【解析版】高三名校数学(文)试题汇编专题02函数(陕西江西版)(第03期)

合集下载

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

2 时,等号成立,
所以 m 2 2 2 ,即 m , 2 2 2 .
故选:C.
【点睛】关键点睛:本题突破口是理解“隐对称点”的定义,将问题转化为 g(x) 与 f (x) 在 0, 上有交点的
问题,从而得解.
5.(2023·高二单元测试)能够把椭圆 x2 y2 1的周长和面积同时分为相等的两部分的函数称为椭圆的“可 4
f
3 1
2

当t
1 时, 2
f
t
max
f
1 2
21 8.
所以
f
x
的值域为
1 2
,
21 8
.
当 1 f x 0 时, y INT f x 1,
2
当 0 f x 1时, y INT f x 0 ,
当1 f x 2 时, y INT f x 1, 当 2 f x 21 时, y INT f x 2 ,
对选项
B:
f
x
ln
5 5
x x
,函数定义域满足
5 5
x x
0 ,解得
5
x
5 ,且
f
x
ln
5 5
x x
f
x ,函数为
奇函数,满足;
对选项 C: f x sin x 为奇函数,满足;
对选项 D: f x ex ex , f x ex ex f x ,函数为偶函数,且 f 0 2 0 ,不满足.
f
x
ex ex
1 1
,得
ex
f
1
x 1 f x
.
因为 ex
f x1 0 ,所以 1 f x
0 ,解得 1
f

陕西,江西版(第03期)-2014届高三名校数学(文)试题分省分项汇编专题03 导数(解析版)Word版含解析

陕西,江西版(第03期)-2014届高三名校数学(文)试题分省分项汇编专题03 导数(解析版)Word版含解析

一.基础题组1. 【江西省七校2014届高三上学期第一次联考】设函数()sin cos =+f x x x x 的图像在点()(),t f t 处切线的斜率为k ,则函数()=k g t 的部分图像为( )2. 【陕西省西安市第一中学2014届高三上学期期中考试】函数2)2()1()(+⋅+=x x x f 的导函数为3. 【陕西省西安市第一中学2014届高三上学期期中考试】曲线x e x y ⋅-=)1(为自然对数的底数)e (在点()0,1处的切线方程为( )(A )e ex y -= (B )e ex y += (C )1-=x y (D )1+=x y二.能力题组1. 【江西师大附中高三年级数学期中考试试卷】 已知函数ax x x f -=2)(的图像在点))1(,1(f A 处的切线l 与直线023=++y x 垂直,若数列⎭⎬⎫⎩⎨⎧)(1n f 的前n 项和为n S ,则2013S 的值为 ( )A.20112010B.20122011C.20132012D.201420132. 【陕西西安长安区长安一中2013-2014学年度高三第一学期第三次教学质量检测】设a R ∈,函数()x x f x e a e -=+⋅的导函数是'()f x ,且'()f x 是奇函数。

若曲线()y f x =的一条切线的斜率是32,则切点的横坐标为( )A.ln 2 B .ln 2- C .ln22 D .ln22-3. 【江西宜春市二高2014届高三第五次数学(文科)月考试卷】已知函数)(x f ,R x ∈满足3)2(=f ,且)(x f 在R 上的导数满足01)(<-'x f , 则不等式1)(22+<x x f 的解为 ( ) A.),(2-∞- B.),2(+∞ C.),(2-∞-⋃),2(+∞ D.)2,2-(4. 【陕西省西安市第一中学2014届高三上学期期中考试】(本题12分)已知函数52)(23+-=x x x f 的定义域为区间[]2,2-.(1)求函数)(x f 的极大值与极小值;(2)求函数)(x f 的最大值与最小值.5. 【江西宜春市二高2014届高三第五次数学(文科)月考试卷】已知函数f(x)= 28x -lnx, x∈[1,3].(Ⅰ)求()f x 的最大值与最小值;(Ⅱ)若f(x)<4-at 对于任意的x∈[1,3],t∈[0,2]恒成立,求实数a 的取值范围.6. 【江西省七校2014届高三上学期第一次联考】设函数32()1,f x x ax x a R =+++∈。

专题02 函数的概念与基本初等函数(解析版)

专题02 函数的概念与基本初等函数(解析版)

专题02函数的概念与基本初等函数1.【2019年天津理科06】已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log52<1,b=log0.50.2log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52,c=0.50.2.而log25>log24=2,∴.∴a<c,∴a<c<b.故选:A.2.【2019年天津理科08】已知a∈R.设函数f(x)若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1] B.[0,2] C.[0,e] D.[1,e]【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a恒成立,令g(x)(1﹣x2)≤﹣(22)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a恒成立,令h(x),则h′(x),当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)e,综上a的取值范围是[0,e].故选:C.3.【2019年新课标3理科11】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年全国新课标2理科12】设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x),则m的取值范围是()A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)解得m或m,若对任意x∈(﹣∞,m],都有f(x),则m.故选:B.5.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.【解答】解:由函数y,y=1og a(x),当a>1时,可得y是递减函数,图象恒过(0,1)点,函数y=1og a(x),是递增函数,图象恒过(,0);当1>a>0时,可得y是递增函数,图象恒过(0,1)点,函数y=1og a(x),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.【2019年浙江09】设a,b∈R,函数f(x)若函数y=f(x)﹣ax﹣b 恰有3个零点,则()A.a<﹣1,b<0 B.a<﹣1,b>0 C.a>﹣1,b<0 D.a>﹣1,b>0【解答】解:当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x;y=f(x)﹣ax﹣b最多一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,y′=x2﹣(a+1)x,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上递增,y=f(x)﹣ax﹣b最多一个零点.不合题意;当a+1>0,即a<﹣1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴0且,解得b<0,1﹣a>0,b(a+1)3.故选:C.8.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3,b=log20.3,∴,,∵,,∴ab<a+b<0.故选:B.11.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1),,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.12.【2018年北京理科04】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.13.【2018年天津理科05】已知a=log2e,b=ln2,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log2e>1,0<b=ln2<1,c log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.14.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.15.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.16.【2017年浙江05】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x为对称轴的抛物线,①当1或0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(),故M﹣m的值与a有关,与b无关③当0,即﹣1<a≤0时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f()=1+a,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.17.【2017年北京理科05】已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.18.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.19.【2017年天津理科06】已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b =g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.20.【2017年天津理科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[,2] B.[,] C.[﹣2,2] D.[﹣2,]【解答】解:当x≤1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣x2+x﹣3a≤x2﹣x+3,即有﹣x2x﹣3≤a≤x2x+3,由y=﹣x2x﹣3的对称轴为x1,可得x处取得最大值;由y=x2x+3的对称轴为x1,可得x处取得最小值,则a①当x>1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣(x)a≤x,即有﹣(x)≤a,由y=﹣(x)≤﹣22(当且仅当x1)取得最大值﹣2;由y x22(当且仅当x=2>1)取得最小值2.则﹣2a≤2②由①②可得,a≤2.另解:作出f(x)的图象和折线y=|a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1,可得x,切点为(,)代入y a,解得a;当x>1时,y=x的导数为y′=1,由1,可得x=2(﹣2舍去),切点为(2,3),代入y a,解得a=2.由图象平移可得,a≤2.故选:A.21.【2019年全国新课标2理科14】已知f(x)是奇函数,且当x<0时,f(x)=﹣e ax.若f(ln2)=8,则a=.【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,又∵当x<0时,f(x)=﹣e ax,∴f(﹣ln2)=﹣e﹣aln2=﹣8,∴﹣aln2=ln8,∴a=﹣3.故答案为:﹣322.【2019年江苏04】函数y的定义域是.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y的定义域是[﹣1,7].故答案为:[﹣1,7].23.【2019年江苏14】设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x),g(x)其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x),x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k(k>0),∵两点(﹣2,0),(1,1)连线的斜率k,∴k.即k的取值范围为[,).故答案为:[,).24.【2018年江苏05】函数f(x)的定义域为.【解答】解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).25.【2018年江苏09】函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x),则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1|,f()=cos()=cos,即f(f(15)),故答案为:26.【2018年浙江11】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.27.【2018年浙江15】已知λ∈R,函数f(x),当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x),显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).28.【2018年上海04】设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.29.【2018年上海07】已知α∈{﹣2,﹣1,,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.30.【2018年上海11】已知常数a>0,函数f(x)的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)的图象经过点P(p,),Q(q,).则:,整理得:1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年北京理科13】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sin x,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sin x.32.【2018年天津理科14】已知a>0,函数f(x).若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a,设g(x),则g′(x),由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a设h(x),则h′(x),由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)33.【2017年江苏14】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x),其中集合D={x|x,n∈N*},则方程f(x)﹣lgx=0的解的个数是.【解答】解:∵在区间[0,1)上,f(x),第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x),此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点,且除了(1,0),其他交点横坐标均为无理数;即方程f(x)﹣lgx=0的解的个数是8,故答案为:834.【2017年新课标3理科15】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).35.【2017年浙江17】已知a∈R,函数f(x)=|x a|+a在区间[1,4]上的最大值是5,则a的取值范围是.【解答】解:由题可知|x a|+a≤5,即|x a|≤5﹣a,所以a≤5,又因为|x a|≤5﹣a,所以a﹣5≤x a≤5﹣a,所以2a﹣5≤x5,又因为1≤x≤4,4≤x5,所以2a﹣5≤4,解得a,故答案为:(﹣∞,].36.【2017年上海08】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)为奇函数,则f﹣1(x)=2的解为.【解答】解:若g(x)为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2,可得f﹣1(x)=2的解为x.故答案为:.37.【2017年上海09】已知四个函数:①y=﹣x,②y,③y=x3,④y,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【解答】解:给出四个函数:①y=﹣x,②y,③y=x3,④y,从四个函数中任选2个,基本事件总数n,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A).故答案为:.38.【2019年江苏18】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•1,解得x1=﹣17,所以P(﹣17,0),PB15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•1,解得x2,Q(,0),由﹣17<﹣8,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.39.【2018年上海19】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f (x )=2x90>40,即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40;当30<x <100时,g (x )=(2x 90)•x %+40(1﹣x %)x +58;∴g (x );当0<x <32.5时,g (x )单调递减; 当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2 B .4C .2±D .4±【答案】C 【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(()ln g x ax =也为奇函数.而(()ln g x ax -=-+,故((()()ln ln 0g x g x ax ax -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<【答案】C 【解析】∵f (x )为偶函数∴()()22f log 3?f log 3-= ∵320log 21,log 31,< f (x )在[0,+∞)内单调递减,∴()()()23f log 3f log 2f 0<<,即()()()23f log 3f log 2f 0-<<故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】1.21222a =>=5552log 2log 4log 51b ==<=且55log 4log 10b =>=1ln ln3ln 13c e ==-<-=-即1012c b a <-<<<<<a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】因为()()()()22222213log log log 42222x xf x f x x x -++-=+==--- 故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】由题意知:()()()()()()222222122111x x x x x x xf x x x x ----'===---当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误; 当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;()()()22221x f x f x x --=≠--,则()f x 不关于1x =对称,C 错误; ()()()()2211114x x f x f x xx+-++-=+=-,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-1【答案】B 【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4 又()f x 为奇函数()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==即:()()()()12340f f f f +++=()()()()()()()()()1232019505123440f f f f f f f f f ∴+++⋅⋅⋅=⨯+++-=⎡⎤⎣⎦本题正确选项:B8.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .()()0,11,4【答案】D 【解析】 解:y 211111111x x x x x x x -+-⎧==⎨----⎩,>或<,<<, 画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4,①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】()12xf x ⎛⎫= ⎪⎝⎭在R 上递减,∴若011,0,122m nm n m n -⎛⎫⎛⎫<-<>= ⎪ ⎪⎝⎭⎝⎭充分性成立, 若112m n-⎛⎫> ⎪⎝⎭,则01122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭, 0,m n m n -<<必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

专题02函数3函数的零点(3大重难点详细讲解)2024高考数学重难点及压轴题突破(原卷版)

专题02函数3函数的零点(3大重难点详细讲解)2024高考数学重难点及压轴题突破(原卷版)

第03讲 函数的零点难点1:零点的定义——求函数零点或方程根的个数考试时我们经常会遇到求函数的零点个数问题,这种题常作为选择的压轴题出现,因其具有很强的综合性,常常与函数奇偶性,单调性,周期性等性质结合起来,并与各种函数以及导数和在一起考查,学生往往很难搞明白零点的位置,造成丢分。

求函数零点或方程的根的个数问题的步骤:(1)将问题转化为求两个函数交点的问题;(2)分析两个函数的性质,并做出函数图象;(3)找到两个函数的交点,即为所求。

【例题】(宁夏吴忠市吴忠中学2024届高三上学期开学第一次月考数学(理)试题)已知()f x 是定义在R 上的奇函数,满足(1)()f x f x +=-,当10,2x ⎡⎤∈⎢⎥⎣⎦时,()91x f x =-,则()()2(1)h x x x f =--在区间[]20212023-,上所有零点个数为____________.【答案】4044【解析】由题意, 我们根据题目条件知道,函数是奇函数得出()()f x f x -=-,而且满足(1)()f x f x +=-,便可以得出函数的对称轴,我们用1x +替换原来的x ,与(1)()f x f x +=-与结合,即可得出(2)()f x f x +=,进而得到函数的周期。

∵()f x 是定义在R 上的奇函数,∴()()f x f x -=-,∵(1)()f x f x +=-,12x =是其中一条对称轴, ∴(2)(1)()f x f x f x +=-+=,∴()f x 的周期是2 ,在()(1)()2h x x f x =--中,化简函数,将函数的零点问题转化成求函数()y f x =与函数21y x 的交点的问题,当()(1)()20h x x f x =--=时,()21f x x =-, ∴求函数零点, 即为求()y f x =与21y x 的交点的横坐标, 作出函数图象,根据图象得出,在一个周期上,两个函数有2个交点,进而可以求出在区间[]20212023-,上所有交点个数,即可知道在区间[]20212023-,上函数()()2(1)h x x x f =--所有零点个数.作出()y f x =与21yx 图象如图所示,由图知:∴交点关于(1,0)对称,每个周期有2个交点∴[2021,1)-有1011个周期, (1,2023]有1011个周期, ∴在区间[]20212023-,上所有零点个数为:1011224044⨯⨯=, 故答案为:4044.【变式训练】(2023 ·福建泉州·统考模拟预测)(多选)设函数2()ln ()f x x x a =--,则下列判断正确的是A. ()f x 存在两个极值点B. 当73a >时,()f x 存在两个零点 C. 当1a ≤时,()f x 存在一个零点D. 若()f x 有两个零点12,x x ,则122x x a +>难点2:零点存在性定理零点存在定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,则()f x 在开区间(,)a b 上存在零点。

专题03 函数的对称性-高中数学经典二级结论解读与应用训练(解析版)

专题03 函数的对称性-高中数学经典二级结论解读与应用训练(解析版)

【答案】5【分析】先根据①①可知函数的对称中心和对称轴,再分别画出()f x 和()g x 的部分图像,由图像观察交点的个数.【详解】根据题意,①(2)()0f x f x -+=,得函数()f x 的图像关于点()1,0对称,①(2)()0f x f x ---=,得函数()f x 的图像关于1x =-对称,则函数()f x 与()g x 在区间[3,3]-上的图像如图所示,由图可知()f x 与()g x 的图像在[]3,3-上有5个交点.由图知()f x 与()h x 的图象在区间()2,6-有四个交点,设交点横坐标分别为1234,,,x x x x ,且1422x x +=,2322x x +=,所以12348x x x x +++=,所以()f x 与()h x 的图象所有交点的横坐标之和为8, 3.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13【答案】C 【分析】若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ≥+,进而可得答案.【详解】当14x ≤<时,3y x =-+单调递减,()()241log 41f x f >=-=-,当4x ≥时,()f x 单调递减,()()41f x f ≥=-,故()f x 在[)1,+∞上单调递减,由()(2)f x f x -=,得()f x 的对称轴为1x =, 若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ∴≥+,即()()221x x t -≥+,即()22110t x t ++-≤,()()()22211011321110t t t t t t t ⎧++-≤⎪⇒-≤≤-⎨+++-≤⎪⎩,故实数t 的最大值为13-. 4.已知()f x 是定义域为R 的奇函数,(1)(1)f x f x +=-,当01x ≤≤时,()1xf x e =-,则23x ≤≤时,()f x 的解析式为( )6.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 【答案】7 【解析】设,则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x ,所以,,故答案为7.7.已知函数21()ln |2|45f x x x x =---+,则使不等式(21)(2)f t f t +>+成立的实数t 的取值范围是___________.【答案】111(,)(,1)322⋃ 【分析】由函数解析式知函数()f x 的图象关于直线2x =对称,利用定义证得2x >时,函数()f x 是减函数,2x <时,函数为增函数,利用对称性和单调性解不等式即可.【详解】∵f(x)=1x 2−4x+5−ln |x −2|=1(x−2)2+1−ln |x −2|,21(2)ln ||1f t t t ∴-=-+,。

专题02 函数周期性问题-高中数学经典二级结论解读与应用训练(解析版)

专题02  函数周期性问题-高中数学经典二级结论解读与应用训练(解析版)

f x-【详解】(2由条件可知函数在区间)(252f=函数在区间[0,4C .(sin)(cos )33f f ππ> D .33(sin )(cos )22f f >【答案】B 【解析】因为()()2f x f x =+,所以()f x 周期为2,因为当[]3,4x ∈时, ()2f x x =-单调递增,所以[]()1,0?,x f x 时∈- 单调递增,因为()f x 偶函数,所以[]()0,1,x f x ∈时 单调递减,因为110sin cos 122<<<,1sin1cos10,>>> 1> sin cos 033ππ>>,331sin cos 022>>> 所以11sin cos 22f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, ()()sin1cos1f f <, sin cos 33f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ ,33sin cos 22f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.6.已知()f x 是在R 上的奇函数,满足()()2f x f x =-,且[]0,1x ∈时,函数()21x f x =-,函数()()log (1)a g x f x x a =->恰有3个零点,则a 的取值范围是( )A .10,9⎛⎫ ⎪⎝⎭B .11,95⎛⎫ ⎪⎝⎭C .()1,5D .()5,9【答案】D【解析】由题得,令()log ah x x =,定义域为0x >,()()log (1)a g x f x x a =->恰有3个零点,即()f x 和()h x 的图像在定义域内有3个交点,()(2)(2)[2(2)](4)(4)f x f x f x f x f x f x =-=--=---=--=-,故函数()f x 的一个周期是4,又[]0,1x ∈时,函数()21x f x =-,且图像关于轴x=1对称,由此可做出函数(),()f x h x 图像如图,若两个函数有3个交点,则有log 51log 91a a <⎧⎨>⎩,解得59a <<,则a 的取值范围是(5,9).7.已知函数()y f x =的定义域为R ,且满足下列三个条件:∵任意[]12,4,8x x ∈,当12x x <时,都有。

专题02 函数的概念与基本初等函数-三年(2022–2024)高考数学真题分类汇编(通用)(原卷版)

专题02 函数的概念与基本初等函数-三年(2022–2024)高考数学真题分类汇编(通用)(原卷版)

专题02函数的概念与基本初等函数I 考点三年考情(2022-2024)命题趋势考点1:已知奇偶性求参数2023年全国Ⅱ卷2023年全国乙卷(理)2024年上海卷2022年全国乙卷(文)2023年全国甲卷(理)从近三年高考命题来看,本节是高考的一个重点,函数的单调性、奇偶性、对称性、周期性是高考的必考内容,重点关注周期性、对称性、奇偶性结合在一起,与函数图像、函数零点和不等式相结合进行考查.考点2:函数图像的识别2022年天津卷2023年天津卷2024年全国甲卷(理)2024年全国Ⅰ卷2022年全国乙卷(文)2022年全国甲卷(理)考点3:函数模型及应用2022年北京卷2024年北京卷2023年全国Ⅰ卷考点4:基本初等函数的性质:单调性、奇偶性2023年全国乙卷(理)2022年北京卷2023年北京卷2024年全国Ⅰ卷2024年天津卷2023年全国Ⅰ卷考点5:分段函数问题2022年浙江卷2024年上海夏季考点6:函数的定义域、值域、最值问题2022年北京卷2022年北京卷考点7:函数性质(对称性、周期性、奇偶性)的综合运用2023年全国Ⅰ卷2022年全国I卷2024年全国Ⅰ卷2022年全国II卷考点8:指对幂运算2022年天津卷2022年浙江卷2024年全国甲卷(理)2023年北京卷考点1:已知奇偶性求参数1.(2023年新课标全国Ⅱ卷数学真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ().A .1-B .0C .12D .12.(2023年高考全国乙卷数学(理)真题)已知e ()e 1xax x f x =-是偶函数,则=a ()A .2-B .1-C .1D .23.(2024年上海夏季高考数学真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .4.(2022年高考全国乙卷数学(文)真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b =.5.(2023年高考全国甲卷数学(理)真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .考点2:函数图像的识别6.(2022年新高考天津数学高考真题)函数()21x f x x-=的图像为()A .B .C .D .7.(2023年天津高考数学真题)已知函数()f x 的部分图象如下图所示,则()f x 的解析式可能为()A .25e 5e 2x xx --+B .25sin 1x x +C .25e 5e 2x xx -++D .25cos 1x x +8.(2024年高考全国甲卷数学(理)真题)函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的图象大致为()A .B .C .D .9.(2024年新课标全国Ⅰ卷数学真题)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .810.(2022年高考全国乙卷数学(文)真题)如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x x y x =+D .22sin 1x y x =+11.(2022年高考全国甲卷数学(理)真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .考点3:函数的实际应用12.(2022年新高考北京数学高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态13.(2024年北京高考数学真题)生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A .2132N N =B .2123N N =C .2321N N =D .3221N N =14.(多选题)(2023年新课标全国Ⅰ卷数学真题)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A .12p p ≥B .2310p p >C .30100p p =D .12100p p ≤考点4:基本初等函数的性质:单调性、奇偶性15.(2023年高考全国乙卷数学(理)真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.16.(2022年新高考北京数学高考真题)已知函数1()12xf x =+,则对任意实数x ,有()A .()()0f x f x -+=B .()()0f x f x --=C .()()1f x f x -+=D .1()()3f x f x --=17.(2023年北京高考数学真题)下列函数中,在区间(0,)+∞上单调递增的是()A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=18.(2024年新课标全国Ⅰ卷数学真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞19.(2024年天津高考数学真题)下列函数是偶函数的是()A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=20.(2023年新课标全国Ⅰ卷数学真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞考点5:分段函数问题21.(2022年新高考浙江数学高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是.22.(2024年上海夏季高考数学真题)已知(),0,1,0x x f x x >=≤⎪⎩则()3f =.考点6:函数的定义域、值域、最值问题23.(2022年新高考北京数学高考真题)函数1()1f x x x=-的定义域是.24.(2022年新高考北京数学高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为;a 的最大值为.考点7:函数性质(对称性、周期性、奇偶性)的综合运用25.(多选题)(2023年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点26.(多选题)(2022年新高考全国I 卷数学真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=27.(2024年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <28.(2022年新高考全国II 卷数学真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .129.(2022年高考全国乙卷数学(理)真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-考点8:指对幂运算30.(2022年新高考天津数学高考真题)化简()()48392log 3log 3log 2log 2++的值为()A .1B .2C .4D .631.(2022年新高考浙江数学高考真题)已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .5332.(2024年高考全国甲卷数学(理)真题)已知1a >且8115log log 42a a -=-,则=a .33.(2023年北京高考数学真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.。

高考数学命题热点名师解密:专题(02)函数问题的解题规律(文)(含答案)

高考数学命题热点名师解密:专题(02)函数问题的解题规律(文)(含答案)

专题02 函数问题的解题规律一、函数问题的解题规律解题技巧及注意事项1.定义域陷阱2.抽象函数的隐含条件陷阱3.定义域和值域为全体实数陷阱4.还原后新参数范围陷阱5.参数范围漏解陷阱6.函数求和中的倒序求和问题7.分段函数问题8.函数的解析式求法9.恒成立问题求参数范围问题10.任意存在问题二.知识点【学习目标】1.了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域、值域及函数解析式;2.在实际情境中,会根据不同的需要选择适当的方法(图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单应用;4.掌握求函数定义域及解析式的基本方法.【知识要点】1.函数的概念设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:,其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然{f(x)|x∈A}⊆B.2.映射的概念设A,B是两个集合,如果按照某种对应关系f,对于集合A中的任意一个元素,在集合B中都有唯一确定的元素和它对应,那么这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A 到集合B的映射.3.函数的特点①函数是一种特殊的映射,它是由一个集合到另一个集合的映射;②函数包括定义域A、值域B和对应法则f,简称函数的三要素;③关键是对应法则.4.函数的表示法函数的表示法:图示法、解析法.5.判断两个函数为同一个函数的方法两个函数的定义域和对应法则完全相同(当值域未指明时),则这两个函数相等.6.分段函数若函数在定义域的不同子集上对应法则不同,可用几个式子表示函数,这种形式的函数叫分段函数.注意:不要把分段函数误认为是多个函数,它是一个整体,分段处理后,最后写成一个函数表达式.三.典例分析及变式训练(一)定义域陷阱例1. 【曲靖一中2019模拟】已知,若函数在(﹣3,﹣2)上为减函数,且函数=在上有最大值,则的取值范围为()A. B. C. D.【答案】A【分析】由在上为减函数,可得;由在上有最大值,可得,综上可得结果,.【解析】在上为减函数,,且在上恒成立,,,又在上有最大值,且在上单调递增,在上单调递减,且,,解得,综上所述,,故选A.【点评】本题主要考查对数函数的单调性、复合函数的单调性、分段函数的单调性,以及利用单调性求函数最值,意在考查对基础知识掌握的熟练程度,考查综合应用所学知识解答问题的能力,属于难题. 判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增增,减减增,增减减,减增减).故答案为:D.练习2.已知函数则__________.【答案】1008【解析】分析:由关系,可类比等差数列一次类推求值即可.详解:函数,则,故答案为:1008.点睛:可类比“等差数列”或函数周期性来处理.(七)分段函数问题例7.【河北省廊坊市2019届高三上学期第三次联考】若函数在上是单调函数,且存在负的零点,则的取值范围是()A. B. C. D.【答案】B【解析】通过函数的单调性及存在负的零点,列出不等式,化简即可.【详解】当时,,所以函数在上只能是单调递增函数,又存在负的零点,而当时,f(0)=1+a,当时,f(0)=3a-2,0<3a-21+a,解得.故选B.【点评】本题考查分段函数的应用,考查分类讨论思想,转化思想以及计算能力.练习1.已知函数,则f(1)- f(9)=()A.﹣1 B.﹣2 C. 6 D. 7【答案】A【解析】利用分段函数,分别求出和的值,然后作差得到结果.【详解】依题意得,,所以,故选.【点评】本小题主要考查利用分段函数求函数值,只需要将自变量代入对应的函数段,来求得相应的函数值.属于基础题.练习2.已知,那么等于( )A. 2 B. 3 C. 4 D. 5【答案】A【解析】将逐步化为,再利用分段函数第一段求解.【详解】由分段函数第二段解析式可知,,继而,由分段函数第一段解析式,,故选A.【点睛】本题考查分段函数求函数值,要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念.(八)函数的解析式求法例8. (1)已f ()=,求f(x)的解析式.(2).已知y =f(x)是一次函数,且有f [f(x)]=9x+8,求此一次函数的解析式【答案】(1);(2).【解析】(1)利用换元法即可求解;(2)已知函数是一次函数,可设函数解析式为f(x)=ax+b,再利用待定系数法列出关于a、b的方程组即可求解出a、b的值.【详解】(1)设(x≠0且x≠1)(2)设f(x)=ax+b,则f[f(x)]=af(x)+b=a(ax+b)+b=a2x+ab+b=9x+8或所以函数的解析式为.【点睛】本题考查函数解析式的求解,解题中应用了换元法和待定系数法,待定系数法的主要思想是构造方程(组),对运算能力要求相对较高,属于中档题.练习1.(1) 已知是一次函数,且满足求 ;(2) 判断函数的奇偶性.【答案】(1);(2)见解析.【解析】(1)用待定系数法求一次函数解析式.(2)结合分段函数的性质,分别判断各定义域区间内, f(-x)与f(x)的关系,即可判断函数奇偶性.【点评】本题考查了待定系数法求一次函数,考查了函数的奇偶性的判断,定义域关于原点对称是函数具有奇偶性的前提.再结合分段函数的分段区间,以及对应的解析式,判断关系式f(-x)=f(x)或f(-x)=-f(x)是否成立.练习2.已知函数对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式;(3)已知a,b∈R,当时,求不等式f(x)+3<2x+a恒成立的a的集合A.【答案】(1)f(0)=﹣2(2)f(x)=x2+x﹣2(3)【解析】(1)令,可得,再根据可得;(2)在条件中的等式中,令,可得,再根据可得所求的解析式;(3)由条件可得当时不等式x2﹣x+1<a恒成立,根据二次函数的知识求出函数上的值域即可得到的范围.【详解】(1)根据题意,在f(x+y)﹣f(y)=x(x+2y+1)中,令x=﹣1,y=1,可得,又,∴.(2)在f(x+y)﹣f(y)=x(x+2y+1)中,令y=0,则f(x)﹣f(0)=x(x+1)又,∴.(3)不等式f(x)+3<2x+a等价于x2+x﹣2+3<2x+a,即x2﹣x+1<a.由当时不等式f(x)+3<2x+a恒成立,可得当时不等式x2﹣x+1<a恒成立.设,则在上单调递减,∴,∴.∴.【点评】(1)解决抽象函数(解析式未知的函数)问题的原则有两个:一是合理运用赋值的方法;二是解题时要运用条件中所给的函数的性质.(2)解答恒成立问题时,一般采用分离参数的方法,将问题转化为求具体函数最值的方法求解,若函数的最值不存在,则可用函数值域的端点值来代替.练习3.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. (A)B. (B)C. (C)D. (D)【答案】B【解析】当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2-x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2-x,∴EM=x-(2-x)=2x-2,∴S△ENM=(2x-2)2=2(x-1)2,∴y=x2-2(x-1)2=-x2+4x-2=-(x-2)2+2,∴y=.故选B.练习4.如图,李老师早晨出门锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()A. B. C. D.【答案】D【解析】由题意,得从M到A距离在增加,由A经B到C与M的距离都是半径,由B到M距离逐渐减少,故选D.(九)恒成立问题求参数范围问题例9. 【湖北省武汉市第六中学2018-2019学年调研数学试题】若函数的定义域为,值域为,则的取值范围A. B. C. D.【答案】C【解析】由函数的定义域、值域结合函数单调性求出的取值范围【详解】由函数的对称轴为且函数图像开口向上则函数在上单调递减,在上单调递增,当且仅当处取得最小值由值域可知,故在上函数单调递增,在处取得最大值故,解得综上所述,故选【点睛】本题在知道函数的定义域与值域后求参量的取值范围,在解答题目时结合函数的单调性判定取值域的情况。

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。

常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。

二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。

陕西,江西版(第03期)-2014届高三名校数学(理)试题分省分项汇编专题13 算法Word版含解析

陕西,江西版(第03期)-2014届高三名校数学(理)试题分省分项汇编专题13 算法Word版含解析

一.基础题组
1.【长安一中2013-2014学年度高三第一学期第三次教学质量检测】某程序框图如图所示,若输出的S=57,则判断框内应________(请用k的不等关系填写,如k>10等)
二.能力题组
1. 【江西省稳派名校学术联盟2014届高三12月调研考试】已知函数1y x =
与1,x y =轴和x e =所围成的图形的面积为M ,N =2tan 22.51tan 22.5︒-︒
,则程序框图输出的S 为( )
A. 1
B. 2
C. 12
D. 0
2. 【陕西工大附中第一次适应性训练】定义运算a b ⊗为执行如图所示的程序框图输出的s 值,则552cos 2tan 34ππ⎛
⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭
的值为( )
A .4
B .3
C .2
D .―1
3. 【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】已知函数f(x)=ax 3+21
x 2在x =-1处取得极大
值,记g(x)=)('1x f 。

程序框图如图所示,若输出的结果S =20142013
,则判断框中可以填入
的关于n 的判断条件是( )
A .n≤2013
B .n≤2014
C .n >2013
D .n >2014
三.拔高题组。

【解析版】高三名校数学(文)试题汇编专题09 圆锥曲线(陕西江西版)(第03期)

【解析版】高三名校数学(文)试题汇编专题09 圆锥曲线(陕西江西版)(第03期)

一.基础题组1. 【陕西工大附中第一次适应性训练】已知抛物线x y 82=的焦点与双曲线1222x y a-=的一个焦点重合,则该双曲线的离心率为( )A B D2. 【陕西西安长安区长安一中2013-2014学年度高三第一学期第三次教学质量检测】设AB 是椭圆的长轴,点C 在椭圆上,且4CBA π∠=,若AB=4,BC =,则椭圆的两个焦点之间的距离为________二.能力题组1. 【江西省稳派名校学术联盟2014届高三12月调研考试】抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出。

现已知抛物线22(0)y px p =>的焦点为F ,过抛物线上点00(,)P x y 的切线为,过P 点作平行于x 轴的直线m ,过焦点F 作平行于的直线交m 于M ,则||PM 的长为( ) A.2p B. pC.02px + D.0p x +2. 【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】过椭圆C :)0(12222>>=+b a b y a x 的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若31<k <21,则椭圆的离心率的取值范围是 。

3. 【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】设点P 是双曲线)0,0(12222>>=-b a by ax 与圆x 2+y 2=a 2+b 2的一个交点,F 1, F 2分别是双曲线的左、右焦点,且|1PF |=3|2PF |,则双曲线的离心率为( )A .213+ B .3+1 C .3 D .234. 【陕西省咸阳市范公中学2014届高三上学期摸底考试】(本小题满分12分) 已知1F 、2F 分别是椭圆:C 22221(0)x y a b a b+=>>的左、右焦点,右焦点2(,0)F c 到上顶点的距离为2,若2a =(1)求此椭圆C 的方程;(Ⅱ)直线与椭圆C 交于A B 、两点,若弦AB 的中点为11,2P ⎛⎫⎪⎝⎭,求直线的方程.5.【陕西工大附中第一次适应性训练】已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线2y=的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是∠?若存在,求出P点坐标;若不存在,请说否另存在一个定点P使得PM始终平分APB明理由.23322(12)k =++.11<<-k ,2332322(12)k ∴<+≤+.BM BN ∴⋅的取值范围为(2, 3]. 考点:1、椭圆的方程及简单几何性质;2、向量的数量积运算;3、韦达定理.3. 【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】已知椭圆C :)0(12222>>=+b a b y a x 的离心率与等轴双曲线的离心率互为倒数,直线:0l x y -=与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切。

(陕西 江西版第03期) 高三数学 试题分省分项汇编专题02 函数 文 (含解析)

(陕西 江西版第03期) 高三数学 试题分省分项汇编专题02 函数 文 (含解析)

(陕西 江西版第03期) 2014届高三数学 试题分省分项汇编专题02 函数 文 (含解析)一.基础题组1. 【江西师大附中高三年级数学期中考试试卷】下列四个函数中,在区间)1,0(上是减函数的是( )A.2log y x =B.1y x =C.1()2xy =- D.13y x =2. 【陕西工大附中第一次适应性训练】把函数f (x )的图象向右平移一个单位长度,所得图象恰与函数xy e =的反函数图像重合,则f (x )=( )A. ln 1x -B. ln 1x +C. ln(1)x -D. ln(1)x +3. 【江西省七校2014届高三上学期第一次联考】定义在R 上的偶函数)(x f ,当0x ≥时,()2x f x =,则满足(12)(3)f x f -<的x 取值范围是 ( ) A .(-1,2) B .(-2,1)C .[-1,2]D .(-2,1]4. 【江西省七校2014届高三上学期第一次联考】下列说法: ①命题“存在02,≤∈xR x ” 的否定是“对任意的02,>∈xR x ”; ②关于x 的不等式222sin sin a x x<+恒成立,则a 的取值范围是3a <; ③函数2()log ||f x a x x b =++为奇函数的充要条件是0a b +=;其中正确的个数是( )A .3B .2C .1D .02sin x <对于③当1,1a b ==-时,虽然有0a b +=,但()f x 不是奇函数,故③错,故选B . 考点:命题的真假判断.5. 【陕西西安长安区长安一中2013-2014学年度高三第一学期第三次教学质量检测】方程1313313x x-+=-的实数解为__________________6. 【陕西省西安市第一中学2014届高三上学期期中考试】函数3121)(++-=x x f x的定义域为( ).(A )(]1,3- (B )(]0,3- (C )()(]0,33,-⋃-∞- (D )()(]1,33,-⋃-∞-解得,30x -<≤,故选B. 考点:函数的定义域7. 【陕西省西安市第一中学2014届高三上学期期中考试】已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( ) (A )2 (B )1 (C )0 (D )2-二.能力题组1. 【江西省稳派名校学术联盟2014届高三12月调研考试】随着生活水平的提高,私家车已成为许多人的代步工具。

陕西,江西第03期高三名校数学理试题分省分项汇编专题 选修部分含解析

陕西,江西第03期高三名校数学理试题分省分项汇编专题 选修部分含解析

一.基础题组1. 【陕西工大附中第一次适应性训练】(不等式选讲)若关于x 的不等式1|1||2|a x x +-->存在实数解,则实数a 的取值范围是 .2. 【陕西工大附中第一次适应性训练】(几何证明选讲)已知PA 是圆O 的切线,切点为A ,2PA =.AC 是圆O 的直径,PC 与圆O 交于点B ,1PB =,则圆O 的半径R = .【答案】3【解析】试题分析:如图所示,有切割线定理可知,2PA PB PC =⋅,即()2222122R =⨯+,解得3R =.考点:切割线定理3. 【陕西工大附中第一次适应性训练】(极坐标系与参数方程)极坐标系下曲线θρsin 4=表示圆,则点)6,4(πA 到圆心的距离为 .【答案】23【解析】4.【长安一中2013-2014学年度高三第一学期第三次教学质量检测】(选修4—4坐标系与参数方程选做题)设曲线C的参数方程为322cos122sinxyθθ⎧=+⎪⎨=-+⎪⎩(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为2cos sinρθθ=-,则曲线C上到直线距离为2的点的个数为: .5.【长安一中2013-2014学年度高三第一学期第三次教学质量检测】 (选修4—1几何证明选做题)如图,四边形ABCD是圆O 的内接四边形,延长AB和DC相交于点P. 若12PBPA=,13PCPD=,则BCAD的值为 .【答案】666.【长安一中2013-2014学年度高三第一学期第三次教学质量检测】(选修4—5不等式选做题)若关于x的不等式232logx x a+-+≥有解,则实数a的取值范围是: .7.【陕西省西安市第一中学2014届高三上学期期中考试】参数方程为1()2x ttty⎧=+⎪⎨⎪=⎩为参数表示的曲线是().A.一条直线 B.两条直线 C.一条射线 D.两条射线【答案】D8.【陕西省咸阳市范公中学2014届高三上学期摸底考试数学】(不等式选做题) 若关于x的方程210() 4x x a a a R++-+=∈有实根,则a的取值范围是 .9.【陕西省咸阳市范公中学2014届高三上学期摸底考试数学】(坐标系与参数方程选做题)已知直线的极坐标方程为2sin()4πρθ+=0,0)到这条直线的距离是 .10. 【陕西省咸阳市范公中学2014届高三上学期摸底考试数学】(几何证明选讲选做题)已知圆的直径13AB cm =,C 为圆上一点,CD AB ⊥,垂足为D ,且6CD cm =,则AD = cm .11. 【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】设函数f(x)=|x―a|―2,若不等式|f(x)|<1的解为x∈(-2, 0)∪(2, 4),则实数a = 。

陕西,江西第03期高三名校数学文试题分省分项汇编专题06 数列解析含解析

陕西,江西第03期高三名校数学文试题分省分项汇编专题06 数列解析含解析

一.基础题组1. 【江西师大附中高三年级数学期中考试试卷】已知{}n a 为等差数列,若9843=++a a a ,则9S =( ) A.15B.24C.27D.542. 【陕西工大附中第一次适应性训练】已知等差数列{}n a 中,n S 为其前n 项和,若13a =-,510S S =,则当n S 取到最小值时n 的值为( )A .5B .7C .8D .7或83. 【江西宜春市二高2014届高三第五次数学(文科)月考试卷】已知各项均为正数的等比数列{}n a 满足6542a a a =+,则64a a 的值为( )A .4B .2C .1或4D .1 【答案】A 【解析】试题分析:因为6542a a a =+,所以24442a q a q a =+,即220q q --=,数列{}n a 是各项均为正数的等比数列,所以2q =,2644a q a ==.考点:等比数列的性质.4. 【陕西省西安市第一中学2014届高三上学期期中考试】(本题12分)在等差数列{}n a 中,7,151-==a a ,(1)求数列{}n a 的通项公式;(2)若数列{}n a 的前k 项和35-=k S ,求k 的值.又*∈N k ,故7=k .考点:等差数列的通项公式、求和公式5. 【陕西省西安市第一中学2014届高三上学期期中考试】在等比数列{}n a 中,已知31,32,891===m a q a 公比,则 m 等于( ).(A )5 (B )4 (C )3 (D )26. 【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】已知等差数列{a n }的前n 项和为S n ,若a 2=3,a 6=11,则S 7=( )A .91B .291 C .98 D .49二.能力题组1. 【江西省稳派名校学术联盟2014届高三12月调研考试】正项递增等比数列{n a }中,37810595181,4a a a a a a =+=,则该数列的通项公式n a 为( ) A. 732n -⋅B. 732n -⋅C.7123n -⋅ D.723n -⋅【答案】B 【解析】2.【江西师大附中高三年级数学期中考试试卷】 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A.(21)n n -B.2(1)n +C.2n D.2(1)n -3. 【江西师大附中高三年级数学期中考试试卷】已知函数ax x x f -=2)(的图像在点))1(,1(f A 处的切线l 与直线023=++y x 垂直,若数列⎭⎬⎫⎩⎨⎧)(1n f 的前n 项和为n S ,则2013S 的值为 ( ) A.20112010B.20122011 C.20132012D.201420134. 【陕西工大附中第一次适应性训练】已知在等比数列}{n a 中,11=a ,且2a 是1a 和13-a 的等差中项.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列}{n b 满足)(12*N n a n b n n ∈+-=,求}{n b 的前n 项和n S . 【答案】(Ⅰ)12n n a -= ;(Ⅱ)221n n S n =+-.【解析】5. 【陕西省咸阳市范公中学2014届高三上学期摸底考试】(本小题满分12分)数列{a n }中,a 1 = 1,当2n ≥时,其前n 项和满足21()2n n n S a S =-.(Ⅰ)求S n 的表达式; (Ⅱ)设21nn S b n =+,数列{b n }的前n 项和为n T ,求n T . 【答案】(Ⅰ)121n S n =-;(Ⅱ)21n n T n =+.6. 【陕西省咸阳市范公中学2014届高三上学期摸底考试】在等差数列{}n a 中,125a =,179S S =则n S 的最大值为____________.且2d =-,当13n =时n S 取得最大值,最大值为131312132521692S ⨯=⨯-⨯=. 考点:等差数列前n 项和.7. 【江西宜春市二高2014届高三第五次数学(文科)月考试卷】已知数列{}na ,若点*(,)()n n a n ∈N 在直线3(6)y k x -=-上,则数列{}n a 的前11项和11S =【答案】33 【解析】试题分析:若点*(,)()n n a n ∈N 在直线3(6)y k x -=-上,则()63n a k n =-+,()11123115432101234511333S a a a a k =++++=-----+++++++⨯=.考点:数列求和.8.【江西省稳派名校学术联盟2014届高三12月调研考试】(本小题满分12分) 正项数列{}n a 的前n 项和为n S ,且21()2n n a S +=。

陕西江西版(第03期)2014届高三名校数学(文)考试分省分项汇编专题10立体几何(解析版)Word版含解析

陕西江西版(第03期)2014届高三名校数学(文)考试分省分项汇编专题10立体几何(解析版)Word版含解析

陕西江西版(第03期)2014届高三名校数学(文)考试分省分项汇编专题10立体几何(解析版)Word版含解析————————————————————————————————作者:————————————————————————————————日期:一.基础题组1. 【江西省稳派名校学术联盟2014届高三12月调研考试】如图所示是一个几何体的三视图,若该几何体的体积为12,则主视图中三角形的高x 的值为( )A. 12B. 34C. 1 D . 32【结束】2【江西师大附中高三年级数学期中考试试卷】已知直线 l 、m ,平面α、β,且l α⊥,m β⊂,则//αβ是l m ⊥的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 【江西师大附中高三年级数学期中考试试卷】一个几何体的三视图如图所示,则该几何体的体积为( )A.38πB.π3C.310π D.π64. 【陕西工大附中第一次适应性训练】某三棱锥的三视图如图所示,该三棱锥的体积是( )A.83B. 4C. 2D. 43【答案】B【解析】试题分析:三视图所对应的三棱锥如所示,由三视图可知,这个几何体的高是2,底面ABC V 中,4AB =,AB 边上的高是3CD =,所以该三棱锥的体积是11432432V =⨯⨯⨯⨯=. 考点:1.三视图;2.棱锥的体积5. 【江西省七校2014届高三上学期第一次联考】如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )BA .9πB .12πC .11πD . π106. 【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】一个几何体的三视图如图所示(单位:cm ),则该几何体的表面积为( )A .54cm 2B .91cm 2C .75+410cm 2D .75+210cm 2二.能力题组 1. 【陕西西安长安区长安一中2013-2014学年度高三第一学期第三次教学质量检测】已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A .125π. B .3π C .4π D .6π2.【陕西省咸阳市范公中学2014届高三上学期摸底考试】如图,一只蚂蚁由棱长为1的A点出发沿正方体的表面到达点C的最短路程为.正方体ABCD-A1B1C1D1的1D CABD1C1B1A13.【陕西省咸阳市范公中学2014届高三上学期摸底考试】下列命题中正确的个数是().(1)若直线l上有无数个点不在平面α内,则l∥α.(2)若直线l与平面α平行,则l与平面α内的任意一条直线都平行.(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. (4)若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A. 0 B. 1 C. 2 D.34.【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F, G, H分别为BP, BE, PC的中点。

【解析版】高三名校数学(文)试题汇编专题04 三角函数与三角形(陕西江西版)(第03期)

【解析版】高三名校数学(文)试题汇编专题04 三角函数与三角形(陕西江西版)(第03期)

一.基础题组1. 【江西师大附中高三年级数学期中考试试卷】 为了得到函数)62sin(3π-=x y 的图像,只需把函数)6sin(3π-=x y 的图像上所有的点的( ) A.横坐标伸长到原来的2倍,纵坐标不变 B.横坐标缩短到原来的12倍,纵坐标不变 C.纵坐标伸长到原来的2倍,横坐标不变 D.纵坐标缩短到原来的12倍,横坐标不变2. 【江西师大附中高三年级数学期中考试试卷】若1πsin(3π),(,0)22αα+=∈-,则=αtan.3. 【陕西工大附中第一次适应性训练】在△ABC中,BC =,AC =,π3A =,则B = .【答案】4π【解析】试题分析:由正弦定理可得,sin sin BC AC A B =,即3=,解得sin B =23A B C ππ+=-=,所以203B π<<,则4B π=.考点:1.正弦定理;2.解三角形4. 【江西师大附中高三年级数学期中考试试卷】已知c b a ,,分别是ABC ∆的三个内角C B A ,,所对的边,若cos cos 2B bC a c =-+,则B =.5. 【江西省七校2014届高三上学期第一次联考】方程2cos()4x π-=在区间()0,π内的解为6. 【江西省七校2014届高三上学期第一次联考】定义行列式运算12122112a a ab a b b b =-,将函数sin 2()cos 2x f x x的图象向左平移(0t >)个单位,所得图象对应的函数为奇函数,则的最小值为 ( )A .6πB .3πC .56πD .23π7. 【江西省七校2014届高三上学期第一次联考】设A ,B ,C 是△ABC 三个内角,且tanA ,tanB 是方程3x2-5x+1=0的两个实根,那么△ABC 是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上均有可能8. 【江西省七校2014届高三上学期第一次联考】已知函数f(x)=sin(ωx+6π)-1最小正周期为32π,则)(x f 的图象的一条对称轴的方程是( )A .9π=x B .6π=x C .3π=x D .2π=x【答案】A9. 【陕西西安长安区长安一中2013-2014学年度高三第一学期第三次教学质量检测】若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=10. 【陕西西安长安区长安一中2013-2014学年度高三第一学期第三次教学质量检测】将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( )A .43πB .4πC .0D .4π-一个可能的值为4π.故选B .考点:三角函数图像变化.11. 【陕西西安长安区长安一中2013-2014学年度高三第一学期第三次教学质量检测】函数x x x y sin cos +=的图像大致为( )12. 【陕西省咸阳市范公中学2014届高三上学期摸底考试】如果1cos()2A π+=-,那么sin()2A π+=.13. 【江西宜春市二高2014届高三第五次数学(文科)月考试卷】将函数sin(2)y x ϕ=+的图象向左平移4π个单位后得到的函数图象关于点4(,0)3π成中心对称,那么||ϕ的最小值为( )A .6πB .4πC .3πD .2π14. 【江西宜春市二高2014届高三第五次数学(文科)月考试卷】已知αβ、为锐角,3cos 5α=,1tan()3αβ-=-,则tan β的值为( ) A .13 B . C . 913 D .13915. 【陕西省西安市第一中学2014届高三上学期期中考试】(本题12分)已知函数x x x x f 4cos 212sin )1cos 2()(2+⋅-=.(1)求)(x f 的最小正周期及最大值;(2)若⎪⎭⎫⎝⎛∈ππα,2,且22)(=αf ,求α的值.16. 【陕西省西安市第一中学2014届高三上学期期中考试】为了得到函数)32sin(π+=x y 的图像,只需将函数x y 2sin =的图像( )(A )向右平移3π个单位 (B )向右平移6π个单位(C )向左平移3π个单位 (D )向左平移6π个单位二.能力题组1. 【江西省稳派名校学术联盟2014届高三12月调研考试】直线210x y -+=的倾斜角为θ,则221sin cos θθ-的值为_________。

【解析】高三名校数学(理)试题汇编专题02 函数(陕西江西)(第03期)

【解析】高三名校数学(理)试题汇编专题02 函数(陕西江西)(第03期)

一.基础题组1. 【江西省七校2014届高三上学期第一次联考】设5.03=a ,35log =b ,3cos =c ,则( )A .c b a <<B . b a c <<C .a b c <<D .a c b <<2. 【陕西工大附中第一次适应性训练】把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数xy e =的反函数图像重合,则f(x)=( )A. ln 1x -B. ln 1x +C. ln(1)x -D. ln(1)x +3. 【长安一中2013-2014学年度高三第一学期第三次教学质量检测】方程1313313x x-+=-的实数解为__________________4. 【陕西省西安市第一中学2014届高三上学期期中考试】在下列区间中,函数()x f x e 4x 3=+-的零点所在的区间为( )A .(-14,0)B .(0,14)C .(14,12)D .(12,34)5.【江西师大附中高三年级数学期中考试卷】函数y =( ) A . 3(,1)4B . 3(,)4+?C .(1,+?)D .3(,1)4∪(1,+?)6. 【陕西省咸阳市范公中学2014届高三上学期摸底考试数学】关于x 的函数212log (2)y a ax a =-+在[)1,+∞上为减函数,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(1-,0)D .(0,2【答案】A 【解析】 试题分析::根据复合函数单调性满足同增异减的规律,可知外函数单调递减,只需22a ax a -+为增函数即可,它是一次函数,故只需0a <即可,且此时x 在[1,+∞上220a ax a -+>,即()20a a x -+>,20a x -+<恒成立,也就是21a +<,即1a <-,综上1a <-,故选A. 考点:函数的单调性.二.能力题组1. 【江西省七校2014届高三上学期第一次联考】关于函数),0(||1lg )(2R x x x x x f ∈≠+=有下列命题:①函数)(x f y =的图像关于y 轴对称;②在区间(-∞,0)上,函数)(x f y =是减函数;③函数)(x f 的最小值为lg2;④在区间(1,+∞)上,函数)(x f 是增函数。

【解析】高三名校数学(理)试题汇编专题06 数列(陕西江西)(第03期)

【解析】高三名校数学(理)试题汇编专题06 数列(陕西江西)(第03期)

一.基础题组1. 【江西省稳派名校学术联盟2014届高三12月调研考试】已知等比数列{}n a 中,1234532a a a a a =,且118a =,则7a 的值为( )A. 4B. -4C. ±4D. ±2. 【陕西工大附中第一次适应性训练】已知等差数列{}n a 中,n S 为其前n 项和,若13a =-,510S S =,则当n S 取到最小值时n 的值为( )A .5B .7C .8D .7或83. 【江西师大附中高三年级数学期中考试卷】已知等比数列{},n a 前n 项和为,36122,6,n S S S S 则===( ) A .10B .20C .30D .404. 【江西宜春市二高2014届高三第五次数学月考】已知等差数列{an}的前n 项和为Sn ,若OB →=a1OA →+a2 014OC →,且A 、B 、C 三点共线(该直线不过点O),则S2 014等于( ) A .1 007 B .1 008 C .2 013 D .2 0145. 【江西宜春市二高2014届高三第五次数学月考】在正项等比数列{}n a 中,a3=2,a5=8a7,则a10=( ) A.1128 B.1256C.1512D.11 0246.【陕西省咸阳市范公中学2014届高三上学期摸底考试数学】(本小题满分12分)数列{an}中,a1 = 1,当2n ≥时,其前n 项和满足21()2n n n S a S =-. (Ⅰ)求Sn 的表达式;(Ⅱ)设21nn S b n =+,数列{bn}的前n 项和为n T ,求n T .二.能力题组1. 【江西省七校2014届高三上学期第一次联考】在等差数列}{n a 中,首项a1=0,公差d≠0,若7321a a a a a k ++++= ,则k=( )A .22B .23C .24D .25 【答案】A 【解析】 试题分析:()()123722123456210221k a a a a a d d d a =++++=+++++==+-=,故22k =.考点:等差数列的通项公式.2. 【江西师大附中高三年级数学期中考试卷】已知在等差数列{}n a 中2737aa =,10a >,则下列说法正确的是( )A .110a >B .10S 为n S 的最大值C .0d >D .416S S >3. 【陕西省咸阳市范公中学2014届高三上学期摸底考试数学】已知数列{}n a 的通项为*(1)log (2)()n n a n n N +=+∈,我们把使乘积123n a a a a 为整数的n 叫做“优数”,则在(12012],内的所有“优数”的和为( )A .1024B .2012C .2026D .20364.【江西省赣州市四所重点中学(赣州一中、平川中学、瑞金中学、赣州三中)2013-2014学年度第一学期期末联考高三数学试题】已知函数()log k f x x =(k为常数,0k >且1k ≠),且数列(){}nf a 是首项为4,公差为2的等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是( ) A.( -1,2 ) D.( -2,1]
B.( -2,1 )
C. [-1,2]
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
4. 【 江西省七校 2014 届高三上学期第一次联考 】下列说法:
①命题“存在 x R,2 x 0 ” 的否定是“对任意的 x R,2x 0 ”;
图象恰与函数 y ex 的反函数图像重合,则 f ( x)= (

A. ln x 1 B.
ln x 1 C.
ln( x 1) D. ln( x 1)
3. 【江西省七校 2014 届高三上学期第一次联考 】定义在 R 上的偶函数 f ( x) ,当 x 0 时,
f ( x) 2x ,则满足 f (1 2x) f (3) 的 x 取值范围
[
, ]) 的最大值为 M ,最小值为 N , 22
那么 M N
.
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
5. 【 江西省七校 2014 届高三上学期第一次联考
3x 2, x 1, 】已知函数 f ( x)= x2 ax, x 1,若 f
).
( A) 3,1 (B) 3,0 ( C) , 3
3,0 ( D) , 3
3,1
解得, 3 x 0 ,故选 B.
考点:函数的定义域
7. 【 陕西省西安市第一中学 2014 届高三上学期期中考试 】已知函数 f ( x) 为奇函数,且
当 x 0时, f (x) x 2
(A) 2
(B)
1 ,则 f ( 1)
2 sin 2 x 的最小值即可,
a
2 sin 2 x 3 ∵ a 3 故②对;
sin 2 x
2 sin2 x 恒成立时,只要 a 小
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
对于③当 a 1,b 1时,虽然有 a b 0 ,但 f x 不是奇函数,故③错,故选 B.
可使用 20 年的隔热层, 每厘米厚的隔热层建造成本为 6 万元 . 该建筑物每年的能源消耗费用
C ( 单位 : 万元 ) 与隔热层厚度 x ( 单位 : cm ) 满足关系: C x
k 0 x 10 , 3x 5
若不建隔热层,每年能源消耗费用为 8 万元。设 f x 为隔热层建造费用与 20 年的能源消
0
,则满足
2x ,x 0
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
4. 【 江 西 省 七 校 2014 届 高 三 上 学 期 第 一 次 联 考 】 设 函 数
2011x 1 2010
f (x)=
2011x 1
2012sin x,( x
线,即从 A 点出发沿曲线段 B→曲线段 C→曲线段 D,最后到达 E 点。某观察者站在点 M观
察练车场上匀速行驶的小车 P 的运动情况,设观察者从点 A 开始随车子运动变化的视角为
∠ AMP( 0 ),练车时间为 t ,则函数 = f (t ) 的图像大致为(

------ 珍贵文档 ! 值得收藏! ------
2b2 2
A. 13 B .
b2
3c2 2
C .5 D .
c2
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
7. 【 陕西省咸阳市范公中学 2014 届高三上学期摸底考试 】耗, 房屋的屋顶和外墙需要建造隔热层, 某栋建筑物要建造
考点:命题的真假判断.
5. 【 陕西西安长安区长安一中 2013-2014 学年度高三第一学期第三次教学质量检测 】方
程3 3x 1
1 3
3x 1 的实数解为 __________________
6. 【 陕西省西安市第一中学 2014 届高三上学期期中考试 】函数 f (x) 1 2 x
1 x3
的定义域为(
------ 精品文档 ! 值得拥有! ------
2. 【江西师大附中高三年级数学期中考试试卷 】 已知方程 x2 2x 2a 1 0 在 (1,3] 上
有解,则实数 a 的取值范围为

3. 【 陕西工大附中第一次适应性训练 】已知函数 f x
f f x 1 的 x 的取值范围是

log 2 x, x
x ( C) 0
()
( D) 2
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
二.能力题组 1. 【 江西省稳派名校学术联盟
2014 届高三 12 月调研考试 】随着生活水平的提高, 私家车
已成为许多人的代步工具。 某驾照培训机构仿照北京奥运会会徽设计了科目三路考的行驶路
②关于 x 的不等式 a
sin 2 x
2 sin 2 x 恒成立,则 a 的取值范围是 a
3;
③函数 f ( x) a log2 | x | x b为奇函数的充要条件是 a b 0 ;其中正确的个数是
()
A .3 B .2 C .1 D .0
f t f 1 1 2 3,∴ sin2 x
于 sin2 x
耗费用之和。
(Ⅰ)求 k 的值及 f x 的表达式;
(Ⅱ)隔热层修建多厚时,总费用 f x 最小,并求最小值 .
------ 珍贵文档 ! 值得收藏! ------
(f ( 0))= 4a,则实数 a= .
6. 【 陕西西安长安区长安一中 2013-2014 学年度高三第一学期第三次教学质量检测 】已
知定义域为 R 的函数 f (x)
1
( x 1)
x1
,若关于 x 的方程 f 2 ( x) bf (x) c 0 有 3
1
( x 1)
个不同的实根 x1 , x2 , x3 ,则 x12 x2 2 x3 2 等于 ( )
------ 精品文档 ! 值得拥有! ------
一.基础题组
1. 【 江西师大附中高三年级数学期中考试试卷 】下列四个函数中,在区间 (0,1) 上是减函
数的是(

A. y log2 x
1 B. y
x
C. y ( 1 )x 2
1
D. y x3
2. 【 陕 西工大附中第一次适应性训练 】把函数 f ( x) 的图象向右平移一个单位长度,所得
相关文档
最新文档