机械原理 第2章 机构的组成原理和机构类型综合

合集下载

机械原理习题提示(华东理工)

机械原理习题提示(华东理工)

第2章机构的组成原理与结构分析第3章平面机构的运动分析一、填空题1、在平面机构中具有一个约束的运动副是副。

2、使两构件直接接触并能产生一定相对运动的联接称为。

3、平面机构中的低副有转动副和副两种。

4、平面机构中的低副有副和移动副两种。

5、机构中的构件可分为三类:固定构件(机架)、原动件(主动件)、件。

6、机构中的构件可分为三类:固定构件(机架)、从动件。

7、机构中的构件可分为三类:、原动件(主动件)、从动件。

8、在平面机构中若引入一个高副将引入个约束。

9、在平面机构中若引入一个低副将引入个约束。

10、在平面机构中具有两个约束的运动副是副。

11、速度瞬心是两刚体上为零的重合点。

12、当两构件组成回转副时,其相对速度瞬心在。

13、当两构件不直接组成运动副时,其瞬心位置用确定。

二、判断题1、具有局部自由度的机构,在计算机构的自由度时,应当首先除去局部自由度。

()2、具有虚约束的机构,在计算机构的自由度时,应当首先除去虚约束。

()3、虚约束对运动不起作用,也不能增加构件的刚性。

()4、若两个构件之间组成两个导路平行的移动副,在计算自由度时应算作两个移动()5、若两个构件之间组成两个轴线重合的转动副,在计算自由度时应算作两个转动副。

()6、六个构件组成同一回转轴线的转动副,则该处共有三个转动副。

()7、当机构的自由度F>0,且等于原动件数,则该机构具有确定的相对运动。

()8、虚约束对机构的运动有限制作用。

()9、瞬心是两构件上瞬时相对速度为零的重合点。

()10、利用瞬心既可以求机构的速度,又可以求加速度。

()三、选择题1、机构中的构件是由一个或多个零件所组成,这些零件间产生相对运动。

A、可以B、不能C、不一定能2、原动件的自由度应为。

A、0B、1C、23、在机构中原动件数目机构的自由度时,该机构具有确定的运动。

A、大于B、等于C、小于4、机构具有确定运动的条件是。

A、自由度大于零B、自由度等于原动件数C、自由度大于15、由K 个构件汇交而成的复合铰链应具有个转动副。

机械原理与机械设计:机构的组成原理

机械原理与机械设计:机构的组成原理

两个含有外接副的构 件直接用运动副联接。
(e)
(2) Ⅲ级组(n=4,PL=6) 中心构件
Ⅲ级组基本型
Ⅲ级组其它型举例
Ⅲ级组的结构特征: 三个含有外接副的构件与同一构件(用运动副)联接。
Ⅲ级组基本型
Ⅲ级组其它型举例
第四种形式称为IV级组。 结构特点:有两个三副杆,且4个构件构成四边形结构
内端副━━杆组内部相联。 外端副━━与组外构件相联。
J
H
I
G
F
D
C B
AP
Ⅲ级机构
【解】 以GH为原动件进行 结构分析:
H G
J I
Ⅱ级机构
F
D
C B
AP
本章重点小结
机架 一、构件 + 运动副 运动链 机构 原动件
从动件
基本杆组
二、运动链成为机构的条件:F > 0, 原动件数目等于自由度数目 平面运动链自由度计算方法和注意事项
三、机构运动简图的绘制
不能存在只有一个构件的运动副 或只有一个运动副的构件。
每个杆组拆分后自由度不变
每个构件和运动副都只能属于一 个杆组
机构的级别取决于机构中的基本杆组的最高级别
另一种说法:机构的级别与机构中最高级别基本杆组 的级别一致
3.平面机构的结构分析
结构分析的目的 1)了解机构的组成 2) 确定机构的级别 3)为机构受力分析提供简化方法
机构按所含最高杆组级别命名,如Ⅱ级机构,Ⅲ 级机构等。
杆组:自由度为零的不可再分的运动链。 机构可视为由原动件和若干个杆组构成。
组成原理
任何机构都可以看作是若干个自由度为零的基本杆组依次 联接到原动机和机架上而构成的,机构的自由度等于原动件的

《机械原理》笔记

《机械原理》笔记

《机械原理》*号内容第一章概论第一节本课程的研究内容什么是机器、机构?机器的三特征:1)由一系列的运动单元体所组成。

2)各运动单元体之间都具有确定的相对运动。

3)能转换机械能或完成有用的机械功以代替或减轻人们的劳动。

具有以上1、2两个特征的实体称为机构。

构件——由一个或多个零件连接而成的运动单元体。

零件——机器中的制造单元体。

第二节机构的分析与综合及其方法机构分析:对已知机构的结构和各种特性进行分析。

机构综合:根据工艺要求来确定机构的结构形式、尺寸参数及某些动力学参数。

机构综合的内容: 1.机构的结构综合2.机构的尺度综合3.机构的动力学综合。

机构的结构综合:主要研究机构的组成规律。

机构的尺度综合(或运动学综合):研究已知机构如何按给定的运动要求确定其尺寸参数.概括为四类:(1)刚体导引:当机构的原动件做简单运动时,要求刚体连续地变换其位置。

(2)函数变换:使机构某从动件的运动参数为原动件运动参数的给定函数。

(3)轨迹复演:使连杆上某点的轨迹能近似地与给定曲线复合。

(4)瞬时运动量约束:按构件在某些特定位置时的运动量来设计机构的结构参数。

准点——符合预定条件的几个位置。

只要求几个位置处符合给定条件的机构综合方法称为准点法。

减小结构误差的途径是:合理确定准点的分布。

可按契比谢夫零值公式配置准点。

第三节学习本课的方法1.注意基本理论与基本方法之间的联系2. 用工程观点学习理论与基本方法3.注意加强感性认识和实践性环节第二章机构的结构分析第一节概述构成机构的基本要素——构件运动副运动链运动副:两构件间直接接触且能产生某些相对运动的联接称为运动副。

约束---对构件间运动的限制。

运动副元素—运动副参加接触的部分。

空间运动副和约束的关系。

平面机构中只有Ⅳ级副和Ⅴ级副。

(为什么?)低副---副元素为面接触(如移动副、转动副);高副----副元素为点(线)接触。

运动链---构件由运动副连接而成的系统。

机构—选定机架,给相应的原动件,其余构件作确定运动的运动链。

机械原理第二章2-1

机械原理第二章2-1

2 1
3 1 4
2
4
3
2. 机构
机构:若将运动链的一个构件固定为机架
时,运动链便成为机构。
构件的分类
机构中的构件可分为三大类: (1)机架 机构中固定不动的构件。 一个机构只有一个机架。 (2)原动件(主动件) 机构中按给定的已知运动规律独立运动的构件。 (3)从动件 机构中除原动件外的其余活动构件。 当确定原动件后,其余从动件随之作 确定的运动。
•根据运动副引入的约束数 •根据构成运动副的两构件之间的相对运动 •根据构成运动副的两构件之间的接触情况 •根据构成运动副的两构件的接触部分几何形状
运动副分类
根据运动副引入的约束数,运动副分为五级 I级副: 引入1个约束的运动副 Ⅱ级副:引入2个约束的运动副 Ⅲ级副:引入3个约束的运动副 Ⅳ级副:引入4个约束的运动副 Ⅴ级副:引入5个约束的运动副
圆柱副(cylindric pair)
球销副(sphere-pin pair)
环运动副(looping pair)
二、运动链(Kinematic Chain)和机构
1.运动链(Kinematic Chain)
2.机构
1.运动链(Kinematic Chain) 运动链
用运动副将两个或两个以上的构件连接 而成的系统称为运动链。
1 2 3 4
3
2 1
如果机构中有一个或多个高 副,则称此机构为高副机构。
机构
平面机构中的所有运动副一定是平面运动副, 但是只包含平面运动副的机构也可能是空间机构。
例如:
万向联轴节是空 间机构,该机构 只包含转动副 (平面运动副)
三、平面机构运动简图
1.机构运动简图的定义和目的 2.机构运动简图的作用 3.运动副和构件的表示方法 4.绘制机构运动简图的步骤

机械原理课后答案第2章

机械原理课后答案第2章
F=3n- (2pl+ph-p’)- F’=3ⅹ7- (2ⅹ8+2-0)- 2=1
(2)如将D处结构改为如图b所示形式,即仅由两个移动副组成。注意,此时在该处将带来一个虚约束。因为构件3、6和构件5、6均组成移动副,均要限制构件6在图纸平面内转动,这两者是重复的,故其中有一个为虚约束。经分析知这时机构的活动构件数为6,低副数为7,高副数和局部自由度数均为2,虚约束数为1,故机构的自由度为
(3)加速度分析:
以C为重合点,有
aC2== aB+ anC2B+ atC2B== aC3+ akC2C3+ arC2C3
大小ω12lABω22lBC? 0 2ω3vC2C3?
方向B—A C—B ┴BC ┴BC //BC
其中anC2B=ω22lBC=0.49 m/s2,akC2C3=2ω3vC2C3=0.7m/s2,以μa作加速度多在图示的摇块机构中,已知lAB=30mm,lAC=100mm,lBD=50 mm,lDE=40 mm,曲柄以等角速度ωl=40rad/S回转,试用图解法求机构在φ1=45º位置时,点D及E的速度和加速度,以及构件2的角速度和角加速度。
解(1)以μl作机构运动简图(a)所示。
F=3n- (2pl+ph- p’)- F’=3×6- (2ⅹ7+2-1)- 2=1
上述两种结构的机构虽然自由度均为一,但在性能上却各有千秋:前者的结构较复杂,但没有虚约束,在运动中不易产生卡涩现象;后者则相反,由于有一个虚约束,假如不能保证在运动过程中构件3、5始终垂直,在运动中就会出现卡涩甚至卡死现象,故其对制造精度要求较高。
VC=VB3+VCB3(2分)
(1分)
anB3+atB3=aB2+akB3B2+arB3B2(3分)

机械原理——第2章 机构的的组成及结构分析

机械原理——第2章  机构的的组成及结构分析

2
1 1 2
2
1
2 1 2
1
1 1
2
1
2
1
2
1
2
1
2
2 1
1 2
3. 运动链
运动链-两个以上的构件通过运动副的联接 而构成的系统。 工业 机器人
闭式链、
开式链
4. 机构能够用来传递运动和动力的可动装置。 机架-作为参考系的构件,如机床床身、车辆 底盘、飞机机身。
原(主)动件-按给定运动规律运动的构件。 从动件-其余可动构件。
⑦已知:AB=CD=EF,计算图示平行四边形 机构的自由度。 B C 2 E 解:n= 4, PL= 6, PH=0 1 F=3n - 2PL - PH 4 3 =3×4 -2×6 F D A =0 3.虚约束 --对机构的运动实际不起作用的约束。 计算自由度时应去掉虚约束。 ∵ FE=AB =CD ,故增加构件4前后E 点的轨迹都是圆弧,。 增加的约束不起作用,应去掉构件4。
1.杆组的各个外端副不可以同时加在同
一个构件上,否则将成为刚体。如:
2.机构的级别与原动件的选择有关。
§2-8 平面机构中的高副低代
高副低代:为了使平面低副机构的结构分析和运动
分析的方法能适用于含有高副的平面机构,根据一 定条件将机构中的高副虚拟地以低副代替的方法。 高副低代条件:
1、代替前后机构的自由度不变
一般构件的表示方法
杆、轴构件
固定构件
同一构件
一般构件的表示方法
两副构件
三副构件
注意事项:
画构件时应撇开构件的实际外形,而只考虑运动副的性质。
常用机构运动简图符号
在 机 架 上 的 电 机 带 传 动 齿 轮 齿 条 传 动 圆 锥 齿 轮 传 动

机械原理:第二章机构的结构分析

机械原理:第二章机构的结构分析

斜齿轮机构
两个齿轮的齿廓为斜线,实现直线的 运动传递,同时具有较好的承载能力 和传动平稳性。
02
CHAPTER
机构的运动分析
机构运动简图
总结词
机构运动简图是表示机构运动关系的图形,通过图形化方式展示机构的组成和运 动传递路径。
详细描述
机构运动简图是一种抽象的图形表示,它忽略了机构的实际尺寸和形状,只关注 机构中各构件之间的相对运动关系。通过绘制机构运动简图,可以清晰地了解机 构的组成、运动传递路径以及各构件之间的相对位置和运动方向。
常见的受力分析方法
详细描述:常见的受力分析方法包括解析法、图解法和 有限元法等,每种方法都有其适用范围和优缺点,应根 据具体情况选择合适的方法。
机构的平衡分析
总结词
理解机构平衡的概念是进行平衡 分析的前提。
详细描述
机构平衡是指机构在静止或匀速 运动状态下,各作用力相互抵消 ,机构不会发生运动状态的改变 。
轮系
定轴轮系
各齿轮的转动轴线固定,齿轮的 运动由一个主动轮通过各齿轮的
啮合传递到另一个从动轮。
行星轮系
其中一个齿轮的转动轴线绕着另 一固定轴线转动,行星轮既可绕 自身轴线自转,又可绕固定轴线
公转。
混合轮系
由定轴轮系和行星轮系组合而成, 既有定轴轮系的自转运动,又有
行星轮系的公转和自转运动。
凸轮机构
机构运动分析的方法
总结词
机构运动分析的方法主要包括解析法和图解法两种。
详细描述
解析法是通过建立数学模型,运用数学工具进行求解的方法。这种方法精度高,适用于对机构进行精确的运动学 和动力学分析。图解法是通过作图和测量来分析机构运动的方法,这种方法直观易懂,适用于初步了解机构的运 动关系。

机械原理(填空题)--第七版

机械原理(填空题)--第七版

机械原理复习题第2章 机构的结构分析1.组成机构的要素是构件和运动副;构件是机构中的运动单元体。

2.具有若干个构件的入为组合体、各构件间具有确定的相对运动、完成有用功或实现能量转换等三个特征的构件组合体称为机器。

3.机器是由原动机、传动部分、工作机所组成的。

4.机器和机构的主要区别在于是否完成有用机械功或实现能量转换。

5.从机构结构观点来看,任何机构是由机架,杆组,原动件三部分组成。

6.运动副元素是指构成运动副的点、面、线。

7.构件的自由度是指构件具有独立运动的数目; 机构的自由度是指机构具有确定运动时必须给定的独立运动数目。

8.两构件之间以线接触所组成的平面运动副称为高副,它产生一个约束,而保留了两个自由度。

9.机构中的运动副是指两构件直接接触而又能产生相对运动的联接。

10.机构具有确定的相对运动条件是原动件数等于机构的自由度。

11.在平面机构中若引入一个高副将引入1个约束,而引入一个低副将引入2个约束,构件数、约束数与机构自由度的关系是F=3n-2pl-ph 。

12.平面运动副的最大约束数为2,最小约束数为1。

13.当两构件构成运动副后,仍需保证能产生一定的相对运动,故在平面机构中,每个运动副引入的约束至多为2,至少为1。

14.计算机机构自由度的目的是判断该机构运动的可能性(能否运动〕及在什么条件下才具有确定的运动,即确定应具有的原动件数。

15.在平面机构中,具有两个约束的运动副是低副,具有一个约束的运动副是高副。

16.计算平面机构自由度的公式为F =32n p p --L H ,应用此公式时应注意判断:(A) 复合铰链,(B) 局部自由度,(C)虚约束。

17.机构中的复合铰链是指由三个或三个以上构件组成同一回转轴线的转动副;局部自由度是指不影响输入与输出件运动关系的自由度;虚约束是指在特定的几何条件下,机构中不能起独立限制运动作用的约束。

18.划分机构杆组时应先按低的杆组级别考虑,机构级别按杆组中的最高级别确定。

机械原理02(本)- 机构的结构分析

机械原理02(本)- 机构的结构分析

2
平 面 运 动 副
1
1
1 2
1
平 面 高 副 2 螺 旋 空 副 间 运 动 球 副 面 副 球 销 副 1 2 1
2 1 1 2 1 2 1 1 2
2
1 2
1 2
1 2
1 2
2 1
1 2
3. 运动链 运动链-----两个以上的构件通 两个以上的构件通 运动链 过运动副的联接而构成的系统。 过运动副的联接而构成的系统。
4 1 2 3
F=3n - 2Pl - Ph =3×3 - 2×4 × × =1
②计算五杆铰链机构的自由度。 计算五杆铰链机构的自由度。 解:活动构件数n= 4 活动构件数 低副数P 低副数 l= 5 高副数P 高副数 h= 0 F=3n - 2Pl - Ph =3×4 - 2×5 × × =2
1 5 2 3
§2-3 机构运动简图
1.什麽是机构运动简图 什麽是机构运动简图 机构运动简图: 机构运动简图:表示机构运动特征的一种工 程用图 和运动有关的:运动副的类型、数目、 和运动有关的:运动副的类型、数目、相对 位置、 位置、构件数目 和运动无关的:构件外形、截面尺寸、 和运动无关的:构件外形、截面尺寸、组成 构件的零件数目、 构件的零件数目、运动副的具体构造 机构示意图-------不按比例绘制的简图 不按比例绘制的简图 机构示意图
§2-6 计算平面机构自由度时应注意的事项 一 、要正确计算运动副数目 实例分析1:计算图示圆盘锯机构 实现无导轨 实例分析 :计算图示圆盘锯机构 (实现无导轨 直线运动)自由度 直线运动 自由度
D 4 1 2 F 8 3 A B 5 6 7 C E
解:F=3n-2 pl – ph =3×7 - 2×6-0=9

机械原理第二章

机械原理第二章

1——输入
2 5 1
4——输出
计算自由度:
F=3ㄨ4–2ㄨ4–1ㄨ2=2
4
6)二构件组成若干个平面高副,但接触点间的距离 为常数或各接触点处的公法线彼此重合。
1
2
去掉一个高副
3
计算自由度:
F=3ㄨ2 –2ㄨ2 –1ㄨ2=0
F=3ㄨ2 –2ㄨ2 –1ㄨ1=1
等宽凸轮机构
等径凸轮机构
虚约束的本质是什么?
机构的具有确定运动的条件:
1)若机构自由度F≤0,则机构不能动; 2)若F>0,而原动件数<F,则构件间的运动是不 确定的; 3)若F>0,而原动件数>F,则构件间不能运动或 薄弱处产生破坏; 4)若F>0且与原动件数相等,则机构各构件间的 相对运动是确定的。
因此,机构具有确定运动的条件是:F>0且机构 的原动件数等于机构的自由度数。
§2.3.1 运动副和构件的表示方法
1、运动副符号
表示转动副的小圆,圆心必须与相对回转轴重合;表示移 动副的滑块其导路必须与相对移动的方向一致;表示平面 高副的曲线,其曲率中心的位置必须与实际轮廓相符。
2、构件与运动副相联接的表达方法
3、常用机构的简图符号
符号五:
§2.3.2 平面机构运动简图的绘制
2.绘制机构运动简图的方法和步骤
⑴弄清机构的组成情况
按运动传递的顺序,找出原动件、从动件、机架, 确定构件的数目,运动副的数目和类型。
⑵测定与机构运动有关的尺寸
各转动副之间的中心距,轴线固定的转动副到移动 副导路中心线的距离。
⑶正确选择投影平面
选择与机构运动平面相平行的面
⑷选定比例尺按规定符号画出运动简图 (从原动件开始画))

第2章机构的结构分析(机构的组成原理和机构类型综合-讲3)

第2章机构的结构分析(机构的组成原理和机构类型综合-讲3)

n2 4 p4
n2 n3 6 2n2 3n3 2 p
n2 4 n3 2 p7
三副杆
三副杆
双副杆
二副杆 四杆运动链 六杆运动链
二副杆
2.平面机构结构的型综合
Watt型
Stephensen型
四杆运动链
六杆运动链
另外闭式运动链有运动链环数与杆数、转动副的关系:
LpN1
其中有两个三副杆。
机构命名方式:
按所含最高杆组级别命名,如Ⅱ级机构,Ⅲ级机构等。 称只有机架和原动件构成的驱动杆组为I 级机构。 Ⅰ级机构:只由机架和原动件组成的机构。 II级机构:机构中基本杆组的最高级别为II级。 III级机构:机构中基本杆组的最高级别为III级。
需要强调指出: ①杆组的所有外端副不可以同时加在同一个构 件上,否则将成为刚体。例如下图中两种情况杆组都不能运动。
1 F O A 2 3 B C 5 6 E
F
外副
1 O
外副
A 3
6
2 F=3×1-2×1=1
外副
D 4
C
B
D
内副 4
E
外副
内副 5
F=3×3-2×4=1
F=3×2-2×3=0
F=3×2-2×3=0
定义:最简单的F=0的构件组,称为基本杆组。 机构的组成原理:任何机构都可以看作是由若干个基本 杆组依次连接于原动件和机架上而构成的。
F=3n - 2pl - ph n=2
pl = 2 ph =1
F=3*2- 2*2 – 1=1
齿轮传动自由度计算:
Q
A P3 B 2 1
F=3n - 2pl - ph n=3
pl = 3 ph =2

机械原理概念复习

机械原理概念复习

机械原理基本概念总结第一章绪论1、机械原理又称为机械机器理论与机构学。

2、内容:机械原理是研究机构和机器的运动及动力特性,以及机械运动方案设计的一门基础技术学科。

3、机械原理:研究对象是机械,机械是机构和机器的总称。

4、机构的定义:把一个或几个构件的运动变换成其他构件所需的具有确定运动的构件系统。

常用的机构包括连杆机构、凸轮机构、齿轮机构、齿轮系、间歇运动机构。

5、机器的定义:由人为物体组成的具有确定机械运动的装置,完成一定的工作过程,以代替人类的劳动。

实例:缝纫机、洗衣机、各类机床、运输车辆。

6、机器与机构之间的关系——机器是由机构组成的。

例如图示单缸内燃机中就包含了三种常用机构:连杆机构、齿轮机构、凸轮机构。

7、机构的作用:一是用来将一种运动形式(如旋转)变换成另外一种运动形式,二是用来传递动力。

机器的作用:代替或减轻人类劳动,或将一种能量形式转换成另一种形式。

8、机器的类别:动力机器、工作机器、信息机器。

9、机器的组成:控制系统、信息测量和处理系统、动力部分、传动部分及执行机构系统。

10、机械设计的一般进程:机械产品的研制过程包括设计、制造、试验,定型等环节。

机械设计阶段的四个进程:产品规划-方案设计-详细设计-改进设计。

机械运动方案设计的主要内容:①机械运动简图的类型综合;②机械运动简图的尺度综合;3)机电一体化技术在机械运动方案设计中的应用。

11、机械原理的地位和作用:机械原理是研究机构和机械运动简图设计的一门重要技术基础课程,其任务主要是使学生掌握机构学和机械动力学的基本理论、基本知识和基本技能。

培养学生初步拟定机械系统运动方案、分析和设计基本机构的能力。

机械原理主要包括内容:①机构的组成原理和类型综合;②典型机构的设计;③机械系统的设计;④机械动力学。

第二章机构的组成原理和机构类型综合1、构件(link) :独立的运动单元;零件(part) :独立的制造单元。

2、运动副——两个构件直接接触组成的仍能产生某些相对运动的连接。

《机械原理》第八版课后习题答案

《机械原理》第八版课后习题答案

第2章 机构的结构分析(P29)2-12:图a 所示为一小型压力机。

图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。

在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。

同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。

最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。

试绘制其机构运动简图,并计算自由度。

解:分析机构的组成:此机构由偏心轮1’(与齿轮1固结)、连杆2、滑杆3、摆杆4、齿轮5、滚子6、滑块7、冲头8和机架9组成。

偏心轮1’与机架9、连杆2与滑杆3、滑杆3与摆杆4、摆杆4与滚子6、齿轮5与机架9、滑块7与冲头8均组成转动副,滑杆3与机架9、摆杆4与滑块7、冲头8与机架9均组成移动副,齿轮1与齿轮5、凸轮(槽)5与滚子6组成高副。

故解法一:7=n 9=l p 2=h p12927323=-⨯-⨯=--=h l p p n F解法二:8=n 10=l p 2=h p 局部自由度1='F11210283)2(3=--⨯-⨯='-'-+-=F p p p n F h l(P30) 2-17:试计算如图所示各机构的自由度。

图a 、d 为齿轮-连杆组合机构;图b 为凸轮-连杆组合机构(图中在D 处为铰接在一起的两个滑块);图c 为一精压机机构。

并问在图d 所示机构中,齿轮3与5和齿条7与齿轮5的啮合高副所提供的约束数目是否相同?为什么?解: a) 4=n 5=l p 1=h p11524323=-⨯-⨯=--=h l p p n Fb) 5=n 6=l p 2=h p12625323=-⨯-⨯=--=h l p p n F12625323=-⨯-⨯=--=h l p p n Fc) 5=n 7=l p 0=h p10725323=-⨯-⨯=--=h l p p n Fd) 6=n 7=l p 3=h p13726323=-⨯-⨯=--=h l p p n F(C 可看做是转块和导块,有1个移动副和1个转动副)齿轮3与齿轮5的啮合为高副(因两齿轮中心距己被约束,故应为单侧接触)将提供1个约束。

机械原理-第2章机构的结构分析(机构的组成原理和机构类型综合1-1

机械原理-第2章机构的结构分析(机构的组成原理和机构类型综合1-1
z
y
x
I级副 II级副 III级副
(3)运动副的分类
1)按引入的约束数分有:I级副、II级副、III级副、IV级 副、V级副。 提供4个约束条件的,称为Ⅳ级副,提供5个约束条 件的,称为Ⅴ级副。
z
y x
IV级副
V级副-1 V级副-2 V级副-3
(3)运动副的分类
2)按运动副接触形式分有
低副:面接触的运动副;
3.机构示意图
不按精确比例绘制的机构简图。 机构运动简图符号已经有国家标准,该标准对运 动副、构件及各种机构的表示符号作了规定,下表为 构件与部分机构的表示方法。
4.表示构件的符号
固 定 构 构 件
件 同 一 构 件
4.表示构件的符号
双 构 副
件 三 副
常用机构运动 简 图 符 号
机构的真实运动仅与机构中的运动副的机构情况
3 2
作者:潘存云教授
1 4
偏心真空泵的运动简图

绘制图示牛头刨床机构的运动简图
1 机架
2.3 齿轮
4 滑块
5 导杆
6 连杆
7 刨头
解: (1)从主动件开始,按运动 传动顺序,分析各构件之间相对 运动性质,并确定联接各构件的 运动副类型。 (2)合理选择视图。本题选 择与各回转轴线垂直的平面作为 视图平面。 (3)合理选择长度比例尺 (m/mm),绘制机构运动简图。
机构的组成:机构=机架+原动件+从动件
1个 1个或几个 若干
5.绘制机构运动简图的步骤
①分析机构中原动件与运动 传递路线,构件的数目,相 邻构件之间的运动副类型与 数目; ②选视图平面(选与运动平面 平行的平面),测量各运动副 之间的尺寸,绘制示意图; ③确定各运动副之间的相对位 置,选取适当比例尺,画出相 应的运动副符号,用构件符号 将各运动副连接起来。

机械原理 第2章-连杆机构

机械原理 第2章-连杆机构

图2-8a
图2-8b
内燃机内的核心构件活塞、连杆、曲轴和缸套就 是曲柄滑块机构。其活塞就是滑块,缸体就相当 于上图的机架,它的制造要求十分精密。
22
2、导杆机构
图2-9(a)就是和图2-8一样的曲柄滑块机构。但如果改AB杆(1杆)为 机架,就变为图(b)所示的导杆机构。在图(b)中,杆4称为导杆,滑 块3相对导杆滑动并一起绕 A点转动,通常把杆2作为原动件。在图(b) 中,由于L1<L 2,两连架杆2 和4 均可相对于机架 1整周回转,称为曲柄转 动导杆机构或转动导杆机构。 但图(b)中如果L1>L2,则图(b)就变成为图2-10了,此时连架杆4 就只能往复摆动,称为曲柄摆动导杆机构或摆动导杆机构。摆动导杆机 构在牛头刨床中应用较多,其简图见右下图。
〖1〗最短杆的对边作为机架,两连架杆就是二个摇杆。 〖2〗这时最短杆与最长杆长度之和不论小于或大于其余两杆长度之和都只 能得到双摇杆机构,且有,如果最短杆和最长杆长度之和大于其余两杆长 度之和,无论哪个构件作机架都只能得到双摇杆机构。
18
(3)双摇杆机构的应用
双摇杆机构有广泛的应用。如下面二图中都是由摇杆机构组成,它们 都是把最短边BC的对边AD作机架。请注意它们的运动轨迹,对左图鹤式 起动机,它能使E点沿水平线EE’移动,这对吊放物体很有利;而对于右 图飞机起落架,放下时ABC成一线,保证了稳定,收起时轮胎成水平,节 约了空间。这些设计十分巧妙,这是我们要学习的。
图2-2e
图2-2e1
图2-2e2 机车车轮联动机构
16
(3)双曲柄机构的应用 双曲柄机构也有一定的应用,如下面惯性筛就是一种, 但用的最多是平行四边形机构,所以又叫平行双曲柄机构。 下面的摄影平台升降机构,就是利用了平行四边形机构运 动中,构件始终保持水平的特点,使人站在上面不觉得倾 斜。

机械原理简答题总结

机械原理简答题总结

第一章绪论基本概念1.机械:机器和机构的总称。

2.机构:用来传递与变化运动和力的可动装置。

3.机器:根据某种使用要求设计的执行机械运动的装置,可用来变换或传递能量、物料和信息。

第二章机构的结构分析1.何谓构件?构件与零件有何区别?试举例说明其区别。

构件是由一个或多个小零件刚性联接的独立运动单元体,它是机构组成的基本要素;而零件则是独立的制造单元,所有机器均由零件构成。

2.何谓运动副和运动副元素?运动副是如何进行分类的?由直接接触形成的可动联接为运动副;其接触表面称作运动副元素;运动副根据接触特性分为高副与低副;按照相对运动形式,可分为移动副、转动副、齿轮副、凸轮副和螺旋副;此外,依据引入的约束数目对它们进行分类。

I级副-V级副3.何谓高副?何谓低副?在平面机构中高副和低副一般各带入几个约束?齿轮副的约束数目应如何确定?点线接触为高副,面面接触为低副;各带入1个和2个约束;若两齿轮(条)固定则引入一个约束,不固定引入2个约束。

4.何谓运动链?运动链与机构有何联系和区别?通过运动副的联接而构成的可相对运动的系统;机构是具有固定构件的运动链。

5.何谓机构的自由度?在计算平面机构的自由度时,应注意哪些问题?机构具有确定运动是所必须给定的独立运动参数的数目,亦及必须给定的独立的广义坐标的数目,称为机构的自由度。

注意复合铰链(包含机架),去除局部自由度(某些构件产生的局部运动并不影响其他构件的运动),去除虚约束(在机构中,有些运动副带入的约束对机构的运动只起重复约束作用)。

6.既然虚约束对于机构的运动实际上不起约束作用,那么在实际机构中为什么又常常存在虚约束?虚约束是指对机构运动起不到实际约束作用的约束。

虚约束可以改善构件的受力情况,提高机构的刚度和强度,有于保证机械顺利通过某些特殊位置。

(尽量减少虚约束)7.机构具有确定运动的条件是什么?机构具有确定运动的条件是其原动件数目等于机构自由度的数目。

当不满足此条件时,若原动件少于自由度,机构运动将不确定;反之,若原动件多于自由度,则可能导致机构最薄弱环节的破坏。

《机械原理》第02章机构的结构分析与综合

《机械原理》第02章机构的结构分析与综合

(1)若F>0,且与原动件数 相等,则机构各构件间的 相对运动是确定的;
(2)若F>0,且多于原动件 数,则构件间的运动是不 确定的;
F=0、
F= 0
静定结构
F=- 1 超静定结构
(3)若机构自由度F≤0,则机构不能动;
总结
• (1)若机构自由度F≤0,则机构不能动;
• (2)若F>0,且与原动件数相等,则机构各构件间的相 对运动是确定的;这就是机构具有确定运动的条件。 • (3)若F>0,且多于原动件数,则构件间的运动是不确 定的; • (4)若F>0,且少于原动件数,则构件间不能运动或产 生破坏。
• (二)平面机构的级别 • (三)结构分析
(一)基本杆组及其级别
• 1. 定义
不能再分解的零自由度的构件组。(阿苏尔杆组)
• 2. 满足条件: 3n-2PL=0 PL=3n /2
n=2, PL=3 ; n=4, PL=6 • Ⅱ、Ⅲ、Ⅳ级杆组的基本类型*
Ⅱ级组的五种类型
Ⅲ级组的几种组合形式
Ⅳ级组
例:摆动从动件盘形凸轮机构
(2)若两接触轮廓之一为一点,其替代方法如图所示。
例:尖底直动从动件盘形凸轮机构
例:确定如图所示平面高副机构的级别。
例7
§2-5 平面机构的结构综合
平面机构的结构综合(设计):是结构分析的逆过程 是根据运动输入和输出特性进行机构运动简图的设计过程。 研究一定数量的构件和运动副可以组成多少种机构类型的综合过 程。机构设计:设计新机构运动简图。 基本杆组叠加法;平面机构如果没有高副,可按公式(2-4)综合出 各种类型的基本杆组,再利用串联、并联等方式将基本杆组与I
三、计算平面机构自由度时应注意的事项

机构的组成原理和机构类型综合

机构的组成原理和机构类型综合

第二章 机构的组成原理和机构类型综合(3学时)一、教学目的和教学要求1、目的:使学生了解机构的组成以及机构具有确定运动条件,了解能表征机构运动情况的简单图形(即机构运动简图的画法),为对已有机构进行分析或创造新的机构提供条件。

本课程的研究对象主要是各种机构,为了对机构进行研究,显然首先需要知道机构是如何构成的?在什么条件下机构具有确定的运动?以及在设计新机构时或对已有的机构进行分析时如何把研究的机构用简单的图形表示出来? 2、教学要求1) 了解机构的组成、搞清楚运动副、运动链、约束和自由度等基本概念。

2) 能绘制常用机构的机构运动简图。

3) 能计算平面机构的自由度。

4) 对高副低代和平面机构的组成原理有所了解。

二、本章重点教学内容及教学难点1、重点:运动副、运动链等的概念,机构运动简图的绘制,机构具有确定运动的条件及机构自由度的计算。

2、难点:机构自由度的计算中有关虚约束的识别和处理问题(但不是教学重点),要求对虚约束有一个明确的概念,并对机构中存在虚约束的一些比较常见的情况有所了解;平面机构的组成原理、结构分类,以及高副低代。

§2-1 机构的组成及运动简图一、构件与运动副1.名词解释:构件: 组成机构的每一个独立运动单元体。

运动副:两构件直接接触而又能产生一定形式的相对运动的连接。

运动副元素:参与接触而构成运动副的点、线、面。

运动副分类:按组成运动副的两构件间的相对运动是平面运动还是空间运动,分为平面运动副和空间运动副两类。

自由度:构件所具有的独立运动的数目(或确定构件位置的独立参变量的数目)。

作平面运动的自由构件具有三个自由度。

约束:对独立运动所加的限制。

两构件间约束的多少和约束的特点完全取决于运动副的形式。

2.各种平面运动副的约束特点:1)图2-1a 所示运动副,构件2沿x 轴和y 轴的两个相对移动受到约束,构件2只能绕垂直于xoy 平面的轴相对转动。

这种具有一个独立相对转动的运动副称为转动副。

机械原理

机械原理
i=1 j=1
5
p
末杆自由度: 末杆自由度:λ
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (3)具有公共约束的单闭环机构自由度计算
F = ∑i ⋅ pi − 6 −m) = ∑fj − λ (
5
p
λ = λr + λtt + λtr
i=1
j=1
基本转动(移动)自由度: 基本转动(移动)自由度: 各轴线都平行于某一个方向:其值=1 1)各轴线都平行于某一个方向:其值=1 分别平行于两个不同方向: 其值=2 2)分别平行于两个不同方向: 其值=2 有不与前两个方向共面的第三个方向, 3)有不与前两个方向共面的第三个方向, 其值=3 其值=3
2.2.1 运动副
构成运动副的点、 构成运动副的点、线、面称为运动副的元素。 面称为运动副的元素。 (1)低副:两构件通过面接触构成的运动副. 低副:两构件通过面接触构成的运动副. (2)高副:两构件通过点或线接触构成的运动副. 高副:两构件通过点或线接触构成的运动副. 点或线接触构成的运动副
2.2.1 运动副
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
公共约束: 公共约束: 是指在机构中由于运动副的特性及布 置的特殊性, 置的特殊性,使得机构中所有的活动构件共同失 去了某些自由度, 去了某些自由度,即对ห้องสมุดไป่ตู้构中所有活动构件同时 施加的约束,公共约束记为m 施加的约束,公共约束记为m 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n =5 PL = 7 PH = 0 F = 3n-2PL-PH =1
n =5 PL = 7 PH = 0 F = 3n-2PL-PH =1
n =5 PL = 7 PH = 0 F = 3n-2PL-PH =1
2P2R
n =7 PL = 9 PH = 1 F = 3n-2PL-PH =2
n =7 PL = 10 PH = 0 F = 3n-2PL-PH =1
运动链 机构
作用 类型
运动副 - 两构件直接接触而又能产生一定型式的相对运动的连接,可 动联接。 运动副元素 - 两构件构成运动副的接触表面:低副、高副
运动副
自由度 自由度数 约束条件
平面低副-转动副
R
平面运动副
I级运动副 (I级副,提供一个约束条件) 、II、III、IV、V级副
机 构 的 组 成 及 运 动 简 图
Back
运动链的基本型式
讨论:n个构件和PL个低副 F=3(n-1)-2 PL =1
n=2,PL =1,L = 0;
n=4,PL =4,L = 1; n=6,PL =7 ,L = 2; n=8,PL =10 ,L = 3;…
Watt型
机 构 类 型 综 合
PL =3n/2-2
•单闭环运动链:n = P
3
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
轨迹重合
3
B
2 5 4
F CD D
C
1
A
3
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
机构存在对运动起重 复约束作用的对称部 分
3
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
构件 运动副
机 构 的 组 成 及 运 动 简 图
运动链 机构
构 件 _ 组成机构的每一个独立运动单元体称为
构件。 •构件:单一零件,或由多个零件刚性联接而 成。 •构件是运动单元,而零件是制造单元。
构件
构件的表示方法
机 构 的 组 成 及 运 动 简 图
运动副
构件 运动副
机 构 的 组 成 及 运 动 简 图
第二章 机构的组成原理 和机构类型综合
郭为忠
博士 教授
上海交通大学 机械与动力工程学院 重大装备设计与控制工程研究所
目录
第 二 章 机 构 组 成 与 类 型 综 合
机构的组成及运动简图 机构的自由度计算及机构运动确定条件 机构的高副低代、结构分析和组成原理 机构类型综合 习题

构件
Stephenson型
附加的一个闭链:P - n = 1
•多闭环运动链:环数 L = P - n + 1
Back
单闭环机构的类型综合 •单闭环:n = P = PL + PH ≥ 3 F = 3(n-1)-2PL - PH
(n:构件数,包括固定、活动)
机 构 类 型 综 合
若F = 1 n=3,P =3
• 低副:2个约束条件
• 高副:1个约束条件 机构的自由度为
F=3n一2PL—PH
机构的自由度与组成机构的构件的数目、运动副的类型及数目有关。
平面机构的自由度
自 由 度 计 算 及 机 构 运 动 确 定 条 件
F = 3n-2PL-PH
高副数目 低副数目 活动构件数目
自由度数目
平面机构的自由度
1 2 3 3 2 1
3 2
4 1
3 2 1
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
B
B
1
O
2
A
1
O
2
A
3
F=3n-2PL-Ph=33-23-1=2 F=3n-2PL-Ph=32 -22 -1=1
Back
平面机构的组成原理
高 副 低 代 、 结 构 分 析 和 组 成 原 理
• 平面机构组成原理:任何机构都可以看作是由若干个基本杆 组依次联接到原动件和机架上所组成
Back
运动链的基本型式 单闭环机构的类型综合

机 构 类 型 综 合
型综合:研究一定数量的构件和运动副 可以组成多少种机构型式的综合过程
y θ x
运动副
平面低副-移动副
P
机 构 的 组 成 及 运 动 简 图
平面运动副
运动副
空间低副
机 构 的 组 成 及 运 动 简 图
H
螺旋副 圆柱副
C
球面副
S
球销副
S’
运动副
高副
机 构 的 组 成 及 运 动 简 图
运动副
高副
机 构 的 组 成 及 运 动 简 图
运动链
运动链:两个以上的构件通过运动 副的联接而构成的相对可动的系统。
• F>0时, •原动件数大于机构的自由度,则在机构的薄弱处遭到破坏。
机构具有确定运动的条件是: 机构的原动件的数目=机构的自由度的数目
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
1 (a)
2 3
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
2P1R
n =2 PL = 2 PH = 1 F = 3n-2PL-PH =1
n =3 PL = 3 PH = 2 F = 3n-2PL-PH =1
n =5 PL = 7 PH = 0 F = 3n-2PL-PH =1
n =8 PL = 11 PH = 1 F = 3n-2PL-PH =1
n =6 PL = 8 PH = 1 F = 3n-2PL-PH =1
• I级机构:只由机架和原动件而构成的机构
平面机构的级别取决于所包含的基本杆组的最高级别
机构结构分析步骤: 1)计算机构自由度,确定原动件(将产生虚约束和局部自由度 的构件和运动副去掉) 2)高副:高副低代
3)从远离原动件的地方开始拆杆组:先试拆II级组,当不可能 时再试拆III级组(注意:每拆出一个扦组后,剩下的部分仍组成 机构,且自由度与原机构相同,直至全部杆组拆出只剩下I级机构)
移动副导路 平行
3
F
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
3
转动副轴 线重合
A
A'
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
3
A 3
n
O
1
n
B
2
计算平面机构自由度时应注意的事项
自 由 度 计 算 及 机 构 运 动 确 定 条 件
Back
B B CC A
A
EE G
G
F
III级杆组F=3*4-2*6=0 III级杆组F=3*4-2*6=0 F F E E B B
CC A
D
D
A
D
基本机构
D
G
G
基本机构
讨论:全部由低副构成的基本杆组
高 副 低 代 、 结 构 分 析 和 组 成 原 理
• n个构件和PL个低副,自由度公式
F=3n-2 PL =0 n=2, PL =3; n=4, PL =6;… PL =3n/2
• II级组:最简单的组合(n=2, PL =3)
• II级组有5种不同的类型(转动副和移动副)
高 副 低 代 、 结 构 分 析 和 组 成 原 理
• III级组:n=4, PL =6
• IV级组:n=4, PL =6
机构级别:
高 副 低 代 、 结 构 分 析 和 组 成 原 理
• II级机构:由最高级别为II级组构成 • III级机构:由最高级别为III级组构成
高 副 低 代 、 结 构 分 析 和 组 成 原 理
Back
平面机构的结构分析
高 副 低 代 、 结 构 分 析 和 组 成 原 理
• 机构 = 机架 + 原动件 + 其余构件(从动件) 机构的原动件数 = 机构的自由度数 • 其余构件(从动件):自由度为零的构件组 • 基本杆组:不能再拆、最简单、自由度为零的构件组
PL + 2PH =4 PL = 2;PH = 1
Back
习 题
m =3
n =4 PL = 5 PH = 1 F = 3n-2PL-PH =1
m =3 n =6 PL = 7 PH = 3 F = 3n-2PL-PH =1
n =3 PL = 3 PH = 2 F = 3n-2PL-PH =1
4)确定机构的级别
高 副 低 代 、 结 构 分 析 和 组 成 原 理
机构结构分析步骤: 1)计算机构自由度,确定原动件(将产生虚约束和局部自由度的构件和运动副去掉) 2)高副:高副低代 3)从远离原动件的地方开始拆杆组:先试拆II级组,当不可能时再试拆III级组(注意:每拆出 一个扦组后,剩下的部分仍组成机构,且自由度与原机构相同,直至全部杆组拆出只剩下I级机 构) 4)确定机构的级别
构件 运动副
机 构 的 组 成 及 运 动 简 图
运动链 机构
开链:运动链各构件构成首尾不封 闭的系统。 闭链:运动链各构件构成首尾封闭 的系统。
机构
机构:运动链中如果将一个构件固定 为支架,给定一个或几个构件的运动 规律,其余各构件均能按预期的规律 运动,这个运动链就形成机构。 固定构件 支架 输入构件 原动件(主动件) 其余构件 从动件 其中:输出构件-执行构件
相关文档
最新文档