相似三角形与圆综合题
圆与相似三角形、三角函数专题(含答案)

圆与相像三角形、解直角三角形及二次函数的综合种类一:圆与相像三角形的综合1.如图, BC 是⊙ A 的直径,△ DBE的各个极点均在⊙ A 上, BF⊥ DE于点 F.求证: BD·BE= BC·BF.2.如图,在 Rt△ ABC中,∠ ACB= 90°,以 AC为直径的⊙ O 与 AB 边交于点 D,过点 D 作⊙O 的切线,交 BC 于点 E.(1)求证:点 E 是边 BC的中点;求证:2=BD·BA;(2)BC(3)当以点 O, D, E,C 为极点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1) 连接 OD,∵ DE为切线,∴∠ EDC+∠ ODC=90° .∵∠ ACB=90°,∴∠ ECD+∠ OCD= 90° .又∵ OD= OC,∴∠ ODC=∠ OCD,∴∠ EDC=∠ ECD,∴ ED= EC.∵AC 为直径,∴∠ADC= 90°,∴∠ BDE+∠ EDC= 90°,∠ B+∠ECD= 90°,∴∠ B=∠ BDE,∴ ED= EB,∴ EB=EC,即点 E 为边 BC的中点(2)∵ AC为直径,∴∠ ADC=∠ ACB=90° .又∵∠ B=∠ B,∴△ ABC∽△ CBD,∴ABBC= BCBD,∴B C2= BDBA(3)当四边形 ODEC为正方形时,∠ OCD= 45° .∵AC 为直径,∴∠ ADC= 90°,∴∠ CAD=90°-∠ OCD= 90°- 45°= 45°,∴ Rt△ ABC 为等腰直角三角形种类二:圆与解直角三角形的综合3.如图,在△ ABC中,以 AC 为直径作⊙ O 交 BC 于点 D,交 AB 于点 G,且 D 是 BC 的中点,DE⊥ AB,垂足为点 E,交 AC 的延伸线于点 F.(1)求证:直线EF是⊙ O 的切线;(2)已知 CF= 5, cosA=25,求 BE 的长.解: (1)连接 OD.∵ CD=DB,CO= OA,∴ OD 是△ ABC的中位线,∴OD∥ AB, AB=2OD.∵ DE⊥ AB,∴ DE⊥OD,即 OD⊥ EF,∴直线 EF是⊙ O 的切线(2)∵ OD∥ AB,∴∠ COD=∠ A,∴ cos∠ COD= cosA= 25.在 Rt△ DOF中,∵∠ ODF= 90°,∴ cos∠ FOD= ODOF= 25.设⊙ O 的半径为 r,则 rr + 5= 25,解得 r= 103,∴ AB= 2OD= AC= 203.在 Rt△ AEF中,∵∠ AEF= 90°,∴ cosA= AEAF=AE5+ 203=25,∴ AE= 143,∴ BE=AB- AE=203- 143= 24.(2015 ·资阳 )如图,在△ ABC中, BC是以 AB 为直径的⊙ O 的切线,且⊙ O 与 AC 订交于点D, E 为 BC 的中点,连接 DE.(1)求证: DE 是⊙ O 的切线;(2)连接 AE,若∠ C= 45°,求 sin∠ CAE的值.解: (1)连接 OD,BD,∵ OD= OB,∴∠ ODB=∠ OBD.∵ AB 是直径,∴∠ ADB= 90°,∴∠ CDB= 90° .∵ E为 BC的中点,∴ DE=BE,∴∠ EDB=∠ EBD,∴∠ ODB+∠ EDB=∠ OBD+∠ EBD,即∠ EDO=∠ EBO.∵ BC 是以 AB 为直径的⊙ O 的切线,∴ AB⊥ BC,∴∠ EBO=90°,∴∠ ODE= 90°,∴ DE 是⊙ O 的切线(2)过点 E 作 EF⊥ CD于点 F,设 EF= x,∵∠ C=45°,∴△ CEF,△ABC 都是等腰直角三角形,∴CF= EF= x,∴ BE= CE= 2x,∴AB= BC= 22x.在 Rt△ ABE中, AE= AB2+ BE2= 10x,∴ sin∠ CAE= EFAE= 10105.如图,△ ABC 内接于⊙ O,直径 BD 交 AC 于点 E,过点 O 作 FG⊥ AB,交 AC 于点 F,交 AB 于点 H,交⊙ O 于点 G.(1)求证: OF·DE= OE·2OH;(2)若⊙ O 的半径为12,且 OE∶OF∶ OD= 2∶3∶ 6,求暗影部分的面积. (结果保存根号 )解: (1)∵ BD 是直径,∴∠ DAB= 90° .∵ FG⊥ AB,∴ DA∥ FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OFDE=OEAD.∵O 是BD 的中点, DA∥ OH,∴ AD= 2OH,∴ OFDE= OE2OH(2)∵⊙ O 的半径为12,且 OE∶ OF∶ OD=2∶ 3∶ 6,∴ OE= 4, ED=8,OF= 6,∴ OH= 6.在 Rt△OBH 中,OB= 2OH,∴∠ OBH= 30°,∴∠ BOH= 60°,∴ BH= BOsin60°= 12× 32= 63,∴ S 暗影= S 扇形 GOB-S△OHB=60×π× 122360- 12× 6×63= 24π- 183种类三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知 A(- 4,0), B(1,0),且以 AB 为直径的圆交 y 轴的正半轴于点 C(0,2),过点 C作圆的切线交 x 轴于点 D.(1)求过 A,B, C 三点的抛物线的分析式;(2)求点 D 的坐标;(3)设平行于 x 轴的直线交抛物线于E,F 两点,问:能否存在以线段EF为直径的圆,恰巧与x轴相切若存在,求出该圆的半径,若不存在,请说明原因.解: (1)y=- 12x2- 32x+2(2)以 AB 为直径的圆的圆心坐标为O′ (-32,0),∴O′ C= 52, O′ O= 32.∵ CD为圆 O′的切线,∴O′ C⊥ CD,∴∠ O′CO+∠ DCO= 90° .又∵∠CO′ O+∠ O′ CO=90°,∴∠ CO′ O=∠DCO,∴△ O′ CO∽△ CDO,∴ O′ OOC= OCOD,∴322= 2OD,∴ OD= 83,∴点 D 的坐标为 (83,0)(3)存在.抛物线的对称轴为直线x=- 32,设满足条件的圆的半径为|r| ,则点 E 的坐标为 (- 32+ r, r)或 F(- 32-r , r),而点 E 在抛物线y =- 12x2- 32x+2 上,∴ r=- 12(- 32+ |r|)2 - 32(- 32+ |r|) + 2,∴ r1=- 1+ 292, r2=-1- 292(舍去 ).故存在以线段EF 为直径的圆,恰巧与x 轴相切,该圆的半径为-1+ 2927.如图,抛物线y=ax2+ bx- 3 与 x 轴交于 A, B 两点,与y 轴交于点C,经过 A,B, C 三点的圆的圆心抛物线的极点为M(1 ,m)恰幸亏此抛物线的对称轴上,E.⊙ M的半径为.设⊙ M与y 轴交于点D,(1)求 m 的值及抛物线的分析式;(2)设∠ DBC=α,∠ CBE=β,求 sin( α-β)的值;(3)研究坐标轴上能否存在点 P,使得以 P, A, C 为极点的三角形与△ BCE相像若存在,请指出点 P 的地点,并直接写出点 P 的坐标;若不存在,请说明原因.解: (1)由题意,可知 C(0,- 3),- b2a=1,∴抛物线的分析式为 y= ax2- 2ax- 3(a> 0).过点 M 作 MN ⊥y 轴于点 N,连接 CM,则 MN = 1, CM= 5,∴ CN= 2,于是 m=- 1.同理,可求得 B(3,0),∴ a× 32- 2a× 3- 3=0,解得 a= 1. ∴抛物线的分析式为 y= x2- 2x-3(2)由 (1)得, A(-1 ,0), E(1,- 4), D(0, 1),∴△ BCE为直角三角形, BC=32, CE= 2,∴OBOD=31= 3, BCCE= 322=3,∴ OBOD= BCCE,即 OBBC= ODCE,∴ Rt△BOD∽ Rt△BCE,得∠ CBE=∠ OBD=β,所以 sin(α-β )=sin(∠ DBC-∠ OBD)= sin∠ OBC= COBC= 22(3)明显 Rt△ COA∽ Rt△ BCE,此时点 O(0, 0).过点 A 作 AP2⊥ AC 交 y 轴的正半轴于点 P2,由 Rt△ CAP2∽Rt△ BCE,得 P2(0,13).过点 C 作 CP3⊥ AC交 x 轴的正半轴于点 P3,由 Rt△P3CA∽ Rt△ BCE,得 P3(9,0).故在座标轴上存在三个点 P1(0, 0),P2(0, 13),P3(9, 0),使得以 P, A, C为极点的三角形与△ BCE相像。
相似三角形与圆的综合题资料

∵ AD⊥ DE,∴ CO∥ AD,
∴∠ OCA=∠CAD,
∵ AO=CO,
∴∠ OAC=∠OCA,
∴∠ OAC=∠CAD,
在△ AGC和△ ADC中,
, ∴△ AGC≌△ ADC( AAS),
∴ CG=CD,
-9-
∴ BG× AG=AD× DF. 2、已知 :如图 ,AB为 ⊙ O的直径 ,AB⊥ AC,BC交⊙ O于 D,E 是 AC的中点, ED与 AB 的延长线相交 于 点 F. (1) 求证: DE为 ⊙ O的切线. (2) 求证: AB: AC=BF: DF.
(2) △ OBF∽△ DEC。
-4-
9、如图,已知 AB 是⊙ O的直径, C是⊙ O上一点, OD⊥ BC于点 D,过点 C 作⊙ O 切线,交 OD的延长线于点 E,连结 BE. (1) 求证: BE与⊙ O相切;
(2) 连结 AD并延长交 BE 于点 F,若 OB= 6,且 sin ∠ ABC= 2 ,求 BF的长. 3
∴
=
,
∴ CD2=AD× DF,
∵ CG⊥ AB,AB 为直径,
∴∠ BCA=∠AGC=∠ BGC=90°,
∴∠ GBC+∠BCG=90°,∠ BCG+∠ GCA=90°,
∴∠ GBC=∠ACG,
∴△ BGC∽△ AG,
∵过 E 作⊙ O的切线 ED,∴ OC⊥DE,
解答:( 1)证明:连接 OC.
∵ PC=PF, OA=O,C
∴∠ PCA=∠PFC,∠ OCA=∠ OAC,
- 13 -
∵∠ PFC=∠AFH, DE⊥ AB, ∴∠ AHF=90°, ∴∠ PCO=∠PCA+∠ ACO=∠ AFH+∠ FAH=90°, ∴ PC是⊙ O的切线.
圆与相似三角形的综合常见题型

圆与相似三角形专题训练27、如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB 。
【2005成都】⑴求证:DE 是⊙O 的切线;⑵若AB =6,AE =245,求BD 和BC 的长。
27、已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G ,交⊙O 的直径AE 于点F ,连结BD 。
【2006成都】(1)求证:△ACG ∽△DBG ;(2)求证:2AC AG AB =⋅;(3)若⊙A 、⊙O 的直径分别为15,且CG :CD =1:4,求AB 和BD 的长。
EOD GCAEFB P27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .【2007成都】 (1)求证:BF EF =;(2)求证:PA 是O 的切线;(3)若FG BF =,且O 的半径长为32,求BD 和FG 的长度.27. 如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧AB 上的一个动点(不与点A 、点B 重合).连结AC 、BC ,分别与⊙M 相交于点D 、点E ,连结DE.若AB=23.【2008成都】 (1)求∠C 的度数;(2)求DE 的长; (3)如果记tan ∠ABC=y ,ADDC=x (0<x<3),那么在点C 的运动过程中,试用含x 的代数式表示y.AB CDEF G O27.如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .【2009成都】(1)判断0G 与CD 的位置关系,写出你的结论并证明; (2)求证:AE=BF ;(3)若3(22)OG DE ⋅=-,求⊙O 的面积。
圆与相似三角形相关的证明题

圆与相似三角形相关的证明题1. 在图中,已知PC=PD,PD切圆O于D,PB交圆O于A,连结AC和BC。
要证明AC·PB=PC·BC。
证明:由于PD是圆O的切线,所以∠PDC=∠ACB。
又因为PC=PD,所以∠PCD=∠PDC。
因此,∠ACB=∠PCD。
又因为∠BCP=∠PBD,所以三角形PBD和PBC相似。
因此,PB·PC=PD2。
由于三角形ACD和BDC相似,所以AC·BD=CD2。
将BD替换为PD+PC,得到AC·(PD+PC)=CD2,即AC·PB=PC·BC。
因此,原命题成立。
2. 在图中,已知AB∥CD,DC延长线交EB延长线于F,EB与圆O相交于F,DF交圆O于G。
要证明AD·ED=BE·DF。
证明:由于AB∥CD,所以∠___∠EAD。
又因为EB是圆O的切线,所以∠___∠EDF。
因此,∠___∠EAD。
又因为AB是圆O的直径,所以∠EAB=90°。
因此,三角形EAB和EDF相似。
因此,AD·ED=BE·DF。
因此,原命题成立。
3. 在图中,___于P,PE⊥AB于E,AC⊥CD,BD⊥CD。
要证明①PE:AC=PB:PA,②PE2=AC·BD。
证明:①由于PE⊥AB,所以∠APE=90°。
又因为AC⊥CD,所以∠ACP=90°。
因此,∠APE=∠ACP。
又因为∠APB=90°,所以三角形APE和APB相似。
因此,PE:AC=PB:PA。
②由于PE⊥AB,所以∠APE=90°。
又因为BD⊥CD,所以∠___°。
因此,四边形AEPD和BEPC是直角四边形。
因此,PE2=AE2-AP2=AC·BD。
因此,原命题成立。
4. 在图中,ABC是内接于圆O的三角形,BD是圆O的直径,AF⊥BD于F,AF延长线与BC交于G。
矩形、相似三角形、圆的切线综合问题

矩形、相似三角形、圆的切线综合从你的图上可以看出:你已经是一个非常努力且分析努力很强的学生了。
如果你是八年级的学生,困难就在于没有学习“相似三角形”的内容。
而这道题是中考题用到了。
(建议你看一下这部分内容,我就直接用了)相似三角形的判定:有两个角对应相等的两个三角形相似。
三边对应成比例的两个三角形相似一个角相等,并且这个角的两边对应成比例的两个三角形相似 相似三角形的性质:相似三角形的对应边成比例,对应角相等。
解:(1)在矩形ABCD 中AB=3,BC=4由翻折知Y=DQ=DE CE=3-yAD ∥BP ,∠ADE=∠PCE=90度∴∠DAE=∠CPE∴△DAE ∽△CPEy 4312y 4DE AD CE CPy xx ==-=+即整理得:定义域是x>0△APQ 的面积是△AEQ 与△PEQ 的和11221()2112(2)(4)1224QE AD QE CP QE AD CP x x +=+=+=+ 所以△APQ 的面积是一个定值12.当以4为半径的⊙Q 与AP 相切时,切点与圆心所连的半径垂直于AP ,即时AP 上的高此时,AP=12×2÷4=6CP=2 DP=12224=+ 由勾股定理得AQ=22422025+==所以⊙A 的半径是254-第2题简单多了,给个提示吧(1)根据三线合一,及等腰直角三角形的性质,证明△ADE ≌△CDF(2)分别做点D 到AC 、BC 的垂线段证明△ADG ∽△DBH 和△DGE ∽△DFH 得到DE :DF=DG :DH=AD :DB=m(3)利用(2)的结果,得到y=2x (2<x 22)(3)第二问:设以CE 为直径的圆的圆心为O ,过点O 做OP ⊥AB 于P ,AO=2OP当圆O 与AB 相切时,OP=OC 得2666(21)21OC OC OC +===-+ 此时612(21)18122x =--=-。
2020春浙教版九年级中考数学复习测试:6.20圆与相似三角形的结合

第20讲圆与相似三角形的结合[学生用书P129]月球有多大?我们用三角函数可以测定月球的大小,当我们已知月球离地球的距离是三十八万四千千米,就可以用相似测定月球直径的大小.如图①,把一枚硬币(直径2.4 cm)放在离眼睛2.6 m的地方,大致能够把整个月面遮住.(试一试!)①②如图②,由△OAB∽△OCD,可得CDAB=OFOE(相似三角形对应高的比等于相似比).把AB=0.024 m,OF=384 000 000 m,OE=2.6 m代入,得CD=0.024×384 000 0002.6≈3 500 000(m).就是说,月球的直径约是3 500 km.类型之一圆的基本性质与相似三角形例1[2018·南京中考]如图,在正方形ABCD中,E是AB上一点,连结DE.过点A作AF⊥DE,垂足为F.⊙O经过点C,D,F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【思路生成】(1)欲证明△AFG∽△DFC,只要证明∠F AG=∠FDC,∠AGF =∠FCD;(2)首先证明CG是直径,再求CG长度即可解决问题;解:(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,又∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC;(2)如答图,连结CG.答图∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF.∴EAAF=DADF,即EADA=AFDF.∵△AFG∽△DFC,∴AGDC=AF DF.∴AGDC=EADA.在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA-AG=4-1=3. ∴CG=DG2+DC2=32+42=5.∵∠CDG=90°,∴CG是⊙O的直径.∴⊙O的半径为5 2.圆与相似三角形的综合运用主要体现在以下几个方面:(1)证明圆中的比例式或等积式;(2)运用相似的性质进行圆的有关计算;(3)运用相似证明圆的切线.判定圆中的相似三角形(1)圆中的角主要有圆心角和圆周角,特别是直径所对的圆周角都是直角,利用圆心角、圆周角等寻找或构造相似三角形是基本思路;(2)利用圆的切线的判定或性质,或切线长定理寻找或构造相似三角形也是重要的方法.1.[太原竞赛]如图,已知△ABC中,∠C=90°,AC=11,BC=5,以C为圆心,BC为半径作圆交BA的延长线于D,则AD的长为__73__.答图【解析】如答图,延长AC与圆相交于E,F,则AF=5-11,AE=5+11,又AB=6,由相交弦定理AD·AB=AE·AF得AD=AE·AFAB=(5-11)(5+11)6=73.2.[第19届江苏竞赛]如图,AB为圆的直径,若AB=AC=5,BD=4,则AE BE=__724__.【解析】如答图,连结AD,答图∵AB为圆的直径,∴∠E=90°,AD⊥BC,而AB=AC=5,BD=4,则AD=3,BD=DC,∴BC=2BD=8,∵∠ACD=∠BCE,∴Rt△CDA∽Rt△CEB,∴ADBE=CDCE=CABC,即3BE=4CE=58,所以BE=245,CE=325,则AE=CE-AC=325-5=75,所以AEBE=724.3.[苏州中考]如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E ,连结CD 交OE 于点F .(1)求证:△DOE ∽△ABC ; (2)求证:∠ODF =∠BDE ;(3)连结OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若S 1S 2=27,求OEOD 的值.解:(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. ∵DE ⊥AB ,∴∠DEO =90°.∴∠DEO =∠ACB . ∵OD ∥BC ,∴∠DOE =∠ABC ,∴△DOE ∽△ABC ;(2)证明:∵△DOE ∽△ABC ,∴∠ODE =∠A .∵∠A 和∠BDC 是BC ︵所对的圆周角,∴∠A =∠BDC ,∴∠ODE =∠BDC .∴∠ODF =∠BDE ;(3)∵△DOE ∽△ABC ,∴S △DOE S △ABC =⎝ ⎛⎭⎪⎫OD AB 2=14,即S △ABC =4S △DOE =4S 1, ∵OA =OB ,∴S △BOC =12S △ABC , 即S △BOC =2S 1.∵S 1S 2=27,S 2=S △BOC +S △DOE +S △DBE =2S 1+S 1+S △DBE ,∴S △DBE =12S 1,∴BE =12OE , 即OE =23OB =23OD ,∴OE OD =23.4.[2018·宁波中考]如图1,直线l :y =-34x +b 与x 轴交于点A (4,0),与y 轴交于点B ,点C 是线段OA 上一动点⎝ ⎛⎭⎪⎫0<AC <165,以点A 为圆心,AC 长为半径作⊙A 交x 轴于另一点D ,交线段AB 于点E .连结OE 并延长交⊙A 于点F .(1)求直线l 的函数表达式和tan ∠BAO 的值. (2)如图2,连结CE ,当CE =EF 时. ①求证:△OCE ∽△OEA ; ②求点E 的坐标.(3)当点C 在线段OA 上运动时,求OE ·EF 的最大值.解:(1)∵直线l :y =-34x +b 与x 轴交于点A (4,0), ∴-34×4+b =0,∴b =3,∴直线l 的函数表达式为y =-34x +3, ∴B (0,3),∴OA =4,OB =3,在Rt△AOB中,tan∠BAO=OBOA=3 4.(2)①证明:如答图①,连结DE,DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA;②如答图①,过点E作EM⊥OA于M,由①知,tan∠OAB=3 4,设EM=3m,则AM=4m,∴OM=4-4m,AE=5m,∴E(4-4m,3m),AC=5m,∴OC=4-5m,由①知,△COE∽△EOA,∴OCOE=OEOA,∴OE2=OA·OC=4(4-5m)=16-20m,∵E(4-4m,3m),∴(4-4m)2+9m2=16-20m,解得m =0(舍)或m =1225,∴4-4m =5225,3m =3625, ∴E ⎝ ⎛⎭⎪⎫5225,3625.(3)如答图②,设⊙A 的半径为r ,设射线EA 与⊙A 相交于H ,过点O 作OG ⊥AB 于G ,连结FH ,答图①答图②∵A (4,0),B (0,3),∴OA =4,OB =3, ∴AB =5,∴12AB ×OG =12OA ×OB ,∴OG =125, ∴AG =OG tan ∠OAB=125×43=165, ∴EG =AG -AE =165-r ,∵EH 是⊙A 直径, ∴EH =2r ,∠EFH =90°=∠EGO , ∵∠OEG =∠HEF ,∴△OEG ∽△HEF , ∴OE HE =EG EF ,∴OE ·EF =HE ·EG =2r ⎝ ⎛⎭⎪⎫165-r =-2⎝ ⎛⎭⎪⎫r -852+12825,∴r =85时,OE ·EF 取最大值为12825.类型之二 圆的切线与相似三角形例2 [2018·成都]如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连结OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.【思路生成】(1)连结OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连结DF ,由(1)得到BC 为⊙O 的切线,由弦切角等于夹弧所对的圆周角,进而得到△ABD 与△ADF 相似,由相似得比例,即可表示出AD ;(3)连结EF ,设圆的半径为r ,由sin B 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF =sin B ,进而求出DG 的长即可.解:(1)证明:如答图,连结OD ,答图∵AD为∠BAC的平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,又⊙O过点D,∴BC为⊙O的切线;(2)如答图,连结DF,由(1)知BC为⊙O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴ABAD=ADAF,即AD2=AB·AF=xy,则AD=xy;(3)如答图,连结EF,在Rt△BOD中,sin B=ODOB=513,设圆的半径为r,可得rr+8=513,解得r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF =∠B ,∴sin ∠AEF =AF AE =513,∴AF =AE ·sin ∠AEF =10×513=5013,∵AF ∥OD ,∴AG DG =AF OD =50135=1013,即DG =1323AD ,∴AD =AB ·AF =18×5013=301313,则DG =1323×301313=301323.5.[2018·淄博中考]如图,以AB 为直径的⊙O外接于△ABC ,过A 点的切线AP 与BC 的延长线交于点P .∠APB 的平分线分别交AB ,AC 于点D ,E ,其中AE ,BD (AE <BD )的长是一元二次方程x 2-5x +6=0的两个实数根.(1)求证:P A ·BD =PB ·AE ;(2)在线段BC 上是否存在一点M ,使得四边形ADME 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.解:(1)证明:∵AP 为⊙O 的切线,AB 是直径,∴∠BAP =90°,即∠BAC +∠EAP =90°,∵AB 为直径,∴∠ACB =90°,即∠BAC +∠DBP =90°,∴∠EAP=∠DBP,又∵PD平分∠APB,∴∠APE=∠BPD,∴△APE∽△BPD,∴P AAE=PBBD,∴P A·BD=PB·AE;(2)存在.如答图,过点D作DM⊥BC于点M,连结EM,答图∵PD平分∠APB,又AD⊥P A,DM⊥PM,∴DM=DA,∵∠AED=∠EAP+∠APE,∠ADE=∠DBP+∠BPD,又由(1)知∠EAP=∠DBP,∠APE=∠BPD,∴∠AED=∠ADE,∴AD=AE,∴DM=AE,∵DM⊥BC,AC⊥BC,∴DM∥AC,∴四边形ADME为菱形,易得x2-5x+6=0的两个根为2,3,∵AE<BD,∴BD=3,AE=2,∵四边形ADME为菱形,∴DM=AE=AD=2,在Rt△BDM中,BD=3,DM=2,∴BM=32-22=5,∵DM∥AC,∴BDDA=BM MC,∴32=5MC,∴MC=253,∴S菱形ADME =AE·MC=2×235=453.6.[2018·遂宁中考]如图,过⊙O外一点P作⊙O的切线P A切⊙O于点A,连结PO并延长,与⊙O交于C,D两点,M是半圆CD的中点,连结AM交CD于点N,连结AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.解:(1)证明:∵在⊙O中M点是半圆CD的中点,∴∠CAM=∠DCM,又∵∠M是公共角,∴△CMN∽△AMC,∴CMAM=MNMC,∴CM2=MN·MA;(2)如答图,连结OA,DM,答图∵P A是⊙O的切线,∴∠P AO=90°,又∵∠P=30°,∴OA=12PO=12(PC+CO),设⊙O的半径为r,∵PC=2,∴r=12(2+r),解得r=2,又∵CD是直径,∴∠CMD=90°,∵M点是半圆CD的中点,∴CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,∴2CM2=(2r)2=16,解得CM=2 2.类型之三证明圆中的比例式或乘积式例3[天津竞赛]如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC,BD交于点E.(1)求证:AC·BC=2BD·CD;(2)若AE=3,CD=25,求弦AB和直径BC的长.【思路生成】(1)连结OD交AC于点F,由于D是弧AC的中点,∠ACD=∠ABD=∠CBD,由垂径定理知,AF=CF=12AC.∠CFD=∠BDC=90°,则有△CDF∽△BCD;(2)延长BA,CD交于点G,易得Rt△CDE∽Rt△CAG,由比例线段解得CE =5,在Rt△ACG中,由勾股定理得AG=4,由割线定理知,GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理可求得BC的值.解:(1)证明:如答图,连结OD交AC于点F,答图∵D是弧AC的中点,∴∠ACD=∠ABD=∠CBD,且AF=CF=12AC.∵BC为直径,∴∠BDC=90°,又∵∠CFD=90°,∴△CDF∽△BCD.∴CFBD=CDBC,∴CF·BC=BD·CD.∴AC·BC=2BD·CD;(2)如答图,延长BA,CD交于点G,由(1)得∠ABD=∠CBD,∠BDC=90°,∴△BCG为等腰三角形,∴BD平分CG,∴CG=2CD=45,∴Rt△CDE∽Rt△CAG,∴CECG=CDCA,即CE45=25CE+3,解得CE=5或CE=-8(舍去).在Rt△ACG中,由勾股定理得AG=CG2-AC2=(45)2-(3+5)2=4,∵GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理得BC=AB2+AC2=62+(3+5)2=10.7.如图,已知四边形ABCD为圆的内接四边形,求证:AB·CD+AD·BC=AC·BD.答图证明:如答图,在BD上取一点E,使∠BCE=∠ACD,即得△BEC∽△ADC,可得BE BC =AD AC ,即AD ·BC =BE ·AC ,①又∵∠ACB =∠DCE ,可得△ABC ∽△DEC ,即得AB AC =DE DC ,即AB ·CD =DE ·AC ,②由①+②,可得AB ·CD +AD ·BC =AC (BE +DE )=AC ·BD .8.[江苏竞赛]如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB =AC =AE .请你说明以下各式成立的理由:(1)∠CAD =2∠DBE ;(2)AD 2-AB 2=BD ·DC .证明:(1)如答图,延长BE 交圆于点F ,连结AF ,则∠DBF =∠DAF ,答图∵AB =AE ,∴∠ABE =∠AEB =∠DAF +∠F ,∴AF ︵=AC ︵+CF ︵=AB ︵+DF ︵,∵AB =AC ,∴AB ︵=AC ︵,∴CF ︵=DF ︵,即点F 是CD ︵的中点,∴∠CAD =2∠DAF =2∠DBE ;(2)如答图,连结BC 交AD 于点G ,∵AB =AC ,∴∠ADB =∠ABC ,∠BAG =∠DAB ,∴△BAG ∽△DAB .∴AB AG =AD AB ,即AB 2=AG ·AD .∴AD 2-AB 2=AD 2-AG ·AD =AD (AD -AG )=AD ·DG ,∵∠BDA =∠ADC ,∠DBG =∠DAC ,∴△BDG ∽△ADC .∴BD AD =DG DC ,∴AD ·DG =BD ·DC .∴AD 2-AB 2=BD ·DC .相似三角形解决圆中计算问题作辅助线构造直角是证明圆中三角形相似的常见方法.圆中三角形的相似常见的基本图形如下图所示.类型之四 利用相似三角形解决圆中的计算问题例4 [2018·武汉中考]如图,P A 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连结PB ,PC ,PC交AB 于点E ,且P A =PB .(1)求证:PB 是⊙O 的切线;(2)若∠APC =3∠BPC ,求PE CE 的值.【思路生成】(1)连结OB ,OP ,△OAP 与△OBP 三边对应相等,这两个三角形全等,得∠OBP =∠OAP =90°,故PB 是⊙O 的切线;(2)连结BC ,AB 与OP 交于点H ,易证OP ⊥AB ,∠OPC =∠PCB =∠CPB ,由△OAH ∽△CAB 得OH CB =12;由△HPB ∽△BPO ,求得HP OH ;再由△HPE ∽△BCE ,可得PE CE 的值.解:(1)证明:如答图,连结OB ,OP ,在△OAP 和△OBP 中,⎩⎪⎨⎪⎧OA =OB ,OP =OP ,AP =BP ,∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线;(2)如答图,连结BC ,AB 与OP 交于点H ,答图∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x , 由(1)知∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ,∵AC 是⊙O 的直径,∴∠ABC =90°,由P A =PB ,∠APH =∠BPH 可得OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC ,∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP ,易证△OAH∽△CAB,∴OHCB=OAAC=12,设OH=a,则CB=BP=2a,易证△HPB∽△BPO,∴HPBP=BPOP,设HP=ya,则ya2a=2aa+ya,解得y1=-1-172(舍)或y2=-1+172,∵OP∥CB,易证△HPE∽△BCE,∴PECE=HPCB=ya2a=-1+174.9.[2018·鄂州中考]如图,四边形ABCD内接于⊙O,BC为⊙O的直径,AC 与BD交于点E,P为CB延长线上一点,连结P A,且∠P AB=∠ADB.(1)求证:AP是⊙O的切线;(2)若AB=6,tan∠ADB=34,求PB的长;(3)在(2)的条件下,若AD=CD,求△CDE的面积.解:(1)证明:如答图,连结OA,∵OA=OC,∴∠OCA=∠OAC,又∵∠P AB=∠ADB,∠OCA=∠ADB,∴∠OAC=∠P AB,∵BC为⊙O的直径,∴∠CAB=90°,∴∠OAC+∠OAB=90°,∴∠P AB+∠OAB=90°,即OA⊥AP,∴AP是⊙O的切线;(2)如答图,过点B作BF⊥AP于点F,答图∵∠ACB=∠P AB=∠ADB,AB=6,tan∠ADB=3 4,∴BC=10,BFAF=34,设BF=3a,AF=4a,又∵AB=6,∴(3a)2+(4a)2=62,∴a=65,∴BF=3a=185,AF=4a=245,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴BFOA=BPOP,即1855=BPBP+5,解得PB=907;(3)如答图,连结OD交AC于点G,∵CD=AD,∴OD⊥AC,并且CG=AG=12AC=4,在Rt△COG中,由勾股定理可得OG=OC2-CG2=52-42=3,∴DG=OD-OG=5-3=2,S△CDG=12CG·DG=12×4×2=4.显然Rt△CDG∽Rt△CED,∴S△CDES△CDG=⎝⎛⎭⎪⎫CDCG2=⎝⎛⎭⎪⎫2542=54,∴S△CDE =54S△CDG=54×4=5.圆与相似三角形的综合运用(1)证明圆的切线的常用辅助线是作过切点的半径,证明直线与这条半径垂直;(2)运用切线的性质时,常连结切点和圆心.类型之五圆与相似三角形的综合运用例5 [2017·温州中考]如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和CM ︵所对的圆心角的度数.(2)求证:AC =AB .(3)在点P 的运动过程中.①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积比.【思路生成】(1)根据三角形ABP 是等腰三角形,可得∠B 的度数,再连结MD ,根据MD 为△P AB 的中位线,可得∠MDB =∠APB =28°;(2)由等角的补角相等,得∠ACB =∠B ,则AC =AB ;(3)①由垂直平分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;②利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1)∵MN ⊥AB ,AM =BM ,∴P A =PB ,∴∠P AB =∠B ,答图①∵∠APB =28°,∴∠B =76°,如答图①,连结MD ,∵MD 为△P AB 的中位线,∴MD ∥AP ,∴∠MDB =∠APB =28°,∴CM ︵所对的圆心角的度数为2∠MDB =56°.(2)证明:∵∠BAC =∠MDC =∠APB ,又∵∠BAP =180°-∠APB -∠B ,∠ACB =180°-∠BAC -∠B , ∴∠BAP =∠ACB ,∵∠BAP =∠B ,∴∠ACB =∠B ,∴AC =AB .(3)①记MP 与圆的另一个交点为R ,∵MD 是Rt △MBP 的中线,∴DM =DP ,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=138,∴MR=198,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=19 8;Ⅱ.如答图②,当∠QCD=90°时,在Rt△QCP中,由PR=CR可知PQ=2PR=134,∴MQ=34;答图②答图③Ⅲ.如答图③,当∠QDC=90°时,∵BM=1,MP=4,∴BP=17,∴DP=12BP=172,∵△PBM∽△PQD,∴MPPB=DPPQ,∴PQ=178,∴MQ=158;Ⅳ.如答图④,当∠AEQ=90°时,答图④由AE=PE,可得AQ=PQ,设MQ=x,则x2+1=(4-x)2,解得x=15 8,∴MQ=15 8;综上所述,MQ的值为198或34或158;②△ACG和△DEG的面积之比为6-233.理由:如答图⑤,过C作CH⊥AB于H,答图⑤∵DM∥AF,DE∥AB,∴四边形AMDE 是平行四边形,四边形AMDF 是等腰梯形,∴DF =AM =DE =1,又由对称性可得GE =GD ,并且DG =DF ,∴△DEG 是等边三角形, ∴∠EDF =90°-60°=30°,∴∠DEF =75°=∠MDE ,∴∠GDM =75°-60°=15°,∴∠GMD =∠PGD -∠GDM =15°, ∴∠GMD =∠GDM ,∴GM =GD =1,由∠B =∠BAP =∠DEF =75°,得∠BAC =30°,从而CH =12AC =12AB =1=MG ,AH =3,∴CG =MH =3-1,∴S △ACG =12CG ×CH =3-12,∵S △DEG =34,∴S △ACG ∶S △DEG =6-233.10.[2018·温州中考]如图,已知P 为锐角∠MAN内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连结AP ,BD ,AP 交⊙O 于点E .(1)求证:∠BPD =∠BAC .(2)连结EB ,ED ,当tan ∠MAN =2,AB =25时,在点P 的整个运动过程中.①若∠BDE =45°,求PD 的长;②若△BED 为等腰三角形,求所有满足条件的BD 的长.(3)连结OC ,EC ,OC 交AP 于点F ,当tan ∠MAN =1,OC ∥BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出S 1S 2的值. 解:(1)证明:∵PB ⊥AM ,PC ⊥AN ,∴∠ABP =∠ACP =90°,∴∠BAC +∠BPC =180°,又∠BPD +∠BPC =180°,∴∠BPD =∠BAC .(2)①如答图①,∵∠APB =∠BDE =45°,∠ABP =90°,∴BP =AB =25,∵∠BPD =∠BAC ,∴tan ∠BPD =tan ∠BAC ,∴BD DP =2,∴BP =5PD ,∴PD =2;②Ⅰ.当BD =BE 时,∠BED =∠BDE ,∴∠BPD =∠BED =∠BDE =∠BPE =∠BAC ,∴tan ∠BPE =2, ∵AB =25,∴BP =5,∴BD =2;Ⅱ.当BE =DE 时,∠EBD =∠EDB ,∵∠APB=∠BDE,∠DBE=∠APC,∴∠APB=∠APC,∴AC=AB=25,如答图①过点B作BG⊥AC于点G,则四边形BGCD是矩形,答图①∵AB=25,tan∠BAC=2,∴AG=2,∴BD=CG=25-2;Ⅲ.当BD=DE时,∠DEB=∠DBE=∠APC,∵∠DEB=∠DPB=∠BAC,∴∠APC=∠BAC,设PD=x,则BD=2x,∴ACPC=2,而AG=2,CD=BG=4,∴2x+24-x=2,∴x=32,∴BD=2x=3,综上所述,当BD=2,3或25-2时,△BDE为等腰三角形.(3)如答图②,过点O作OH⊥DC于点H,答图②∵tan∠BPD=tan∠MAN=1,∴BD=PD,设BD=PD=2a,PC=2b,则OH=a,CH=a+2b,AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠PFC=90°,∴∠P AC+∠APC=∠OCH+∠APC=90°,∴∠OCH=∠P AC,∴△ACP∽△CHO,∴OHCH=PCAC,即OH·AC=CH·PC,∴a(4a+2b)=2b(a+2b),∴a=b,即CP=2a,CH=3a,则OC=10a,∵△CPF∽△COH,∴CFCH=CPOC,即CF3a=2a10a,则CF=3105a,OF=OC-CF=2105a,∵BE∥OC且BO=PO,∴OF为△PBE的中位线,∴EF=PF,∴S1S2=OFCF=23.例6[全国数学联赛题]如图,已知四边形ABCD外接圆O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=2AE,且BD=23,求四边形ABCD的面积.【思路生成】先求△ABD的面积,再证△ABD与△BCD的面积相等即可.解:如答图,连结AO,交BD于H,连结OB,答图∵AE=EC,AB=2AE,∴AB2=2AE2=AE·AC,∴ABAC=AEAB,又∠EAB=∠BAC,∴△ABE∽△ACB,∴∠ABE=∠ACB=∠ADB,∴AB=AD.∵AB =AD ,∴AO ⊥BD ,∴BH =HD ,∵BO =2,BD =23,∴BH =HD = 3.∴OH =OB 2-BH 2=4-3=1,AH =OA -OH =2-1=1.∴S △ABD =12BD ·AH =12×23×1=3,∵E 是AC 的中点,∴S △ABE =S △BCE ,S △ADE =S △CDE ,∴S △ABD =S △BCD ,∴S 四边形ABCD =2S △ABD =2 3.[学生用书P67]【思维入门】1.[余姚自主招生]如图,AB 是半圆的直径,点C 是AB ︵的中点,点E 是AC ︵的中点,连结EB ,CA 交于点F ,则EF BF =( D )A.13B.14C.1-22 D.2-12【解析】 连结AE ,CE ,作AD ∥CE ,交BE 于点D ,答图∵点E 是AC ︵的中点,设AE =CE =x ,根据平行线的性质得∠ADE =∠CED =45°,∴△ADE 是等腰直角三角形,则AD =2x ,又∠DAF =∠ACE =∠CAE =∠CBE ,而∠CAB =∠CBA =45°,∴∠DAB =∠DBA ,∴BD =AD =2x ,∴BE =(2+1)x .∵∠EAC =∠ABE ,∠AEF =∠BEA ,∴△AEF ∽△BEA ,∴AE BE =EF EA ,∴EF =(2-1)x ,BF =2x .∴EF BF =2-12.2.[雨花区自主招生]如图,BC 是半圆O 的直径,EF ⊥BC 于点F ,BF FC =5,又AB =8,AE =2,则AD 的长为( B )A .1+ 3 B.1+32 C.32 D .1+ 2 【解析】 如答图,连结BE .答图∵BC是直径.∴∠AEB=∠BEC=90°,在Rt△ABE中,根据勾股定理可得BE2=AB2-AE2=82-22=60.∵BFFC=5,∴设FC=x,则BF=5x,BC=6x,又∵BE2=BF·BC,即30x2=60,解得x=2,∴EC2=FC·BC=6x2=12,∴EC=23,∴AC=AE+EC=2+23,∵AD·AB=AE·AC,∴AD=AE·ACAB=2(2+23)8=1+32.3.[天津中考]如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A,D的⊙O与边AB,AC,BC分别相交于点E,F,M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③EDEF=BABC;④2BM2=BE·BA;⑤四边形AEMF为矩形.其中正确结论的个数是(C)A.2个B.3个C.4个D.5个【解析】如答图,连结AM,根据等腰三角形的三线合一,得AD⊥BC,答图再根据90°的圆周角所对的弦是直径,得EF,AM是直径,根据对角线相等且互相平分的四边形是矩形,得四边形AEMF是矩形,∴①根据等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正确;②根据矩形和等腰直角三角形的性质,得AE+AF=AB,正确;③连结FD,可以证明△EDF是等腰直角三角形,则③中左右两边的比都是等腰直角三角形的直角边和斜边的比,正确;④根据BM=2BE,得左边=4BE2,故需证明AB=4BE,根据已知条件它们之间不一定有这种关系,错误;⑤正确.所以①②③⑤共4个正确.4.[麻城自主招生]如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=22,AC=32,BC=6,则⊙O的半径是(D)A.3 B.4C.4 3 D.2 3【解析】如答图,延长EC交⊙O于点F,连结DF.则根据90°的圆周角所对的弦是直径,得DF是直径,答图∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC.则DE=4.由Rt△ADE∽Rt△DFE,得EF=DE2AE=4 2.根据勾股定理,得DF=DE2+EF2=16+32=43,则圆的半径是2 3.5.[淮安自主招生]如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC=__125__.答图【解析】 如答图,连结OD ,∵AC 为⊙O 的切线,∴OD ⊥AC ,在Rt △ADO 中,设OD =R ,∵AD =2,AE =1,∴22+R 2=(R +1)2,解得R =32,∴AO =52,AB =4,又∵∠C =90°,∴OD ∥BC ,∴△AOD ∽△ABC ,∴OD BC =OA AB ,即BC =4×3252=125.6.[2018·柳州]如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点D .(1)求证:△DAC ∽△DBA ;(2)过点C 作⊙O 的切线CE 交AD 于点E ,求证:CE =12AD ;(3)若点F 为直径AB 下方半圆的中点,连结CF 交AB于点G,且AD=6,AB=3,求CG的长.解:(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°,答图∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE,∴∠DAC=∠ECA,∵∠ACD =90°,∴∠ACE +∠DCE =90°,∠DAC +∠D =90°,∴∠D =∠DCE ,∴DE =CE ,∴AD =AE +DE =CE +CE =2CE ,∴CE =12AD ;(3)如答图,过点G 作GH ⊥BD 于H ,在Rt △ABD 中,AD =6,AB =3,∴tan ∠ABD =AD AB =2,∴tan ∠ABD =GH BH =2,∴GH =2BH ,∵点F 是直径AB 下方半圆的中点,∴∠BCF =45°,∴∠CGH =90°-∠BCF =45°,∴CH =GH =2BH ,∴BC =BH +CH =3BH ,在Rt △ABC 中,tan ∠ABC =AC BC =2,∴AC =2BC ,根据勾股定理得,AC 2+BC 2=AB 2,∴4BC 2+BC 2=9,∴BC =355,∴3BH =355,∴BH =55,∴GH=2BH=25 5,在Rt△CHG中,∠BCF=45°,∴CG=2GH=2105.【思维拓展】7.[瓯海区自主招生]如图,已知:P A切⊙O于A,若AC为⊙O的直径,PBC为⊙O的割线,E为弦AB的中点,PE的延长线交AC于F,且∠FPB=45°,点F到PC的距离为5,则FC的长为(C)A.10 B.12 C.5 5 D.5 6【解析】设PB=x,∵P A切⊙O于A,∴AP⊥AC,∴∠P AC=90°,∵AC为⊙O的直径,∴∠ABC=90°,∵∠FPB=45°,∴BE=PB=x,AB=2x,PH=FH=5,∵∠C+∠BAC=90°,∠P AB+∠BAC=90°,∴∠C=∠P AB,∴△APB∽△CAB,∴AB BC =PB AB ,即2x BC =x 2x ,解得BC =4x ,∴CH =PC -PH =PB +BC -PH =5x -5,∵FH ∥AB ,∴△CFH ∽△CAB ,∴FH AB =CH CB ,即52x =5x -54x ,解得x =3,∴CH =5x -5=10,在Rt △CFH 中,CF =FH 2+CH 2=52+102=5 5.8.[成都自主招生]如图,过⊙O 直径AB 上的点C 作AB 的垂线交⊙O 于点D ,再过D 点作圆的切线l ,然后过C 点作l 的垂线交l 于点E ,若AC =a ,CB =b ,那么CE长为( A )A.2ab a +bB.abC.a +b 2D. a 2+b 22 【解析】 如答图,连结OD ,答图∵AB =AC +BC =a +b ,∴OD=12(a+b),∴OC=OA-AC=12(a+b)-a=12(b-a),∵CD⊥AB,∴∠DCO=90°,在Rt△DCO中,CD=OD2-OC2=ab,∵l与⊙O相切于点D,∴OD⊥l,∵CE⊥l,∴OD∥CE,∴∠ODC=∠ECD,∴Rt△ODC∽Rt△DCE,∴CDCE=ODCD,即abCE=12(a+b)ab,∴CE=2ab a+b.9.[第23届“希望杯”竞赛]如图,已知A,B,C三点在同一圆上,并且AB是⊙O的直径,若点C到AB的距离CD=5,则⊙O的直径最小值是__10__.【解析】AD·DB=CD2=25,AB2=(AD+BD)2=(AD -BD)2+4AD·BD≥4AD·BD=100,当AD=BD时,AB取得最小值10.10.[成都中考]如图,在半径为5的⊙O 中,弦AB=8,P 是弦AB 所对的优弧上的动点,连结AP ,过点A作AP 的垂线交射线PB 于点C ,当△P AB 是等腰三角形时,线段BC 的长为__8或5615或853__.【解析】 Ⅰ.当BA =BP 时,则AB =BP =BC =8,即线段BC 的长为8.Ⅱ.当AB =AP 时,如答图①,延长AO 交PB 于点D ,过点O 作OE ⊥AB 于点E ,则AD ⊥PB ,AE =12AB =4,∴BD =DP ,答图①在Rt △AEO 中,AE =4,AO =5,∴OE =3,∵∠OAE =∠BAD ,∠AEO =∠ADB =90°,∴△AOE ∽△ABD ,∴AO AB =OE BD ,∴BD =245,∴BD =PD =245,即PB =485,∵AB=AP=8,∴∠ABD=∠P,∵∠P AC=∠ADB=90°,∴△ABD∽△CP A,∴BDAB=P ACP,∴CP=403,∴BC=CP-BP=403-485=5615;Ⅲ.当P A=PB时,如答图②,连结PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连结OB,则PF⊥AB,答图②∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,∵∠P AF=∠ABP=∠CBG,∠AFP=∠CGB=90°,∴△PFB∽△CGB,∴PFFB=CGBG=21,设BG=t,则CG=2t,∵∠CAG=∠APF,∠AFP=∠AGC=90°,∴△APF∽△CAG,∴AFPF=CGAG,∴2t8+t=12,解得t=83,在Rt△BCG中,BC=5t=85 3,综上所述,当△P AB是等腰三角形时,线段BC的长为8或5615或853.11.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于E,交AC于点P,求证:点P平分线段DE.答图证明:如答图,连结OD,∵OC∥AD,∴∠COD=∠ADO,∠COB=∠DAO,∵OA=OD,∴∠ADO=∠DAO,∴∠COD=∠COB,∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC.∵OB是⊙O的半径,BC是⊙O的切线,∴BC⊥OB.∴∠OBC=90°,∴∠ODC=90°,∴CD⊥OD,∴CD是⊙O的切线.过A作⊙O的切线AF,交CD的延长线于点F,则F A⊥AB. ∵DE⊥AB,CB⊥AB,∴F A∥DE∥CB,∴FDFC=AEAB.在△F AC中,∵DP∥F A,∴DPF A=DCFC,即DPDC=F AFC.∵F A,FD是⊙O的切线,∴F A=FD,。
第20讲圆与相似三角形的结合复习课件(共38张PPT)

全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
圆与类似三角形的综合运用 (1)证明圆的切线的常用辅助线是作过切点的半径,证明 直线与这条半径垂直; (2)运用切线的性质时,常连结切点和圆心.
CD=235.
又∵CF=FD,∴CF=12CD=12×235=265,
∴EF=CF-CE=265-3=76,
7
∴在 Rt△AFE 中,sin∠EAF=EAFE=63=178.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
2.如图6-20-4,在△ABC中,BA= BC,以AB为直径作半圆O,交AC于点D.连 结DB,过点D作DE⊥BC,垂足为点E.
∴AD=3,BD=
3.∴B2E=
33,∴BE=23
3 .
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
(3)如答图②,当 E 与 A 重合时,∵AB 是直径,AD⊥CD, ∴∠ADB=∠ADC=90°,∴C,D,B 共线.
∵AC⊥AB,∴在 Rt△ABC 中,AB=2 3,AC=2, ∴tan∠ABC=AACB= 33,∴∠ABC=30°, ∴α=∠DAB=90°-∠ABC=60°, 当E′在BA的延长线上时,可得∠D′AB>∠DAB=60°, ∵0°<α<90°,∴α的取值范围是60°<α<90°.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
判定圆中的类似三角形 例1 如图6-20-1,AC是⊙O的直径, 弦BD交AC于点E. (1)求证:△ADE∽△BCE; (2)如果AD2=AE•AC,求证:CD=CB.
圆与三角形相似结合的中考题

已知△ABC内接于△O,若△A = 50°,则△BOC等于( )A. 50°B. 65°C. 100°D. 130°(正确答案)在△O中,弦AB与弦CD相交于点P,若△APB = 60°,△CPD = 45°,则△AOC的大小为( )A. 75°B. 105°(正确答案)C. 120°D. 135°已知△ABC的三边a、b、c满足关系式a² + c² - b² = ac,则( )A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等边三角形D. △ABC可以外接一个圆(正确答案)圆内接四边形ABCD中,若△A△△B△△C = 2△3△4,则△D的度数是( )A. 60°B. 90°(正确答案)C. 120°D. 30°已知△ABC外接圆的半径为R,且满足2R(sin²A - sin²C) = (√3a - b)sin B,则△C的大小为( )A. 30°B. 45°C. 60°(正确答案)D. 75°在△ABC中,D、E分别是AB、AC上的点,且AD = AE,若△AED = 60°,则△ADE的外接圆与△ABC 的外接圆的位置关系是( )A. 内切B. 外切(正确答案)C. 相交D. 相离已知圆内接四边形ABCD的边长依次为a、b、c、d,且满足a² + b² + c² + d² = 2ac + 2bd,则四边形ABCD是( )A. 矩形B. 菱形(正确答案)C. 正方形△ABC内接于△O,AD是△O的直径,若△CAD = 30°,则△B的大小为( )A. 30°B. 60°(正确答案)C. 90°D. 120°在△O中,弦AB把圆周分成两条弧,其中一条弧所对的圆心角为120°,则弦AB所对的圆周角为( )A. 120°B. 60°(正确答案)C. 30°D. 60°或120°。
(2021年整理)圆与相似三角形的综合常见题型

圆与相似三角形的综合常见题型编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(圆与相似三角形的综合常见题型)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为圆与相似三角形的综合常见题型的全部内容。
圆与相似三角形专题训练27、如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB 。
【2005成都】 ⑴求证:DE 是⊙O 的切线;⑵若AB =6,AE =245,求BD 和BC 的长。
27、已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G,交⊙O 的直径AE 于点F,连结BD 。
【2006成都】(1)求证:△ACG ∽△DBG ;(2)求证:2AC AG AB =⋅;(3)若⊙A 、⊙O 的直径分别为15,且CG :CD =1:4,求AB 和BD 的长.EC27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .【2007成都】(1)求证:BF EF =;(2)求证:PA 是O (3)若FG BF =,且O的半径长为BD 和27。
如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧AB 上的一个动点(不与点A 、点B 重合)。
连结AC 、BC ,分别与⊙M 相交于点D 、点E,连结DE.若【2008成都】(1)求∠C 的度数;(2)求DE 的长; (3)如果记tan ∠ABC=y ,ADDC=x (0<x<3),那么在点C 的运动过程中,试用含x 的代数式表示y 。
数学《圆与相似三角形、三角函数综合题》专题训练(含答案)

2020-2021学年中考数学培优训练讲义(七)《圆与相似三角形、三角函数综合题》专题训练班级姓名座号成绩1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接PF.若tan∠FBC=,DF=,则PF的长为.2.如图AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于F,AF交⊙O于点H,当OB=2时,则BH的长为.(第1题图)(第2题图)(第3题图)3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC、PB,若cos∠PAB=,BC=1,则PO的长.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如下左图,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(2)如下右图,在(1)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:KG2=KD•KE;②若cos C=,AK=,求BF的长.作业思考:1. 如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.参考答案:1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.【分析】(1)根据切线的性质得到OE⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OE∥CD,根据平行线的性质得到∠EFD=∠OEF,由等腰三角形的性质得到∠OEF=∠OFE,根据角平分线的定义即可得到结论;(2)连接PF,由BF是⊙O的直径,得到∠BPF=90°,推出四边形BCFP是矩形,根据tan∠FBC =,设CF=3x,BC=4x,于是得到3x+=4x,x=,求得AD=BC=4,推出DF∥OE ∥AB于是得到DE:AE=OF:OB=1:1即可得到结论.【解答】解:(1)连接OE,BF,PF,∵∠C=90°,∴BF是⊙O的直径,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OE∥CD,∴∠EFD=∠OEF,∵OE=OF,∴∠OEF=∠OFE,∴∠OFE=∠EFD,∴EF平分∠BFD;(2)连接PF,∵BF是⊙O的直径,∴∠BPF=90°,∴四边形BCFP是矩形,∴PF=BC,∵tan∠FBC=,设CF=3x,BC=4x,∴3x+=4x,x=,∴AD=BC=4,∵点E是切点,∴OE⊥AD∴DF∥OE∥AB∴DE:AE=OF:OB=1:1∴DE=AD=2,∴EF==10.【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.2.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【解答】证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点评】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=,BC=1,求PO的长.【分析】(1)连接OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)连接AE,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA平分∠PAD,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA,证明△PAO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连接AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△PAO∽△ABC,∴,∴PO===5.【点评】本题考查的是三角形的内切圆和内心、相似三角形的判定和性质、切线的判定,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如图1,求证:AD=CD;(2)如图2,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(3)如图3,在(2)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.【分析】(1)如图1中,连接BD,利用等腰三角形的三线合一的性质证明即可.(2)如图2中,连接BD,想办法证明∠ADF=∠DFE即可.(3)连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,利用平行线分线段成比例定理,构建方程求出r,即可解决问题.【解答】(1)证明:如图1中,连接BD.∵AB是直径,∴∠ADB=90°,∴BD⊥AC,∵BA=BC,∴AD=CD.(2)证明:如图2中,连接BD.∵AB⊥DF,∴=,∴∠ADF=∠ABD,∵∠DFE=∠ABD,∴∠ADF=∠DFE,∴EF∥AC.(3)解:如图3中,连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,∵EG∥AC,∴=,∵BC=BA,∴BE=BG=3+r,∴BN=3+r﹣4=r﹣1,∵AB是直径,GN⊥BC∴∠AEB=∠GNB=90°,∴GN∥AE,∴=,∴=,解得r=9或﹣1(舍弃),∴BG=12,BN=8,∴NG===4,∴EG===2,∵GN∥AE,∴=,∴=,∴AE=6,∵∠C=∠DAH,∠AEC=∠AHD=90°,∴△AEC∽△DHA,∴==2,∴DH=3.【点评】本题属于圆综合题,考查了垂径定理,解直角三角形,平行线分线段成比例定理,等腰三角形的判定和性质等知识,教育的关键是学会添加常用辅助线,属于中考压轴题.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.【分析】(1)连接OG,由EG=EK知∠KGE=∠GKE=∠AKH,结合OA=OG知∠OGA=∠OAG,根据CD⊥AB得∠AKH+∠OAG=90°,从而得出∠KGE+∠OGA=90°,据此即可得证;(2)①由AC∥EF知∠E=∠C=∠AGD,结合∠DKG=∠CKE即可证得△KGD∽△KGE;②连接OG,由设CH=4k,AC=5k,可得AH=3k,CK=AC=5k,HK=CK﹣CH=k.利用AH2+HK2=AK2得k=1,即可知CH=4,AC=5,AH=3,再设⊙O半径为R,由OH2+CH2=OC2可求得,根据知,从而得出答案.【解答】解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.【点评】本题是圆的综合问题,解题的关键是掌握等腰三角形的性质、平行线的性质,圆周角定理、相似三角形的判定与性质及切线的判定等知识点.作业思考:1.如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.【分析】(1)由垂直的定义,角平分线的定义,角的和差证明EF=EI,同角的余角相等得∠AEF=∠GEI,四边形的内角和,邻补角的性质得∠FAE=∠IGE,最后根据角角边证明△AEF≌△GEI,其性质得AE=GE;(2)由圆周角定理,等角的三角函数值相等求出⊙O的半径为,根据平行线的性质,勾股定理,角平分线的性质定理,三角形相似的判定与性质,一元二次方程求出t的值为,最后求线段AH的长为.【解答】证明:(1)过点E作EI⊥EF交CF于点I,如图①所示:∵CF⊥AB,∴∠AFG=90°,又∵EF平分∠AFG,∴∠EFA=∠EFI=45°,又∵EF⊥EI,∴∠FEI=90°,又∵∠EFI+∠EIF=90°,∴∠EIF=45°,∴EF=EI,又∵∠EAF+∠AFG+∠FGE+∠GEA=360°,∠AFG=∠AEG=90°,∴∠EGF+∠FAE=180°,又∵∠EGF+∠EGI=180°,∴∠EGI=∠FAE,又∵∠AEB=∠AEF+∠FEG,∠FEI=∠GEI+∠FEG,∴∠AEF=∠GEI,在△AEF和△GEI中,,∴△AEF≌△GEI(AAS),∴AE=GE;(2)连接DO并延长,交⊙O于点P,连接AP,如图②甲所示:∵∠ABD与∠P是⊙O上弧AD所对的圆周角,∴∠ABD=∠P,又∵DP为⊙O的直径,∴∠PAD=90°,又∵tan∠FBG=,∴tan∠P==,又∵AD=3,∴AP=4,PD=5,∴OD=,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,设AJ=3t,CF=x,如图②乙所示,∵HJ⊥AC,BD⊥AC,∴HJ∥BD,∴∠ABD=∠AHJ,又∵tan∠ABD=∴tan∠AHJ=,又∵AJ=3t,∴HJ=4t,在Rt△AHJ中,由勾股定理得:AH===5t,又∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,∴HF=HJ=4t,∴AF=AH+HF=9t,又∵CF=x,∴CJ=x,又∵∠BFG=∠GEC,∠FGB=∠EGC,∴△FBG∽△ECG,∴∠FBG=∠ECG,∴tan∠FCJ===,解得:x=12t,∴CF=CJ=12t,∴AC=15t,∴CK=t,又∵OK∥HJ,∴=,∴OK===t,∴在Rt△OCK中,由勾股定理得:OK2+KC2=OC2,即(t)2+(t)2=()2,解得:t=,或t=﹣(舍去),∴AH=5t=.【点评】本题综合考查了垂线的定义,平行线的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,一元二次方程等相关知识,重点掌握相似三角形的判定与性质,难点是辅助线构建全等三角形,圆周角和相似三角形.。
(word完整版)圆与相似三角形的综合常见题型

圆与相似三角形专题训练27、如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB 。
【2005成都】⑴求证:DE 是⊙O 的切线;⑵若AB =6,AE =245,求BD 和BC 的长.27、已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G ,交⊙O 的直径AE 于点F ,连结BD 。
【2006成都】(1)求证:△ACG ∽△DBG ;(2)求证:2AC AG AB =⋅;(3)若⊙A 、⊙O 的直径分别为15,且CG:CD =1:4,求AB 和BD 的长。
E27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G,是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.【2007成都】(1)求证:BF EF=;(2)求证:PA是O的切线;(3)若FG BF=,且O的半径长为32,求BD和FG的长度.27。
如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧AB上的一个动点(不与点A、点B重合)。
连结AC、BC,分别与⊙M相交于点D、点E,连结DE.若AB=23。
【2008成都】(1)求∠C的度数;(2)求DE的长;(3)如果记tan∠ABC=y,ADDC=x(0〈x〈3),那么在点C的运动过程中,试用含x的代数式表示y.27.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.【2009成都】AB CDEF G O(1)判断0G 与CD 的位置关系,写出你的结论并证明; (2)求证:AE=BF;(3)若3(22)OG DE ⋅=-,求⊙O 的面积.27.已知:如图,ABC ∆内接于O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q .【2010成都】 (1)求证:P 是ACQ ∆的外心; (2)若3tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2()FP PQ FP FG +=.27.(本小题满分1 0分)【2011成都】已知:如图,以矩形ABCD 的对角线AC 的中点O 为圆心,OA 长为半径作⊙O ,⊙O 经过B 、D 两点,过点B 作BK ⊥ A C ,垂足为K.过D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H .(1)求证:AE=CK; (2)如果AB=a,AD=13a (a为大于零的常数),求BK的长:(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.27.(本小题满分I0分)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.【2012成都】(1)求证:KE=GE; (2)若2KG=KD·GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=35,AK=23,求FG的长.27.(本小题满分10分)如图,⊙O的半径25r=,四边形ABCD内接圆⊙O,AC BD⊥于点H,P为CA延长线上的一点,且PDA ABD ∠=∠。
相似三角形与圆综合

相似三角形与圆综合第一部分:例题分析例1、已知:如图,BC 为半圆O 的直径,AD 丄BC,垂足为 D ,过点B 作弦BF 交AD 于点E,交半圆 O 于点F ,弦AC 与 BF 交于点 H ,且 AE=BE. 求证:(1) AB=AF ; (2) AH - BC=2AB- BE.例2、如图,PA 为圆的切线,A 为切点,PBC 为割线,/ APC 的平分线交 AB 于点D ,交AC 于点E ,求证:(1)AD=AE ;(2)AB • AE=AC- DB.例3、AB 是O O 的直径,点C 在O O 上,/ BAC = 60°, P 是OB 上一点,过P 作AB 的垂线与 AC 的延长线交于点 Q , 连结OC,过点C 作CD 丄OC 交PQ 于点D .第二部分:当堂练习(1)求证:△ CDQ 是等腰三角形; ⑵如果△ CDQ^A COB 求BP : PO 的值.BD, CD. 求证:(1)BD 平分AP例4、^ ABC 内接于圆O,/ BAC 的平分线交O O 于D 点,交O O 的切线BE 于F ,连结 点,求证:EF = FG.EBC 交于F ,作切线FG G 为切⑵点F 是ACD 上的一点,当/ AOF=2 / B 时,求 AF 的长.ED 丄 AB 于 D ,交O O 于 G , EA 交O O 于 C , CB 交 ED 于 F ,求证:DG 2= DE?DF于H ,弦MC 延长线交EF 的反向延长线于 A ,求证:MA?MC = MB?MD(1)若 POPF,求证:+AB 丄 ED;0B 丄 AD 于点 E ,交O O 于点 C , OE=1, BE=8, AE:AB=1:3.(1)求证:AB 是OO 的切线;如图,AB 是O O 直径, 如图,弦EF 丄直径MN 如图,AB AC 分别是O O 的直径和弦, 点 D 为劣弧AC 上一点, 弦ED 分别交O O 于点E, 交AB 于点H ,交AC于点F ,过点C 的切线交ED 的延长线于点P.(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE DF ,为什么4 .如图⑴,AD 是^ ABC 的高,AE 是^ ABC 的外接圆直径,则有结论:ABACAEAD 成立,请证明.如果把图 (1)中的/ ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立5 .如图,AD 是^ ABC 的角平分线,延长 AD 交^ ABC 的外接圆0于点E,过点 C交于点F ,连结EF 、DF .(1)求证:△ AEF^A FED (2)若 AD=8, DE=4,求 EF 的长. 6 .如图,PC 与O O 交于B ,点A 在O O 上,且/ PCA=/ BAP. (1)求证:PA 是O O 的切线.⑵△ ABP 和△ CAP 相似吗为什么⑶若 PB:BC=2:3,且 PC=20,求 PA 的长.7.已知:如图, AD 是O O 的弦, NAAC8 .如图,"ABC 内接于O O ,且BC 是O O 的直径,AD 丄BC 于D , F 是弧BC 中点,且AF 交BC 于E , AB = 6 , AC = 8,求CD, DE ,及EF 的长.9.已知:如图,在 Rt △ ABC 中, ACB 90°, AC 4 , BC 4j 3,以AC 为直径的eO 交AB 于点D ,点E 是10.如图,A 是以BC 为直径的eO 上一点,AD BC 于点D ,过点B 作eO 的切线,与CA 的延长线相交于点E, G 是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .1.已知O O 的半径为3亦厘米,O O 的半径为5厘米.O O 与O O 相交于点D 、E 若两圆的公共弦 DE 的长是O 在公共弦DE 的两侧),则两圆的圆心距 O O 的长为( )3 .如图,在^ ABC 中,/ BAC = 90 , AB = AC = 2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为()BC 的中点,连结 OD, OB 、 DE 交于点F .(1)求证:DE 是eO 的切线;⑵求EF: FD 的值.(1)求证:BF EF ;⑵求证:PA 是eO 的切线;⑶若FG BF,且eO 的半径长为3恵,求BD 和FG 的长度.第三部分 课后作业6厘米(圆心O 、 (A ) 2厘米 (B ) 10厘米 (C ) 2厘米或10厘米 (D ) 4厘米2.如图,两个等圆O的两条切线 OA 、OB , A 、B 是切点,则/ AOB 等于()(C ) 60 (D )90C7.如图,在两个半圆中,大圆的弦 MN 与小圆相切,D 为切点,且 MN // AB, MN = a , ON 、CD 分别为两圆的半径,求阴影部分的面积.30° D 为BC 的中点,△ ABD 的外接圆O0与AC 交于F 点,过A 作O0的切线AE 交DF 的延长线于E 点.发沿DE 方向运动,过点 P 作PQ BC 于Q ,过点Q 作QR // BA 交AC 于R ,当点Q 与点C 重合时,点P 停(A ) 1(B ) 2(C) 1 +- (D) 2--4.已知圆的内接正六边形的周长为18,那么圆的面积为(A) 18n(B) 9n(C) 6n(D) 3n 5、如图△ ABC 是等边三角形,被一平行于 BC 的矩形所截AB 被截成三等分则图中阴影部分的面积是 △ ABC 的面积的 ()D.-96.已知,如图,以△ ABC 的边AB 作直径的O 0,分别并 AC BC 于点 D E , 弦 FG// AB , CDE : ABO 1 : 4,DE = 5cm , FG = 8cm ,求梯形AFGB 的面积.8.如图,在Rt△ ABC 中,斜边BC 12, C(1)求证:AE丄DE ;(2)计算:AC-AF 的值.9 .如图,在直角梯形 ABCD 中,AB // CD ,B 90°, AB=AD ,/ BAD 的平分线交 BC 于E,连接DE.(1)说明点D 在^ ABE 的外接圆上;(2)若/ AED=/ CED 试判断直线 CD 与^ ABE 外接圆的位置关系,并说明理由.E 分别是边 AB, AC 的中点,点P 从点D 出BCC止运动.设BQ x ,QR y .1)求点D到BC的距离DH的长;求y 关于x 的函数关系式(不要求写出自变量的取值范围)是否存在点P,使△ PQR为等腰三角形若存在,请求出所有满足要求的x的值;若不存在,请说明理由.。
2016-2017学年高中数学 第1章 相似三角形定理与圆幂定理章末综合测评 新人教B版选修4-1

第1章 相似三角形定理与圆幂定理章末综合测评 新人教B 版选修4-1(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若三角形的三条边长之比为3∶5∶7,与它相似的三角形的最长边长度为21cm ,则其余两边的长度之和为( )A.24cmB.21cmC.19cmD.9cm【解析】 设其余两边的长度分别为x cm ,y cm ,则217k =x 5k =y 3k ,解得x =15cm ,y =9cm.故x +y =24cm. 【答案】 A2.如图1所示,D 、E 分别是AB 、AC 上的点,DE ∥BC ,AE AC =23,则△ADE 与四边形DBCE 的面积之比为( )图1A.13B.23C.45D.49【解析】 ∵DE ∥BC , ∴△ADE ∽△ABC ,∴S △ADE ∶S △ABC =(AE ∶AC )2=4∶9.则△ADE 与四边形DBCE 的面积的比为4∶(9-4)=4∶5. 【答案】 C3.如图2所示,梯形ABCD 的对角线交于点O ,则下列四个结论:图2①△AOB ∽△COD ; ②△AOD ∽△ACB ; ③S △DOC ∶S △AOD =CD ∶AB ; ④S △AOD =S △BOC .其中正确的个数为( ) A.1 B.2 C.3 D.4【解析】 ∵DC ∥AB ,∴△AOB ∽△COD ,①正确.由①知,DC AB =OCOA.S △DOC ∶S △AOD =OC ∶OA =CD ∶AB ,③正确.∵S △ADC =S △BCD ,∴S △ADC -S △COD =S △BCD -S △COD , ∴S △AOD =S △BOC ,④正确. 故①③④正确. 【答案】 C4.如图3所示,铁道口的栏杆短臂长1m ,长臂长16m ,当短臂端点下降0.5m 时,长臂端点升高( ) 【导学号:61650022】图3A.11.25mB.6.6mC.8mD.10.5m【解析】 本题是一个实际问题,可抽象为如下数学问题:如图,等腰△AOC ∽等腰△BOD ,OA =1m ,OB =16m ,高CE =0.5m ,求高DF .由相似三角形的性质可得OA ∶OB =CE ∶DF ,即1∶16=0.5∶DF ,解得DF =8m.【答案】 C5.如图4,⊙O 经过⊙O 1的圆心,∠ADB =α,∠ACB =β,则α与β之间的关系是( )图4A.β=αB.β=180°-2αC.β=12(90°-α)D.β=12(180°-α)【解析】 如右图所示,分别连接AO 1,BO 1. 根据圆内接四边形的性质定理,可得 ∠AO 1B +∠ADB =180°,∴∠AO 1B =180°-∠ADB =180°-α. ∵∠ACB =12∠AO 1B ,∴β=12(180°-α),故选D.【答案】 D6.已知圆的直径AB =13,C 为圆上一点,过C 作CD ⊥AB 于D (AD >BD ),若CD =6,则AD 的长为( )A.8B.9C.10D.11 【解析】 如图,连接AC ,CB .∵AB 是⊙O 的直径, ∴∠ACB =90°.设AD =x ,∵CD ⊥AB 于D , ∴由射影定理得CD 2=AD ·DB . 即62=x (13-x ),∴x 2-13x +36=0, 解得x 1=4,x 2=9. ∵AD >BD ,∴AD =9. 【答案】 B7.如图5所示,AB 为⊙O 的直径,P 为⊙O 外一点,PA 交⊙O 于D ,PB 交⊙O 于C ,连结BD 、AC 交于E ,下列关系式中不成立的是( )图5A.∠ADB =∠ACB =90°B.∠AED =∠PC.∠P =12∠AEBD.∠PAC =∠DBP【解析】 由直径AB 所对的圆周角是直角和A 正确.由P ,D ,E ,C 四点共圆知B 正确.又易知∠PAC =∠DBP =90°-∠P ,∴D 正确.【答案】 C8.如图6,△ABC 内接于⊙O ,AB =AC ,直线MN 切⊙O 于点C ,BE ∥MN 交AC 于点E ,若AB =6,BC =4,则AE =( )图6A.103B.23C.1D.43【解析】 ∵MN 为⊙O 的切线, ∴∠BCM =∠A .∵MN ∥BE ,∴∠BCM =∠EBC , ∴∠A =∠EBC . 又∠ACB =∠BCE , ∴△ABC ∽△BEC .∴AB BE =BCEC. ∵AB =AC ,∴BE =BC .∴64=4EC .∴EC =83,∴AE =6-83=103.【答案】 A9.如图7,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于( )图7A.70°B.64°C.62°D.51°【解析】 ∵AB 、AC 为⊙O 的切线, ∴∠CAO =∠BAO ,又∵OB =BD , ∴∠OAB =∠DAB ,∵∠DAC =78°, ∴∠OAD =23×78°=52°,∴∠ADO =64°.【答案】 B10.如图8,已知AT 切⊙O 于T .若AT =6,AE =3,AD =4,DE =2,则BC =( )图8A.3B.4C.6D.8【解析】 ∵AT 为⊙O 的切线, ∴AT 2=AD ·AC ,∵AT =6,AD =4,∴AC =9. ∵∠ADE =∠B ,∠EAD =∠CAB , ∴△EAD ∽△CAB , 即DE BC =AE AC ,∴BC =DE ·AC AE =2×93=6. 【答案】 C11.在Rt △ABC 中,∠A =90°,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F ,若AB =a ,AC =b ,则⊙O 的半径为( )A.abB.a +bab C.ab a +bD.a +b2【解析】 如图所示,分别连接OE 、OF ,则四边形OEAF 是正方形,不妨设⊙O 的半径为r ,则由切线长定理,可得AE =AF =r ,∵BE =AB -AE ,CF =AC -AF , ∴BE =a -r ,CF =b -r , ∵△BEO 与△OFC 相似,∴BE OF =OECF,∴a -r r =rb -r ,解得r =aba +b. 【答案】 C12.如图9所示,PT 与⊙O 切于T ,CT 是⊙O 的直径,PBA 是割线,与⊙O 的交点是A 、B ,与直线CT 的交点D ,已知CD =2,AD =3,BD =4,那么PB =( )图9A.10B.20C.5D.8 5【解析】 根据相交弦定理,可得AD ·DB =CD ·DT ,∴3×4=2DT ,解得DT =6,∴圆的半径r =4,AB =7,不妨设PB =x ,则PA =x +7,根据切割线定理,可得PT 2=PB ·PA ,∴PT 2=x ·(x +7),在Rt △PTD 中,DT 2+PT 2=PD 2,∴36+PT 2=(x +4)2,∴36+x (x +7)=(x +4)2,解得x =20.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中横线上) 13.如图10,在△ABC 中,M ,N 分别是AB ,BC 的中点,AN ,CM 交于点O ,那么△MON 与△AOC 面积的比是________.图10【解析】 ∵MN 是△ABC 的中位线,∴△MON ∽△COA ,且MN AC =12,∴S △MON ∶S △COA =(12)2=14.【答案】 1∶414.D 、E 分别是△ABC 中AB 、AC 边上的点,且AD ∶DB =1∶2,AE =1.5,AC =4.5,若AM 交DE 于N ,交BC 于M ,则AN ∶NM =________.【解析】 如图,∵AD DB =12,∴AD AB =13.又AE AC =1.54.5=13, ∴AD AB =AE AC. 又∠DAE =∠BAC , ∴△ADE ∽△ABC .∴AN AM =AD AB =13,AN AN +MN =13, 化简得AN NM =12.【答案】 1215.(湖南高考)如图11,A ,E 是半圆周上的两个三等分点,直径BC =4,AD ⊥BC ,垂足为D ,BE 与AD 相交于点F ,则AF 的长为________.图11【解析】 如图,连AE ,易知AE ∥BD , ∴BD AE =DF AF,易知△ABO 是等边三角形,可得BD =1,AD =AF +FD = 3. ∴AF =233.【答案】23316.如图12,P 是圆O 外的一点,PD 为切线,D 为切点,割线PEF 经过圆心O ,PF =6,PD =23,则∠DFP =________.图12【解析】 如图,连接OD .∵PD 为⊙O 的切线, ∴OD ⊥PD ,PD 2=PE ·PF , ∴PE =2.∴OP =4, ∴sin ∠POD =234=32.∴∠POD =60°,∴∠DFP =30°. 【答案】 30°三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知如图13,正方形ABCD 的边长为4,P 为AB 上的一点,且AP ∶PB =1∶3,PQ ⊥PC ,试求PQ 的长.图13【解】 ∵PQ ⊥PC , ∴∠APQ +∠BPC =90°, ∴∠APQ =∠BCP . ∴Rt △APQ ∽Rt △BCP ,∵AB =4,AP ∶PB =1∶3,∴PB =3,AP =1,∴AP BC =AQBP, 即AQ =AP ·BP BC =1×34=34. ∴PQ =AQ 2+AP 2=916+1=54. 18.(本小题满分12分)(全国卷Ⅰ)如图14,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE .图14(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.证明(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE,由已知CB=CE得∠CBE =∠E,故∠D=∠E.(2)如图,设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E,由(1)知,∠D=∠E,所以△ADE为等边三角形.19.(本小题满分12分)如图15所示,在△ABC中,D为BC边上的中点,延长AD到点E,使AD=2DE,延长AB交CE的延长线于点P.求证:AP=3AB.图15【证明】如图所示,过点E作EF∥BC交AP于点F,则△ABD∽△AFE.∵AD=2DE,∴AD∶AE=2∶3.∴AB∶AF=BD∶EF=AD∶AE=2∶3.∵BD=DC,∴BC∶EF=4∶3.∵EF∥BC,∴△PEF∽△PCB.∴PF∶PB=EF∶BC=3∶4.∴PF∶FB=3∶1,∵AB∶AF=2∶3,∴AB∶BF=2∶1.∴PF∶FB∶AB=3∶1∶2.∴AP∶AB=6∶2=3∶1.即AP =3AB .20.(本小题满分12分)(全国卷Ⅲ)如图16,⊙O 中AB ︵的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.图16(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD .【导学号:61650023】解:(1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD . 因为AP ︵=BP ︵,所以∠PBA =∠PCB .又∠BPD =∠BCD , 所以∠BFD =∠PCD . 又∠PFB +∠BFD =180°, ∠PFB =2∠PCD ,所以3∠PCD =180°,因此∠PCD =60°.(2)证明:因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .21.(本小题满分12分)如图17所示,PA 为⊙O 的切点,PBC 是过点O 的割线,PA =10,PB =5,∠BAC 的平分线与BC 和⊙O 分别交于点D 和E ,求AD ·AE 的值.图17【解】 如图所示,连接CE .∵PA 是⊙O 的切线,PBC 是⊙O 的割线,∴PA 2=PB ·PC . 又PA =10,PB =5,∴PC =20,BC =15. ∵PA 切⊙O 于A ,∴∠PAB =∠ACP . 又∠P 为公共角,△PAB ∽△PCA ,∴AB AC =PA PC =1020=12. ∵BC 为⊙O 的直径,∴∠CAB =90°,∴AC 2+AB 2=BC 2=225.∴AC =65,AB =35,又∠ABC =∠E ,∠CAE =∠EAB .∴△ACE ∽△ADB ,∴AB AE =AD AC,∴AD ·AE =AB ·AC =90.22.(本小题满分12分)(辽宁高考)如图18,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED .(1)证明:CD ∥AB ;(2)延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F 四点共圆.图18【证明】 (1)因为EC =ED ,所以∠EDC =∠ECD .因为A ,B ,C ,D 四点在同一圆上,所以∠EDC =∠EBA .故∠ECD =∠EBA .所以CD ∥AB .(2)由(1)知,AE =BE .因为EF =EG ,故∠EFD =∠EGC ,从而∠FED =∠GEC .连接AF ,BG ,则△EFA ≌△EGB ,故∠FAE =∠GBE .又CD ∥AB ,∠EDC =∠ECD ,所以∠FAB =∠GBA .所以∠AFG +∠GBA =180°.故A ,B ,G ,F 四点共圆.。
与圆有关的综合题系列之圆与三角形综合题

6130 r-4T1D=-o""'__,', 2135 . ,再根据勾股定理可以算出 C~E~= -='"-'-"'-'='-[]N
.'''''-V 7 I ~
_.11.....1- H -:.J I..vo...~""'--=. -~ ';/'1:;rr-'-.L..I
【点睛】当需要求证某条线为圆的切线时,就是要求半径与切线互相垂直
教你学作辅助线
在几何题中,作辅助线可以说是解题的第一步,因此对常见的辅助线的添加进行归类能够 有效地帮助同学们打开解题的突破口.圆与三角形相结合时,常作的辅助线有以下几类:
类型一:与垂径定理有关时,遇弦作弦心距;遇弧、弦的中点作半径; 类型二:与圆心角、圆周角有关时,遇直径想直角; 类型三:与切线有关时,或利用切线性质遇切点,作半径;或利用切线的判定知切点时连半 径,证垂直; 类型四:不知切点时作距离,证半径. 下面我们通过几道题来感受作这几种类型辅助线的技巧.
M 上异于 A , B 的一动点,直线 PA , PB 分别交 y 轴于 C , D , 以 CD 为直径的圆 A
N 与 x 轴交于 E , F, 则 EF 的长(
).
A. 等于 4 --12
B.等于 4 .../3
c. 等于 6
D. 随 P 点位直的变化而变化
名联欣赏 上联 E 南通前,北通前,南北通前通南北
现了很多切线和切点,此时连接 CO , MO. 可以得出以下信息: LABC=LBCO= 30 0 , L CAB= LAOC= LAOC=600 ,MO 垂直平分A C. 这些信息都是求AM 所
圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、解直角三角形及二次函数的综合类型一:圆与相似三角形的综合1.如图,BC是⊙A的直径,△DBE的各个顶点均在⊙A上,BF⊥DE于点F.求证:BD·BE=BC·BF.2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD·BA;(3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1)连结OD,∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点(2)∵AC为直径,∴∠ADC=∠ACB=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC=BCBD,∴BC2=BD•BA(3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-∠OCD=90°-45°=45°,∴Rt△ABC为等腰直角三角形类型二:圆与解直角三角形的综合3.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,DE⊥AB,垂足为点E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)已知CF=5,cosA=25,求BE的长.解:(1)连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD.∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线(2)∵OD∥AB,∴∠COD=∠A,∴cos∠COD=cosA=25.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=ODOF=25.设⊙O的半径为r,则rr+5=25,解得r=103,∴AB=2OD=AC =203.在Rt△AEF中,∵∠AEF=90°,∴cosA=AEAF=AE5+203=25,∴AE=143,∴BE =AB-AE=203-143=24.(2015·资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)连结AE,若∠C=45°,求sin∠CAE的值.解:(1)连结OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE =90°,∴DE是⊙O的切线(2)过点E作EF⊥CD于点F,设EF=x,∵∠C=45°,∴△CEF,△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=2x,∴AB=BC=22x.在Rt△ABE中,AE=AB2+BE2=10x,∴sin∠CAE=EFAE=10105.如图,△ABC内接于⊙O,直径BD交AC于点E,过点O作FG⊥AB,交AC于点F,交AB于点H,交⊙O于点G.(1)求证:OF·DE=OE·2OH;(2)若⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,求阴影部分的面积.(结果保留根号)解:(1)∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OF•DE=OE•AD.∵O是BD的中点,DA∥OH,∴AD=2OH,∴OF•DE=OE•2OH (2)∵⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,∴OE=4,ED=8,OF=6,∴OH=6.在Rt△OBH中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°,∴BH=BO•sin60°=12×32=63,∴S阴影=S扇形GOB-S△OHB=60×π×122360-12×6×63=24π-183类型三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.解:(1)y=-12x2-32x+2(2)以AB为直径的圆的圆心坐标为O′(-32,0),∴O′C=52,O′O=32.∵CD为圆O′的切线,∴O′C⊥CD,∴∠O′CO+∠DCO=90°.又∵∠CO′O+∠O′CO=90°,∴∠CO′O=∠DCO,∴△O′CO∽△CDO,∴O′OOC=OCOD,∴322=2OD,∴OD=83,∴点D的坐标为(83,0) (3)存在.抛物线的对称轴为直线x=-32,设满足条件的圆的半径为|r|,则点E的坐标为(-32+r,r)或F(-32-r,r),而点E在抛物线y=-12x2-32x+2上,∴r=-12(-32+|r|)2-32(-32+|r|)+2,∴r1=-1+292,r2=-1-292(舍去).故存在以线段EF为直径的圆,恰好与x轴相切,该圆的半径为-1+2927.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C,经过A,B,C 三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于点D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.解:(1)由题意,可知C(0,-3),-b2a=1,∴抛物线的解析式为y=ax2-2ax-3(a>0).过点M作MN⊥y轴于点N,连结CM,则MN=1,CM=5,∴CN=2,于是m=-1.同理,可求得B(3,0),∴a×32-2a×3-3=0,解得a=1.∴抛物线的解析式为y=x2-2x-3 (2)由(1)得,A(-1,0),E(1,-4),D(0,1),∴△BCE为直角三角形,BC=32,CE=2,∴OBOD=31=3,BCCE=322=3,∴OBOD=BCCE,即OBBC=ODCE,∴Rt△BOD∽Rt △BCE,得∠CBE=∠OBD=β,因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=COBC=22(3)显然Rt△COA∽Rt△BCE,此时点O(0,0).过点A作AP2⊥AC交y轴的正半轴于点P2,由Rt△CAP2∽Rt△BCE,得P2(0,13).过点C作CP3⊥AC交x轴的正半轴于点P3,由Rt△P3CA∽Rt△BCE,得P3(9,0).故在坐标轴上存在三个点P1(0,0),P2(0,13),P3(9,0),使得以P,A,C为顶点的三角形与△BCE相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
--
相似三角形与圆综合
第一部分:例题分析
例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦A
C与BF交于点H,且AE=BE. 求证:(1)错误!=错误!;(2)AH·BC=2AB·BE.
例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=A
E;(2)AB·AE=AC·DB.
例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点
Q,连结OC,过点C作CD⊥OC交PQ于点D
.
(1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值.
例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)
B
D平分∠CBE;(2)AB·BF=AF·DC
.
例3、 ⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,
求证:EF=FG.
第二部分:当堂练习
1.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE•DF
2.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA•MC=MB•MD
--
--
D
C
B
A
O
M
N
E
H
3.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于
点F,过点C的切线交ED的延长线于点P.
(1)若PC=PF,求证:AB⊥ED;
(2)点D在劣弧AC的什么位置时,才能使AD2=DE·DF,为什么?
4.如图(1),AD是△ABC的高,AE是△ABC的外接圆直径,则有结论:AB· AC=AE· AD成立,请证明.如果把图(1)
中的∠ABC变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?
5.如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过点C、D、E三点的⊙O1与AC的延
长线交于点F,连结EF、DF.
(1)求证:△AEF∽△FED; (2)若AD=8,DE=4,求EF的长.
6.如图,PC与⊙O交于B,点A在⊙O上,且∠PCA=∠BAP.
(1)求证:PA是⊙O的切线. (2)△ABP和△CAP相似吗?为什么?
(3)若PB:BC=2:3,且PC=20,求PA的长.
D
C
B
A
O
E
F
7.已知:如图, AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3.
(1)求证:AB是⊙O的切线;
(2)点F是ACD上的一点,当∠AOF=2∠B时,求AF的长.
8.如图,⊿ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,AB=6,AC=8,
求CD,DE,及EF的长.
9. 已知:如图,在RtABC△中,90ACB,4AC,43BC,以AC为直径的O交AB于点D,点E是BC的中
点,连结OD,OB、DE交于点F.
A
B
C P E D
H F O
--
--
(1)求证:DE是O的切线; (2)求EF:FD的值.
A
B
C
D
E
F
O
10.如图,A是以BC为直径的O上一点,ADBC于点D,过点B作O的切线,与CA的延长线相交于点
EG,是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB
的延长线相交于点P.
(1)求证:BFEF; (2)求证:PA是O的切线;
(3)若FGBF,且O的半径长为32,求BD和FG的长度.
第三部分 课后作业
1.已知⊙O的半径为35厘米,⊙O的半径为5厘米.⊙O与⊙O相交于点D、E.若两圆的公共弦DE的长是6
厘米(圆心O、O在公共弦DE的两侧),则两圆的圆心距OO的长为( )
(A)2厘米 (B)10厘米 (C)2厘米或10厘米 (D)4厘米
2.如图,两个等圆⊙O和⊙O的两条切线OA、OB,A、B是切点,则∠AOB等于 ( )
(A)30 (B)45 (C)60 (D)
90
3.如图,在△ABC中,∠BAC=90,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为 ( )
(A)1 (B)2 (C)1+4 (D)2-4
4.已知圆的内接正六边形的周长为18,那么圆的面积为 ( )
(A)18π (B)9π (C)6π (D)3π
5、如图△ABC是等边三角形,被一平行于BC的矩形所截 AB被截成三等分则图中阴影部分的面积是△ABC的
面积的 ( )
6.已知,如图,以△ABC的边AB作直径的⊙O,分别并AC、BC于点D、E,弦FG∥AB,S△CDE︰S△ABC=1︰
O
D G C A E F B
P
--
--
4,DE=5cm,FG=8cm,求梯形AFGB的面积.
7.如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部
分的面积.
8.如图,在RtABC△中,斜边1230BCC,°,D为BC的中点,ABD△的外接圆O⊙与AC交于F点,
过A作O⊙的切线AE交DF的延长线于E点.
(1)求证:AEDE⊥; (2)计算:ACAF·的值.
9.如图,在直角梯形ABCD中,ABCD∥,90B,AB=AD,∠BAD的平分线交BC于E,连接DE.
(1)说明点D在△ABE的外接圆上;
(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.
10、 如图,在RtABC△中,90A,6AB,8AC,DE,分别是边ABAC,的中点,点P从点D出发
沿DE方向运动,过点P作PQBC于Q,过点Q作QRBA∥交AC于R,当点Q与点C重合时,点P停止运
动.设BQx,QRy.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使PQR△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
--
A
B
C
D
E
R
P
H Q
A
E
F
O
D
B
C