∠=, 则(1)123cos cos cos βββ⋅=; (2)321sin sin sin sin sin CD AD βββθθ==;(3)3sin cos sin ADCDθβθ=; (4)1tan tan sec AD CD θθβ⋅=.直角四面体和直棱四面体,都可以看作从长方体上截下的一部分,在部分多面体过程中,在棱、锥、台的计算中,它们经常出现.由于它有多方面的垂直关系和比较多的等量关系,有人称之为基本四面体.它们可以看作直角三角形在空间的自然推广,是工具性的四面体. 4.等腰四面体从某一顶点出发的三条棱(称为腰)相等的四面体称为等腰四面体,这一顶点称为腰顶点. 性质1等腰四面体的腰顶点在所对的面的射影为该面的外心.反之亦然. 性质2等腰四面体的腰顶点出发的三条棱与该点所对的面成等角.反之亦然. 性质3等腰四面体的底面为正三角形时,则该四面体为垂心四面体.性质4等腰四面体的底面为正三角形,且其边长为腰的压时,则该四面体是等腰直角四面体. 5.拟腰四面体两组对棱分别相等的四面体称为拟腰四面体.性质1两对对棱分别相等的四面体的充要条件是它的棱均成为侧面对角线的外接平行六面体为直平行六面体.证明设四面体ABCD 的外接平行六面体为1111ACB D AC BD -,AD BC =,AC BD =⇔侧面11A DD A 与侧面11CB BC 为全等矩形,侧面11A CC A 与侧面11DB BD 为全等矩形1111ACB D AC BD -为直平行六面体. 推论1两对对棱分别相等的四面体的充要条件是另一对对棱中点的连接线段垂直于此二棱.推论2两对对棱分别相等的四面体的充要条件是这两对对棱中点的连接线段均与第三对对棱中点的连接线段垂直.推论3两对对棱分别相等的四面体的充要条件是四面体在平行于这两对对棱中的每一对对棱的每一个平面上的射影为矩形.性质2两对对棱分别相等的四面体的充要条件是两侧面面积相等,且另两侧面面积也相等,或四侧面分成等面积的两组.证明此定理即为:在四面体ABCD 中,AD BC =,ACD BCD AC BD S S =⇔=△△,ABC ABD S S =△△. 必要性(⇒):显然.充分性(⇐):如图23-3,作四面体ABCD 的外接平行六面体1111ACB D AC BD -.此时A 、B 到底面11A CB D 的距离1AH 、2BH 相等,作AE CD ⊥于E ,BF CD ⊥于F ,连1H E ,2H F .图23-321则由ACD BCD S S =△△,有AE BF =,从而12AEH BFH ∠∠=,即二面角1A CD A --等于二面角1B CD B --,此时二面角A CD B --的平分面α垂直于底面11A CB D ,也就垂直于面11AC BD ,且面α交AB 于其中点1O . 又可证A 、B 两点到此平分面α的距离相等. 设此平分面α交AB 于1O ,则1O 为上底面中心.同理,由ABC ABD S S =△△,有二面角C AB D --的平分面β也垂直于两底面,也交CD 于其中点2O .此时12O O αβ=∩且垂直于两底面,故平行六面体1111ACB D AC BD -为直平面六面体.由性质1即证得了充分性.性质3两对对棱分别相等的四面体的充要条件是另一对对棱每条棱所张的二个面角分别相等. 证明此性质即为:在四面体ABCD 中,AD BC =,AC BD CAD CBD =⇔∠=∠,ACB ADB ∠=∠. 必要性(⇒):显然. 充分性(⇐):如图23-3,作四面体ABCD 的外接平行六面体1111ACB D AC BD -.由题设CAD CBD ∠=∠,又A 、B 、C 、D 四点共球O ,则ACD △和BCD △所在的平面截球O 的截面圆是等圆.而A 、B 两点到面11A CB D 的距离相等,则过CD 及AB 中点1O 的截面圆必是球O 的大圆.从而1O 、O 及CD 的中点2O 在过CD 的球O 的大圆面内.同理,1O 、O 、2O 也在过棱AB 的球O 的大圆面内.故1O 、O 、2O 三点共线于这两个大圆面的交线上.又1OO AB ⊥,2OO CD ⊥,则111OO A B ⊥,211OO C D ⊥,从而12O O 垂直于平行六面体的两底面11A CB D 、11AC BD ,故知此平行六面体为直平行六面体,由性质1,充分性获证.此性质的充分性也可以这样证:设CAD CBD α∠=∠=,ACB ADB β∠=∠=,令AC a =,AD b =,BC c =,BD d =,CD x =,AB y =.对ADC △和BDC △应用余弦定理可得()()()22222222cos a b x c d y ab cd x bc ad ac bd ab cd α+-+-==⇒-=--.① 同理,得()()()2ad bc y cd ab ac bd ---=.②由①、②可知,若0ab cd -=,则0ad bc a c -=⇒=,b d =.因此论断获证.若0ab cd -≠,则0ad bc -≠,0ac bd -≠,于是由①、②推得()222x y ac bd =-⇒或xy bd ac +=,或0xy ac by +-=. ③由托勒密定理及③式,可知A 、B 、C 、D 四点共圆,与题设矛盾.因此充分性获证. 性质4两对对棱分别相等的四面体的充要条件是其外心(外接球球心)在另一对对棱中点的连线上(重心亦在此连线上). 必要性(⇒):设在四面体ABCD 中,AD BC =,AC BD =,作四面体ABCD 的外接平行六面体如图23-3.由性质1,即知此平行六面体为直平行六面体,从而上、下底面中心1O 、2O 的连线既是AB 、CD 中点的连线,又是AB 、CD 的公垂线,亦即既是AB 的中垂线,又是CD 的中垂线,因而四面体ABCD 的外心在12O O 上.充分性(⇐):由题设,四面体的外心在一对对棱AB 、CD 的中点1O '、2O '的连线上,则12O O ''是AB 、CD 的中垂线,从而12O O '':垂直于四面体ABCD 的外接平行六面体1111ACB D AC BD -的两底面,故此外接平行六面体是直平行六面体.由性质1,充分性获证.性质5两对对棱分别相等的四面体的充要条件是其内心(内切球球心)在另一对对棱中点的连线上(重心亦在此连线上). 证明必要性(⇒):设在四面体ABCD 中,AD BC =,AC BD =.作四面体ABCD 的外接平行六面体如图23-3,则此平行六面体为直平行六面体,故11A DC B CD S S =△△.又ADC BDC S S =△△,则二面角1A DC A --等于二面角1B DC B --.而上、下底面中心1O 、2O 所在直线与DC 两相交线所在对角面垂直于两底面,即知此对角面平分二面角A DC B --.同理,12O O 与AB 所在对角面也平分二面角C AB D --.故四面体内心I 在12O O 上.充分性(⇐):设四面体ABCD 的内心I 在12O O 上,则1O 到面ACD 、BCD 的距离相等,从而A 到面BCD的距离与B 到面ACD 的距离相等(都等于点1O 到这两个面的距离的两倍).由13V Sh =得BCD ACD S S =△△.同理ABD ABC S S =△△.由性质2即证.性质6四面体有两对对棱相等的充要条件是,以这两对对棱为棱的二面角,分别相等.证明在四面体ABCD 中,AD BC =,AC BD =的充要条件是二面角B AD C --等于二面角D BC A --,二面角B AC D --等于二面角A BD C --.必要性(⇒):设AD θ、BC θ分别表示二面角B AD C --、二面角D BC A --的平面角的大小,由AD BC =、AC BD =,有DAC DBC △≌△,ABC BAD △≌△,如图23-4.图23-4H GI DABCEFMN于是DAC DBC ∠=∠,BAC ABD ∠=∠,BAD ABC ∠∠=.由三面角余弦公式(如cos cos cos cos sin sin AD BAC BAD DACBAD DACθ∠-∠⋅∠=∠⋅∠)或三面角全等定理,有AD BC θθ=,即二面角B AD C --等于二面角D BC A --.同理,可证二面角B AC D --等于二面角A BD C --. 充分性(⇐):记I 为四面体ABCD 的内心,从I 向各侧面引垂线,垂足为E 、F 、G 、H ,如图23-4,设过IE 、IF 的平面交AC 于M ,过IG 、IH 的平面交BD 于N ,则EMF ∠,GNH ∠分别为二面角B AC D --、二面角A BD C --的平面角,由题设有EMF GNH ∠=∠. 在Rt IMF △和Rt ING △中,IF IG =,1122IMF EMF GNH ING ∠=∠=∠=∠,从而IM IN =.故I 在对棱AC 、BD 的公垂线段的中垂面α内.同理,I 又在对棱AD 、BC 的公垂线段的中垂面β内,故I 在α与β的交线上.作四面体ABCD 的外接平行六面体如图23-3,知α与β的交线就是平行六面体上、下底面中心1O 、2O 的连线.由性质5即证得充分性.性质7两对对棱分别相等,则四面体的内切球切侧面于第三对对棱的中垂线上.证明此性质即为:在四面体ABCD 中,若AD BC =,AC BD =,则四面体ABCD 的内切球I 切ACD △、BCD △于CD 的中垂线上,切ACB △、ADB △于AB 的中垂线上.如图23-5,由性质6的充分性证明中可推知12O M O N =,①其中1O 、2O 为球I 切侧面ACD △、BCD △的切点,M 、N 为I 在棱AC 、BD 上的射影.图23-5O 1O 2DABCEFMNI设过1IO 、2IO 的平面交CD 于E ,连1O E 、2O E ,则由球的切线长定理,知12O E O E =.②又由ACD BDC △≌△有MCE NDE ∠∠=,而1O E CD ⊥,2O E CD ⊥,则M 、C 、E 、1O 共圆,E 、D 、N 、2O 共圆.故12MO E EO N ∠=∠.③由①、②、③知ME EN =,从而12sin sin ME ENO C O D MCE EDN===∠∠,∴12Rt Rt CO E DO E CE ED ⇒=△≌△. 故1O E ,2O E 均是CD 的中垂线段.同理,球I 切侧面ACB △,ADB △于AB 的中垂线上. 6.等面四面体我们称三组对棱分别相等的四面体为等面四面体.为了讨论问题的方便,先引进一些记号:等腰四面体ABCD 中,设BC AD a ==,AC BD b -=,AB CD c ==;设()12p a b c =++,()222212k a b c =++;以BC 、BD 、CD 为棱的两侧面所成二面角的大小依次为α、β、γ;四面体的体积记为V ,其内切、外接球半径分别记为r 、R ;顶点x 所对的面的面积记为x S ;外切于顶点x 所对的面,且与其余侧面的延展面相切的旁切球的半径记为x r .性质1等面四面体对棱所成角的余弦值可表示为()222cos ,b c a a a -=,()222,cos b c a b b -=,()222cos ,a b c c c -=.性质2等面四面体中,对棱中点的连线共点(此点为四面体的重心),且互相平分;连结对棱中点的每一线段均垂直于此二棱,或者说,当四面体绕这样的线段旋转180︒则与本身重合;连结对棱中点的三线段彼此互相垂直.且后两个结论的逆命题也是成立的.推论四面体为等面四面体的充要条件是三对对棱的公垂线两两相互垂直. 性质3设a d 、b d 、c d 分别为等面四面体对棱中点连线的长,则a d =b d =cd =性质4四面体为等面四面体的充要条件是四面体各面为全等的三角形. 性质5等面四面体所有的面角均为锐角,或者说各侧面是锐角三角形.(见本章练习题A 第7题)性质6四面体为等面四面体的充要条件是过四面体的每一顶点的三条棱长的m (m ∈R 且0m ≠)次方之和相等.分析只证充分性:令BC a =,AC b =,AB c =,AD x =,BD y =,CD z =,由m m m m m m m m m m m m b c x c a y a b z x y z ++=++=++=++,即推得a x =,b y =,c z =.推论四面体为等面四面体的充要条件是四面体的每一顶点的三条棱长之和相等.性质7四面体为等面四面体的充要条件是四面体各侧面三角形边长的m (m 为非零实数)次方之和相等.推论四面体为等面四面体的充要条件是四面体各侧面三角形的周长相等.性质8四面体为等面四面体的充要条件是四面体各侧面三角形的三条中线长的平方和相等.性质9四面体为等面四面体的充要条件是四面体每一顶点处的三个面角之和为180︒.性质10四面体为等面四面体的充要条件是过每对对棱的二面角相等(即三对二面角分别相等). 性质11cos cos cos 1αβγ++=.性质1222sin sin sin 3x S a b cVαβγ===(其中x 可表示A 、B 、C 、D ,后面亦同). 性质13()()()22222222222224cos cos cos 222xa k ab k bc k c S αβγ---===. 性质14在等面四面体ABCD 中,A B C D S S S S ===性质15四面体为等面四面体的充分必要条件是各面的面积相等.分析四面体的各二面角的大小分别用α、β、γ、α'、β'、γ'表示,如图23-6.图23-6β'γ'α'γβαD OABC由cos cos cos D C B A S S S S αβγ⋅+⋅+⋅=及D C B A S S S S ===有cos cos cos 1αβγ++=.同理,有cos cos cos 1γβα''++=,cos cos cos 1αβγ''++=,cos cos cos 1βαγ''++=.由上推出,cos cos αα'=,cos cos ββ'=,cos cos γγ'=,而0α<,β,γ,α',β',γ'<π,所以αα'=,ββ'=,γγ'=,由此即证. 性质16等面四面体的体积V =其中()222212k a b c =++. 分析作四面体ABCD 的外接平行六面体,使四面体的棱成为平行六面体的侧面对角线,如图23-7.由四面体对棱相等,可证得平行六面体侧面均为矩形,即为长方体,于是列方程组求得长方体共顶点的三条棱长,由此即证.图23-7DABC性质17记等面四面体共顶点的三个面角分别为1θ、2θ、3θ,则V =分析如图23-8,设1BDC θ∠=,2ADC θ∠=,3ADB θ∠=.又设A 点在面BCD 内的射影为E ,作AH CD ⊥于H ,连EH ,则AHE γ∠=.由12B S CD AH =⋅,有2B AH S c =⋅,则2sin sin B AE AH S cγγ=⋅=⋅⋅.图23-8γabc D ABCEH注意到31212cos cos cos cos sin sin θθθγθθ-⋅=⋅,有1233A A B V S AE S S c=⋅=⋅123θθθ++=π及()222123123121cos cos cos 2cos cos cos cos θθθθθθθθ---+⋅⋅=-+()()()212312123cos cos cos cos cos θθθθθθθθ⋅--+++-⋅=⎡⎤⎣⎦1234cos cos cos θθθ⋅⋅, 11sin 2A S bc θ=⋅,21sin 2B S ac θ=⋅,由此即证.性质18等面四面体的体积为 222222sin sin sin 333x x x V S S S c b a γβα=⋅=⋅=⋅;或43x V S r =⋅. 性质1912R k =. 性质20r性质21四面体为等面四面体的充要条件是四面体的外心(外接球球心)与重心重合(见本章例13证明部分).或者,四面体各顶点和外心的连线与对面的交点为该面的重心.性质22四面体为等面四面体的充要条件是四面体的外心与内心(内切球球心)重合.(见本章例12) 性质23四面体为等面四面体的充要条件是四面体的内心与重心重合.或者,各顶点和内心的连线与对面的交点为该面的重心.推论若四面体的外心、内心、重心中任意两个相重合,则第三个也必和它们重合. 性质24在等面四面体中,2A B C D r r r r r =====.(提示:设顶点x 到所对面的距离为x h ,则可证2x x x h rr h r⋅=-,由此即推得)性质25四面体为等面四面体的充要条件是四面体的四条高长之和等于内切球半径的16倍(即16A B C D h h h h r +++=). 分析充分性:由以3x x V h S =及16A B C D h h h h r +++=有1111316AB C D V r S S S S ⎛⎫⋅+++= ⎪⎝⎭. 注意到()13A B C D V S S S S r =+++⋅, 则()111116A B C D A B C D S S S S S S S S ⎛⎫++++++= ⎪⎝⎭.而()111116A B C D AB C D S S S S S S S S ⎛⎫++++++ ⎪⎝⎭≥,取等号是当且仅当A B C D S S S S ===.由此即证.推论42x x h r r ==.注对外接球半径也有一条性质见本章例13.性质26四面体为等面四面体的充要条件是它的切点四面体(内切球切侧面的切点)为等腰四面体. 分析充分性:设O 为四面体ABCD 的内心,亦即它是切点四面体A B C D ''''的外心.当A B C D ''''为等腰四面体时,由性质2的推论推之.性质27四面体为等面四面体的充要条件是四面体的内切球与各侧面的切点为该面的外接圆圆心. 性质28四面体为等面四面体的充要条件是四面体的重心(或外心)在各侧面内的射影为该面的外接圆圆心.性质29四面体为等面四面体的充要条件是各侧面都具有相等外接圆半径的锐角三角形. 性质30四面体为等面四面体的充要条件是四面体各侧面外接圆半径与内切圆半径之积相等. 分析充分性:在四面体ABCD 中,设BC a =,AC b =,AB c =,1DA a =,1DB b =,1DC c =,R ',r '分别为侧面三角形外接、内切圆半径,则2abcR r a b c ''=++.同理,1111111111112ab c a bc a b c R r a b c a b c a b c ''===++++++. 由此得()()()()11110c a c b b b b a c c +-++-=, ()()()()11110c c b a a a b a c c +-++-=, ()()()()11110b b c a a a a c b b +-++-=.将上述三式看作1a a -,1b b -,1c c -为未知数的三元一次方程组,它只有唯一的一个零解.即证. 性质31四面体为等面四面体的充要条件是四面体的四条中线长相等(中线长即为四面体的每一顶点和对面重心的连结线段长).分析充分性:注意到中线长相等及四面体重心性质,推得重心与外心重合. 性质32. 性质33四面体为等面四面体的充要条件是四面体的四条中线长的平方和等于2649R . 分析由性质31及25推导.性质34四面体为等面四面体的充要条件是四面体的四条高线长相等(即A B C D h h h h ===).性质35等面四面体的过某棱及所对棱中点的截面,就是过此棱及与所对棱垂直的截面,也就是过此棱且平分此棱所在二面角的截面.性质36在等面四面体ABCD 中,设分别过棱BC 、BD 、CD 且平分α、β、γ的截面面积为a S 、S β、S γ,则cos2x S S αα=⋅,cos2x S S ββ=⋅,cos 2x S S γγ=⋅,且22222xS S S S αβγ++=. 性质37四面体为等面四面体的充要条件是其棱均作为外接平行六面体的侧面对角线时,平行六面体为长方体.性质38四面体为等面四面体的充要条件是四面体在平行于两对棱的每一个平画上的射影为矩形. 性质39四面体为等面四面体的充要条件是四面体的展开图是一个引出了三条中位线的锐角三角形. 性质40四面体为等面四面体的充要条件是四面体内任意一点到各侧面的距离之和为定值.分析充分性:设定值为l ,取点为内心时有4l r =,再取点为重心时有4A B C D h h h h l +++=,再由性质25即证.7.正四面体称六条棱相等的四面体为正四面体.性质1正四面体的每个面是正三角形.反之亦然. 性质2正四面体是三组对棱都垂直的等面四面体. 推论正四面体是两组对棱垂直的等面四面体.性质3正四面体的对棱中点的连线都互相垂直且相等,2倍,反之亦真. 性质4正四面体的各棱的中点是正八面体的六顶点.性质5正四面体的每个三面角均是面角为60︒的三面角,因而都是全等的三面角,且每个三面角的特征值2,即 ()22221cos cos cos 2cos cos cos S x αβγαβγ=---+⋅⋅=性质6正四面体的六个二面角都相等.若记其大小为θ,则1arccos 3θ=或22其逆命题亦成立.性质73,12倍,即23S a 全,32V =. 推论设S △为侧面三角形面积,则4228cos 2a S θ=⋅⋅△;22sin 3S a V θ=⋅⋅△;6V S =⋅全. 性质8正四面体的内切球与其外接球是同心球,内切球半径6r =(等于高线的14);外接球半径6R =;两球面面积之比为1∶9. 性质9在各类四面体的比值R r ∶中,以正四面体的比值3R r =∶为最小.性质10正四面体的体积与其内切球的内接正四面体的体积之比为27.且若内切球半径为r ,则其体积为383r .性质11正四面体的四个旁切球半径均相等,等于内切球半径的2倍,即x r =,或等于正四面体高线的一半.性质12正四面体的内切球与各侧面的切点是侧面三角形的外心,或内心,或垂心,或重心.除外心外,其逆命题均成立.性质13正四面体的外接球球心到四面体四顶点的距离之和,小于空间中其他任一点到四顶点的距离之和.分析利用正四面体的外接球球心O 是过四面体的一棱AB 与对棱CD 中点N 的平面(共有六个这样的平面)的交点的特性,我们将指出,如果点P (空间中任一点)不在这些平面之一上即如果它不是O ,则和S PA PB PC PD =+++不是最小.由此得出结论:使S 最小的点位于所有这些平面上,因此最小值只可能在点O 达到.假定P 不在平面ABN 上,设l 为过P 平行于CD 的直线,因此垂直于平面ABN ,且设P '为l 和ABN 的交点,则PC PD P C P D ''+>+.①事实上,CPD △和CP D '△有相同的底和高,但后者是等腰三角形,它有较小的周长.又PA P A '>,PB P B '>.② 因为PA 是Rt APP '△的斜边,PB 是Rt BPP '△的斜边,把①和②中三个不等式加起来,得PA PB PC PD P A P B P C P D ''''+++>+++,这就是我们要证的.性质14四面体为正四面体的充要条件是,存在五个球与四面体的六条棱或其延长线相切. 此性质的充分性证明见本章例14.性质15正四面体内任意一点到各侧面的垂线长的和等于这四面体的高.性质16对于四个相异的平行平面,总存在一个正四面体,其顶点分别在这四个平面上.性质17以正四面体的每条棱为直径作球,设S 是所作六个球的交集,则S 中含有两点,倍棱长.性质18 性质19四面体为正四面体的充要条件是,其棱均作为外接平行六面体的侧面对角线时,平行六面体为正方体.性质20四面体为正四面体的充要条件是,其共顶点三棱作为外接平行六面体的棱时,平行六面体为一个三面角面角均为60︒的菱形六面体.性质21囚面体为正四面体的充要条件是,四面体在平行于两棱的每一个平面上的射影是正方形. 性质22四面体为正四面体的充要条件是,四面体的展开图是一个引出了三条中位线的正三角形.性质23正四面体每条高的中点与底面三角形三顶点均构成直角四面体的四顶点,且高的中点为直三面角顶点.性质24正四面体是垂心四面体(四条高共点的四面体),且四面体的垂心、重心、内心、外心这四心合一.性质25设P 为正四面体1234A A A A 的外接球面上任一点,R 为该球的半径. (I )42218i i PA R ==∑;(Ⅱ)若1B ,2B ,…,6B 分别为23A A ,34A A ,24A A ,12A A ,13A A ,14A A 的中点,则42218i i PB R ==∑;(Ⅲ)若i O 为i A 所对面的中心(1,2,3,4i =),则22409i PO R =∑. 证明(I )设i O 为正四面体1234A A A A 的中心,则。
初中数学几何不等式教案
初中数学几何不等式教案教学目标:1. 让学生理解不等式在几何中的意义和应用;2. 学会解一元一次不等式;3. 能够运用不等式解决实际问题。
教学内容:1. 不等式的定义和性质;2. 一元一次不等式的解法;3. 不等式在几何中的应用。
教学过程:一、导入(5分钟)1. 复习一元一次方程的解法;2. 引入不等式的概念,让学生举例说明不等式的意义。
二、新课讲解(20分钟)1. 讲解不等式的定义和性质,如:不等式的两边同时乘以或除以同一个正数,不等号的方向不变;2. 讲解一元一次不等式的解法,如:同号相减,异号相加;3. 结合实际问题,讲解不等式在几何中的应用,如:线段的长度不等式,角度的不等式等。
三、例题讲解(15分钟)1. 举例讲解如何解一元一次不等式;2. 举例讲解如何应用不等式解决几何问题。
四、课堂练习(10分钟)1. 让学生独立完成练习题;2. 讲解练习题的解法和答案。
五、总结和拓展(5分钟)1. 总结不等式的解法和应用;2. 让学生思考如何将不等式应用到实际生活中。
教学评价:1. 课后作业的完成情况;2. 课堂练习的答题正确率;3. 学生对不等式在几何中应用的理解程度。
教学反思:本节课通过讲解不等式的定义和性质,以及一元一次不等式的解法,让学生掌握了不等式的基础知识。
通过实际问题的引入,让学生了解了不等式在几何中的应用。
在课堂练习环节,学生能够独立完成练习题,对不等式的解法和应用有了更深入的理解。
但在拓展环节,学生对将不等式应用到实际生活中的思考还不够深入,需要在今后的教学中进一步加强。
专题几何不等式
几何不等式东北师大附中 卢秀军一、基础知识1.定义:几何问题中出现的不等式称为几何不等式. 常常表现为角的大小,线段的长短,面积的多少等. 在几何不等式的证明中,将综合运用到我们所学的很多知识,但最首要的是要注意运用几何中基本的不等关系和一些重要定理.证明不等式,视其论证过程中,以运用何种知识为主,大致分为三种方法:几何方法;三角方法;代数方法。
2.证明几何不等式常用方法(1)代数方法:利用变量代换、因式分解、配方等手段将几何问题转为代数问题,其思路是: (1)适当地引入变量,将几何问题化为代数问题,特别是二次函数;恰当选择变量为关键; (2)利用重要的几何不等式及代数不等式;(3)当证明涉及三角形不等式时,注意应用:①三边长的固有不等关系;②海伦公式;③边长的大小顺序关系与对应角的大小顺序关系相同,而与对应高、中线及分角线长的顺序相反.(2)三角方法:利用三角函数来反映几何图形的变化规律,从而将几何问题转化为三角问题,这时最常用的三角知识是:(1)三角恒等变形:这主要是应用和、差、倍、半角公式,积化和差及和差化积公式等,制造出便于应用已知不等式的形式,以完成命题的证明;(2)边角互换:这主要是利用三角函数定义、正弦定理、余弦定理等,把一个关于角(边)的不等式转化成边(角)的不等式.(3)几何方法:即指用纯粹的平面几何知识来证明几何不等式,这时最常用的平面几何知识是: (1)抓住几何图形的特征,挖掘几何图形中最基本的几何不等关系.事实上,一些最基本的几何不等关系在有关几何不等式的论证中异常活跃,常常成为解决问题的钥匙;(2)与面积有关的几何不等式也占有重要地位.其内容丰富,涉及面宽,富于智巧.证明这类不等式大都需要利用面积的等积变换、面积公式及面积比的有关定理等知识. 3.几个著名代数不等式在几何不等式的证明中,常常需要一些著名的代数不等式——柯西不等式,排序不等式,算术平均不等式等.4.几个著名的几何不等式 (1)托勒密定理的推广:在凸四边形ABCD 中,一定有:BD AC BC AD CD AB ⋅≥⋅+⋅,等号成立时四边形ABCD 是圆内接四边形.证明1:取点E ,使ACD ABE CAD BAE ∠=∠∠=∠, 则ABE ∆∽ACD ∆∴CD BE AC AB =,ADAEAC AB =∴BE AC CD AB ⋅=⋅ (1) 又DAE BAC ∠=∠ ∴ABC ∆∽AED ∆ ∴ADACDE BC =∴DE AC AD BC ⋅=⋅∴BD AC DE BE AC DE AC BE AC AD BC CD AB ⋅≥+⋅=⋅+⋅=⋅+⋅)(上式等号成立当且仅当E 在对角线BD 上.此时ACD ABD ∠=∠,从而四边形内接于圆. 证明2:复数法设A 、B 、C 、D 对应的复数分别是1z 、2z 、3z 、4z用到下面的恒等式142324313412()()()()()()0z z z z z z z z z z z z --+--+--= 则12341423|()()||()()|AB CD AD BC z z z z z z z z ⋅+⋅=--+--12341423|()()()()|z z z z z z z z ≥--+-- 2431|()()|z z z z AC BD =---=⋅(2)(嵌入不等式) 设,,,(21),x y z R A B C k k Z π∈++=+∈, 求证:C xy B zx A yz z y x cos 2cos 2cos 2222++≥++ 等号成立的充要条件是:B z C y x cos cos +=及B z C y sin sin =. 证明:C xy B zx A yz z y x cos 2cos 2cos 2222---++)cos(2)cos cos (2222C B yz z y x C y B z x +++++-=222)sin sin ()cos cos ()cos cos (2C y B z C y B z x C y B z x -++++-= 0)sin sin ()cos cos (22≥-+--=C y B z C y B z x当且仅当B z C y x cos cos +=且B z C y sin sin =时取等号(3)艾尔多斯——莫迪尔(Erdos —Mordell )不等式:在ABC ∆内部任取点P ,,A d B d ,C d 分别表示由点P 到顶点C B A ,,之间的距离,c b a d d d ,,分别表示由点P 到边AB CA BC ,,的距离, 则)(2c b a C B A d d d d d d ++≥++ 证明1:过P 作直线XY 分别交AC AB ,于Y X ,,使ABC AYX ∠=∠ 则AYX ∆∽ABC ∆CC ∴BCABXY AY BC AC XY AX ==, 又∵A b c AXY d XY d AY d AX S ⋅≤⋅+⋅=∆212121 ∴b c A d XYAY d XY AX d ⋅+⋅≥ 即b c A d BCABd BC AC d ⋅+⋅≥同理:a c B d ACABd AC BC d ⋅+⋅≥a b C d ABAC d AB BC d ⋅+⋅≥∴)(2c b a C B A d d d d d d ++≥++ 证明2:F A E P ,,,四点共圆 则A d AEF=sin 在EFP ∆中,由余弦定理得)cos(2222C B d d d d EF b c b c +⋅⋅-+=22)sin sin ()cos cos (C d B d C d B d b c b c ++-= 2)sin sin (C d B d b c +≥∴C d B d EF b c sin sin +≥ ∴b c A d A Cd A B d sin sin sin sin +≥同理a c B d BCd B A d sin sin sin sin +≥a c C d CB dC A d sin sin sin sin +≥∴)(2c b a C B A d d d d d d ++≥++证明3:设γβα=∠=∠=∠CPA BPC APB ,,则αcos 2222⋅⋅-+=B A B A d d d d ABβcos 2222⋅⋅-+=C B C B d d d d BCγcos 2222⋅⋅-+=A C A C d d d d CA又βsin 2121⋅⋅=⋅C B a d d d BC∴)cos 1(2)(sin cos 2sin 222ββββ-⋅⋅+-⋅⋅=⋅⋅-+⋅⋅=C B C B C B C B C B C B a d d d d d d d d d d d d d2cos 212sin 22sin )cos 1(2sin 2βββββC B C B C B C B C B d d d d d d d d d d ⋅=⋅⋅⋅⋅=-⋅⋅⋅⋅≤即2cos 21βC B a d d d ⋅≤同理2cos 21γA C b d d d ⋅≤2cos 21αB A c d d d ⋅≤)2cos 2cos 2cos (21αγβB A A C C B c b a d d d d d d d d d ⋅+⋅+⋅≤++ )(21C B A d d d ++≤(嵌入不等式) 证明四:设2,2,2BPC CPA APB αβγ∠=∠=∠=,且αβγπ++=设它们的内角平分线长分别是a b c w w w 、、,且a a b b c c w d w d w d ≥≥≥、、 只要证更强的结论2()A B C a b c d d d w w w ++≥++112()()22B C B C B C a B Cd d d d a d d a w ⋅++⋅+-=222(2)B C B C B C B Cd d d d a d d ⋅+-+=又222cos 22B C B Cd d a d d α+-=,即2222cos 2B C B C d d a d d α+-=∴22(1cos 2)cos B C B Ca B C B C B Cd d d d w d d d d d d ααα=+=≤++同理b A C w d d β≤,c A B w d d γ= ∵αβγπ++= ∴由嵌入不等式得2()2()a b c B C A C A B A B C w w w d d d d d d d d d αβγ++≤≤++(4)外森比克不等式:设ABC ∆的边长和面积分别为c b a ,,和S ,则S c b a 34222≥++,当且仅当ABC ∆为正三角形时等号成立.证明方法很多,证明略5.费尔马(Fermat )问题:在ABC ∆中,使PC PB PA ++为最小的平面上的P 点称为费尔马点.当︒≥∠120BAC 时,A 点为费尔马点;当ABC ∆中任一内角都小于︒120时,则与三边张角为︒120的P 点为费尔马点. 例题例1 已知ABC ∆,设I 是它的内心,C B A ∠∠∠,,的内角平分线分别交其对边于///,,C B A ,求证:27841///≤⋅⋅⋅⋅<CC BB AA CI BI AI . 证明:令c AB b CA a BC ===,,由角平分线定理,易得c b ab C Ac B A IA IA +===/// ∴cb cb a IA AA +++=/ ∴cb a cb AA IA +++=/ 易得121<+++<++++=cb ac b c b c b c b ∴)1,21(/∈+++=c b a c b AAIA 同理)1,21(/∈+++=c b a c a BBIB )1,21(/∈+++=c b a b a CCIC 则2/////=++CC IC BB IB AA IA 处理(1) 令3/2/1/21,21,21t CC IC t BB IB t AA IA +=+=+=, 则21),1,21(,,321321=++∈t t t t t t ∴2783)21()21()21()21)(21)(21(3321321=⎪⎪⎪⎪⎭⎫⎝⎛+++++≤+++t t t t t t ∴41)(21)(4181)21)(21)(21(321133221321321>+++++++=+++t t t t t t t t t t t t t t tB∴27841///≤⋅⋅⋅⋅<CC BB AA CI BI AI 处理(2)令z CCICy BB IB x AA IA ===///,,, 则2=++z y x ,且1,,(,1)2x y z ∈ ∴278)3(3=++≤z y x xyz 21113139(2)(2)()[()]22222416xyz x x z z z z z z z =-->--=-=--+又112z <<(2139[()]2416z --+在区间端点取到最小值) ∴221391391[()][(1)]241624164xyz z >--+>--+= 处理(3)利用内切圆与三角形的切点把每条边分成两部分作变换 令m k c k n b n m a +=+=+=,,)(22)(22)(22///k n m kn m k n m k n m k n m k n m CC BB AA CI BI AI ++++⋅++++⋅++++=⋅⋅⋅⋅41)(8))(()()(333>+++++++++++++=k n m mnk k n m nk mk mn k n m k n m 说明:证明关于三角形内各元素的各种不等式时,常作如下变换: (由于三角形的内切圆存在,三条边总可表示为))0,,(,,,>+=+=+=z y x x z c z y b y x a ,反之,若三个正数c b a ,,可以表示为上述形式,则c b a ,,一定是某个三角形的三边,并且相应的三角形的其它元素也可以通过上面变换用z y x ,,表示,有关三角形的一些几何不等式都可以化为关于z y x ,,的代数不等式例 2 设P 是ABC ∆内的一个点,S R Q ,,分别是C B A ,,与P 的连线与对边的交点(如图),求证:ABC QRS S S ∆∆≤41.(QRS ∆是塞瓦三角形) 分析:利用补集思想 证明ABC CQR BSQ ASR S S S S ∆∆∆∆≥++43证明1:令γβα===RACRQC BQ SB AS ,,, 则由塞瓦定理1=αβγ则)1)(1(++=⋅⋅=∆∆γααAC AB AR AS S S ABC ASR 同理)1)(1(++=⋅⋅=∆∆αββAB BC BS BQ S S ABC BSQ )1)(1(++=⋅⋅=∆∆βγγAB BC CR CQ S S ABCCQR 只要证明ABC CQR BSQ ASR S S S S ∆∆∆∆≥++43即43)1)(1()1)(1()1)(1(≥++++++++βγγαββγαα只要证0)()(6≤++-++-γβαγαβγαβ 只要证0)]()111[(6≤+++++-γβαγβα显然6)()111(≥+++++γβαγβα当12αβγ===时取等号,此时P 是ABC ∆的重心 证明2:设z S y S x S PAB PBC PAC ===∆∆∆,, 则zx QB QC y z RC RA x y SA SB ===,, ))((y z y x xzAC AB AR AS S S ABC ASR ++=⋅⋅=∆∆ 同理))((x z x y yzAB BC BS BQ S S ABCBSQ ++=⋅⋅=∆∆ ))((z y z x xyAB BC CR CQ S S ABCCQR ++=⋅⋅=∆∆只要证明ABC CQR BSQ ASR S S S S ∆∆∆∆≥++43即43))(())(())((≥++++++++z y z x xy x z x y yz y z y x xz通分整理3()()()()()()4xz x z yz y z xy x y x y y z z x +++++≥+++ 即22223()()()()()()4x y z y z x z x y x y y z z x +++++≥+++364xyz ≥⋅=B只要证xyz y x z z y x z x y 6)()()(222≥+++++事实上)()()(222y x z z y x z x y +++++ )()(222222zx yz xy x z z y y x +++++=xyz xyz xyz zx yz xy x z z y y x 6333332223222=+=⋅⋅+⋅⋅≥当且仅当z y x ==时取等号,此时P 是ABC ∆的重心 证明3:令,,AS BQ CRAB BC CAαβγ===,且)1,0(,,∈γβα 则1,1,1BS CQ AR AB BC CAαβγ=-=-=- 由塞瓦定理得)1)(1)(1(γβααβγ---= 整理得()12αβγαββγγααβγ++-++=-)1(γα-=⋅⋅=∆∆ACAB ARAS S S ABC ASR 同理)1(αβ-=⋅⋅=∆∆ABBC BSBQ S S ABC BSQ)1(βγ-=⋅⋅=∆∆ABBC CRCQ S S ABCCQR只要证43)1()1()1(≥-+-+-βγαβγα 事实上(1)(1)(1)()12αγβαγβαβγαββγγααβγ-+-+-=++-++=-))1(2)1(2)1(2(411)1)(1)(1(21γγββααγβααβγ-⋅-⋅-⋅-=----=43411=-≥ 当且仅当21===γβα时取等号,此时S R Q ,,是中点,P 是ABC ∆的重心 例3 已知ABC ∆的面积为S ,三边分别为c b a ,,,求证:2)3(43c b a S ++≤,且当c b a ==时等号成立.证明1:由海伦公式,设)(21c b a p ++=223)3(4393)3())()((c b a p p p c p b p a p p S ++==⋅≤---=当且仅当c p b p a p -=-=-即c b a ==时取等号 证明2:欲证2)3(43c b a S ++≤只要证S c b a 312)(2≥++∵)(3222)(2222ca bc ab ca bc ab c b a c b a ++≥+++++=++故只要证S ca bc ab 34≥++ 由柯西不等式2)sin sin sin ()sin sin )(sin (B ca A bc C ab C B A ca bc ab ++≥++++ S S 18)23(2==∴CB A Sca bc ab sin sin sin 18++≥++又233sin sin sin ≤++C B A ∴S SC B A S ca bc ab 3423318sin sin sin 18=≥++≥++从而结论得证当且仅当c b a ==时,取等号 例4 在ABC ∆中,求证:392cot 2cot 2cot333≥++CB A 证明1:设x z b CA z y a BC y x c AB +==+==+==,,则3333333333)()()(2cot 2cot 2cot r z y x r z r y r x C B A ++=++=++又)())()((z y x xyz c p b p a p p S ++=---=r z y x r c b a S )()(21++=++=∴r z y x z y x xyz )()(++=++∴zy x xyzr ++=33333332cot 2cot 2cot r z y x C B A ++=++xyzz y x z y x r xyz ++++=≥)(333 3933363=⋅⋅≥xyzxyzxyz证明2:设x z b CA z y a BC y x c AB +==+==+==,,/B /B /则3333333333)()()(2cot 2cot 2cot r z y x r z r y r x C B A ++=++=++ 由幂平均不等式333333z y x z y x ++≤++ 得3333)(91z y x z y x ++≥++ (1) 由例3得22)(93)3(43z y x c b a S ++=++≤∴)(93z y x z y x S ++≤++,即)(93z y x r ++≤ ∴r z y x 33≥++代入(1)即可得到结论.例5 设ABC ∆是锐角三角形,外接圆圆心为O ,半径为R ,AO 交BOC 所在的圆于另一点/A ,BO 交COA 所在的圆于另一点/B ,CO 交AOB 所在的圆于另一点/C ,证明:3///8R OC OB OA ≥⋅⋅,并指出在什么情况下等号成立(第37届IMO 预选题) 证明1:作过BOC 的圆直径OD 则︒=∠=∠90/DCO O DAABC AOC BAC DOC ∠=∠∠=∠2,ABC ACB AOC DOC OD A ∠-∠=∠-∠-︒=∠180/在COD Rt ∆中,BACOCDOC OC OD cos cos == 在OD A Rt /∆中)cos(cos //ABC ACB OD DOA OD O A ∠-∠⋅=⋅=OC BACABC ACB ⋅∠-∠=cos )cos(即R BAC ABC ACB OA cos )cos(/∠-∠=记为R A B C OA cos )cos(/-=同理R BC A OB cos )cos(/-=R CB A OC cos )cos(/-=只要证8cos )cos(cos )cos(cos )cos(≥-⋅-⋅-BA C A CBC B A∵BA BA B A B A B A B A B A B A C B A cot cot 1cot cot 1sin sin cos cos sin sin cos cos )cos()cos(cos )cos(⋅-⋅+=+-+=+--=-B //令A C z C B y B A x cot cot ,cot cot ,cot cot ⋅=⋅=⋅=A C CB B A z y x cot cot cot cot cot cot ⋅+⋅+⋅=++C B C B A cot cot )cot (cot cot ⋅++⋅=C B C B C B cot cot )cot (cot )cot(⋅++⋅+-=1cot cot )cot (cot cot cot 1cot cot =⋅++⋅+-⋅-=C B C B CB C B而对于ABC ∆是锐角三角形,0,,>z y x ∴zy x z y x z y x z y x x x C B A +++≥++++=-+=-))((2)()(11cos )cos( 同理zx y z y x A C B +++≥-))((2cos )cos(yx y z z x A C B +++≥-))((2cos )cos( 显然成立证明2:如图,设BC AO ,交于D ,AC BO ,交于E ,AB CO ,交于F , 由C O B A ,,,/四点共圆,得CBO BCO O BA ∠=∠=∠/∴BOD ∆∽BO A /∆∴ODBOBO O A =/∴ODR O A 2/=从而OE R O B 2/=,OFR O C 2/=处理方式(1)∴OF OCOE OB OD OA OF OE OD R R O C O B O A ⋅⋅=⋅⋅=⋅⋅33/// 令321,,S S S S S S COA BOC AOB ===∆∆∆3///R O C O B O A ⋅⋅8132321231≥+⋅+⋅+=S S S S S S S S S处理方式(2) 令z OFOCy OE OB x OD OA ===,, 则111,,111OBC OAC OBA ABC ABC ABC S S S OD OE OF AD S x BE S y CF S z ∆∆∆∆∆∆======+++/B /∴1111111=+++++z y x (利用面积关系)(再去分母,整理得2xyz x y z =+++) ∴2323+≥+++=xyz z y x xyz令m xyz =3,则0233≥--m m ,即2(1)(2)0m m +-≥∴02≥-m ,即8≥xyz证明3: 由C O B A ,,,/四点共圆,由托勒密定理,得)(///B A C A R BC O A +=⋅∴R BCBA C A O A ///+=而易知21∠=∠∴BCCA B A BD B A CD C A ////+== 而BD A /∆∽COD ∆∴ODAOOD R OD OC BD B A ===/ ∴R ODAOO A =/同理R OE BO O B =/,R OFCOO C =/ 令321,,S S S S S S COA BOC AOB ===∆∆∆∴OF OCOE OB OD OA R O C O B O A ⋅⋅=⋅⋅3/// 8132321231≥+⋅+⋅+=S S S S S S S S S 证明4: 由C O B A ,,,/四点共圆,由托勒密定理,得)(///B A C A R BC O A +=⋅∴R BCBA C A O A ///+=设γβα=∠=∠=∠BOC AOB AOC ,, 在BC A /∆中,由正弦定理,得CBA BCBC A C A CB A B A /////sin sin sin ==又γαβsin sin ,sin sin sin ,sin sin sin /////=====C BA OC A BC A OB A CB APC BA∴R R BC B A C A O A ⋅+=+=γβαsin sin sin ///同理R O B ⋅+=αγβsin sin sin /R O C ⋅+=βγαsin sin sin /以下略例6 如图所示,设1C ,2C 是同心圆,2C 的半径是1C 半径的2倍,四边形4321A A A A 内接于圆1C ,将14A A 延长交圆2C 于1B ,将21A A 延长交圆2C 于2B ,将32A A 延长交圆2C 于3B ,43A A 延长交圆2C 于4B ,试证明:四边形4321B B B B 的周长大于等于四边形4321A A A A 的 周长的2倍,并请确定等号成立的条件.(第3届全国冬令营,1988年)证明:设公共圆圆心为O ,连结211,,OB OB OA 在四边形211B B OA 中,运用推广的托勒密定理112211211B A OB B B OA B A OB ⋅+⋅≤⋅∴11212122B A R B B R B A R ⋅+⋅≤⋅ ∴11212122B A B B B A +≤ ∴11222121222B A B A A A B B -+≥ 同理22333232222B A B A A A B B -+≥33444343222B A B A A A B B -+≥44111414222B A B A A A B B -+≥∴结论得证当且仅当211,,,B B A O 四点共圆,∴21211241B OA B OB B OB A OA ∠=∠=∠=∠, ∴1OA 是214A A A ∠的角平分线, ∴O 到214A A A ∠的两边的距离相等 ∴1214A A A A =同理四边形4321A A A A 的各边相等,进而证四边形4321A A A A 是正方形时,等号成立. 练习题1. 如图,在ABC ∆中,,AB AC AM >为中线,P 为AMC ∆内一点,证明:PB PC > 证明:在AMC ∆与AMB ∆中,有两组对边对应相等,且AB AC >, 所以AMB AMC ∠>∠,于是90AMC ∠<︒, 过P 作PH BC ⊥于H ,AOMNB CDT S C 1B 1A 1OCBAX ABCO A 1B 1C 1则垂足H 必在MC 的内部或延长线上, 从而BH CH >, 因此PB PC >(斜线长与射影长的关系)2. 如图,20MON ∠=︒,A 为OM 上一点,3OA =,B 是ON 上一点,D 为ON 上一点,83OD =C 为AM 上任意一点,则12AB BC CD ++≥分析:以OM 为对称轴,作D 点关于OM 的对称点/D , 以ON 为对称轴,作A 点关于ON 的对称点/A , 连结/OA 、/OD ,则//60A OD ∠=︒, 连结/BA 、/CD 、//A D ,则有//AB BC CD BA BC CD ++=++因为//3,83OA OD ==故/A 、/D 为定点,而连结/A 、/D 以线段最短,所以///2/2//()()2cos6012AB BC CD A D OA OD OA OD ++≥=+-⋅⋅︒=.说明:本题把“折线化直”,然后利用两点间线段距离最短来证明,这种“化直法”在解决几何不等式问题中是常用的.3.设BC 是ABC ∆的最长边,在此三角形内部任意选一点O ,OA 、OB 、OC 分别交对边于1A 、1B 、1C ,证明:(1)111OA OB OC BC ++<;(2)111111max{,,}OA OB OC AA BB CC ++≤ 分析:我们先证明一个简单但非常有用的引理:设点M 是PQR ∆的边QR 上的一点,则max{,}PM PQ PR <.事实上,过P 作PH QR ⊥,则利用斜线长和射影长的关系很容易说明便知引理成立. (1)过O 分别作//,//OX AB OY AC ,分别交BC 于X 、Y 点, 再过X 、Y 分别作11//,//XS CC YT BB 分别交AB 、AC 于S 、T ,如图 易知,OXY ∆∽ABC ∆,故XY 是OXY ∆的最大边, 由引理知,1max{,}OA OX OY XY <≤; 又因为BXS ∆∽1BCC ∆,YCT ∆∽1BCB ∆,所以1BX XS OC >=(1max{,}CC CA BC BC <=),1CY YT OB >=所以111BC XY BX YC OA OB OC =++>++(2)令z CC OC y AB OB x AA OA ===111111,,,那么1=++=++∆∆∆∆∆∆ABCOAB ABC OCA ABC OBC S S S S S S z y x . 所以111111OA OB OC xAA yBB zCC ++=++111111()max{,,}max{,,}x y z AA BB CC AA BB CC ≤++=说明:其实,由(2)和引理知(1)成立,所以我们也可以先证明(2),然后推得(1).4. 设凸四边形ABCD 的面积为1,求证:在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三个点为顶点的三角形的面积均不小于41. 分析:如果ABCD 是平行四边形,那么41====∆∆∆∆ABD ADC BCD ABC S S S S , 因此A B C D 、、、即为所求的点;如果ABCD 不是平行四边形,不妨设AD 与BC 不平行,且DAB CBA π∠+∠<, 设AD 与BC 交于E又设D 到AB 的距离不超过C 到AB 的距离,过D 作//DF AB ,交BC 于F , 分两种情况讨论:(1)DF 不超过AB 的一半,此时可在边AD ,BC 上分别取P ,Q ,使得PQ 与AB 平行,PQ 等于AB 的一半,则有111444APQ BPQ ABE ABCD S S S S ∆∆∆∆==>=, 11122222ABQ ABP APQ BPQ ABE ABCD S S S S S S ∆∆∆∆∆∆====>= 即A B P Q 、、、即为所求的四个点.(2)若DF 大于AB 的一半,则在线段DC 与FC 上分别取P ,Q ,同样使//PQ AB ,且12PQ AB =,延长AP 交AE 于/E ,则PQ 是/ABE ∆的中位线再过A 作BC 的平行线l ,它与CD 的延长线的交点为G ,则/AGP PDA PCE S S S ∆∆∆=>, 故有//ABCP PDA ABCP ABCD E ABPCE S S S S S S ∆∆∆∆∆=+>+=,于是同样可以证明A B P Q 、、、即为所求的四个点.说明:在遇到比较复杂的情形时,要注意从简单情形起步,合理规划,通过分类讨论,适时化归,使问题得以圆满解决.到ABC ∆三个顶点距离之和为最小的点,通常称为费尔马点.当ABC ∆各角均小于120︒时,与三边的张角均为120︒的点即为费尔马点; 当有一个角大于120︒时,这角项点就是费尔马点. 下面这个命题是与费尔马问题“反向”的问题.5. 在ABC ∆的内部或边界上找一点P ,使得它到三个顶点距离之和为最大. 分析:若点P 在ABC ∆内,作一个以B 、C 为焦点,过P 点的椭圆, 于/P 点,如图,设椭圆与AB 、AC 交于1P 、2P 点,连结AP 并延长与12P P 交那么/12max{,}P A P A P A < 不妨设/1P A P A <则11111()P A P B P C PA P B P C PA PB PC ++>++=++ 所以点P 必定在边界上. 下证P 只能是ABC ∆的顶点,不妨设点P 在线段BC 的内部,因max{,}PA AB AC <, 设PA AB <,那么PA PB PC PA BC AB BC ++=+<+综上所述,所求的点必为ABC ∆的顶点,易知它是最短边所对的顶点. 说明:本题所用的方法是“局部调整”法,这是一种重要的思想方法.6.凸六边形ABCDEF 的每边长至多为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2. 分析:连结AC 、CE 、EA , 在AEC ∆中,不妨设边CE 最大, 即,CE AC CE AE ≥≥,如图,对A 、C 、D 、E 四点用托勒密定理, 有AE CD ED AC CE AD ⨯+⨯≤⨯ 所以21111=⨯+⨯≤⋅+⋅≤CEAECD DE CE AC AD , 从而命题得证.在证明与面积和周长有关的不等式时,下面的几个结论是很有用的,它们就是著名的等周问题.命题1 在周长一定的简单闭曲线的集合中,圆的面积最大 命题2 在面积一定的简单闭曲线的集合中,圆的周长最小命题3 在给定边长为12,,,n a a a L 的所有n 边形中,能够内接于圆的n 边形具有最大的面积 命题4 在周长一定的n 边形的集合中,正n 边形的面积最大 命题5 在面积一定的n 边形的集合中,正n 边形的周长最小 运用等周定理可以解决很多与几何不等式有关的问题,看下面一例: 7.曲线L 将正ABC ∆分成两个等积的部分,那么它的长432al π≥,其中a 是正ABC ∆的边长.分析:以A 为圆心,R 为半径作圆弧/L 将ABC ∆的面积等分,那么有22432161a R ⋅=π, 所以π2274=R ,/L 的周长/412623al R ππ=⋅=,现在证明/l l ≥.将ABC ∆连续翻转5次,由曲线L 形成了一条闭曲线,如图所示,由/L 形成了一个圆,而两者所围成的面积相等.根据命题2,知/66l l ≥,即/423al l π≥=.。
初中数学几何不等问题专题辅导
初中数学几何不等问题在平面几何里,证明线段不等的问题是一个难点。
学生常常束手无策,那么是否有规律可循呢?其实,这类问题都可以转化为利用三角形三边关系定理来解决,这里从以下几方面举例说明。
一、利用翻折变换集中条件例1. 已知:如图1,DE是BC的垂直平分线。
图1求证:AB>AC证明:连接DC在△ABC中,AD+DC>CA因为DE是BC的垂直平分线所以BD=DC所以AD+BD>AC即AB>AC例2. 已知:如图2,在△ABC中,AE为外角∠DAC的平分线,P为AE上的一点。
求证:PB+PC>AB+AC图2证明:在AD上截取AM=AC,连接PM因为AP=AP,∠1=∠2,AM=AC所以△APM≌△APC所以PM=PC在△BMP中,PM+BP>BM,所以PB+PC>AB+AC例3. 已知:P为△ABC的∠A的平分线AD上任意一点,且AB>AC。
求证:AB-AC>PB-PC图3证明:在AB上截取AE=AC,连接EP因为AD平分∠BAC所以∠BAD=∠CAD又因为AE=AC,AP=AP∴△AEP≌△ACP所以PE=PC在△BEP中,BE>BP-PC所以AB-AE>BP-PC即AB-AC>BP-PC二、利用旋转变化集中条件例4. 在△ABC中,AD为BC边上的中线求证:2AD<AB+AC图4证明:如图4,延长AD至E使DE=AD,连接BE,易知△EBD≌△ACD,EB=AC在△ABE中,AE<AB+BE,所以2AD<AB+AC例5. 已知:如图5,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF 求证:BE+CF>EF图5证明:延长ED到G使DG=ED,连接CG、FG则△BED≌△CGD所以CG=BE又DE⊥DF所以FG=EF在△FGC中,所以CG+CF>FG所以BE+CF>EF三、利用全等变换集中条件例6. 在⊙O中,C是弧AB的中点,D是弧AC上的任意一点,(与点C不重合),则()图6A. AC+CB=AD+DBB. AC+CB<AD+DBC. AC+CB>AD+DBD. AC+CB与AD+DB的大小关系不确定证明:延长BD至E使DE=AD,连接EC,DC因为弧AC=弧BC所以∠ABC=∠BDC因为∠ADC+∠ABC=180°∠EDC+∠BDC=180°所以∠ADC=∠EDC又因为AD=DE,DC=DC所以△CAD≌△EDC即AC=EC在△BEC中,BC+EC>BE所以BC+AC>BD+AD故选C。
6几何不等式
§6几何不等式几何中表示量的不等关系的式子叫做几何不等式.几何不等式就其形式来说分为线段不等式、角不等式以及面积不等式三类.下面给出一些基本的几何不等式性质. (1) 在三角形中,两边之和大于第三边,两边之差小于第三边. (2) 在同一个三角形中,大边对大角,小边对小角;反之也成立.(3) 两组对边对应相等的两个三角形中,夹角大的第三边也大;反之也成立.(4) 三角形内任一点到两顶点的距离之和小于另一顶点到这两个顶点的距离之和. (5) 三角形一边上的中线小于另外两边之和的一半. (6) 在△ABC 中,点P 是边BC 上任意一点,则有 PA ≤max{AB ,AC }, 当点P 与点B 或C 重合时,等号成立.在解决几何不等式问题时,经常要用到一些已经学过的基本定理和已经证明过的结论,运用不等式的基本性质,通过几何、三角、代数等解题方法进行计算和证明.同时,还需考虑几何图形的特点和性质. 1、与线段有关的不等式问题 例1、已知BC 是△ABC 的最长边,O 是△ABC 内部任意一点,直线OA 、OB 、OC 分别交对边于点1A 、1B 、1C .证明:(1)1OA +1OB +1OC <BC ;(2)1OA +1OB +1OC ≤max{1AA ,1BB ,1CC }.证明:(1)如图1,过点O 作OX ∥AB ,OY ∥AC ,分别交BC 点X 、Y . 再过点X 、Y 分别作XS ∥1CC ,YT ∥1BB ,分别交AB 、AC 于点S 、T .因为△OXY ∽△ABC ,则XY 是△OXY 的最大边.由性质6知 1OA <max{OX ,OY }≤XY .又△BXS ∽△BC 1C ,△YCT ∽△BC 1B ,所以,由1CC <max{CA ,BC }=BC ,可得BX >XS =1OC .同理,CY >YT =1OB . 故BC =XY +BX +YC >1OA +1OB +1OC .(2)设11OA AA =x , 11OB BB =y , 11OC CC =z . 则 x +y +z =OBC ABC S S +OCA ABC S S +OABABCS S =1.故1OA +1OB +1OC =x 1AA +y 1BB +z 1CC ≤(x +y +z )max{1AA ,1BB ,1CC } =max{AA 1 ,BB 1 , CC 1 }.说明:其实,(2)比(1)更强,由(2)可以推得(1). 例2、如图2,在△ABC 中,∠B =2∠C .求证:AC <2AB.证明:延长CB 至D ,使得DB =AB .则有∠D =∠BAD ,∠ABC =2∠D . 由题设知∠ABC =2∠C .所以,∠D =∠C .故AD = AC .在△ABC 中,因为DB +AB >AD ,即2AB >AD ,所以,AC <2AB .说明:(1)把问题中的不等量尽量集中到一个三角形(或者 两个具有紧密关系的三角形) 中,利用三角形中的线段不 等关系(或角的不等关系)解决问题.这是一种常用的解题 思路.(2)若将题中的“∠B =2∠C ”改为“∠B =n ∠C ”,可以得到相似的结论:在△ABC 中, 若∠B =n ∠C (n 是不小于2的正整数),则AC ≤nAB .例3、已知P 是△ABC 内任一点.(1)求证: 12(AB +BC +CA )<PA +PB +PC <AB +BC +CA ; (2)若△ABC 是正三角形,且边长为1,求证: 32<PA +PB +PC <2. 分析:不等式12(AB +BC +CA )<PA +PB +PC 可化为AB +BC +CA <2(PA +PB +PC )=(PA +PB )+(PB +PC )+ (PC +PA ),由“三角形两边之和大于第三边”即可得证.由不等式PA +PB +PC <AB +BC +CA 的轮换对 称性,只要证明PA +PB <CA +CB 即可.证明:(1)在△PAB 中,PA +PB >AB .同理,PB +PC >BC ,PC +PA >CA .三式相加得 2(PA +PB +PC )>AB +BC +CA ,即12(AB +BC +CA )<PA +PB +PC .又由性质4知PA +PB <CA +CB .同理,PB +PC <AB +AC ,PC +PA <BC +BA .三式相加得 PA +PB +PC <AB +BC +CA . 综上可知12(AB +BC +CA )<PA +PB +PC <AB +BC +CA .(2)如图3,若△ABC 是正三角形,过P 作MN ∥BC ,交AB 于M 、交AC 于N , 则△AMN 也是正三角形.由(1)的结论知PA +PB +PC >12(AB +BC +CA )=32.又由性质6有AP ≤max{AM ,AN }=AM ,且BP <BM +MP ,CP <NC +NP . 三式相加得AP +BP +CP <AB +MN +NC =AB +AN +NC =AB +AC =2.所以,32<PA +PB +PC <2.例4、已知凸六边形ABCDEF 的边长都为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2. 证明:如图4,由于∠A +∠B +∠C +∠D +∠E +∠F =720,故不妨设∠A +∠F ≤7203=240°.作菱形ABGF ,则∠GFE ≤60°,FG =FE =1.于是,GE 是△FGE 的最小边. 故GE ≤1.又BG =1,则BE ≤BG +GE ≤2.例5、有A 、B 、C 三个村庄成三角形(如图5),A 、B 、C 三个村 庄上小学人数的比为1∶2∶3.现需要办一所小学.问小学应设在什么地方,才能使得上学儿童所走的路程的总和S 最小?解:设小学办在点P ,A 、B 、C 三个村庄的上学人数分别为a 、2a 、3a .则 S =aPA +2aPB +3aPC =a (PA +PC )+2a (PB +PC )≥aAC +2aBC . 当且仅当P =C 时,上式等号成立. 所以,小学设在C 村庄,可以使得上学 儿童所走的路程的总和S 最小.2、与角有关的不等式问题例6、在△ABC 中,已知12AC >AB .求证:12∠ABC >∠ACB . 证明:因为AC >2AB >AB ,所以,∠ABC >∠ACB . 如图6,作∠ABD =∠ACB ,交AC 于D . 下面只要证明∠CBD >∠ACB .因为△BAD ∽△CAB ,所以,BC BD =ACAB>2,即BC >2BD . 又CD >BC -BD ,两式相加得BC +CD >2BD +BC -BD =BD +BC ,即CD >BD .所以,∠CBD >∠ACB .故∠ABC =∠ABD +∠DBC >∠ACB +∠ACB =2∠ACB . 从而,12∠ABC >∠ACB .说明:与角有关的不等式常常转化为边的不等式进行证明. 例7、已知平面内的任意四点,其中任意三点不共线.试问:是否一定能从这样的四个点中选出三点构成一个三角形,使得这个三角形至少有一个内角不大于45°?试证明你的结论.证明:根据内角的大小分情况讨论.(1)如图7,若四边形ABCD 是凸四边形,那么,必有一个内 角不大于90°,不妨设为∠A .于是,∠A =∠BAC +∠CAD ≤90. 所以,∠BAC 与∠CAD 中必有一个不大于45°.(2)如图8,若四边形ABCD 是凹四边形,联结AC ,则△ABC 中必有一个内角小于或等于60,不妨设为∠A .于是,∠A =∠BAD +∠CAD .所以,∠BAD 与∠CAD 中必有一个不大于12×60=30≤45.综上可知,一定可以从中选出三点符合题意.说明:由不等式的性质“若1a +2a +⋯+n a =m (1a ,2a ,⋯,n a 为正数),则必存在i a (i =1,2,⋯,n ),满足i a ≤mn”,得出“凸四边形必有角不大于90°,三角形中必有角不大于60°”的结论,由此找出不大于90°的∠A .再将∠A 分成两个角,得到含有不大于45°内角的三角形. 3、与面积有关的不等式问题例8、在△ABC 中,点D 、E 、F 分别在边BC 、CA 、AB 上.求证:min{AEF S ,BFD S , CDE S }≤14ABC S .证明:设min{AEF S ,BFD S , CDE S }=S .如图9,注意到又由均值不等式知同理,则故min{AEF S ,BFD S , CDE S }≤14ABC S说明:在处理几何不等式最大值与最小值问题时,常常会用到一些代数不等式.本题用到了不等式2()x y +≥4xy .例9、正△ABC 的边长为1,点M 、N 、P 分别在边BC 、CA 、AB 上,且MB +CN +AP =1.求△MNP 面积的最大值.解:如图10,设BM =x ,CN =y ,AP =z .则0≤x 、y 、z ≤1,x +y +z =1.故ANP S +BPM S +CMN S =12[x (1-z )+y (1-x )+z (1-y )]sin60°=34[x (1-z )+y (1-x )+z (1-y )]. 由2()x y z ++≥3(xy +yz +zx ),易得xy +yz +zx ≤13.从而,x (1-z )+y (1-x )+z (1-y )=x +y +z -(xy +yz +zx )≥1-13=23.故NMP S =ABC S -(ANP S +BPM S +CMN S当x =y =z =13时,上式等号成立.因此,△MNP 例10、△ABC 是边长为8的正三角形,M 是边AB 上一点,MP ⊥AC 于点P ,MQ ⊥BC 于点Q ,联结PQ . (1)求PQ 的长的最小值;(2)求△CPQ 面积的最大值.解:(1)设△ABC 的高为h ,则h =由ACM S +BCM S =ABC S ,得MP +MQ =h =如图11,过点P 、Q 分别作边AB 的垂线,垂足分别为1P 、1Q . 因为∠PMA =∠QMB =30°,所以,1PM =PM ,1Q M =QM QM ,PQ ≥11PQ =1PM +1MQ PM +QM )=6. 当M 为AB 的中点时,上式等号成立. 因此,PQ 的最小值为6.(2)因为∠PMA =∠QMB =30°,所以,AP +BQ =12AM +12BM =12AB =4,CP +CQ =16-(AP +BQ )=12.故CPQ S =12CP ·CQ sin C ·CQ 2()4CP CQ =.当M 为AB 的中点时,上式等号成立.因此,△CPQ 面积的最大值为4、费马点问题例11、在已知平面内找一点P ,使得它到△ABC 三个顶点的距离之和最小(此点称为费马(Fermat)点).解:(1)证明点P 不会在△ABC 外.如图12,将△ABC 外部分为6个区域. 若点P 在区域Ⅰ中(如图13),则有 AB +AC ≤PB +PC <PA +PB +PC ,即点A 到三顶点的距离之和比点P 到三顶点的距离之和小. 若点P 在区域Ⅲ和Ⅴ,也有同样的结论.若点P 在区域Ⅵ中(如图14),设BP 交AC 于点Q .则有 QA +QB +QC =QB +AC <BP +AC <PA +PB +PC ,即点Q 到A 、B 、C 三点的距离之和比点P 到A 、B 、C 三点 的距离之和小.若点P 在区域Ⅱ和Ⅳ,也有同样的结论. 因此,点P 一定在△ABC 的内部或边上.(2)当△ABC 的三个内角均小于120时,以BC 、CA 、AB 为边分别向△ABC 外作等边△BCD 、等边△CAE 、等边△ABF ,再分别作 三个等边三角形的外接圆.三个外接圆的圆周在△ABC 内的交点,即对△ABC 三边张角均 为120°的点记为点P (如图15).下面证明:对于△ABC 内任意一点Q ,都有PA +PB +PC ≤QA +QB +QC .过A 、B 、C 三点分别作PA 、PB 、PC 的垂线,三条垂线相交所成 的三角形记为△111A B C .因为P 对△ABC 三边张角均为120°,则 ∠111B AC =∠111C B A =∠111ACB =60°. 所以,△111A BC 是正三角形,设其边长为a .任取不同于P 的一点Q ,向△111A B C 的三边作垂线,得到距离1h 、2h 、3h . 由“正三角形内任一点到三边距离之和等于正三角形的高”得 2111A B C S =a (PA +PB +PC )=a (1h +2h +3h )≤a (QA +QB +QC ). 因此,PA +PB +PC ≤QA +QB +QC .当且仅当Q =P 时,上式等号成立.如图16,将△BAQ 绕点A 旋转,使B 成为CA 延长线上一点B ′,Q 为Q ′. 因为旋转角小于或等于60°,所以,QQ ′≤AQ . 则QA +QB +QC ≥QQ ′+Q ′B ′+QC ≥CB ′=CA +AB . 当且仅当Q =A 时,上式等号成立.综上所述,当△ABC 各个内角均小于120°时,费马点为△ABC 内部对三角形的三边张角均为120°的点. 若△ABC 中有一 内角不小于120°,则此内角的顶点即为费马点. 练习题1.在△ABC 中,若∠B =n ∠C (n 是不小于2的正整数),则AC ≤nAB .(提示:如图18,在△ABC 的外接圆上,将∠B所对的AC n 等分,联结相邻分点得n 条彼此相等的弦,且这些弦都与AB 相等. 因为折线A 12A A ⋯1n A -C 的长大于AC ,所以,AC ≤nAB .)2.在△ABC 中,AB >AC ,AM 为中线,P 为△AMC 内一点.证明:PB >PC .(提示: 易知 ∠AMB >∠AMC .于是,∠AMC <90°.过P 作PH ⊥BC 于点H ,则垂足H 必在MC 的内部 或其延长线上.从而,BH >CH .因此,PB >PC .)3.在Rt △ABC 中,P 是斜边BC 的中点,Q 、R 分别是AB 、AC 上的点.求证:△PQR的周长大于BC 的长.(提示:如图19,分别作点P 关于AB 、AC 的对称点M 、N ,联结 MQ 、NR .由对称性知PQ =MQ ,PR =NR .联结AP ,由对称性知M 、A 、N 三点共线,且 ∠MPN =90°.所以,MN =2AP =BC .故PQ +QR +RP =MQ +QR +RN >MN =BC .)4.如图20,将任意△ABC 的三边四等分,边BC 、CA 、AB 上的分点分别为1A 、2A 、3A ,1B 、2B 、3B ,1C 、2C 、3C . 记△ABC 、△111A B C 的周长分别为p 、1p .求证:12p <1p <34p .(提示:易知13C B =14BC . 在△131B B C 中,有 13C B +31B B >11B C ,即14BC +12CA >11B C .同理,14CA +12AB >11C A ,14AB +12BC >11A B . 三式相加即得1p <34p .在△11AB C 中, 11B C >1AB -1AC =34CA -14AB .同理,11C A > 34AB -14BC ,11A B > 34BC -14AC .三式相加即得12p <1p .)5.凸四边形ABCD 中,AB +AC +CD =16.问:当对角线AC 、BD 为何值时,四边形ABCD 面积最大?面积最大值是多少?(提示:设AB =x ,AC =y ,则CD =16-x -y .而ABCD S =ABC S +ACD S ≤12xy +12y (16-x -y )=- 122(8)y -+32.所以,当∠BAC =∠ACD =90°,AC =8,BD =,四边形ABCD 的最大面积为32.)6.如图21,在△ABC 中,AB =AC ,D 为BC 的中点,E 为△ABD 中任意一点,联结AE 、BE 、CE . 求证:∠AEB >∠AEC . (提示:如图21,作点E 关于AD 的对称点E ′,联结AE ′、CE ′、 EE ′,并延长EE ′交AC 于点F .根据对称性得△ABE ≌△ACE ′.所以,∠AEB =∠AE ′C .易知∠AE ′C =∠AE ′F +∠CE ′F >∠AEF +∠CEF =∠AEC ,即∠AEB >∠AEC .)7.已知凸六边形ABCDEF 的边长至多为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2. (提示:如图22,联结AC 、CE 、EA .在△AEC 中,不妨设边CE 最大,即CE ≥AC ,CE ≥AE .对A 、C 、D 、E 四点用托勒密不等式,有AD ·CE ≤AC ·ED +CD ·AE ,故AD ≤AC CE ·DE +CD ·ACCE≤1×1+1×1=2.)8.如图23,在凸四边形ABCD 中,M 、P 分别是BC 、CD 的中点,已知AM +AP =a .求证:ABCD S <212a .(提示:如图23,联结AC 、MP .则AMP S +14BDC S =AMCP S =12ABCD S .又BDC S <ABCD S ,AMP S ≤12AM ·AP ≤12·2()4AM AP =218a ,从而,ABCD S <212a .)。
华杯赛初二辅导-第五讲-几何不等式
华杯赛初二辅导第五讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些课本中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.一、基本定理定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA >PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P 为A 或B 时等号成立.说明 max {AB ,AC }表示AB ,AC 中的较大者,如图,若P 在线段BH 上,则由于PH ≤BH ,由上面的定理5知PA ≤BA ,从而PA ≤max {AB ,AC }.同理,若P 在线段HC 上,同样有PA ≤max {AB ,AC }.二、典型例题例1 在锐角三角形ABC 中,AB >AC ,AM 为中线,P 为△AMC 内一点,证明:PB >PC . 证 在△AMB 与△AMC 中,AM 是公共边,BM=MC ,且AB >AC ,由定理3知,∠AMB >∠AMC ,所以∠AMC <90°.过点P 作PH ⊥BC ,垂足为H ,则H 必定在线段BM 的延长线上.如果H 在线段MC 内部,则BH >BM=MC >HC .如果H 在线段MC 的延长线上,显然BH >HC ,所以PB >PC .例2 已知P 是△ABC 内任意一点. (1)求证:PC PB PA c b a ++<++)(21<a +b +c ; (2)若△ABC 为正三角形,且边长为1,求证:PA+PB +PC <2.证 (1)由三角形两边之和大于第三边得PA +PB >c ,PB +PC >a ,PC +PA >b .把这三个不等式相加,再两边除以2,便得)(21c b a PC PB PA ++>++ 又由定理4可知PA +PB <a +b , PB +PC <b +c ,PC+PA <c +a .把它们相加,再除以2,便得PA +PB +PC <a +b +c .所以 c b a PC PB PA c b a ++<++<++)(21. (2)过P 作DE ∥BC 交正三角形ABC 的边AB ,AC 于D ,E ,如图.于是PA <max {AD ,AE }=AD ,PB <BD +DP ,PC <PE +EC ,所以PA +PB +PC <AD +BD +DP +PE +EC=AB +AE +EC=2.例3 如图.在线段BC 同侧作两个三角形ABC 和DBC ,使得AB=AC ,DB >DC ,且AB +AC=DB +DC .若AC 与BD 相交于E ,求证:AE >DE .证 在DB 上取点F ,使DF=AC ,并连接AF 和AD .由已知2DB >DB+DC=AB+AC=2AC , 所以 DB >AC .由于DB +DC=AB +AC=2AC ,所以DC +BF=AC=AB .在△ABF 中,AF >AB -BF=DC .在△ADC 和△ADF 中,AD=AD ,AC=DF ,AF >CD .由定理3,∠1>∠2,所以AE >DE .例4 设G 是正方形ABCD 的边DC 上一点,连结AG 并延长交BC 延长线于K ,求证:分析 在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO 分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC.证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.又 CD>BC-BD,所以BC+CD>2BD+BC-BD,所以 CD>BD.从而命题得证.例8在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(图2-144).证作MH1⊥BC于H1,由于M是中点,所以于是在Rt△MH1B中,∠MBH1=30°.延长BM至N,使得MN=BM,则ABCN为平行四边形.因为AH为最ABC中的最短边,所以AN=BC<AB,从而∠ABN<∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC<60°.下面是一个非常著名的问题——费马点问题.例9如图2-145.设O为△ABC内一点,且∠AOB=∠BOC=∠COA=120°,P为任意一点(不是O).求证:PA+PB+PC>OA+OB+OC.证过△ABC的顶点A,B,C分别引OA,OB,OC的垂线,设这三条垂线的交点为A1,B1,C1(如图2-145),考虑四边形AOBC1.因为∠OAC1=∠OBC1=90°,∠AOB=120°,所以∠C1=60°.同理,∠A1=∠B1=60°.所以△A1B1C1为正三角形.设P到△A1B1C1三边B1C1,C1A1,A1B1的距离分别为ha,hb,hc,且△A1B1C1的边长为a,高为h.由等式S△A1B1C1=S△PB1C1+S△PC1A1+S△PA1B1知所以 h=h a+h b+h c.这说明正△A1B1C1内任一点P到三边的距离和等于△A1B1C1的高h,这是一个定值,所以OA +OB +OC=h=定值.显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以PA +PB +PC >h=OA +OB +OC .这就是我们所要证的结论.由这个结论可知O 点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.三、巩固练习1.设D 是△ABC 中边BC 上一点,求证:AD 不大于△ABC 中的最大边.2.AM 是△ABC 的中线,求证: )(21AC AB AM +<. 3.已知△ABC 的边BC 上有两点D ,E ,且BD=CE ,求证:AB +AC >AD +AE .4.设△ABC 中,∠C >∠B ,BD ,CE 分别为∠B 与∠C 的平分线,求证:BD >CE .5.在△ABC 中,BE 和CF 是高,AB >AC ,求证:AB+CF ≥AC +BE .6.在△ABC 中,AB >AC ,AD 为高,P 为AD 上的任意一点,求证:PB -PC >AB -AC .7.在等腰△ABC 中,AB=AC .(1)若M 是BC 的中点,过M 任作一直线交AB ,AC(或其延长线)于D ,E ,求证:2AB <AD+AE .(2)若P 是△ABC 内一点,且PB <PC ,求证:∠APB >∠APC .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题培训第二十三讲几何不等式
平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.
在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.
几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.
定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.
定理2同一个三角形中,大边对大角,小边对小角,反之亦然.
定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.
定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.
定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.
说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA 和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA >HB.事实上,
由勾股定理知
PA2-HA2=PH2=PB2-HB2,
所以
PA2-PB2=HA2-HB2.
从而定理容易得证.
定理6 在△ABC中,点P是边BC上任意一点,则有
PA≤max{AB,AC},
当点P为A或B时等号成立.
说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而
PA≤max{AB,AC}.
同理,若P在线段HC上,同样有PA≤max{AB,AC}.
例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC 内一点,证明:PB>PC(图2-137).
证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.
过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则
BH>BM=MC>HC.
如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.
例2 已知P是△ABC内任意一点(图2-138).
(1)求证:
<a+b+c;
(2)若△ABC为正三角形,且边长为1,求证:
PA+PB+PC<2.
证 (1)由三角形两边之和大于第三边得
PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得
又由定理4可知
PA+PB<a+b, PB+PC<b+c,
PC+PA<c+a.
把它们相加,再除以2,便得
PA+PB+PC<a+b+c.
所
(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是
PA<max{AD,AE}=AD,
PB<BD+DP,PC<PE+EC,
所以
PA+PB+PC<AD+BD+DP+PE+EC
=AB+AE+EC=2.
例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.
证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB >DB+DC
=AB+AC=2AC,
所以 DB>AC.
由于DB+DC=AB+AC=2AC,所以
DC+BF=AC=AB.
在△ABF中,
AF>AB-BF=DC.
在△ADC和△ADF中,
AD=AD,AC=DF,AF>CD.
由定理3,∠1>∠2,所以
AE>DE.
例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:
分析在不等式两边的线段数不同的情况下,一般是设法构造
其所为边的三角形.
证如图2-140,在GK上取一点M,使GM=MK,则
在Rt△GCK中,CM是GK边上的中线,所以
∠GCM=∠MGC.
而∠ACG=45°,∠MGC>∠ACG,于是
∠MGC>45°,
所以
∠ACM=∠ACG+∠GCM>90°.
由于在△ACM中∠ACM>∠AMC,所以AM>AC.故
例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:
(1)OA′+OB′+OC′<BC;
(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.
证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以
OA′<max{OX,OY}≤XY.
又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX
也是△BXS中的最大边,而且SXOC′是平行四边形,所以
BX>XS=OC′.
同理
CY>OB′.
所以
OA′+OB′+OC′<XY+BX+CY=BC.
所以
OA′+OB′+OC′=x·AA′+y·BB′+z·CC′
≤(x+y+z)max{AA′,BB′,CC′}
=max{AA′,BB′,CC′}
下面我们举几个与角有关的不等式问题.
例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).
证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.
在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以
∠ACB>∠ABC.
说明在证明角的不等式时,常常把角的不等式转换成边的不等式.
证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图
2
即证BD∠CD.因为△BAD∽△CAB,
即 BC>2BD.
又 CD>BC-BD,
所以
BC +CD >2BD +BC -BD ,
所以 CD >BD . 从而命题得证.
例8 在锐角△ABC 中,最大的高线AH 等于中线BM ,求证:∠B <60°(图2-144).
证 作MH 1⊥BC 于H 1,由于M 是中点,所以
于是在Rt △MH 1B 中,
∠MBH 1=30°.
延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH
为最
ABC
中的最短边,所以
AN=BC <AB ,
从而
∠ABN <∠ANB=∠MBC=30°,
∠B=∠ABM+∠MBC <60°.
下面是一个非常著名的问题——费马点问题. 例9 如图2-145.设O 为△ABC 内一点,且
∠AOB=∠BOC=∠COA=120°,
P 为任意一点(不是O).求证:
PA +PB+PC >OA+OB+OC .
证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为
∠OAC 1=∠OBC 1=90°,∠AOB=120°,
所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形.
设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式
S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1
知
所以 h=h a +h b +h c .
这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1
的高h ,这是一个定值,所以
OA +OB +OC=h=定值.
显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以
PA +PB +PC >h=OA +OB +OC .
这就是我们所要证的结论.
由这个结论可知O 点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点. 练习二十三
1.设D 是△ABC 中边BC 上一点,求证:AD 不大于△ABC 中
的最大边.
2.AM 是△ABC 的中线,求证:
3.已知△ABC 的边BC 上有两点D ,E ,且BD=CE ,求证:AB
+AC >AD +AE .
4.设△ABC 中,∠C >∠B ,BD ,CE 分别为∠B 与∠C 的平分线,求证:BD >CE .
5.在△ABC中,BE和CF是高,AB>AC,求证:
AB+CF≥AC+BE.
6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:
PB-PC>AB-AC.
7.在等腰△ABC中,AB=AC.
(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.
(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。