山东省潍坊市2020届高三期中考试试题(数学)
高考数学专题03数列求和问题(第二篇)(解析版)
⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。
2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)
专题5 三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.预测2020年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-2.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A .10B .10C .2 D .104.(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-20195.(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭…恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A .π6 B .π3C .2π3D .5π66.(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .787.(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数8.(2020届山东省九校高三上学期联考)如图是一个近似扇形的鱼塘,其中OA OB r ==,弧AB 长为l (l r <).为方便投放饲料,欲在如图位置修建简易廊桥CD ,其中34OC OA =,34OD OB =.已知1(0,)2x ∈时,3sin 3!x x x ≈-,则廊桥CD 的长度大约为( )A .323432r r l - B .323432l l r - C .32324l l r-D .32324r r l-9.(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为() A .-7B .7C .1D .-110.(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位11.(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .12.(2020届山东省济宁市高三上期末)在ABC ∆中,1,3,1AB AC AB AC ==⋅=-u u u r u u u r,则ABC ∆的面积为( )A .12B .1CD .213.(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π2414.(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( ) A .13B .16C .43D .5615.(2020届山东省潍坊市高三上学期统考)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则△ABC 面积的最大值是A .1B C .2D .416.(2020届山东省烟台市高三上期末)若x α=时,函数()3sin 4cos f x x x =+取得最小值,则sin α=( )A .35B .35-C .45D .45-17.(2020届山东实验中学高三上期中)在ABC △中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .418.(2020届山东实验中学高三上期中)已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7B .7C .1D .-119.(2020届山东省济宁市高三上期末)函数22cos cos 1y x x =-++,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .20.(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( ) A .50 mB .100 mC .120 mD .150 m21.(2020届山东实验中学高三上期中)已知函数()sin 23f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π22.(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 二、多选题23.(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 24.(2020届山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+25.(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为26.(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点27.(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称28.(2020届山东省潍坊市高三上期末)已知()()22210f x cos x x ωωω=->的最小正周期为π,则下列说法正确的有( ) A .2ω= B .函数()f x 在[0,]6π上为增函数C .直线3x π=是函数()y f x =图象的一条对称轴D .5π,012骣琪琪桫是函数()y f x =图象的一个对称中心29.(2020届山东省潍坊市高三上学期统考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列30.(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( )A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 31.(2020届山东实验中学高三上期中)己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是( ) A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增32.(2019·山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+33.(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 三、填空题34.(2020届山东省枣庄市高三上学期统考)已知1sin 4x =,x 为第二象限角,则sin 2x =______. 35.(2020届山东省日照市高三上期末联考)已知tan 3α=,则sin cos sin cos αααα-+的值为______.36.(2020届山东师范大学附中高三月考)已知1tan 3α=,则2sin 2sin 1cos 2ααα-+的值为________.37.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点1tan,1tan1212P ππ⎛⎫+- ⎪⎝⎭是α终边上一点,则α的值是________. 38.(2020·全国高三专题练习(文))已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.39.(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 40.(2020届山东省日照市高三上期末联考)已知函数()9sin 26f x x π⎛⎫=-⎪⎝⎭,当[]0,10x π∈时,把函数()()6F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且123n x x x x <<<⋅⋅⋅<,记数列{}n x 的前n 项和为n S ,则()12n n S x x -+=______.41.(2020届山东省德州市高三上期末)已知函数()()sin f x A x =+ωϕ0,0,||2A πωϕ⎛⎫>><⎪⎝⎭的最大值2π,且()f x 的图象关于直线3x π=-对称,则当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为______.42.(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 四、解答题43.(2020届山东省临沂市高三上期末)在①3cos 5A =,cos C =,②sin sin sin c C A b B =+,60B =o,③2c =,1cos 8A =三个条件中任选一个补充在下面问题中,并加以解答. 已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,______,求ABC V 的面积S . 44.(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x图象关于原点对称;②向量),cos 2m x x ωω=u r,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭r u r r ;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若02πθ<<,且sin θ=()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.45.(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.46.(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫ ⎪⎝⎭.(1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x πÎ函数()f x 的最大值和最小值.47.(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值.48.(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ∆中,角,,A B C 的对边分别为,,a bc ,6b c +=,a =, . 求ABC ∆的面积.49.(2020届山东省泰安市高三上期末)如图所示,有一块等腰直角三角形地块ABC ,90A ∠=o ,BC 长2千米,现对这块地进行绿化改造,计划从BC 的中点D 引出两条成45°的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种植花卉,其余区域种植草坪;设BDE α∠=,试求花卉种植面积()S α的取值范围.50.(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .51.(2020届山东省滨州市三校高三上学期联考)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,23sin 2cos02A CB +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为3ABC ∆的周长.52.(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①2633()b a ac c a b -+=+;②2cos 22cos 12A A +=;③6a =④2b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)53.(20203(cos )sin b C a c B -=;②22cos a c b C +=;③sin 3sin2A Cb A a += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,23,b =4a c +=,求ABC ∆的面积.54.(2020届山东师范大学附中高三月考)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos cos 2c A a C a +=.(1)求a b的值; (2)若1a =,7c =,求ABC V 的面积. 55.(2020·蒙阴县实验中学高三期末)在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=u u u r u u u r ,求:(1)tan tan tan tan A A B C+的值; (2)BC 边上的中线AD 的长.56.(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值;(2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值. 57.(2020届山东省潍坊市高三上期末)在①34asinC ccosA =;②252B C bsinasinB +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知 ,32a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积58.(2020·山东省淄博实验中学高三上期末)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知4cos cos cos a A c B b C =+.(1)若4a =,ABC ∆的面积为15,求b ,c 的值; (2)若()sin sin 0B k C k =>,且角C 为钝角,求实数k 的取值范围.59.(2020届山东省潍坊市高三上学期统考)已知函数()()23sin cos sin 10f x x x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且6AC =,31CD =-,求三角形ABC 的面积.60.(2020届山东省济宁市高三上期末)已知()()23sin sin cos 2f x x x x ππ⎛⎫=-+- ⎪⎝⎭. (1)若1210f α⎛⎫= ⎪⎝⎭,求2cos 23πα⎛⎫+ ⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.61.(2020届山东省济宁市高三上期末)如图,某市三地A ,B ,C 有直道互通.现甲交警沿路线AB 、乙交警沿路线ACB 同时从A 地出发,匀速前往B 地进行巡逻,并在B 地会合后再去执行其他任务.已知AB =10km ,AC =6km ,BC =8km ,甲的巡逻速度为5km /h ,乙的巡逻速度为10km /h .(1)求乙到达C 地这一时刻的甲、乙两交警之间的距离;(2)已知交警的对讲机的有效通话距离不大于3km ,从乙到达C 地这一时刻算起,求经过多长时间,甲、乙方可通过对讲机取得联系.62.(2020·全国高三专题练习(文))在ABC V 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )(3sin sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③3=c b 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积.63.(2020届山东实验中学高三上期中)己知函数()23sin cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.64.(2020届山东实验中学高三上期中)“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形ABCD 的麦田里成为守望者,如图所示,为了分割麦田,他将BD 连接,设ABD ∆中边BD 所对的角为A ,BCD ∆中边BD 所对的角为C ,经测量已知2AB BC CD ===,23AD =.(1)霍尔顿发现无论BD 3cos A C -为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记ABD ∆与BCD ∆的面积分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出2212S S +的最大值.。
高考必考题—运用空间向量解决空间角(含解析)
运用空间向量解决空间角一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。
例1、【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.例2、(2019南京学情调研) 如图,在正四棱柱ABCDA 1B 1C 1D 1中,已知底面ABCD 的边长AB =3,侧棱AA 1=2,E 是棱CC 1的中点,点F 满足AF →=2FB →.(1) 求异面直线FE 和DB 1所成角的余弦值; (2) 记二面角EB 1FA 的大小为θ,求|cos θ|.题型二、直线与平面所成的角直线与平面所成的角是通过研究直线的方向向量和平面的法向量的所成的角,因此,要特别注意所求的角与已求的角之间的关系。
例3、【2020年高考浙江】如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.例4、【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.题型三、平面与平面所成的角利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据观察判断向量在图形中的方向,从而确定二面角与向量n1,n2的夹角是相等还是互补,这是利用向量求二面角的难点、易错点例5、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.例6、【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.例7、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABC A B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.二、达标训练1、【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.2、【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.3、【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4、(2020届山东省九校高三上学期联考)已知四棱柱1111ABCD A B C D -的底面为菱形,12AB AA ==,3BAD π∠=,ACBD O =,AO ⊥平面1A BD ,11A B A D =.(1)证明:1//B C 平面1A BD ; (2)求钝二面角1B AA D --的余弦值.5、(2020届山东省潍坊市高三上期末)在底面为正方形的四棱锥P ABCD -中,平面PAD ⊥平面,,,ABCD PA PD E F =分别为棱PC 和AB 的中点.(1)求证://EF 平面PAD ;(2)若直线PC 与AB ,求平面PAD 与平面PBC 所成锐二面角的大小.6、(2019南京、盐城一模)如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA =AB=2,点E是棱PB的中点.(1) 求异面直线EC与PD所成角的余弦值;(2) 求二面角BECD的余弦值.一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。
数学丨山东省潍坊市2025届高三9月开学调研监测考试数学试卷及答案
5. 已知圆 C:x2 + y2 - 2x = 0,则过点 P3,0 的圆 C 的切线方程是
A.
y
=±
1 2
(x - 3)
C.
y =±
3 3
(x - 3)
B. y =±2(x - 3) D. y =± 3 (x - 3)
6. 数列 an 中,a1 = 2,an+1 = an + 2, 若 ak + ak+1 +⋯+ak+9 = 270, 则 k =
高三开学调研监测考试
试卷类型:A
数学试题
本试卷共 4 页.满分 150 分.考试时间 120 分钟。
2024.09
注意事项:
1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改
动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上.写在
Pí + 3## QQQQQQQQQQQQQQQQQQQQQQQQQQQQQ , + MUé8Lí 5! 3+! /4! -!+4BC;&3)5 /+5 -!# 3!,# QQQQQQQQQ )) +
S 53! 槡7#S&"#&9Ñ + /4/53# /5 /! 槡7 3)% /! 槡7!QQQQ )+ + )5!P(M$Vy#
S
1!%#%#%"
#*!%#%
#+"
##!%#+#%"
#&!
+
山东省潍坊市昌乐第一中学2024届高三上学期模拟预测数学试题(解析版)
高三数学试题一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知复数12,z z 在复平面内对应的点分别为()()121,1,0,1z z ,则12z z 的虚部为( )A. 1B. i- C. iD. 1-【答案】D 【解析】【分析】求出复平面内12,z z 的点对应的复数,利用复数的除法法则计算得出答案.【详解】由题意得11i z =+,2i z =,所以()121i i 1i 1i i i·iz z ++===-,故D 正确.故选:D.2. “sin cos αα=”是“4πα=”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】【分析】根据sin cos αα=求出α的值,结合充分条件和必要条件的定义判断即可.【详解】由sin cos αα=得tan 1α=,()4k k Z παπ∴=+∈,因此,“sin cos αα=”是“4πα=”的必要不充分条件.故选:B【点睛】本题考查了充分必要条件,考查三角函数的性质,是一道基础题.3. 若正数,a b 满足3ab a b =++,则a b +的取值范围是( )A. [6,)+∞ B. [9,)+∞ C. (]0,6 D. ()0,9【答案】A 【解析】【分析】利用基本不等式即可求解..【详解】由题意知,a b 为正数,且3ab a b =++,所以232a b ab a b +⎛⎫=++≤ ⎪⎝⎭,化简得()()24120a b a b +-+-≥,解得6a b +≥,当且仅当3a b ==时取等号,所以[)6,a b +∈+∞,故A 正确.故选:A.4. 具有线性相关关系的变量,x y 的一组数据如下:x 0123y-5-4.5-4.2-3.5其线性回归直线方程为y bx a =+$$$,则回归直线经过( )A. 第一、二、三象限 B. 第二、三、四象限C. 第一、二、四象限 D. 第一、三、四象限【答案】D 【解析】【分析】根据x ,y 呈正相关,得到0b> ,再由样本中心在第四象限判断.【详解】解:由图表中的数据知:x ,y 呈正相关,所以0b > ,又()()110123 1.5,5 4.5 4.2 3.5 4.344x y =+++==----=-,则样本中心为()1.5, 4.3-,在第四象限,所以回归直线经过第一、三、四象限,故选:D5. 已知点()2,4M 在抛物线C :22y px =(0p >)上,点M 到抛物线C 的焦点的距离是A. 4 B. 3C. 2D. 1【答案】A 【解析】【分析】将点()2,4M 的坐标代入抛物线方程,求出4p =,即得焦点(2,0)F ,利用抛物线的定义,即可求出.【详解】由点()2,4M 在抛物线22y px =上,可得164p =,解得4p =,即抛物线2:8C y x =,焦点坐标(2,0)F ,准线方程为2x =-.所以,点M 到抛物线C 焦点的距离为:()224--=.故选:A .【点睛】本题主要考查抛物线的定义和简单性质的应用,属于基础题.6. 在ABC 中,2AB AC AD += ,20AE DE +=,若EB xAB y AC =+ ,则( )A. 2y x = B. 2y x=- C. 2x y= D. 2x y=-【答案】D 【解析】【分析】画出图形,将,AB AC 作为基底向量,将EB向量结合向量的加减法表示成两基底向量相加减的形式即可求解【详解】如图,由题可知,点D 为BC 的中点,点E 为AD 上靠近D 的三等分点,()()111121326233EB ED DB AD CB AB AC AB AC AB AC =+=+=++-=-,21,,233x y x y∴==-∴=-故选:D【点睛】本题考查平面向量的基本定理,属于基础题7. 已知奇函数()f x 是R 上增函数,()()g x xf x =,则()A. 233231(log (2)(2)4g g g -->>B. 233231(log (2)(2)4g g g -->>C. 233231(2)(2)(log )4g g g -->>D. 233231(2)(2)(log )4g g g -->>【答案】B 【解析】【分析】先利用定义判断出()g x 为偶函数,0x >时单调递增,0x <时,函数单调递减,再根据距离对称轴越远函数值越大,即可比较大小.【详解】解:由奇函数()f x 是R 上增函数可得,当0x >时,()0f x >,又()()g x xf x =,则()()()()g x xf x xf x g x -=--==,即()g x 为偶函数,且当0x >时单调递增,根据偶函数的对称性可知,当0x <时,函数单调递减,距离对称轴越远,函数值越大,因为331(log )(log 4)4g g =,23(2)g g -=,32(2)g g -=,而3log 41>,23322012-->>>,即3log 43222->>,所以233231(log )(2)(2)4g g g -->>故选:B ..8. 已知双曲线C :22221x y a b -=,(0a >,0b >)的左、右焦点分别为1F ,2F , O 为坐标原点,P 是双曲线在第一象限上的点,1222PF PF m == ,(0m >),212PF PF m ⋅=,则双曲线C 的渐近线方程为A. 12y x =±B. y x =C. y x=± D. y =【答案】D 【解析】【分析】利用双曲线的定义求出2m a =,由向量的数量积,可求出12F PF ∠,利用余弦定理可得,a c 的关系式,结合222c a b =+,即可求出.【详解】因为122PF PF a -=,1222PF PF m == 可得2m a =,由212PF PF m ⋅=可得21242cos 4a a F PF a ⋅∠=,所以1260F PF ︒∠=,即有222214416242122c a a a a a =+-⨯⨯⨯=,即22223c a b a =+=,所以ba=所以双曲线的渐近线方程为:y =.故选:D .【点睛】本题主要考查双曲线的简单性质的应用,双曲线的定义,向量数量积的定义以及余弦定理的应用,意在考查学生的数学运算能力,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求,全部选对的得5分,部分选对的得3分,有选错的0分.9. (多选题)下列命题中的真命题是( )A. 1R,20x x -∀∈> B. ()2N ,10x x *∀∈->C. 00R,lg 1x x ∃∈< D. 00R,tan 2x x ∃∈=【答案】ACD 【解析】【分析】根据对应函数的性质,判断命题的真假.【详解】指数函数值域为()0,∞+,所以1R,20x x -∀∈>,A 选项正确;当1x =时,()210x -=,所以()2N ,10x x *∀∈->是假命题,B 选项错误;当01x =时,0lg 01x =<,所以00R,lg 1x x ∃∈<,C 选项正确;函数tan y x =值域为R ,所以00R,tan 2x x ∃∈=,D 选项正确.故选:ACD.10. 将函数()sin 2f x x =的图象向右平移π4个单位后得到函数()g x 的图象,则函数()g x 具有性质( )A. 在π0,4⎛⎫⎪⎝⎭上单调递增,为偶函数 B. 最大值为1,图象关于直线3π2x =-对称C. 在3ππ,88⎛⎫-⎪⎝⎭上单调递增,为奇函数 D. 周期为π,图象关于点3π,04⎛⎫⎪⎝⎭对称【答案】ABD 【解析】【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】由题意可得()ππsin 2sin 2cos 242g x x x x ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,对A 、C :因为π0,4x ⎛⎫∈ ⎪⎝⎭,所以π20,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且()()()cos 2cos 2g x x x g x -=--=-=,得()g x 为偶函数,故A 正确,C 错误;对B :由()cos 2g x x =-得其最大值为1,当3π2x =-时,()3πcos 3π12g ⎛⎫-=--= ⎪⎝⎭,为最大值,所以3π2x =-为对称轴,故B 正确;对D :周期2ππ2T ==,3π3π3πcos 2cos0442g ⎛⎫⎛⎫=-⨯=-= ⎪ ⎪⎝⎭⎝⎭,所以图像关于点3π,04⎛⎫⎪⎝⎭对称,故D 正确.故选:ABD.11. 已知m n 、为两条不重合的直线,αβ、为两个不重合的平面,则下列说法正确的是A. 若//,//m n αβ且//,αβ则//m n B. 若//,,,m n m n αβ⊥⊥则//αβC. 若//,,//,m n n m ααββ⊂⊄,则//m βD. 若//,,m n n ααβ⊥⊥,则//m β【答案】BC 【解析】【分析】根据直线和直线,直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A. 若//,//m n αβ且//,αβ则可以//m n ,,m n 异面,或,m n 相交,故A 错误;B. 若//,,m n m α⊥则n α⊥,又,n β⊥故//αβ,B 正确;C. 若//,,m n n α⊂则m α 或m α⊆,又//,m αββ⊄,故//m β,C 正确;D. 若//,,m n n α⊥则m α⊥,αβ⊥,则//m β或m β⊆,D 错误;故选:BC【点睛】本题考查了直线和直线,直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件11a > ,201920201a a > ,20192020101a a -<-,下列结论正确的是( )A. 20192020S S <B. 2019202010S S -<C. 2020T 是数列{}n T 中的最大值D. 数列{}n T 无最大值【答案】A 【解析】【分析】根据11a > ,201920201a a > ,20192020101a a -<-,可判断数列{}n a 的01q <<,进而可知数列{}n a 是单调递减的等比数列,结合选项,即可逐一求解.【详解】根据题意,等比数列{}n a 中,201920201a a >,则有20192020201920191a a a a q ⋅>=,有0q >,又由2019202011a a --<0,即()()20192020110a a -<- ,必有202020191a a <<,01q << 由此分析选项:对于A ,2020201920200S S a -=> ,故20192020S S < ,A 正确;对于B ,等比数列{}n a 中,11a >,01q <<,则202120191S S >> ,则201920211S S > ,即2019202110S S -> ,B 错误;对于C ,202020191a a << ,则2019T 是数列{}n T 中的最大项,C 错误;对于D ,由C 的结论,D 错误;故选:A.三、填空题:本题共4小题,每小题5分,共20分.13. 已知直线0x y a -+=与圆22:2o x y +=相交于A ,B 两点(O 为坐标原点),且AOB ∆为等腰直角三角形,则实数a 的值为__________;【答案】【解析】【分析】根据直角三角形的性质与垂径定理求得圆心O 到直线0x y a -+=的距离,再用公式求解即可.【详解】由题,因为AOB ∆为等腰直角三角形,故2AB ==,故圆心O 到直线0x y a -+=的距离1d ==.1a =⇒=故答案为:【点睛】本题主要考查了根据直线与圆相交求参数的问题,重点在于垂径定理的运用.属于基础题.14. 已知直线2y x =+与曲线ln()y x a =+相切,则a = 【答案】3【解析】【分析】设切点为(x 0,y 0),求出函数y =ln (x+a )的导数为y '=1x a +,得k 切=01x a +=1,并且y 0=x 0+2,y 0=ln (x 0+a ),进而求出a .【详解】设切点为(x 0,y 0),由题意可得:曲线的方程为y =ln (x+a ),所以y '=1x a+.所以k 切=01x a+=1,并且y 0=x 0+2,y 0=ln (x 0+a ),解得:y 0=0,x 0=﹣2,a =3.故答案3.【点睛】本题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,属于基础题.15. 2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,见证了中华五千年的文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足.573002(t N N N -=⋅表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的_____;经过测定,良渚古城遗址文物样本中碳14的质量是原来的37至1,2据此推测良渚古城存在的时期距今约在5730年到_____年之间.(参考数据:lg2≈0.3,lg7≈0.84,lg3≈0.48)【答案】 ①.12②. 6876【解析】【分析】为把5730t =代入573002t N N -=⋅,即可求出;再令3573072t ->,两边同时取以2为底的对数,即可求出t 的范围.【详解】∵573002tN N -=⋅,∴当5730t =时,100122N N N -=⋅=,∴经过5730年后,碳14的质量变为原来的12,由题意可知:5730327t ->,两边同时取以2为底的对数得:5730223log 2log 7t ->,∴3lglg 3lg 77 1.25730lg 2lg 2t -->=≈-,6876t ∴<,∴推测良渚古城存在的时期距今约在5730年到6876年之间.故答案为:12;6876.【点睛】关键点睛:本题主要考查了对数的运算,解答本题的关键是由5730327t->,两边同时取以2为底的对数得:5730223log 2log 7t ->,∴3lg lg 3lg 775730lg 2lg 2t -->=,属于中档题.16. 已知四面体ABCD 中,5,8AB AD BC DC BD AC ======,则四面体ABCD 的体积为_____【解析】【分析】取BD 中点O ,AC 中点E ,连结,,AO CO OE ,计算出AOC S ∆=B AOC V -,所求四面体的体积为它的2倍.【详解】取BD 中点O ,AC 中点E ,连结,,AO CO OE , ∵四面体ABCD 中,5,8AB AD BC DC BD AC ======,∴AO BD ⊥,CO BD ⊥,AO CO ===,∵AO CO O = ,∴BD ⊥平面AOC ,又OEAC ⊥,∴182AOC S ∆=⨯=,152232A BCD B AOC V V --==⨯⨯⨯=【点睛】三棱锥的体积的计算需选择合适的顶点和底面,此时顶点到底面的距离容易计算. 有时还需把复 这些几何体可能有相同的高或相同的底面,或者它们的高或底面的面积的比值为定值.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC ∆,a ,b ,c 分别为内角A ,B ,C 的对边,且()2228sin 3ab C b c a =+-,若a =,5c =.(1)求cos A ;(2)求ABC ∆的面积S .【答案】(1)45;(2)152或92.【解析】【分析】(1)根据条件形式利用正弦定理和余弦定理边化角,可得4sin 3cos A A =,再结合平方关系即可求出cos A ;(2)根据题意,已知两边及一角,采用余弦定理可得,2222cos a b c bc A =+-,即可求出边b ,再根据三角形面积公式1sin 2S bc A =⋅即可求出.【详解】(1)由题意得()22238sin 22b c a ab C bc bc+-=由余弦定理得:4sin 3cos a C A c=由正弦定理得4sin 3cos A A =所以3tan 4A =,∴ABC ∆中,4cos 5A =.(2)由余弦定理2222cos a b c bc A =+-得28150b b -+=解得3b =或5b =∵3tan 4A =,∴3sin 5A =由1sin 2S bc A =⋅得152S =或92S =.【点睛】本题主要考查利用正弦定理,余弦定理解三角形,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题.18. 设数列{}n a 的前n 项和为n S ,已知111,21,N n n a S S n *+=-=∈.(1)证明:{}1n S +为等比数列,求出{}n a 的通项公式;(2)若n nn b a =,求{}n b 的前n 项和n T .【答案】(1)证明见解析,12n n a -= (2)1242n n n T -+=-【解析】【分析】(1)根据121n n S S +-=可推出()1121n n S S ++=+,即得1121n n S S ++=+,即可证明{}1n S +为等比数列,由此可求得n S 表达式,继而求得{}n a 的通项公式;(2)由(1)的结果可得n nn b a =的表达式,利用错位相减法求数列的和,即可得答案.【小问1详解】的∵121n n S S +-= ∴()*1121,N n n S S n ++=+∈,∴1121n n S S ++=+,∴{}1n S +为等比数列;∵11a =,故{}1n S +的首项为112S +=,公比为2,∴12n n S +=,则21n n S =-,当2n ≥时,1121n n S --=-,则112n n n n a S S --=-=,11a =也满足此式,∴12n n a -=;【小问2详解】由(1)可得12n n n n n b a -==,则01112222n n n T -=++⋅⋅⋅+,故121122222n nn T =++⋅⋅⋅+,两式相减得:0111111112221222222212n n n n n n n n n T --+=++⋅⋅⋅+-=-=--,故1242n n n T -+=-.19. 如图所示的多面体中,底面ABCD 为矩形,BE ⊥平面ABCD ,1CC ⊥平面ABCD ,DF ⊥平面ABCD ,1//AF EC ,且AB =4,BC =2,13CC =,BE =1.(Ⅰ)求BF 的长;(Ⅱ)求直线1CC 与平面1AEC F成的角的正弦值.【答案】(Ⅰ)(Ⅱ.【解析】【分析】(Ⅰ)建立如图所示的空间直角坐标系,由向量平行求得F 点坐标,由向量模的坐标表示求得线段长;(Ⅱ)求出平面1AEC F 的一个法向量,由直线1CC 的方向向量与平面法向量夹角的余弦值的绝对值得线面角的正弦值.【详解】(Ⅰ)建立如图所示的空间直角坐标系,则(0,0,0)D ,(2,4,0)B ,(2,0,0)A ,(0,4,0)C ,(2,4,1)E ,1(0,4,3)C ,设(0,0,)F z .∵1AF EC ,由1AF EC ∥得(2,0,)(2,0,2)z λ-=-,解得2z =,∴(0,0,2)F .∴(2,4,2)BF =-- ,于是||BF = ,即BF的长为.(Ⅱ)设1n u r 为平面1AEC F 的法向量,设1(,,)n x y z = ,由1100n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ ,得0402020x y z x y z ⨯+⨯+=⎧⎨-⨯+⨯+=⎩,即40220y z x z +=⎧⎨-+=⎩,取1z =,得114x y =⎧⎪⎨=-⎪⎩.又1(0,0,3)CC = ,设1CC 与1n u r 的夹角为α,则1111cos CC n CC n α⋅===⋅ .所以,直线1CC 与平面1AEC F.【点睛】方法点睛:本题考查求空间线段长,求线面角的正弦值,解题方法是空间向量法,即建立空间直角坐标系,求出平面的法向量,由直线的方向向量与平面法向量的夹角与线面角的关系求解.这是求空间角的常用方法,特别是图形中含有垂直关系用此种方法更加简便.20. 2018年非洲猪瘟在东北三省出现,为了进行防控,某地生物医药公司派出技术人员对当地甲乙两个养殖场提供技术服务,方案和收费标准如下:方案一,公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;方案二,公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每天收取药费8元.(1)设日收费为y (单位:元),每天需要用药的猪的数量为n N ∈,试写出两种方案中y 与n 的函数关系式.(2)若该医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下22⨯列联表.9月份10月份合计未发病4085125发病652085合计105105210根据以上列联表,判断是否有99.9%的把握认为猪未发病与医药公司提供技术服务有关.附:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++(3)当地的丙养殖场对过去100天猪的发病情况进行了统计,得到如上图所示的条形统计图.依据该统计数据,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验从两个方案中选择一个,那么选择哪个方案更合适,并说明理由.【答案】(1)见解析;(2)有99.9%的把握认为猪未发病与医药公司提供技术服务有关;(3)从节约养殖成本的角度去考虑,丙养殖场应该选择方案二.【解析】【分析】(1)根据题意写出函数关系式即可;(2)根据22⨯列联表,代入公式计算2K ,比较临界值得出结论即可;(3)分别按不同方案计算总费用,比较大小即可求解.【详解】(1)方案一,402,y n n N =+∈,方案二,120,45,8240,45,n n N y n n n N≤∈⎧=⎨->∈⎩(2)22210(40206585)105105140.0210.8282585K ⨯⨯-⨯=⨯≈>⨯⨯,所以有99.9%的把握认为猪未发病与医药公司提供技术服务有关;(3)若采用方案一,则这100天的总费用为40×100+2×(42×20+44×40+46×20+48×10+50×10)=13000元,若采用方案二,则这100天的总费用为120×100+(46-45)×20×8+(48-45)×10×8+(50-45)×10×8=12800元,所以,从节约养殖成本的角度去考虑,丙养殖场应该选择方案二【点睛】本题主要考查了实际问题中的函数问题,独立性检验,频率分布直方图,属于中档题.21. 已知函数()()ln 0a f x x a a x=-+>.(1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值;(2)求函数()f x 在区间()1,e 上的零点个数.【答案】(1)1a =(2)答案见解析【解析】【分析】(1)求出函数的导数,根据导数的几何意义即可求得答案;(2)由()0f x '=,求得x a =,分类讨论x a =与()1,e 的位置关系,结合函数的单调性,以及零点存在定理,即可判断出函数的零点个数.【小问1详解】由题意得()()ln 0a f x x a a x=-+>定义域为(0,)+∞,()221a x a f x x x x'-=-=,因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =.所以()110f a '=-=,解得1a =.经检验1a =符合题意.【小问2详解】由(1)知()2x a f x x-'=,令()0f x '=,得x a =,当x a <时,()0f x '<,当x a >时,()0f x ¢>,(i )当01a <≤时,()1,e x ∈,()0f x ¢>,函数()f x 在区间()1,e 上单调递增.所以()()10f x f >=,所以函数()f x 在区间()1,e 上无零点;(ii )当1e a <<时,若1x a <<,则()0f x '<,若e a x <<,则()0f x ¢>.函数()f x 在区间()1,a 上单调递减,在区间(),e a 上单调递增.且()10f =,则()(1)0f a f <<,而()e 1e a f a =-+.当()e 10ea f a =-+>,即e 1e 1a <<-时,函数()f x 在区间()1,e 上有一个零点;当()e 10ea f a =-+≤时,印当e e e 1a ≤<-时,函数()f x 在区间()1,e 上无零点;(iii )当e a ≥时,()1,e x ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减.所以()()10f x f <=,所以函数()f x 在区间()1,e 上无零点.综上:当01a <≤或e e 1a ≥-时,函数()f x 在区间()1,e 上无零点;当e 1e 1a <<-时,函数()f x 在区间()1,e 上有一个零点.【点睛】方法点睛:求解函数()f x 在区间()1,e 上的零点个数时,利用导数可求得函数的极值点,因此要分类讨论极值点与所给区间的位置关系,再结合函数的单调性,即可求解得结论.22. 给定椭圆()2222:10x y C a b a b+=>>,称圆心在原点O 的圆是椭圆C 的“卫星圆”,若椭圆C ,点(在C 上.(1)求椭圆C 的方程和其“卫星圆”方程;(2)点P 是椭圆C 的“卫星圆”上的一个动点,过点P 作直线1l 、2l 使得12l l ⊥,与椭圆C 都只有一个交点,且1l 、2l 分别交其“卫星圆”于点M 、N ,证明:弦长MN 为定值.【答案】(1)22184x y +=,2212x y +=;(2)证明见解析.【解析】【分析】(1)本题可根据题意得出c e a ==22421a b +=,然后通过计算得出a 、b 的值以及椭圆方程,最后根据r =即可求出卫星圆的方程;(2)本题可先讨论1l 、2l 中有一条无斜率的情况,通过求出1l 与2l 的方程即可求出MN 的值,然后讨论1l 、2l 都有斜率的情况,设点()00,P x y 以及经过点P 且与椭圆只有一个公共点的直线为()00y t x x y =-+,再然后通过联立方程以及韦达定理的应用得出满足条件的两直线1l 、2l 垂直,判断出此时线段MN 应为“卫星圆”的直径以及MN 的值,最后综合两种情况即可得出结果.【详解】(1)因为椭圆C,点(在C 上,所以22421c e a a b ⎧==⎪⎪⎨⎪+=⎪⎩,解得a =2b =,椭圆方程为22184x y +=,因为r ==,圆心为原点O ,所以卫星圆方程为2212x y +=.(2)①当1l 、2l 中有一条无斜率时,不妨设1l 无斜率,因为1l与椭圆只有一个公共点,所以其方程为x =x =-当1l方程为x =1l 与“卫星圆”交于点()和()2-,此时经过点()或()2-且与椭圆只有一个公共点的直线是2y =或=2y -,即2l 为2y =或=2y -,此时12l l ⊥,线段MN 应为“卫星圆”的直径,MN =②当1l 、2l 都有斜率时,设点()00,Px y ,其中220012x y +=,设经过点()00,P x y 与椭圆只有一个公共点的直线为()00y t x x y=-+,联立方程()0022184y t x x y x y ⎧=-+⎪⎨+=⎪⎩,消去y 得到()()()2220000124280tx t y tx x y tx ++-+--=,则()2220000648163280x t x y t y D=-++-=,()2200122200328123281648648x y t t x x ---×===---,满足条件的两直线1l 、2l 垂直,此时线段MN 应为“卫星圆”的直径,MN =综合①②可知,MN为定值,MN =【点睛】本题考查椭圆方程的求法以及圆的方程的求法,考查椭圆、直线以及圆相交的综合问题的求解,考查韦达定理以及判别式的灵活应用,考查计算能力,考查转化与化归思想,是难题.的。
新高考数学考点12 y=Asin(wx+φ)的图像与性质考点分类讲义练习题附解析3
考点12 y=Asin(wx+φ)的图像与性质1、了解三角函数的周期性,画出 y =sin x , y =cos x , y =tan x 的图像,并能根据图像理解正弦函数、余弦函数在[ 0 ,2π ],正切函数的性质(如单调性、最大值和最小值、图像与 x 轴的交点等)2. 了解三角函数 y = A sin ( ωx + φ )的实际意义及其参数 A , ω ,φ 对函数图像变化的影响;能画出 y = A sin (ωx +φ )的简图,能由正弦曲线 y =sin x 通过平移、伸缩变换得到 y = A sin ( ωx + φ )的图像 .3. 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型 .1. 三角函数的图像与性质是高考中的必考点,对这部分内容的考查,高考中大多以中、低档题为主,主要集中于对函数的周期、图像、单调性、值域(或最值)等几个方面的考查 . 要解决此类问题,要求学生熟练地掌握三角函数的图像,及正弦函数、余弦函数、正切函数的最基本的性质,并能运用这些性质去熟练地解题 .2. 利用三角函数的性质解决问题时,要重视化归思想的运用,即将复杂的三角函数转化为基本的正弦、余弦、正切函数来处理1、函数 f ( x ) = A sin ( ωx + φ )的图像的平移和伸缩变换以及根据图像确定 A , ω ,φ 问题是高考的热点,题型多样,难度中低档,主要考查识图、用图的能力,同时考查利用三角公式进行三角恒等变换的能力 . 2、要牢牢记住函数 f ( x ) = A sin ( ωx + φ )的图像和性质。
1、【2020年江苏卷】.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.2、【2020年全国1卷】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9 B.7π6 C. 4π3D. 3π2 3、【2020年全国3卷】16.关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 4、【2020年天津卷】8.已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A. ①B. ①③C. ②③D. ①②③5、【2020年山东卷】.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D. 5πcos(2)6x - 6、【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .7、【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③8、【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |9、【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④10、【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B. CD .211、【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.12、【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.题型一 三角函数的性质1、(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-20192、(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( )A .π6B .π3C .2π3D .5π63、(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为πB .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数4、(2020届山东实验中学高三上期中)已知函数()sin 2f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π5、(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .π-是()f x 的一个周期B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 6、.(2020届江苏省南通市如皋市高三下学期二模)已知函数()()()sin 0f x x ωϕω=+>,将函数()y f x =的图象向右平移π4个单位长度后,所得图象与原函数图象重合,则ω的最小值等于__________.7、(2020届江苏南通市高三基地学校第一次大联考数学试题)已知函数()2sin()(0)3f x x πωω=+>的图象关于点,02π⎛⎫⎪⎝⎭对称,则ω的最小值为_____. 8、(2019南京学情调研)已知函数f(x)=2sin (2x +φ)⎝⎛⎭⎫-π2<φ<π2的图像关于直线x =π6对称,则f(0)的值为________.9、(2019苏锡常镇调研)函数()cos()(0)3f x x πωω=->的图像关于直线2x π=对称,则ω的最小值为 .10、(2019苏州期初调查) 已知函数f(x)=sin (2x +φ)(0≤φ<π)的一条对称轴是x =-512π,则φ=________.11、(2019南京、盐城二模)若函数f(x)=2sin (ωx +φ)(ω>0,0<φ<π)的图像经过点⎝⎛⎭⎫π6,2,且相邻两条对称轴间的距离为π2,则f ⎝⎛⎭⎫π4的值为________.题型二 三角函数图像的变换1、(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位2、(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .3、(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π244、(2020届浙江省宁波市余姚中学高考模拟)函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( )A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π)5、(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为6、(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称7、(2019无锡期末) 已知直线y =a(x +2)(a>0) 与函数 y =|cos x|的图像恰有四个公共点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4), 其中 x 1<x 2<x 3<x 4,则x 4+1tan x 4=________. 8、(2020届江苏省南通市高三下学期3月开学考试)将函数()πsin 6f x x ω⎛⎫=- ⎪⎝⎭(0>ω)的图象向左平移π3个单位长度后,所得图象关于直线πx =对称,则ω的最小值为______.题型三 三角函数的解析式1、(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为12、(2020·浙江温州中学3月高考模拟)已知()sin()f x A x ωφ=+(0,04,)2A πωφ><<<)过点1(0,)2,且当6x π=时,函数()f x 取得最大值1.(1)将函数()f x 的图象向右平移6π个单位得到函数()g x ,求函数()g x 的表达式; (2)在(1)的条件下,函数2()()()2cos 1h x f x g x x =++-,求()h x 在[0,]2π上的值域.解析附后考点12 y=Asin(wx+φ)的图像与性质1、【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈当1k =-时524x π=-故答案为:524x π=-2、【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C 3、【答案】②③【解析】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③. 4、【答案】B【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确. 故选:B. 5、【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC. 6、【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 7、【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C . 8、【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图39、【答案】Df x在[0,2π]上有5个零点,可画出大致图象,【解析】①若()f x在(0,2π)有且仅有3个极大值点.故①正确;由图1可知,()f x在(0,2π)有且仅有2个或3个极小值点.故②错误;②由图1、2可知,()10、【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 11、【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ【名师点睛】由对称轴得2πππππ()326k k k +=+=-+∈Z ,ϕϕ,再根据限制范围求结果.函数()sin y A x B =++ωϕ(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT =ω;(3)由()ππ2x k k +=+∈Z ωϕ求对称轴; (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12、【答案】(1)π2θ=或3π2;(2)[1-.【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈, 因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[122-+.题型一 三角函数的性质1、【答案】B 【解析】因为2sin cos ()x x xf x ax+=, 所以22sin()cos()sin cos ()()x x x x x xf x f x ax ax ---+-==-=-, 因此函数()f x 为奇函数,又(2019)2f -=,所以(2019)(2019)2f f =--=-. 故选B 2、【答案】B 【解析】因为函数()()cos f x x ωϕ=+的最小正周期为π,所以22πωπ==,又对任意的x ,都使得()3f x f π⎛⎫≥ ⎪⎝⎭, 所以函数()f x 在3x π=上取得最小值,则223k πϕππ+=+,k Z ∈, 即2,3k k Z πϕπ=+∈,所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭, 令222,3k x k k Z ππππ≤+≤+∈,解得,63k x k k Z ππππ-+≤≤+∈ ,则函数()y f x =在0,3π⎡⎤⎢⎥⎣⎦上单调递减,故a 的最大值是3π. 故选B3、【答案】B 【解析】()sin cos )4f x x x x π=+=+, 对A ,()f x ∴的最小正周期为2π,故A 错误;对B ,()42f ππ==()y f x ∴=图象的一条对称轴方程为4x π=,故B 正确;对C ,()f x 的最小值为,故C 错误; 对D ,由[0,]2x π∈,得3[,]444x πππ+∈,则()f x 在[0,]2π上先增后减,故D 错误. 故选:B . 4、【答案】B 【解析】()f x 的图象关于直线12x π=-对称,(0)()6f f π∴=-,即-1a =,则()sin 222sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,12()()4f x f x =-,1()2f x ∴=,2()2f x =-或1()2f x =-,2()2f x =,即1()f x ,2()f x 一个为最大值,一个为最小值, 则12||x x -的最小值为2T, T π=,12||x x ∴-的最小值为2π, 即12a x x -的最小值为2π.故选:B . 5、【答案】ACD 【解析】()sin 23f x x π⎛⎫=- ⎪⎝⎭的最小正周期为π,故π-也是其周期,故A 正确;()f x 的图像可由sin 2y x =的图像向右平移6π得到,故B 错误;()77()()sin sin 066323f f ππππππ⎛⎫+==-== ⎪⎝⎭,故C 正确; sin sin 17175()1262sin 132f πππππ⎛⎫⎛⎫⎛⎫-=== ⎪ =⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确. 故选:ACD 6、【答案】4【解析】由题得12=,4,()42n n n Z ππωω⨯⨯∴=∈, 因为0>ω,所以ω的最小值等于4.故答案为:4 7、【答案】43. 【解析】由题意可得,32k k Z ππωπ⨯+=∈,求得22,3k k Z ω=-∈, 又0>ω,则ω的最小值为43, 故答案为:43. 8、【答案】. 1【解析】由题意,f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫2×π6+φ=±2,即sin ⎝⎛⎭⎫π3+φ=±1,又因为-π2<φ<π2, -π6<π3+φ<5π6,所以π3+φ=π2,即φ=π6,所以f(x)=2sin ⎝⎛⎭⎫2x +π6,f(0)=1.9、【答案】.32【解析】解法1:根据余弦函数的图像及性质,令ππωk x =-3,Z k ∈得ωππk x +=3,令23πωππ=+k 得k 232+=ω,Z k ∈,又因为0>ω,所以当0=k 时ω取得最小值为.32 解法2:由条件可得1)2(±=πf ,即1)32cos(±=-πωπ,则ππωπk =-32,Z k ∈,解得k 232+=ω,Z k ∈,又因为0>ω,所以当0=k 时ω取得最小值为.32解后反思:利用整体思想,结合三角函数的图像及性质是解决这类问题的关键!10、【答案】π3【解析】因为函数f(x)的一条对称轴是x =-512π,所以2×⎝⎛⎭⎫-5π12+φ=k π+π2,k ∈Z ,则φ=k π+4π3,k ∈Z ,又因为0≤φ<π,所以φ=π3.11、【答案】.3【解析】由相邻两条对称轴间的距离为π2,知其最小正周期T =2×π2=π,从而得ω=2πT =2ππ=2,又f(x)=2sin (2x +φ)的图像经过点⎝⎛⎭⎫π6,2,所以2sin ⎝⎛⎭⎫π3+φ=2,解得φ=2k π+π6(k ∈Z ),又因为0<φ<π,所以φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6,即有f ⎝⎛⎭⎫π4=2sin 2π3= 3.题型二 三角函数图像的变换1、【答案】A 【解析】不妨设函数2y sin x =的图象沿横轴所在直线平移ϕ个单位后得到函数23y sin x π⎛⎫=+⎪⎝⎭的图象. 于是,函数2y sin x =平移ϕ个单位后得到函数,sin 2()y x ϕ=+,即sin(22)y x ϕ=+, 所以有223k πϕπ=+,6k πϕπ=+,取0k =,6π=ϕ.答案为A . 2、【答案】D 【解析】把cos 2y x =的图象向左平移4π个单位长度,得cos 2()cos(2)sin 242y x x x ππ=+=+=-的图象,再把所得图象各点的横坐标变为原来的12倍,纵坐标不变,得图象的函数式为sin(22)sin 4y x x =-⨯=-, sin 42sin 2cos 2()cos 2y x x x f x x =-=-=,∴()2sin 2f x x =-,∴()2sin63f ππ=-=.故选:D. 3、【答案】C【解析】由题意知,3()cos(2)sin(2)44g x x x ππ=+=+,其图像向左平移a 个单位得到函数3()sin(22)4f x x a π=++, 而函数()πsin 23f x x ⎛⎫=+⎪⎝⎭,所以有32243a k πππ+=+5224a k ππ=-+,取1k =得1924a π=.答案选C.4、【答案】D【解析】因为函数()()f x sin ωx φ=+的最小正周期是π,所以2ππω=,解得ω2=,所以()()f x sin 2x φ=+, 将该函数的图像向右平移π6个单位后,得到图像所对应的函数解析式为ππy sin 2x φsin 2x φ63⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由此函数图像关于直线πx 2=对称,得: πππ2φk π232⨯+-=+,即πφk π,k Z 6=-∈,取k 0=,得πφ6=-,满足πφ2<,所以函数()f x 的解析式为()πf x sin 2x 6⎛⎫=- ⎪⎝⎭,故选D. 5、【答案】ACD【解析】由题:()22cos cos(2)1cos 2sin 2)24f x x x x x x ππ=-+-=+=+,由2y x =的图象向左平移8π个单位,得到)))84y x x ππ=+=+,所以选项A 正确;令222,242k x k k Z πππππ-≤+≤+∈,得其增区间为3[,],88k k k Z ππππ-+∈ ()f x 在(0,)8π单调递增,在(,)82ππ单调递减,所以选项B 不正确;解()0,2,4f x x k k Z ππ=+=∈,得:,28k x k Z ππ=-∈,[0,]x π∈, 所以x 取37,88ππ,所以选项C 正确;3[,0],2[,],sin(2)[1,244442x x x πππππ∈-+∈-+∈-,()[f x ∈, 所以选项D 正确. 故选:ACD6、【答案】ABD【解析】函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图像向右平移2π个单位长度得到()ππsin 223g x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦2πsin 23x ⎛⎫=- ⎪⎝⎭.由于7π7π2ππsin sin 112632g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故7π12x =是()g x 的对称轴,B 选项正确. 由于π2π2πsin sin 00333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故,03π⎛⎫ ⎪⎝⎭是()g x 的对称中心,D 选项正确.由π2ππ2232x -≤-≤,解得π7π1212x ≤≤,即()g x 在区间π7π,1212⎡⎤⎢⎥⎣⎦上递增,故A 选项正确、C 选项错误. 故选:ABD.7、【答案】-2【解析】根据图形可得直线y =a(x +2)与函数y =-cos x 的图像相切于点(x 4,-cos x 4),其中x 4∈⎝⎛⎭⎫π4,π.因为y =sin x ,由导数的几何意义可得a =sin x 4=-cos x 4-0x 4+2,化简得x 4+1tan x 4=-2.8、【答案】12【解析】将函数f (x )=sin (ωx 6π-)(ω>0)的图象向左平移3π个单位后,可得函数y =sin (ωx 36πωπ+-)的图象,再根据所得图象关于直线x =π对称,可得ωπ36πωπ+-=k π2π+,k ∈Z , ∴当k =0时,ω取得最小值为12,故答案为12.题型三 三角函数的解析式1、【答案】D【解析】因为函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫ ⎪⎝⎭, 所以2sin 23πϕ⎛⎫+=⎪⎝⎭,因此2,32k k Z ππϕπ+=+∈, 所以2,6k k Z πϕπ=+∈, 因此()2sin(2)2sin 222sin 266f x x x k x ππϕπ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭; A 选项,把()y f x =的图象向右平移6π个单位得到函数2sin 26y x π⎛⎫=-⎪⎝⎭的图象,故A 错; B 选项,由3222,262k x k k Z πππππ+≤+≤+∈得2,63k x k k Z ππππ+≤≤+∈,即函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是:2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故B 错; C 选项,由()2sin 206f x x π⎛⎫=+= ⎪⎝⎭得2,6x k k Z ππ+=∈,即,122k x k Z ππ=-+∈, 因此[]0,2x π∈,所以5111723,,,12121212x ππππ=,共四个零点,故C 错; D 选项,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,因此1sin 2,162x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以[]2sin 21,26x π⎛⎫+∈ ⎪⎝⎭,即()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的最小值为1,故D 正确; 故选:D.2、【答案】(1)()sin(2)6g x x π=-;(2)[1,2]-.【解析】 (1)由函数()f x 取得最大值1,可得1A =,函数过10,2⎛⎫ ⎪⎝⎭得12sin φ=,,26ππφφ<= 12,6662f k k Z ππππωπ⎛⎫=⇒+=+∈ ⎪⎝⎭,∵04ω<<,∴2ω= ()26f x sin x π⎛⎫=+ ⎪⎝⎭,()266g x f x sin x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.(2) ()22226h x x cos x sin x π⎛⎫=+=+ ⎪⎝⎭, 710,,2,21266626x x sin x πππππ⎡⎤⎛⎫∈≤+≤-≤+≤ ⎪⎢⎥⎣⎦⎝⎭, 12226sin x π⎛⎫-≤+≤ ⎪⎝⎭,值域为[]1,2-.。
山东省潍坊市2020-2021学年高一上学期期中数学试题 (1)
山东省潍坊市2020-2021学年高一上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}1,0,1,2U =-,{} 1,1A =-,则集合UA( )A .{0,2}B .{1,0}-C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x+≥”的否定是( ) A .(0,)x ∃∈+∞,13x x +≤ B .(0,)x ∃∈+∞,13x x +< C .(0,)x ∀∈+∞,13x x+<D .(0,)x ∀∈+∞,13x x+≤3.设x ∈R ,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列各式运算正确的是( ) A .245(1)(5)a a a a ++=++ B .222249(23)a ab b a b ++=+ C .()3322()a b a b a ab b+=+-+ D .()3322()a b a b a ab b-=--+5.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<6.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:m )与时间t (单位:s )之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米7.对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( ) A .[2,6]B .[2,6){2}⋃-C .(,2)[2,6)-∞-⋃D .[2,6)8.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( ) A .120B .130C .150D .1809.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <> ②若1a b +=,则14a b+的最小值是10; ③114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭; ④函数11y a a =++的最小值为1. A .1B .2C .3D .410.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x -≤-≤的x 的取值范围是( )A .[2,2]-B .[2,1]-C .[1,3]-D .[0,2]11.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,1--⋃+C .(2,1)(2,3)--⋃D .(2,6)12.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图像交点为()11,x y ,()22,x y ,…,()88,x y ,则128128x x x y y y +++++++的值为( ) A .20 B .24 C .36 D .40二、填空题13.函数(11)f x x -的定义域是_______. 14.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()(1)f x x x =-,则(2)f -=________.15.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为________.16.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1,1]x a a ∀∈-+,都有[1,1]y b b ∈-+,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图像上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是________.三、解答题17.已知集合{|26}A x x =-≤≤,{|35}B x x =-≤≤. (1)求AB ,A B ;(2)若{|121}C x m x m =+≤≤-,()C A B ⊆,求实数m 的取值范围.18.已知函数2()(0)1x af x a x -=>+,若不等式()1f x ≥-的解集为(,1)[0,)-∞-+∞. (1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.19.已知函数223,(02)()43,(2)x x f x x x x -+≤<⎧=⎨-+≥⎩,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图像;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围. 20.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1,1]a ∀∈-,()0f x ≥恒成立,求实数x 的取值范围.21.第二届中国国际进口博览会于2021年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2021年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+≥⎪⎩.经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2021年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2021年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少?注:利润=销售额–成本22.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图像与x 轴两交点间距离为4. (1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1,2]x ∈-. ①若()g x 为单调函数,求k 的取值范围;②记()g x 的最小值为()h k ,讨论()24h t λ-=的零点个数.参考答案1.A 【分析】利用集合补集的性质直接求解即可 【详解】由于{}1,0,1,2U =-,{} 1,1A =-,所以,UA {0,2}故选A 2.C 【分析】根据特称命题的否定是全称命题的知识,选出正确选项. 【详解】原命题是特称命题,其否定是全称命题,注意到要否定结论,故C 选项正确. 故选C. 【点睛】本小题主要考查特称命题的否定是全称命题,属于基础题. 3.A 【分析】求得不等式|3|1x -<的解集,由此判断出充分、必要条件. 【详解】由|3|1x -<得131x -<-<,即24x <<,所以“|3|1x -<”是“2x >” 充分不必要条件. 故选A. 【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题. 4.C 【分析】利用乘法分配律和立方和、立方差公式,判断出正确选项. 【详解】对于A 选项,右边265a a =++≠左边,故A 选项错误.对于B 选项,右边224129a ab b =++≠左边,故B 选项错误. 对于C 选项,根据立方和公式可知,C 选项正确.对于D 选项,根据立方差公式可知,正确的运算是()3322()a b a b a ab b -=-++,故D选项错误. 故选:C. 【点睛】本小题主要考查乘法分配律,立方和、立方差公式,考查因式分解,属于基础题. 5.D 【分析】利用函数的奇偶性化简,a c ,再根据单调性比较出三者的大小关系. 【详解】由于()f x 是偶函数,故()()()()33,11a f f c f f =-==-=.由于()f x 在(0,)+∞是增函数,所以()()()13πf f f <<,即c a b <<. 故选:D. 【点睛】本小题主要考查利用函数的奇偶性、单调性比较大小,属于基础题. 6.B 【分析】利用配方法求得()h t 的最大值,也即烟花冲出后在爆裂的最佳时刻距地面高度. 【详解】依题意2() 4.914.717h t t t =-++234.928.0252t ⎛⎫=--+ ⎪⎝⎭,故当32t =时,()max 28.02528m h t =≈.故选B. 【点睛】本小题主要考查二次函数最大值的求法,考查函数在生活中的应用,属于基础题. 7.D 【分析】对m 分成2m =和2m ≠且2m ≠-两种情况,结合一元二次不等式恒成立,求得的m 的取值范围. 【详解】当2m =时,原不等式化为104>恒成立. 当2m ≠且2m ≠-时,要使对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则需()()22240124402m m m m ⎧->⎪⎨∆=---⋅<⎪+⎩即()()()()220260m m m m ⎧+->⎪⎨--<⎪⎩,解得26m <<. 综上所述,m 的取值范围是[2,6). 故选:D. 【点睛】本小题主要考查一元二次不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于基础题. 8.A 【分析】设出3种书每本的数量,设出学生人数,根据已知条件列方程组,解方程组求得学生人数. 【详解】设毛诗x 本,春秋y 本,周易z 本,学生人数为m ,则94345x y z mxm y mz++=⎧⎪⎪=⎪⎪⎨=⎪⎪⎪=⎪⎩, 解得120403024m x y z =⎧⎪=⎪⎨=⎪⎪=⎩. 故选A. 【点睛】本小题主要考查中国古代数学文化,考查方程的思想,属于基础题. 9.B 【分析】对四个判断逐一分析,由此确定判断正确的个数.对于①,由于0,0a b >>,由11a b <,得110b a a b ab--=<,即0a b >>>以①正确.对于②,由于0,0a b >>,()14144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当42,23b a b a a b ===时等号成立,故②错误. 对于③,由于0,0a b >>,所以112,2a b a b+≥+≥,根据不等式的性质,有114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,故③正确.对于④,由于0,0a b >>,所以1111121111y a a a a =+=++-≥=-=++,但是由于111a a +=+时,0a =或2a =-,不符合题意,故等号不成立.所以④错误.综上所述,正确的判断个数为2个. 故选B. 【点睛】本小题主要考查不等式的性质,考查基本不等式的运用,属于基础题. 10.C 【分析】根据奇函数的性质,求得不等式1(1)1f x -≤-≤的解集. 【详解】由于()f x 是奇函数,故()()221f f =--=-.由于奇函数()f x 在[0,)+∞是减函数,所以()f x 在R 上是减函数.由1(1)1f x -≤-≤得()()()212f f x f ≤-≤-,所以212x ≥-≥-,解得13x -≤≤.故选C. 【点睛】本小题主要考查利用函数的奇偶性和单调性解不等式,属于基础题.【分析】构造函数()225(9)2f x x a x a a =-++--,根据()f x 零点分布列不等式组,解不等式组求得a 的取值范围. 【详解】构造二次函数()225(9)2f x x a x a a =-++--,其开口向上.依题意,()f x 的零点分别在区间(0,1)和(1,2)内,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()()222205920202920a a a a a a a a ⎧-->⎪-++--<⎨⎪-++-->⎩,解得(11)(3,1a ∈-⋃+. 故选:B. 【点睛】本小题主要考查根据一元二次方程根的分布求参数的取值范围,考查一元二次不等式的解法,属于基础题. 12.D 【分析】根据已知条件判断()f x 和()g x 都关于()2,3中心对称,由此求得128128x x x y y y +++++++的值.【详解】由于()f x 满足(2)(2)6f x f x -++=,当0x =时,()23f =,所以()f x 关于()2,3中心对称.由于()325315()3222x x g x x x x -+-===+---,所以()g x 关于()2,3中心对称.故()f x 和()g x 都关于()2,3中心对称.所以()f x 与()g x 的图像交点()11,x y ,()22,x y ,…,()88,x y ,两两关于()2,3对称.所以128128x x x y y y +++++++828340=⨯+⨯=.故选:D. 【点睛】本小题主要考查函数图像的对称性,考查化归与转化的数学思想方法,属于基础题.13.[2,1)(1,)-+∞【分析】要使函数()f x 有意义,只需2010x x +⎧⎨-≠⎩,解此不等式组即可.【详解】解:要使函数()f x 有意义,须有2010x x +⎧⎨-≠⎩,解得2x -,且1x ≠,故函数()f x 的定义域为:{|2x x -,且1}x ≠, 故答案为:[2,1)(1,)x ∈-+∞.【点睛】本题考查函数定义域的求解,属基础题,若函数为偶次根式,被开放数须大于等于0;若函数为分式,分母必不为0. 14.2 【分析】根据函数的奇偶性求得()2f -的值.【详解】由于()f x 是奇函数,故()()()222122f f -=-=--=⎡⎤⎣⎦. 故答案为:2. 【点睛】本小题主要考查利用函数的奇偶性求函数值,属于基础题. 15.{1|6x x <或12x ⎫>⎬⎭.【分析】根据20ax bx c ++>的解集写出根与系数关系,由此求得不等式20cx bx a ++<的解集. 【详解】由于不等式20ax bx c ++>的解集为{|26}x x <<,所以0a <,2682612b a c a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,即812b a c a=-⎧⎨=⎩,所以不等式20cx bx a ++<可化为21280ax ax a -+<,由于0a <,所以21280ax ax a -+<可化为212810x x -+>,即()()21610x x -->,解得16x <或12x >. 故答案为{1|6x x <或12x ⎫>⎬⎭. 【点睛】本小题主要考查一元二次不等式的解法,考查化归与转化的数学思想方法,考查运算求解能力,属于基础题.16.11,22⎡⎤-⎢⎥⎣⎦ 【分析】对m 分成1,11,1m m m ≤--<<≥三种情况,结合[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+进行分类讨论,由此求得m 的取值范围.【详解】 函数212y x =-开口向下,对称轴为y 轴.由于B 在函数212y x =-的图像上,所以212n m =-.依题意[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+,即:[1,1]x m m ∀∈-+,都有22[11122,1]y m m --∈-+. 当10m +≤,即1m ≤-时,函数212y x =-在[1,1]m m -+上递增,最小值为()2112m --,最大值为()2112m -+,所以()()2222111111211222m m m m ---<-+≤--≤+,此不等式在1m ≤-时无解.当101m m -<<+,即11m -<<时,函数212y x =-在[1,1]m m -+上,最大值为0,最小值在区间[1,1]m m -+的端点取得,故()()222222221110122111111222111111222m m m m m m m m ⎧--≤≤-+⎪⎪⎪--≤--≤-+⎨⎪⎪--≤-+≤-+⎪⎩,解得1122m -≤≤. 点10m -≥,即m 1≥时,函数212y x =-在[1,1]m m -+上递减,最小值为()2112m -+,最大值为()2112m --,所以()()2222111111211222m m m m --+<--≤--≤+,此不等式在m 1≥时无解.综上所述,m 的取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故答案为11,22⎡⎤-⎢⎥⎣⎦ 【点睛】本小题主要考查新定义函数的理解,考查分类讨论的数学思想方法,考查不等式的解法,属于中档题.17.(1){|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤(2)3m ≤【分析】(1)根据交集、并集的知识,求得A B ,A B . (2)根据(1)得到A B ,对C 分成C =∅和C ≠∅两种情况,结合()C A B ⊆进行分类讨论,由此求得m 的取值范围.【详解】(1)由已知可得{|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤.(2)由(1)知{|25}A B x x ⋂=-≤≤.由于()C AB ⊆,①若C =∅,则121m m +>-,∴2m <;②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤,综上可得3m ≤.【点睛】本小题主要考查集合交集和并集的概念和运算,考查根据集合的包含关系求参数,属于基础题.18.(1)1a =;(2)证明见解析.【分析】(1)化简不等式()1f x ≥-为整式形式,根据不等式()1f x ≥-的解集,求得a 的值.(2)利用函数单调性的定义,计算()()210f x f x ->,由此证得函数()f x 在[0,)+∞上是增函数.【详解】(1)由题意211x a x -≥-+, 变形2311011x a x a x x --++=≥++, 等价于(31)(1)0x a x -++≥且10x +≠,解得1x <-或13a x -≥, 所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取12,[0,)x x ∈+∞,且12x x <,则210x x ->,那么()()()()()2121212112321211111x x x x f x f x x x x x ----=-=++++, ∵210x x ->,()()12110x x ++>,∴()()210f x f x ->,∴函数()f x 在[0,)+∞上是增函数.【点睛】本小题主要考查分式不等式的解法,考查利用函数单调性的定义证明函数单调性,属于基础题.19.(1)()F x 在R 上是偶函数,增区间为(2,0)-,(2,)+∞,递减区间为:(,2)-∞-,(0,2),图像见解析;(2)3t >或1t =-【分析】(1)利用奇偶性的定义,判断出()F x 为偶函数,根据函数()f x 的解析式以及()F x 图像的对称性,画出()F x 的图像,根据图像写出()F x 的单调区间.(2)令()()0H x F x t =-=,()F x t =,结合()F x 图像与y t =的图像有两个交点,求得t 的取值范围.【详解】(1)由题意知()F x 定义域为R ,关于原点对称,又()(||)(||)()F x f x f x F x -=-==,∴()F x 在R 上是偶函数.函数()F x 的大致图像如下图:观察图像可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时,即()F x 的图像与直线y t =图像有两个交点,观察函数图像可得3t >或1t =-.【点睛】本小题主要考查函数奇偶性,考查函数图像的对称性,考查函数零点问题的求解策略,考查20.(1)当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,) a -;(2){|1x x ≤-或}1x ≥.【分析】(1)将不等式()0f x <左边因式分解,将a 分成1,1,1a a a <-=->-三种情况分类讨论,结合一元二次不等式的解法,求得不等式()0f x <的解集.(2)变换主参变量,将“[1,1]a ∀∈-,()0f x ≥恒成立”转化为一次函数在区间[]1,1-上恒大于零,列不等式组来求解得x 的取值范围.【详解】(1)不等式2(1)0x a x a +--<等价于 ()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,)a -.(2)22(1)(1)x a x a a x x x +--=-+++,设2()(1),[1,1]g a a x x x a =-+++∈-,要使()0g a ≥在[1,1]a ∈-上恒成立, 只需(1)0(1)0g g -≥⎧⎨≥⎩, 即22210,10,x x x ⎧++≥⎨-≥⎩解得1x ≥或1x ≤-,所以x 的取值范围为{|1x x ≤-或}1x ≥.【点睛】本小题主要考查一元二次不等式的解法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21.(1)2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩(2)2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元【分析】(1)利用()104000R =求得a 的值.利用销售额减去固定成本和()R x ,求得利润()W x 的函数关系式.(2)结合二次函数的性质、基本不等式,求得当x 为何值时,()W x 取得最大值.【详解】(1)由题意2(10)1010104000R a =⨯+=,所以300a =,当040x <<时,()22()9001030026010600260W x x x x x x =-+-=-+-; 当40x ≥时, 22901945010000919010000()900260x x x x W x x x x-+-+-=--=, 所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩. (2)当040x <<,2()10(30)8740W x x =--+当30x =时,max ()8740W x = 当40x ≥,29190100001000010000()91909190x x W x x x x x x -+-⎛⎫==--+=-++ ⎪⎝⎭, 因为0x >,所以10000200x x +≥=, 当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x ≤-+=,所以max ()8990W x =万元,因为87408990<,所以2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元.【点睛】本小题主要考查分段函数在实际生活中的应用,考查分段函数求最值的方法,属于中档题.22.(1)2()23f x x x =+-(2)①0k ≥或6k ≤-;②2λ>时无零点;12λ<<时,有4个零点,1λ=时,有3个零点,2λ=或1λ<时,有2个零点【分析】(1)设出二次函数解析式,根据已知条件得到二次函数对称轴、与y 轴交点、根与系数关系,由此列方程组,解方程组求得二次函数解析式(2)①求得()g x 解析式,根据其对称轴与区间[1,2]-的位置关系,求得k 的取值范围. ②将k 分成0k ≥,60k -<<,6k ≤-三种情况,结合()g x 的单调性,求得()h k 的表达式,利用换元法:令244m t =-≥-,即()(4)h m m λ=≥-,结合()h m 的图像对λ进行分类讨论,由此求得()24h t λ-=的零点个数.【详解】(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12b x a=-=-;① (0)3f c ==-;②设()0f x =的两个根为1x ,2x ,则12b x x a +=-,12c x x a=,124x x -===;③ 由①②③解得1a =,2b =,3c =-,∴2()23f x x x =+-.(2)①2()(2)2g x x k x =+++,其对称轴22k x +=-. 由题意知:212k +-≤-或222k +-≥, ∴0k ≥或6k ≤-.② 1)当0k ≥时,对称轴212k x +=-≤-,()g x 在[1,2]-上单调递增,()(1)1h k g k =-=-+,2)当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()24k k k h k g +--+⎛⎫=-= ⎪⎝⎭, 3)当6k ≤-时,对称轴222k x +=-≥,()g x 在[1,2]-单调递减, ()(2)210h k g k ==+, ∴21,0,44(),604210, 6.k k k k h k k k k -+≥⎧⎪--+⎪=-<<⎨⎪+≤-⎪⎩, 令244m t =-≥-,即()(4)h m m λ=≥-,画出()h m 简图,i )当1λ=时,()1h m =,4m =-或0,∴244t -=-时,解得0t =,240t -=时,解得2t =±,有3个零点.ii )当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =2个零点.iii )当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且23,(4,2)(2,0)m m ∈--⋃-,2340,40m m +>+>,∴224t m -=时,解得t =234t m -=时,解得t =4个不同的零点.iv )当2λ=时,()2h m =,224m t =-=-,∴t =有2个零点.v )当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.【点睛】本小题主要考查根据二次函数的性质求得二次函数解析式,考查含有参数的二次函数在给定区间上的单调性讨论问题,考查函数零点问题的求解策略,考查数形结合的数学思想方法,属于中档题.。
2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)
2019-2020学年山东省潍坊市高一(上)期中数学试卷一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .1808.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .49.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40二、填空题:本题共4小题,每小题5分,共20分.12.函数1()1f x x =+-的定义域为 . 13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= . 14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 .15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 .三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围.20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数.2019-2020学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}【解答】解:因为全集{1U =-,0,1,2},{1A =-,1}, 所以:{0U A =ð,2}, 故选:A .2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…【解答】解:命题“(0,)x ∃∈+∞,13x x+…”的否定是:否定限定量词和结论,故为:(0,)x ∀∈+∞,13x x+<, 故选:C .3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:由|3|1x -<,131x ∴-<-<,解得24x <<. 则由“24x <<” ⇒ “2x >”, 由“2x >”推不出“24x <<”,则“|3|1x -<”是“2x >”的充分不必要条件; 故选:A .4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<【解答】解:()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,()f x ∴在(,0)-∞上单调递减,距对称轴越远,函数值越大, (1)(3)()f f f π-<-<,则c a b <<, 故选:D .5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米【解答】解:2() 4.914.717h t t t =-++, ∴烟花冲出后在爆裂的最佳时刻为14.71.52( 4.9)t =-=⨯-,此时2(1.5) 4.9 1.514.7 1.51728h =-⨯+⨯+≈, 故选:B .6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)【解答】解:对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立, ①当240m -=且20m +≠,即2m =时,104>对x R ∈恒成立, 2m ∴=满足题意;②当2m ≠且2m ≠-时,则有2240(2)4(2)0m m m ⎧->⎨=---<⎩,解得26m <<. 综合①②,可得26m <…,故实数m 的取值范围为[2,6), 故选:D .7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .180【解答】解:本题的大意为:《毛诗》、《春秋》和《周易》共94本,3个人读《毛诗》一册,4个人读《春秋一册》,5个人读《周易》一册,问由多少个学生? 11194()345÷++479460=÷120=(人)故选:A .8.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .4【解答】解:已知a ,b 为正实数,①11a b a b<⇒>⇒>①正确; ②1414414()()14529b b a a b a b a b a a a b+=++=++++=…,所以②不正确; ③1122a a a a +=…,同理12b b +…,11()()4a b a b∴++…,所以③正确;④11111)11111y a a a a a =+=++--=+++…,当且仅当111a a +=+,即0a =时取等号,而0a >,所以1y >,不能取等号,所以 ④不正确. 故选:B .9.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]【解答】解:由奇函数()f x 在[0,)+∞是减函数,可知()f x 在(,0)-∞是减函数,从而可得,()f x 在R 上单调递减, 由(2)1f -=,可知f (2)1=-, f (2)1(1)1(2)f x f =--=-剟,212x ∴--剟,解可得,13x -剟,即解集为[1-,3] 故选:C .10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( ) A .(3,1)--B.(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)【解答】解:设函数22()5(9)2f x x a x a a =-++--,方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内, ∴函数22()5(9)2f x x a x a a =-++--的两个零点分别在区间(0,1)和(1,2)内,∴(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,即2222026030a a a a a a ⎧-->⎪--<⎨⎪->⎩,解得:11a -<<-或31x <<+, 故选:B .11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40【解答】解:函数()f x 满足(2)(2)6f x f x -++=的对称中心为(2,3), 函数315()322x g x x x -==+--也关于(2,3)中心对称, 则若交点为1(x ,1)y 时,1(4x -,16)y -也为交点,若交点为2(x ,2)y 时,2(4x -,26)y -也为交点,⋯,所以128128112288()()()x x x y y y x y x y x y ++⋯++++⋯+=++++⋯++1111222288881[()(46)()(46)()(46)]402x y x y x y x y x y x y =++-+-+++-+-+⋯+++-+-=.故选:D .二、填空题:本题共4小题,每小题5分,共20分. 12.函数1()1f x x =+-的定义域为 [2-,1)(1⋃,)+∞ . 【解答】解:由题意得: 2010x x +⎧⎨-≠⎩…, 解得:2x -…且1x ≠,故函数的定义域是[2-,1)(1⋃,)+∞, 故答案为:[2-,1)(1⋃,)+∞.13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= 2 . 【解答】解:因为()f x 是定义在R 上的奇函数,且当0x …时,2()f x x x =-, 所以(2)f f -=-(2)(24)2=--=, 故答案为:2.14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 {|6x x <或1}2x > . 【解答】解:不等式20ax bx c ++>的解集为{|26}x x <<, 所以方程20ax bx c ++=的解为2和6,且0a <; 由根与系数的关系得, 26260b a c a a ⎧+=-⎪⎪⎪⨯=⎨⎪<⎪⎪⎩, 解得8b a =-,12c a =,且0a <;所以不等式20cx bx a ++<化为212810x x -+>, 解得16x <或12x >,所以所求不等式的解集为1{|6x x <或1}2x >. 故选:1{|6x x <或1}2x >. 15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 11[,]22- .【解答】解:(,)B m n 在函数212y x =-的图象上,∴212n m =-,[1x m ∴∀∈-,1]m +,都有2211[1,1]22y m m ∈---+,①10m +…,即1m -…时,212y x =-在[1m -,1]m +上单调递增,∴2211[(1),(1)]22y m m ∈---+,∴22221111[(1),(1)][1,1]2222m m m m ---+⊆---+,∴222211(1)12211(1)122m m m m ⎧----⎪⎪⎨⎪-+-+⎪⎩……,解得12m -…,又1m -…,∴这种情况不合题意; ②1010m m +>⎧⎨-<⎩,即11m -<<时,由[1x m ∈-,1]m +可得21[(1),0]2y m ∈--或21[(1),0]2y m ∈-+,∴222111[(1),0][1,1]222m m m --⊆---+且222111[(1),0][1,1]222m m m -+⊆---+,∴2222211(1)12211(1)1221102m m m m m ⎧----⎪⎪⎪-+--⎨⎪⎪-+⎪⎩………,解得1122m-剟, ③10m -…,即1m …时,212y x =-在[1m -,1]m +上单调递减,∴2211[(1),(1)]22y m m ∈-+--,∴22221111[(1),(1)][1,1]2222m m m m -+--⊆---+,∴222211(1)12211(1)122m m m m ⎧-+--⎪⎪⎨⎪---+⎪⎩……,解得12m …,又1m …,∴这种情况不合题意,综上得,m 的取值范围是11[,]22-.故答案为:11[,]22-.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.【解答】解:(1)由已知可得{|25}AB x x =-剟,{|36}AB x x =-剟.(2)①若C =∅,则121m m +>-,2m ∴<; ②若C ≠∅,则12112215m m m m +-⎧⎪+-⎨⎪-⎩………,解得23m 剟, 综上可得3m …. 17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数. 【解答】解:(1)由题意211x ax --+…, 变形2311011x a x a x x --++=++…, 这等价于(31)(1)0x a x -++…且10x +≠, 解得1x <-或13a x -…,所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取1x ,2[0x ∈,)+∞,且12x x <,则210x x ->, 那么212121*********()()()11(1)(1)x x x x f x f x x x x x ----=-=++++, 210x x ->,12(1)(1)0x x ++>, 21()()0f x f x ∴->,∴函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.【解答】解:(1)由题意知()F x 定义域为R ,关于原点对称, 又()(||)(||)()F x f x f x F x -=-==, ()F x ∴在R 上是偶函数.函数()F x 的大致图象如下图:观察图象可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时, 即()F x 的图象与直线y t =图象有两个交点, 观察函数图象可得3t >或1t =-.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围. 【解答】解:(1)不等式2(1)0x a x a +--<等价于()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -; 当1a =-时,不等式的解集为∅; 当1a >-时,不等式的解集为(1,)a -. (2)22(1)(1)x a x a a x x x +--=-+++, 设g (a )2(1)a x x x =-+++,[1a ∈-,1],要使g (a )0…在[1a ∈-,1]上恒成立, 只需(1)0(1)0g g -⎧⎨⎩……,即22210,10,x x x ⎧++⎨-⎩……解得1x …或1x -…, 所以x 的取值范围为{|1x x -…或1}x ….20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本【解答】解:(1)由题意2(10)1010104000R a =⨯+=,所以300a =, 当040x <<时,22()900(10300)26010600260W x x x x x x =-+-=-+-;当40x …时,22901945010000919010000()900260x x x x W x x x x-+-+-=--=,所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-⎪⎩….(2)当040x <<,2()10(30)8740W x x =--+ 当30x =时,()8740max W x =⋯当40x …,29190100001000010000()9190()9190x x W x x x x x x -+-==--+=-++, 因为0x >,所以10000200x x +=…,当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x -+=…, 所以()8990max W x =万元, 因为87408990<,所以2020年产量为100(千台)时,企业所获利润最大,最大利润是8990万元. 21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数. 【解答】解:(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12bx a=-=-①;(0)3f c ==-②; 设()0f x =的两个根为1x ,2x ,则12b x x a+=-,12c x x a=,12||4x x -===;③由①②③解得1a =,2b =,3c =-,2()23f x x x ∴=+-.(2)2()()(2)2I g x x k x =+++,其对称轴22k x +=-.由题意知:212k +--…或222k +-…, 0k ∴…或6k -….()II ①当0k …时,对称轴212k x +=--…,()g x 在[1-,2]上单调递增,()(1)1h k g k =-=-+, ②当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()()24k k k h k g +--+=-=, ③当6k -…时,对称轴222k x +=-…,()g x 在[1-,2]单调递减,()h k g =(2)210k =+,∴21,0,44(),604210,6k k k k h k k k k -+⎧⎪--+⎪=-<<⎨⎪+-⎪⎩……, 令244m t =--…,即()(4)h m m λ=-…,画出()h m 简图,)i 当1λ=时,()1h m =,4m =-或0,244t ∴-=-时,解得0t =,240t -=时,解得2t =±,有3个零点.)ii 当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =有2个零点. )iii 当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且2m ,3(4m ∈-,2)(2--⋃,0),240m +>,340m +>,224t m ∴-=时,解得t =,234t m -=时,解得t =有4个不同的零点.)iv 当2λ=时,()2h m =,224m t =-=-,∴t =2个零点.)v 当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.。
山东省潍坊市2020届高三期中考试试题目(化学)
试卷类型:A高 三 化 学 2019.11 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至8页。
满分100分,考试时间为90分钟。
注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、考号、座号、试卷类型涂写在答题卡上。
考试结束时,将试题和答题卡一并交回。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上。
第Ⅱ卷共4页,用签字笔将答案直接答在答题卡上。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Al 27 S 32 C1 35.5 Fe 56 Cu 64 Zn 65第Ⅰ卷(选择题,共42分)选择题(本题包括14小题,每小题3分,共42分,每小题只有一个选项符合题意。
)1.中华民族为人类文明进步做出巨大贡献。
下列说法中不正确的是A .商代后期铸造出工艺精湛的铜合金司母戊鼎,铜属于金属晶体B .汉代烧制出“明如镜、声如磬”的瓷器,其主要原料为黏士C .宋·王希孟《千里江山图》卷中的绿色颜料铜绿的主要成分是碱式碳酸铜D .“文房四宝”中的砚台是用石材制作而成的,制作过程发生化学变化2.氮气可以作食品包装、灯泡等的填充气,也是合成纤维、合成橡胶的重要原料。
实验室制备氮气的反应式:42222NH Cl NaNO NaCl N H O ++↑+。
下列说法正确的是A .元素的电负性:N>O>HB .氮气分子的电子式:C.钠电离最外层一个电子所需要的能量:①>②D.水中的氢键可以表示为:O—H…O,其中H…O之间的距离即为该氢键的键长3.丰富多彩的颜色变化增添了化学的魅力。
下列颜色变化过程中气体被氧化的是A.水蒸气使淡黄色过氧化钠变白色B.CuSO4蓝色溶液吸收H2S后有黑色沉淀C.SO2能使溴水褪色D.C12使湿润的淀粉碘化钾试纸变蓝4.火电站是电力的主要来源之一,火电站是利用煤燃烧进行发电,同时产生污染物。
山东省各地市2020年高考数学 最新试题分类大汇编 11 圆锥曲线(1) 理
山东省各地市2020年高考数学(理科)最新试题分类大汇编:第11部分:圆锥曲线(1)一、选择题【山东省青州市2020届高三2月月考理】10. 设双曲线)0,0(12222>>=-b a bx a y 的渐近线与抛物线12+=x y 相切,则该双曲线的离心率等于A .5B .25C .6D .26 【答案】B滕州二中【山东省微山一中2020届高三10月月考理】8. 若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为 ( )A .(2,)+∞B .[2,)+∞C .(1,2]D .(1,2)答案:C解析:这里给出否定形式,直接思考比较困难,按照正难则反,考虑存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,因此只要在这个双曲线上存在点P 使得OP 斜率为1即可,所以只要渐进线的斜率大于1,也就是离心率大于2,求其在大于1的补集;该题通过否定形式考查反证法的思想,又考查数形结合、双曲线的方程及其几何性质,是中档题.【山东省临沭一中2020届高三12月理】8.已知双曲线22221x y a b -=的一个焦点与抛物线24y x =的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A.224515y x -= B.22154x y -= C.22154y x -= D.225514y x -= 【答案】D【山东省实验中学2020届高三上学期第一次诊断性考试理】12. 点P 在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是(A) .2 (B) .3(C) .4(D) .5【答案】D【山东省滕州二中2020届高三上学期期中理】11: 已知直线l 是椭圆)0(12222>>=+b a by a x 的右准线,如果在直线l 上存在一点M ,使得线段OM (O 为坐标原点)的垂直平分线过右焦点,则椭圆的离心率的取值范围是( )A .)1,23[B . )1,22[C .)1,22( D . )1,21[【答案】B【山东省青岛市2020届高三期末检测 理】10.以坐标轴为对称轴,原点为顶点,且过圆222690x y x y +-++=圆心的抛物线方程是A .23x y =或23x y -= B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=【答案】D【山东省青岛市2020届高三期末检测 理】11.以双曲线22221x y a b-=(0,0)a b >>的左焦点F为圆心,作半径为b 的圆F ,则圆F 与双曲线的渐近线 A .相交B .相离C .相切D .不确定【答案】C【山东省莱芜市2020届高三上学期期末检测 理】正三角形一个顶点是抛物线)0(22>=p py x 的焦点,另两个顶点在抛物线上,则满足此条件的正三角形共有A.0个B.1个C.2个D.4个 【答案】C【山东省莱芜市2020届高三上学期期末检测 理】若点O 和点F 分别为椭圆15922=+y x 的中心和左焦点,点P 为椭圆上任意一点,则OP FP ⋅u u u r u u r的最小值为A.411B.3C.8D.15 【答案】A【山东省烟台市2020届高三期末检测理】7.直线022=+-y x 经过椭圆)0(12222>>=+b a b y a x 的一个焦点和一个顶点,则该椭圆的离心率为 A.55 B.21 C.552 D.32 【答案】C【山东省潍坊市重点中学2020届高三2月月考理】11.若双曲线)0(12222>>=-b a by a x 的左右焦点分别为1F 、2F ,线段21F F 被抛物线212x y b=的焦点分成3:2的两段,则此双曲线的离心率为A .98 B .63737 C . 533 D . 52121【答案】D【山东省潍坊市三县2020届高三12月联考理】10.若椭圆mx 2+ny 2=1与直线x+y-1=0交于A 、B 两点,过原点与线段AB 中点的直线的斜率为22则nm=( ) A 2 B 22 C 23 D 92【答案】B【山东省潍坊市三县2020届高三12月联考理】11.过双曲线2222by a x -=1(a >0,b >0)的左焦点F (-c ,0)(c >0),作圆4222a y x =+的切线,切点为E ,延长FE 交双曲线右支于点P ,若()OP OF OE +=21,则双曲线的离心率为( ) A .10 B .510C .210D .2【答案】C【山东省枣庄市2020届高三上学期期末理】11.已知双曲线12222=-b y a x 的一个焦点与抛物线x y 42=的焦点重合,且该双曲线的离心率为5,则该双曲线的渐近线方程为A.x y 21±= 2 B.x y 2±= 4C.x y 2±=D.x y 22±= 【答案】C【山东实验中学2020届高三第一次诊断性考试理】12. 点P 在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是(A) .2 (B) .3(C) .4(D) .5【答案】D【解析】解:设|PF 2|,|PF 1|,|F 1F 2|成等差数列,且分别设为m-d,m,m+d,则由双曲线定义和勾股定理可知:m-(m-d)=2a,m+d=2c, (m-d)2+m 2=(m+d)2,解得m=4d=8a,5252d ce da ∴===故选项为D【山东省聊城市五校2020届高三上学期期末联考】6.已知P 是以F 1、F 2为焦点的椭圆,0,)0(1212222=⋅>>=+PF PF b a b y a x 且上一点 ,21tan 21=∠F PF 则该椭圆的离心率为( )A .21B .32 C .31 D .35 【答案】D【山东济宁梁山二中2020届高三12月月考理】12.设F 是抛物线()02:21>=p px y C 的焦点,点A 是抛物线1C 与双曲线1:22222=-by a x C ()0,0>>b a 的一条渐近线的一个公共点,且AF x ⊥轴,则双曲线的离心率为A . 25B . 5C . 3D . 2【答案】B【莱州一中2020高三第三次质量检测理】10.已知点P 是抛物线28y x =-上一点,设P 到此抛物线准线的距离是1d ,到直线100x y +-=的距离是2d ,则12d d +的最小值是 3B.362D. 3【答案】C【山东省滨州市沾化一中2020届高三上学期期末理】9.若椭圆221x y m n+=(m >n >0)和双曲线221x y a b-=(a >b >0)有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -aB .1()2m a -C .m 2-a 2D m a -【答案】A【山东济宁邹城二中2020届高三上学期期中】2.已知双曲线2212y x -=的焦点为F 1、F 2, 点M 在双曲线上且120,MF MF ⋅=u u u u r u u u u r则点M 到x 轴的距离为( )A .43B .53 CD【答案】C【山东济南市2020界高三下学期二月月考理】已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范围是 A .(1,)+∞B.C .(1,2)D.(1,1+【答案】D【山东济南市2020界高三下学期二月月考理】抛物线214y x =的焦点坐标是 A .,0161() B .(1,0)C .1-,016()D . 0,1()【答案】D【山东省济宁市2020届高三上学期期末检测理】2.抛物线y x 42=的焦点坐标为 A.(1,0) B.(2,0)C.(0,1)D.(0,2)【答案】C【山东省济南一中2020届高三上学期期末理】10. 已知抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是 A .19 B .125C .15D .13 【答案】A【山东省苍山县2020届高三上学期期末检测理】2.抛物线28x y =的焦点到准线的距离是 ( ) A .1 B .2C .4D .8【答案】C【山东省潍坊市2020届高三上学期期末考试理】10.已知点P 是抛物线x y 82-=上一点,设P 到此抛物线准线的距离是d 1,到直线010=-+y x 的距离是d 2,则d l +d 2的最小值是 A. 3 B. 32 C. 26 D .3 【答案】C【山东省苍山县2020届高三上学期期末检测理】12.已知圆22:6480C x y x y +--+=,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 ( )A .221124x y -= B .221412x y -= C .22124x y -= D .22142x y -= 【答案】B 二、填空题【山东省潍坊市2020届高三上学期期末考试理】15.已知双曲线)0,0(12222>>=-b a by a x 的离心率为332,焦距为2c ,且2a 2=3c ,双曲线 上一点P 满足为左右焦点)、2121(2F F PF PF =•,则=•||||21PF PF . 【答案】4【山东省莱芜市2020届高三上学期期末检测 理】若双曲线12222=-by a x 的一条渐近线与抛物线122+=x y 只有一个公共点,则双曲线的离心率等于 .【答案】3【山东省潍坊市三县2020届高三12月联考理】13. 已知AB 是过抛物线22y x =焦点的弦,||4AB =,则AB 中点的横坐标是 .【答案】23【莱州一中2020高三第三次质量检测理】15.已知双曲线22221(0,0)x y a b a b-=>>的离心率,焦距为2c ,且223a c =,双曲线上一点P 满足1212(PF PF F =u u u r u u u r g 、2F 为左、右焦点),则12||||PF PF =u u u r u u u r g .【答案】4【山东省东营市2020届高三上学期期末(理)】15.已知双曲线)0,0(12222>>=-b a b y a x 的离心率为332,焦距为2c ,且2a 2=3c ,双曲线 上一点P 满足为左右焦点)、2121(2F F PF PF =•,则=•||||21PF PF. 【答案】4【山东省济宁市汶上一中2020届高三11月月考理】12.已知点P 是以12,F F 为焦点的椭圆22221(0)x y a b a b +=>>上一点,且120,PF PF ⋅=u u u r u u u u r 121tan ,2PF F ∠=则该椭圆的离心率等于________. 【答案】35【山东省临沭一中2020届高三12月理】16. 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是F 1,F 2,过F 2作倾斜角为120︒的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为 【答案】32-三、解答题【山东实验中学2020届高三第一次诊断性考试理】22.(本小题满分14分)己知椭圆C :旳离心率e =,左、.右焦点分别为,点.,点尽在线段PF 1的中垂线i. (1) 求椭圆C 的方程; (2) 设直线与椭圆C 交于M ,N 两点,直线、的倾斜角分别为,且,求证:直线/过定点,并求该定点的坐标.【解题说明】本试题主要考察椭圆的标准方程,以及恒过定点的直线,直线与圆锥曲线的综合运用。
2021年11月山东省潍坊市普通高中2022届高三上学期11月期中模拟考试数学试卷及答案
2021年11月山东省潍坊市普通高中2022届高三上学期11月期中模拟考试数学试卷★祝考试顺利★(含答案)(满分:150分 考试时间:120分钟)一、 单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.1. 已知集合A ={x|1<x<5},B ={x∈N |-1<x ≤3},则A ∩B =( )A. (1,3]B. (-1,5)C. {2,3}D. {1,2,3}2. 我们称可同时存在于一个指数函数与一个对数函数的图象上的点为“和谐点”,则四个点M (1,1),N (2,1),P (2,2),Q (2,-3)中“和谐点”的个数为( )A. 1B. 2C. 3D. 43. 已知sin 2α=-14,则sin 2(α+π4)=( ) A. 18B. 38C. 158 D. 584. 函数f (x )=x 3cos x x 2+1的图象大致为( )5. 为庆祝中国共产党成立100周年,某学校组织“红心向党”歌咏比赛,前三名被甲、乙、丙获得.下面三个结论:“甲为第一名,乙不是第一名,丙不是第三名”中只有一个正确,由此可推得获得第一、二、三名的依次是( )A. 甲、乙、丙B. 乙、丙、甲C. 丙、甲、乙D. 乙、甲、丙6. 若函数f (x )=(x 2+ax +2)·e x 在R 上无极值,则实数a 的取值范围是( )A. (-2,2)B. (-23,23)C. [-23,23]D. [-2,2]7. 已知x >0,y >0,x +2y =1,则(x +1)(y +1)xy的最小值为( ) A. 4+43B. 12 C. 8+43D. 168. “迪拜世博会”于2021年10月1日至2022年3月31日在迪拜举行,中国馆建筑名为“华夏之光”,外观取型中国传统灯笼,寓意希望和光明.它的形状可视为内外两个同轴圆柱,某爱好者制作了一个中国馆的实心模型,已知模型内层底面直径为12 cm,外层底面直径为16 cm,且内外层圆柱的底面圆周都在一个直径为20 cm 的球面上.此模型的体积为( )A. 304π cm 3B. 840π cm 3C. 912π cm 3D. 984π cm 3二、 多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9. 某位同学10次考试的物理成绩y 与数学成绩x 如下表所示:参考数据: ∑10i =1x i =800. 已知y 与x 线性相关,且y 关于x 的回归直线方程为y =1.1x -5,则下列说法正确的是( )A . a =86B . y 与x 正相关C . y 与x 的相关系数为负数D . 若数学成绩每提高5分,则物理成绩估计能提高5.5分10. 下列四个函数中,以π为周期且在(0,π2)上单调递增的偶函数有( )A . y =cos |2x|B . y =|tan x|。
山东省潍坊市2022届高三上学期期中考试理科数学Word版含答案
山东省潍坊市2022届高三上学期期中考试理科数学Word版含答案高三数学试题(理科)注意事项:1.本试卷分4页,本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡及答题纸上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷写在答题纸对应区域内,严禁在试题卷或草纸上答题.5.考试结束后,将答题卡和答题纸一并交回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一个符合题目要求的选项.)1.设某∈Z,集合A为偶数集,若命题p:某∈Z,2某∈A,则pA.某∈Z,2某AC.某∈Z,2某∈AB.某Z,2某∈AD.某∈Z,2某A2.设集合A={1,2,3},B={4,5},C={某|某=ba,aA,bB},则C中元素的个数是A.3B.4C.5D.63.已知幂函数yf(某)的图像过点(A.21,),则log2f(2)的值为22D.12B.-C.-124.在△ABC中,内角A、B的对边分别是a、b,若A.等腰三角形C.等腰三角形或直角三角形|某|coAb,则△ABC为coBaB.直角三角形D.等腰直角三角形5.若当某∈R时,函数f(某)a(a0且a1)满足f(某)≤1,则函数yloga(某1)的图像大致为6.已知110,给出下列四个结论:①ab②abab③|a||b|ab④abb2其中正确结论的序号是A.①②B.②④C.②③D.③④7.等差数列{an}的前20项和为300,则a4+a6+a8+a13+a15+a17等于A.60B.80C.90D.1202某a,某08.已知函数f(某)(aR),若函数f(某)在R上有两个零点,则a的取值2某1,某0范围是A.(,1)B.(,1]C.[1,0)某D.(0,1]9.已知数列{an}的前n项和为n,且n+an=2n(n∈N),则下列数列中一定是等比数列的是A.{an}B.{an-1}C.{an-2}D.{an+2}10.已知函数f(某)in(某3)(0)的最小正周期为,将函数yf(某)的图像向55D.126右平移m(m>0)个单位长度后,所得到的图像关于原点对称,则m 的最小值为A.62B.3C.11.设函数f(某)某某in某,对任意某1,某2(,),若f(某1)f(某2),则下列式子成立的是A.某1某222B.某1某2C.某1|某2|22D.|某1||某2|12.不等式2某a某yy≤0对于任意某[1,2]及y[1,3]恒成立,则实数a的取值范围是A.a≤22B.a≥22C.a≥113D.a≥92二、填空题(本大题共4小题,每小题4分,共16分)13.23t2dt1,则inco.421某15.已知一元二次不等式f(某)0的解集为{某|某2},则f(2)0的解集为。
2020年山东新高考数列精选模拟试题(含解析)
专题8 数列数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要. 预测2020年将保持稳定,注意主观题与不等式、函数等相结合.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC.D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3-B .1-C .3D .13.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路若存在两项,m n a a32=,则14m n+的最小值为 A .34B .910C .32D .955.(2020届山东省青岛市高三上期末)已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a =( ) A .23B .32C .43D .34二、多选题6.(2020届山东省潍坊市高三模拟一)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则下列正确的是( ) A .12a =-B .12a =C .4d =D .4d =-7.(2020·山东曲阜一中高三3月月考)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路8.(2020届山东省潍坊市高三模拟二)将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 9.(2020届山东省济宁市第一中学高三一轮检测)等差数列{}n a 是递增数列,满足753a a =,前n 项和为n S ,下列选择项正确的是( ) A . 0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为810.(2020·山东滕州市第一中学高三3月模拟)已知数列{}{},n n a b 满足1111312,2ln(),0n n n n n n n a a b b a b n N a b n*+++=+=++∈+> 给出下列四个命题,其中的真命题是( ) A .数列{}n n a b -单调递增; B .数列{}n n a b + 单调递增; C .数{}n a 从某项以后单调递增; D .数列{}n b 从某项以后单调递增.三、填空题11.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.12.(2020届山东省潍坊市高三模拟一)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用n a 表示解下()*9,n n n N≤∈个圆环所需移动的最少次数,{}na 满足11a=,且()()112122n n n a n a a n --⎧-⎪=⎨+⎪⎩为偶数为奇数,则解下5个圆环需最少移动________次.四、解答题13.(2020·山东高三模拟)已知各项均不相等的等差数列{}n a 的前4项和为414S =, 且137,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .14.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 15.(2020届山东省高考模拟)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-(*n N ∈),数列{}n b 满足16b =,14n n nb S a =++(*n N ∈). (Ⅰ)求数列{}n a 通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 16.(2020届山东省济宁市第一中学高三一轮检测)已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =.(1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.17.(2020届山东省济宁市第一中学高三二轮检测)已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+.(1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .18.(2020·山东滕州市第一中学高三3月模拟)已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)若12111n n T S S S =+++,证明:34n T <. 19.(2020届山东省泰安市肥城市一模)记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.20.(2020届山东省济宁市高三3月月考)已知数列{}n a 为公差不为0的等差数列,且139a a a 、、成等比数列,246a a +=.(1)求数列{}n a 的通项n a ; (2)设()21cos3n n n a b a π+=,求数列{}nb 的前2020项的和2020S.21.(2020届山东省菏泽一中高三2月月考)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N . (1)证明:{}1n S +为等比数列,求出{}n a 的通项公式; (2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.22.(2020届山东省潍坊市高三模拟一)已知等差数列{}n a 的前n 项和为n S ,34a =,627S =. (1)求{}n a 的通项公式;(2)设2n an b =,记n T 为数列{}n b 的前n 项和.若124m T =,求m .23.(2020届山东省潍坊市高三模拟二)已知数列{a n }的首项为a 1=1,且*12(1)()n n a a n N +=+∈.(Ⅰ)证明:数列{a n +2}是等比数列,并求数列{a n }的通项公式; (Ⅱ)设b n =log 2(a n +2)﹣log 23,求数列32n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .24.(2020届山东省六地市部分学校高三3月线考)数列{}n a 满足:123a a a +++()1312nn a +=- (1)求{}n a 的通项公式; (2)若数列{}n b 满足3n na b n a =,求{}n b 的前n 项和n T .25.(2020届山东省潍坊市高三下学期开学考试)已知函数()log k f x x =(k 为常数,0k >且1k ≠). (1)在下列条件中选择一个________使数列{}n a 是等比数列,说明理由; ①数列(){}n f a 是首项为2,公比为2的等比数列; ②数列(){}n f a 是首项为4,公差为2的等差数列;③数列(){}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 26.(2020届山东济宁市兖州区高三网络模拟考)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}n c ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 27.(2020·山东高三下学期开学)已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<. 28.(2020届山东省淄博市高三二模)已知数列{}n a 满足132a =,且()1112,22n n n a a n n *--=+≥∈N .(1)求证:数列{}2nn a 是等差数列,并求出数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .29.(2020届山东省淄博市部分学校高三3月检测)已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+.(1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和.30.(2020·2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中, 11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC. D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以1(2,)n n a n n N -+=≥∈, 又1a f =,则7781a a q f === 故选D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3- B .1-C .3D .1【答案】C 【解析】当2n ≥ 时,1121,,33n n n n n n S a S a --++== 两式作差可得:11211213311n n n n n a n n n a a a a n n --+++=-⇒==+-- , 据此可得,当2n = 时,1nn a a -的最大值为33.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路【答案】C 【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由S 6=378求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.4.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32=,则14m n+的最小值为 A .34B .910C .32D .95【答案】A 【解析】因为数列{}n a 是正项等比数列,28516a a a ,3520a a +=,所以2285516a a a a ,516a =,34a =,所以253a a q =,2q ,451a a q ,11a =,1112n n n a a q --==,32=,所以1110222m n,12m n +=,414114112125n m mnm n mnm n431124520,0n m mnm n ,当且仅当2n m =时“=”成立, 所以14mn的最小值为34,故选A 。
2020届山东省新高考高三优质数学试卷分项解析 专题02 相等关系与不等关系,计数原理(原卷版)
专题2 相等关系与不等关系高考试题不等式的考查有两类,一是涉及不等式的性质、不等式的解法、绝对值不等式;二是基本不等式及其应用等,一般不独立命题,而是以工具的形式,与充要条件、函数与导数、解析几何、三角函数、数列等综合考查.预测2020年独立考查的内容将是不等式的性质或基本不等式的应用问题,不等式的解法将与集合、函数等其它知识点综合考查.第一部分 相等关系与不等关系一、单选题1.(2020届山东省日照市高三上期末联考)如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈10=尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是( )A .2.55尺B .4.55尺C .5.55尺D .6.55尺2.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,23.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .1634.(2020·全国高三专题练习(文))“[]1,2x ∀∈,210ax +≤”为真命题的充分必要条件是( )A .1a ≤-B .14a -≤ C .2a ≤- D.0a ≤5.(2020届山东省枣庄、滕州市高三上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( )A .22a b >B .1ba<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.(2020届山东省枣庄市高三上学期统考)不等式220ax bx ++>的解集为{12}x x -<<,则不等式220x bx a ++>的解集为( )A .{1x <-或1}2x > B .1{1}2x x -<<C .{21}x x -<<D .{2x <-或1}x >9.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .1810.(2020届山东省枣庄市高三上学期统考)如图,在△ABC 中,点,D E 是线段BC 上两个动点,且AD AE +u u u r u u u rx AB y AC =+u u u r u u u r ,则14x y+的最小值为( )A .32B .2C .52D .9211.(2020届山东省枣庄市高三上学期统考)不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-12.(2020届山东省滨州市三校高三上学期联考)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .913.(2020届山东师范大学附中高三月考)若0a >,0b >,()lg lg lg 2a b a b +=+,则2a b +的最小值为( ) A .9B .8C .7D .614.(2020届山东实验中学高三上期中)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集个数有 A .2B .3C .4D .815.(2020届山东实验中学高三上期中)已知定义在R 上的函数()f x 满足()()22f x f x +=-,且当2x >时,有()()()()2,11xf x f x f x f ''+>=若,则不等式()12f x x <-的解集是( ) A .(2,3) B .(),1-∞C .()()1,22,3⋃D .()(),13,-∞⋃+∞二、多选题16.(2020届山东省泰安市高三上期末)已知a b c d ,,,均为实数,则下列命题正确的是( ) A .若,a b c d >>,则ac bd > B .若0,0ab bc ad >->,则0c da b-> C .若,,a b c d >>则a d b c ->- D .若,0,a b c d >>>则a b d c> 17.(2020届山东省滨州市三校高三上学期联考)设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >18.(2020届山东省潍坊市高三上期中)若x y ≥,则下列不等式中正确的是( ) A .22x y ≥B .2x yxy +≥ C .22x y ≥ D .222x y xy +≥19.(2020届山东省九校高三上学期联考)下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤20.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 三、填空题21.(20201x x +x =______. 22.(2020届山东省枣庄市高三上学期统考)函数2245()(1)1x x f x x x -+=>-的最小值是__________.23.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.24.(2020·全国高三专题练习(理))谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数13与115的和表示25等.从11111,,,,,234100101⋅⋅⋅这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)25.(2020·全国高三专题练习(理))已知圆()()22212x y -+-=关于直线()10,0ax by a b +=>>对称,则21a b+的最小值为__________. 26.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________.27.(2020·山东省淄博实验中学高三上期末)设()()201x a x f x x x x ⎧-≤⎪=⎨+⎪⎩,,>. (1)当12a =时,f (x )的最小值是_____; (2)若f (0)是f (x )的最小值,则a 的取值范围是_____. 四、解答题28.(2020届山东师范大学附中高三月考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是21()5004R x x x =-+(元),()P x 为每天生产x 件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件a 元进货后又以每件b 元销售, ()b a c a λ=+-,其中c 为最高限价()a b c <<,λ为销售乐观系数,据市场调查,λ是由当b a -是c b -,c a -的比例中项时来确定.(1)每天生产量x 为多少时,平均利润()P x 取得最大值?并求()P x 的最大值; (2)求乐观系数λ的值;(3)若600c =,当厂家平均利润最大时,求a 与b 的值.29.(2020届山东省潍坊市高三上期中)在经济学中,函数()f x 的边际函数()Mf x 定义为()()()1Mf x f x f x =+-.某医疗设备公司生产某医疗器材,已知每月生产x 台()x N *∈的收益函数为()2300020R x x x =- (单位:万元),成本函数()5004000C x x =+(单位:万元),该公司每月最多生产100台该医疗器材.(利润函数=收益函数-成本函数)(1)求利润函数()P x 及边际利润函数()MP x ;(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到0.1) (3)求x 为何值时利润函数()P x 取得最大值,并解释边际利润函数()MP x 的实际意义. 30.(2020届山东省枣庄市高三上学期统考)非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<(Ⅰ)当3a =时,求A B I ;(Ⅱ)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.第二部分 计数原理一、单选题1.(2020届山东省烟台市高三上期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为( ) A .216B .480C .504D .6242.(2020届山东省九校高三上学期联考)汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎的五个螺栓,记为A 、B 、C 、D 、E (在正五边形的顶点上),紧固时需要按一定的顺序固定每一个螺栓,但不能连续固定相邻的两个,则不同固定螺栓顺序的种数为( ) A .20 B .15 C .10D .53.(2020·全国高三专题练习(理))已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲.乙结账方式不同,丁用哪种结账方式都可以若甲乙丙丁购物后依次结账,那么他们结账方式的组合种数共有( ) A .36种B .30种C .24种D .20种4.(2020·山东省淄博实验中学高三上期末)“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )A .59B .49C .716D .9165.(2020届山东省潍坊市高三上学期统考)6本不同的书摆放在书架的同一层上,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有( )种 A .24B .36C .48D .606.(2020届山东省滨州市高三上期末)展开式中项的系数为( )A .B .C .D .7.(2020届山东省九校高三上学期联考)吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15 B .815 C .35D .3208.(2020届山东省临沂市高三上期末)6324x x ⎛⎝的展开式的中间项为( ) A .-40B .240x -C .40D .240x9.(2020届山东省潍坊市高三上期中)(82x 展开式中3x 的系数为( )A .-112B .28C .56D .112二、多选题 三、填空题10.(2020届山东省日照市高三上期末联考)二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)11.(2020届山东省潍坊市高三上学期统考)在32nx x ⎛ ⎝的展开式中,只有第五项的二项式系数最大,则展开式中的常数项是 .12.(2020届山东省德州市高三上期末)6212x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______;系数最大的项是______. 13.(2020届山东省临沂市高三上期末)现将七本相同的书分给甲、乙、丙三人,每人至少一本,则甲分得的书不少于3本的概率是______.14.(2020·全国高三专题练习(理))在()8x 的展开式中,含44x y 项的系数是_______.。
潍坊市2023届高三上学期期中考试模拟数学试题试题(含答案)
数 学 试 题 2022.10一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|24}A x x ,集合2|320B x x x ,则R A C B A.{|14}x xB.{|12}x xC.{|24}x xD.2.设x R ,则“sin 0x ”是“cos 1x ”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知随机变量 服从正态分布22,N ,且(4)0.7P ,则(02)P A.0.1B.0.2C.0.3D.0.44.函数321)(xxe x x f x的图像大致为( )5.某市新冠疫情封闭管理期间,为了更好的保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有( ) A.540种B.180种C.360种D.630种6.若关于x 的不等式22(4)(2)10a x a x 的解集不为空集,则实数a 的取值范围为( )7.设函数)('x f 是奇函数)()(R x x f 的导函数,0)1( f ,当0 x 时,0)()(' x f x xf ,则使得0)( x f 成立的x 的取值范围是( )A .),1()1,(B .)1,0()0,1(C .)1,0()1,(D .),1()0,1(高三上学期期中考试模拟考试8.已知数列{}n a 和{}n b 首项均为1,且11(2),n n n n a a n a a ,数列{}n b 的前n 项和为S n ,且满足1120n n n n S S a b ,则S 2019=( )二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若121()(),()933P AB P A P B ,,则事件A 与B 的关系错误是( ) A.事件A 与B 相互独立 B.事件A 与B 对立C.事件A 与B 互斥D.事件A 与B 既互斥又独立10.已知2112n x x的展开式中第二项与第三项的系数的绝对值之比为1:8,则A.4nB.展开式中所有项的系数和为1C.展开式中二项式系数和为42 D.展开式中不含常数项 11.函数())0,||2f x x的部分图像如图所示,则下列说法中正确的有 A.()f x 的最小正周期T 为B.()f x 向右平移38个单位后得到的新函数是偶函数 C.若方程()1f x 在(0,)m 上共有4个根,则这4个根的和为72D.5()0,4f x x图像上的动点M 到直线240x y 的距离最小时,M 的横坐标为4.12.若过点(1,)P 最多可作出*n n N 条直线与函数()(1)e xf x x 的图象相切,则 A.n 可以取到3B.4nC.当1n 时, 的取值范围是4,eD.当2n 时,存在唯一的 值三、填空题:本题共4小题,每小题5分,共20分。
2021届新高考数学精选考点专项突破:集合【含答案解析】
2021届新高考数学精选考点专项突破集合一、单项选择题1、(2020届山东省潍坊市高三上期中)已知集合{}220A x x x =-≥,{}03B x x =<<,则AB =( )A .()1,3-B .(]0,2C .[)2,3D .()2,3【答案】C 【解析】{|0A x x =≤或2}x ≥,{|03}B x x =<<, [2,3)A B ∴⋂=.故选:C.2、(2020年高考全国Ⅱ卷理数)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B =( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【解析】由题意可得{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选A3、(2020届山东省滨州市高三上期末)已知{}|13A x x =-≤<,{}0,2,4,6B =,则A B =( )A .{}0,2B .{}1,0,2-C .{}|02x x ≤≤D .{}1|2x x -≤≤【答案】A【解析】因为{}|13A x x =-≤<,{}0,2,4,6B =, 所以{}0,2AB =.故选:A.4、(2020年高考天津)设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩( ).A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C【解析】由题意结合补集的定义可知{}2,1,1UB =--,则(){}U1,1AB =-.故选C .5、(2020年高考北京)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( )A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】{1,0,1,2}(0,3){1,2}A B =-=,故选D .6、(2020年高考北京)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( )A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】{1,0,1,2}(0,3){1,2}A B =-=,故选D .7、(2020届山东省日照市高三上期末联考)若集合 A={﹣2,﹣1,0,1,2},B={x|x 2>1},则 A∩B=( ) A .{x|x <﹣1或x >1} B .{﹣2,2} C .{2}D .{0}【答案】B 【解析】由B 中不等式解得:x >1或x <﹣1,即B={x|x >1或x <﹣1}, ∵A={﹣2,﹣1,0,1,2}, ∴A∩B={﹣2,2}, 故选B .8、(2020届山东省枣庄市高三上学期统考)已知集合{}04A x Z x =∈<<,()(){}120B x x x =+-<,则AB =( )A .()0,2B .()1,2-C .{}0,1D .{}1【答案】D【解析】由题意,集合{}{}041,2,3A x Z x =∈<<=, ()(){}{}12012B x x x x x =+-<=-<<, 所以{}1A B ⋂=. 故选D .9、(2020届山东省烟台市高三上期末)已知集合{}2|20A x x x =--≤,{}|B x y x ==,则A B =( )A .{}1|2x x -≤≤B .{}|02x x ≤≤C .{}1|x x ≥-D .{}|0x x ≥【答案】C 【解析】由题,因为220x x --≤,则()()210x x -+≤,解得12x -≤≤,即{}|12A x x =-≤≤; 因为0x ≥,则{}|0B x x =≥, 所以{}|1A B x x ⋃=≥- 故选:C10、(2020届山东省枣庄、滕州市高三上期末)已知集合{|11}A x x =-≤≤,则A N ⋂=( ) A .{1} B .{0,1}C .{}1-D .{0,1}-【答案】B 【解析】 由题意{0,1}A N =.故选:B.11、(2020年高考全国Ⅱ卷理数)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B【解析】求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故12a-=, 解得2a =-. 故选B .12、(2020届山东师范大学附中高三月考)已知集合{}2230A x x x =--<,{}22B x x =-<<,若A B =( )A .(2,2)-B .(2,1)-C .(1,3)-D .(1,2)-【答案】D 【解析】由(3)(1)0x x -+<得13x ,(1,3)A ∴=-,又(2,2)B =-,(1,2)A B ∴=-,故选:D.13、(2020届山东省九校高三上学期联考)已知集合{}|21xA x =≤,(){}|lg 1B x y x ==-,则()R AC B =( ) A .∅ B .(0,1) C .(,1]-∞ D .(,0]-∞【答案】D【解析】由题:{|21}{0}xA x x x =≤=≤,(){|lg 1}{|1}B x y x x x ==-=>, {1}RC B x x =≤,()(,0]R A C B =-∞故选:D14、(2020届山东省德州市高三上期末)已知全集U =R ,{}2|9A x x =<,{}|24B x x =-<<,则()RAB 等于( )A .{}|32x x -<<-B .{}|34x x <<C .{}|23x x -<<D .{}|32x x -<≤-【答案】D 【解析】{}{}2933A x x x x =<=-<<,{}24B x x =-<<,则{2U B x x =≤-或}4x ≥,因此,(){}32RA B x x ⋂=-<≤-.故选:D.15、(2020·山东省淄博实验中学高三上期末)已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( )A .(),0-∞B .(],0-∞C .()1,+∞D .[)1,+∞【答案】A 【解析】(){}|1001A x x x x =-≤⇒≤≤ (){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A16、(2020年高考全国Ⅱ卷理数)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2 B .3 C .4D .6【答案】C【解析】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选C .二、多项选择题17、(2019秋•北镇市校级月考)已知集合{2M =-,2334x x +-,24}x x +-,若2M ∈,则满足条件的实数x 可能为( ) A .2B .2-C .3-D .1【答案】.AC【解析】:由题意得,22334x x =+-或224x x =+-, 若22334x x =+-,即220x x +-=, 2x ∴=-或1x =,检验:当2x =-时,242x x +-=-,与元素互异性矛盾,舍去; 当1x =时,242x x +-=-,与元素互异性矛盾,舍去. 若224x x =+-,即260x x +-=, 2x ∴=或3x =-,经验证2x =或3x =-为满足条件的实数x . 故选:AC .18、(2019秋•启东市期末)已知全集U R =,集合A ,B 满足A B ,则下列选项正确的有( ) A .AB B =B .A B B =C .()U A B =∅D .()U AB =∅【答案】BD . 【解析】A B ,A B A ∴=,AB B =,()U C A B =≠∅,()U AC B =∅,故选:BD .19、(2019秋•苏州期末)已知集合{|2}A x ax =,{2B =2},若B A ⊆,则实数a 的值可能是( ) A .1- B .1C .2-D .2【答案】ABC【解析】:因为集合{|2}A x ax =,{2B =2},B A ⊆, 若1a =-,[2A =-,)+∞,符合题意,A 对; 若1a =,(A =-∞,2],符合题意,B 对; 若2a =-,[1A =-,)+∞,符合题意,C 对; 若1a =,(A =-∞,1],不符合题意,D 错; 故选:ABC .20、(2019秋•薛城区校级月考)已知集合{|1}A x ax ==,{0B =,1,2},若A B ⊆,则实数a 可以为( )A .12B .1C .0D .以上选项都不对【答案】ABC【解析】:集合{|1}A x ax ==,{0B =,1,2},A B ⊆, A ∴=∅或{1}A =或{2}A =,∴1a 不存在,11a=,12a =,解得1a =,或1a =,或12a =. 故选:ABC .21、已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈,则( ) A .A B ⊆ B .B A ⊆ C .A B = D .A B =∅【答案】ABC【解析】:已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈, 若x 属于B ,则:233*(2)2*(2)x a b a b a =-=-+-; 2a b -、2a -均为整数,x 也属于A ,所以B 是A 的子集;若x 属于A ,则:322*(3)3*x a b a b =+=+-(a ); 3a b +、a 均为整数,x 也属于B ,所以A 是B 的子集;所以:A B =, 故选:ABC .三、填空题22、(2020届江苏省七市第二次调研考试)已知集合{}1,4A =,{}5,7B a =-.若{}4A B ⋂=,则实数a 的值是______. 【答案】9 【解析】集合{}1,4A =,{}5,7B a =-,{}4A B ⋂=,∴54a -=,则a 的值是9.故答案为:923、(2020届江苏省南通市如皋市高三下学期二模)设全集U Z =,集合{}0,2,3A =,{}22B x Z x x =∈-<,()UAB =__________.【答案】{}2,3【解析】由题得{}0,1B =, 所以{,3,2,1,2,3,4,5,}UB =---,所以()UAB ={}2,3.故答案为:{}2,324、(2020届江苏省南通市如皋中学高三下学期3月线上模拟)已知集合{}1,0,2A =-,{}22xB x =≤,则A B =_______【答案】{}1,0-【解析】{}22{|1}xB x x x =≤=≤,∴{1,0}A B ⋂=-. 故答案为:{}1,0-25、(2020届江苏省南通市海门中学高三上学期10月检测)已知集合{}0,1,2,3,4A =,{}3log 1B x x =≤,则AB =______.【答案】{}1,2,3;【解析】因为{}3log 1B x x =≤,所以{}03B x x =<≤, 又因为{}0,1,2,3,4A =所以{}1,2,3A B =,故答案为:{}1,2,326、(2020届江苏省南通市四校联盟高三数学模拟)已知集合{}A 31x x =-≤,{}2B 540x x x =-+≥,则A B ⋂=____ 【答案】{}4【解析】根据题意,对于集合A ,|3|1x -,24x ∴,则{|24}A x x =, 对于集合B ,由25401x x x -+⇔或4x ,则{|1B x x =或4}x , 则{}4A B ⋂=,故答案为:{}4.四、解答题27、(2020年铜山期中)设全集为R ,{}|37A x x =≤<,{}|210B x x =<<.(1)求A B ;(2)求()RA B ⋃.【解析】(1)由题意{|37}AB x x =≤<;(2)由题意{|210}A B x x ⋃=<<, ∴(){|2RA B x x ⋃=≤或10}x ≥.28、(江苏东台市第一中学期中)设全集U =R ,集合{}|13A x x =-<≤,.{}|242B x x x =--≥ (1)求B 及()A B ;(2)若集合{|20}C x x a =+>,满足B C C =,求实数a 的取值范围.解:(1)∵{}|242B x x x =--≥{}2x x =≥ ∴{}23AB x x =<≤∴(){}23U C A B x x x =<或≥ (2)由B C C =得B C ⊆{|20}C x x a =+>2a x x ⎧⎫=>-⎨⎬⎩⎭根据数轴可得22a-<, 从而4a >-29、(2020·七台河市第一中学高二期末)集合{|12}A x x =-,{|}B x x a =<. (1)若A B A =,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.【解析】(1)由集合{|12}A x x =-,{|}B x x a =<, 因为AB A =,所以A B ⊆,则2a >,即实数a 的取值范围为2a >;U M(2)因为 A B =∅,又B ≠∅,可得1a -,故实数a 的取值范围为1a -.30、.(2020届江苏省南通市海安高级中学高三第二次模拟)已知集合{}220A x x x =-->,集合(){}222550B x x k x k =+++<,k ∈R .(1)求集合B ; (2)记M AB =,且集合M 中有且仅有一个整数,求实数k 的取值范围.【解析】(1)因为22(25)50x k x k +++<,所以(25)()0x x k ++<,当52k -<-,即52k >时,5,2B k ⎛⎫=-- ⎪⎝⎭;当52k -=-,即52k =时,B =∅; 当52k ->-,即52k <时,5,2B k ⎛⎫=-- ⎪⎝⎭. (2)由220x x -->得()(),12,x ∈-∞-⋃+∞, 当52k -<-,即52k >时,M 中仅有的整数为3-, 所以43k -≤-<-,即(]3,4k ∈; 当52k ->-,即52k <时,M 中仅有的整数为2-, 所以23k -<-≤,即[)3,2k ∈-; 综上,满足题意的k 的范围为[)(]3,23,4-⋃31、(2020·河北省石家庄二中高一期末)已知全集U =R ,集合{}2|450A x x x =--≤,{}|24B x x =≤≤.(1)求()U A C B ⋂;(2)若集合{}|4,0C x a x a a =≤≤>,满足CA A =,CB B =,求实数a 的取值范围.【解析】(1)由题{}|15A x x =-≤≤,{|2U C B x x =<或}4x >,,(){|12U A C B x x ⋂=-≤<或}45x <≤;(2)由C A A =得C A ⊆,则145a a ≥-⎧⎨≤⎩,解得514a -≤≤, 由C B B =得B C ⊆,则244a a ≤⎧⎨≥⎩,解得12a ≤≤,∴实数a 的取值范围为5|14a a ⎧⎫≤≤⎨⎬⎩⎭.。
比较大小常见题型的研究
ab C.若 a b, c d, 则 a d b c D.若 a b, c d 0, 则 a b
dc
【答案】BC
【解析】若 a 0 b , 0 c d ,则 ac bd ,故 A 错;
b
1 0.8 3
30.8
30.7
a
,
c log0.7 0.8 log0.7 0.7 1 , 所以 c 1 a b .
故选:D. 题型四 、与基本不等式结合
涉及的知识点是通过基本不等式求出因式的最值或者证明不等式是否成立。要特别注意基本不等式成
立的条件。
例 7、(2020 届北京市顺义区高三上学期期末数学试题)若 b a 1 ,则下列不等式一定正确的是( )
2sin
4
2
2,2
2 ,
所以 | a |3 2 4 b2 b ,不可能成立. a
故选:C.
4
二、达标训练
1、(2019 年高考全国 II 卷理数)若 a>b,则
A.ln(a−b)>0
B.3a<3b
C.a3−b3>0
D.│a│>│b│
【答案】C
【解析】取 a 2,b 1,满足 a b , ln(a b) 0 ,知 A 错,排除 A;因为 9 3a 3b 3 ,知 B 错,
B.2
④若 ln a ln b 1,则 a b 1 .
C.3
D.4
【解析】①若 a b 1,
则 a b 1, 所以 a b 1 2 b ,
6
所以 a b 1 2 b 1,即①错误;
若 a3 b3 1,
山东省潍坊市2023届高三上学期期中考试 数学试题(含解析)
试卷类型: A山东省潍坊市2023届高三上学期期中考试高三数学2022. 11本试卷共4页.满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}240,{|lg(1)|M x x N x y x =-==-…∣,则M N ⋃= A.(,2]-∞ B.(,2]-∞- C.[2,1)- D.(,2][2,)-∞-⋃+∞ 2.若命题“2[1,2],30x x a ∃∈-<”为假命题,则实数a 的取值范围是 A.(,4]-∞ B.[2,)+∞ C.(,3]-∞ D.(,2)-∞3.设4,0,,sin ,cos()255παβααβ⎛⎫∈=+=- ⎪⎝⎭,则cos β=A. D. 4.为调查推广眼保健操对改善学生视力的效果,学校决定采用随机数表法从高三800名学生中随机抽取80名进行调查,将800名学生进行编号,编号分别为001,002,,799,800.下面提供的是随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从随机数表中第5行第6列开始向右依次读取3个数据作为抽取学生的编号,则抽到的第5名学生的编号是 A.007 B.253 C.328 D.7365.在学习《数学探究活动:得到不可达两点之间的距离》时,小明所在的小组决定测量本校人工湖两侧$C,D$两点间的距离,除了观测点,C D 外,他们又选了两个观测点12,P P ,测得121221,,PPm PP D P PD αβ=∠=∠=,则利用已知观测数据和下面三组新观测角中的一组,就可以求出,C D 间的距离是①1DPC ∠和1DCP ∠;②12PP C ∠和12PCP ∠;③1PDC ∠和1DCP ∠. A.①和② B.①和③ C.②和③ D.①和②和③6.函数(1)y k x =-与ln y x =的图像有且只有一个公共点,则实数k 的取值范围为 A.1k = B.k e … C.1k =或0k … D.0k …或1k =或k e …7.对于函数()()f x x D ∈,若存在常数(0)T T >,使得对任意的x D ∈,都有()()f x T f x +…成立,我们称函数()f x 为“T 同比不增函数”.若函数()cos f x kx x =+是“3π同比不增函数",则实数k 的取值范围是 A.3,π⎡⎫+∞⎪⎢⎣⎭ B.3,π⎛⎤-∞- ⎥⎝⎦ C.3,π⎡⎫-+∞⎪⎢⎣⎭ D.3,π⎛⎤-∞ ⎥⎝⎦8.已知数列{}n a 的前n 项和为n S ,满足()1*132n n n a S n -⎛⎫+=-∈ ⎪⎝⎭N ,则下列结论正确的是A.23a a <B.68742a a a +=C.数列{}2nn a 是等比数列 D.13n S <…二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.某市新冠肺炎疫情工作取得阶段性成效,为加快推进各行各业复工复产,对当地进行连续11天调研,得到复工复产指数折线图(如图所示),下列说法错误..的是A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数的极差大于复工指数的极差C .第3天至第11天复工复产指数均超过80%D .第9天至第11天复工指数的增量大于复产指数的增量 10.已知0,0a b 厖,且1a b +=,则A.22a b +…B.221a b +…C.23log 12a b ⎛⎫-+>- ⎪⎝⎭D.ln(1)a a +…的充要条件是1b = 11.佼波那契数列又称黄金分割数列,因意大利数学家列昂纳多-斐波那契以兔子繁殖为例子而引人,故又称为“兔子数列”,在现代物理、准晶体结构、化学等领域都有直接的应用.在数学上,芠波那契数列被以下递推的方法定义:数列{}n a 满足:121a a ==,()*21n n n a a a n ++=+∈N.则下列结论正确的是A.813a =B.2023a 是奇数C.2222123202*********a a a a a a ++++= D.2022a 被4除的余数为012.定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()()xf x ef x -=,且满足22()()21x f x f x x e '-+=+-,则A.函数2()()F x e f x =为偶函数 B.(0)0f = C.不等式()x xxe f x e e +<的解集为(1,)+∞ D.若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.522x x ⎛⎫+ ⎪⎝⎭展开式中4x 的系数为_______.14.设函数sin ,0,()(1)1,0,x x f x f x x π>⎧=⎨+-⎩…,则53f ⎛⎫-= ⎪⎝⎭________. 15.一个盒子中有4个白球,m 个红球,从中不放回地每次任取1个,连取2次,已知第二次取到红球的条件下,第一次也取到红球的概率为59,则m =________. 16.在ABC 中,点D 是$BC$上的点,$AD$平分,BAC ABD ∠面积是ADC 面积的2倍,且AD AC λ=,则实数λ的取值范围为________;若ABC 的面积为1,当BC 最短时,λ=______.(第一空2分,第二空3分) 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚. 17.(10分)定义在(1,1)-上的函数()f x 和()g x ,满足()()0f x g x +-=,且1()log 2a xg x +=,其中1a >. (1)若122f ⎛⎫=⎪⎝⎭,求()f x 的解析式;(2)若不等式()1f x >的解集为1,3m ⎛⎫- ⎪⎝⎭,求m a -的值. 18.(12分)在(1)(0)1f =,(2)函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,(3)函数()f x 图像上相邻两个对称中心的距离为π,这三个条件中任选两个补充在下面问题中,并给出问题的解答.已知函数()2sin()02,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足 (1)求函数()f x 的解析式及单调递增区间;(2)在锐角ABC 中,()2,f B b ==求ABC 周长的取值范围. 19.(12分)2022年2月22日,中央一号文件发布,提出大力推进数字乡村建设,推进智慧农业发展.某乡村合作社借助互联网直播平台,对本乡村的农产品进行销售,在众多的网红直播中,随机抽取了10名网红直播的观看人次和农产品销售量的数据,如下表所示:参考数据:()()10102211600,768,80i i i i x x y y x==-=-==∑∑.(1)已知观看人次x 与销售量y 线性相关,且计算得相关系数16r =,求回归直线方程ˆˆˆy bx a =+; (2)规定:观看人次大于等于80(万次)为金牌主播,在金牌主播中销售量大于等于90(百件)为优秀,小于90(百件)为不优秀,对优秀赋分2,对不优秀赋分1.从金牌主㨨中随机抽取3名,若用X 表示这3名主播赋分的和,求随机变量X 的分布列和数学期望.(附:()()()121ˆˆˆ,niii nii x x y y bay bx x x ==--==--∑∑,相关系数()()niix x y y r --=∑20.(12分)已知等差数列{}n a 的前n 项和为512,35,8n S S a a =+=,记数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T . (1)求数列{}n a 的通项公式及n S ;(2)是否存在实数λ,使得211(1)n n T λ+--…恒成立?若存在,求出实数λ的取值范围;若不存在,请说明理由.21.(12分)为了解新研制的抗病毒药物的疗效,某生物科技有限公司进行动物试验.先对所有白鼠服药,然后对每只白鼠的血液进行抽样化验,若检测样本结果呈阳性,则白鼠感染病毒;若检测样本结果呈阴性,则白鼠末感染病毒.现随机抽取()*,2n n n ∈N …只白鼠的血液样本进行检验,有如下两种方案: 方案一:逐只检验,需要检验n 次;方案二:混合检验,将n 只白鼠的血液样本混合在一起检验,若检验结果为阴性,则n 只白鼣末感染病毒;若检验结果为阳性,则对这n 只白鼠的血液样本逐个检验,此时共需要检验1n +次.(1)若10n =,且只有两只白鼠感染病毒,采用方案一,求恰好检验3次就能确定两只咸染病聿白业的概率; (2)已知每只白鼠咸染病暃的概率为(01)p p <<.①采用方案二,记检验次数为X ,求检验次数X 的数学期望;②若20n =,每次检验的费用相同,判斨哪种方案检验的费用更少?并说明理由. 22.(12分)已知函数1()ln f x x a x x=++,其中a ∈R . (1)求函数()f x 的最小值()h a ,并求()h a 的所有零点之和; (2)当1a =时,设()()g x f x x =-,数列{}()*n x n ∈N 满足1(0,1)x ∈,且()1n n xg x +=,证明:1322n n n x x x ++++>.高三数学试题参考答案及评分标准2022.11一、单项选择题(每小题5分,共40分) 1—5 ACCAD 6—10 CBD二、多项选择题(每小题5分,共20分)9.ABD10.AD11.BCD12.ABD三、填空题(每小题5分,共20分) 13.40142- 15.616.40,3⎛⎫ ⎪⎝⎭四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.解:(1)由题意知,()()2log 1a f x g x x=--=-, 又因为122f ⎛⎫=⎪⎝⎭,所以log 42a =,即2a =. 所以函数()f x 的解析式是()22log 111y x x=-<<-. (2)由()1f x >,得21a x >-,由题意知10x ->,所以211x a-<<, 所以21131a m ⎧-=-⎪⎨⎪=⎩,即321a m ⎧=⎪⎨⎪=⎩,所以12m a -=-. 18.解:(1)若选①②,由①得,()02sin 1f ϕ==,所以26k πϕπ=+或()526k k πϕπ=+∈Z ,又因为02πϕ<<,所以6πϕ=,由②得,函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,所以432362k πππωπ+=+,()k ∈Z , 所以312k ω=+,()k ∈Z ,又因为02ω<<,所以1ω=,所以()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,x ∈R ,当22262k x k πππππ-+≤+≤+,()k ∈Z ,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k ∈Z ,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,若选①③,由①得,()02sin 1f ϕ==,所以26k πϕπ=+或526k πϕπ=+,()k ∈Z ,又因为02πϕ<<,所以6πϕ=,由③得,函数()f x 图像上相邻对称中心的距离为π,所以2T π=,所以1ω=, 所以()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,x ∈R , 当22262k x k πππππ-+≤+≤+,()k Z ∈,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k Z ∈,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z若选②③,由③得,函数()f x 图像上相邻对称中心的距离为π.所以2T π=,所以1ω=, 由②得,函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,所以431232k ππϕπ⨯+=+,()k ∈Z ,即26k πϕπ=+,()k ∈Z ,又因为02πϕ<<,所以6πϕ=,所以()2sin 6f x x π⎛⎫=+⎪⎝⎭,x ∈R , 当22262k x k πππππ-+≤+≤+,()k ∈Z ,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k ∈Z ,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,(2)()2sin 26f B B π⎛⎫=+= ⎪⎝⎭,所以sin 16B π⎛⎫+= ⎪⎝⎭,又因为锐角三角形,所以3B π=.因为b =2sin bB==,由正弦定理可得22sin 2sin 3a A C π⎛⎫==- ⎪⎝⎭,2sin c C =, 所以ABC △的周长22sin 2sin 2sin 2sin 36ABC L a b c A C C C C ππ⎛⎫⎫=++=++=-+=+ ⎪⎪⎝⎭⎭△因为ABC △是锐角三角形,由022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,得62C ππ<<,所以2,633C πππ⎛⎫+∈ ⎪⎝⎭,所以sin 62C π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以(36ABC L C π⎛⎫=++ ⎪⎝⎭△, 所以ABC △周长的取值范围为(3+.19.解:(1)因为()()niix x y y r --=∑,所以()()1016iix x y y --=∑所以()()101660i i i x xy y =--=∑,所以()()()10110216601160010iii i i x x y y b x x==--===-∑∑, ()18087778310y =+++=118380510a y bx =-=-⨯=-,所以回归直线方程为11510y x =-. (2)金牌主播有5人,2人赋分为2,3人赋分为1, 则随机变量X 的取值范围是{}3,4,5()33351310C P X C ===,()122335345C C P X C ===,()2123353510C C P X C ===, 所以X 的分布列为:所以()345105105E X =⨯+⨯+⨯=.20.解:(1)因为{}n a 为等差数列,设公差为d ,首项为1a ,53535S a ==,解得37a =,12128a a a d +=+=,又因为3127a a d ++=,13a =,2d =所以()32121n a n n =+-=+()21122n n n S na d n n -=+=+. (2)证明:由(1)知22n S n n =+,所以()21111112222n S n n n n n n ⎛⎫===- ⎪+++⎝⎭, 所以11111111111111131121324112212122212n T n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+-=+--=-- ⎪ ⎪ ⎪-++++++⎝⎭⎝⎭⎝⎭,因为n T 为递增数列,所以当1n =时,n T 取得最小值为131112211123⎛⎫--= ⎪++⎝⎭,又因为0n >,所以34n T <,所以1334n T ≤<.当n 为奇数时,21n T λ-≤恒成立,即2113λ-≤,解得λ≤≤, 当n 为偶数时,21n T λ-≤-恒成立,即2314λ-≤-,解得1122λ-≤≤, 综上所述,实数λ的取值范围为11,22⎡⎤-⎢⎥⎣⎦. 21.解:(1)根据题意恰好在第一、三次确定两只感染病毒白鼠的概率12811109845P =⨯⨯=, 恰好在第二、三次确定有两只感染病毒白鼠的概率28211109845P =⨯⨯=, 所以恰好检验3次就能确定有两只白鼠感染病毒的概率28182121098109845P =⨯⨯+⨯⨯=.(2)①设检验次数为X ,可能取得值为1,1n +.则()()11nP X p ==-,()()111nP X n p =+=--,所以()()()()()()111111n n nE X p n p n n p ⎡⎤=-++--=+--⎣⎦.②方案二的检验次数期望为()()()11n E X n n p =+--,所以()()20201201E X p -=-⨯-, 设()()201201g p p =-⨯-,因为011p <-<,所以()g p 单调递增, 由()0g p =得1p =01p <<()0g p <,则()20E X <, 当11p <<时,()0g p >,则()20E X >, 故当01p <<时,选择方案二检验费用少,当11p -<<时,选择方案一检验费用少,当1p = 22.解:(1)函数()f x 的定义域为()0,+∞,且()221x ax f x x+-'=,令()0f x '=,得210x ax +-=,解得1x =2x =(舍去),所以()f x 在()10,x 上单调递减,在()1,x +∞单调递增,所以()()111min 11ln f x f x x a x x ==++,即()ln 2ah a a =,由1x 是方程210x ax +-=的根,则111a x x =-,所以()1111111ln h a x x x x x ⎛⎫=++- ⎪⎝⎭,令()11ln H x x x x x x ⎛⎫=++- ⎪⎝⎭,可知()1H H x x ⎛⎫= ⎪⎝⎭. 又因为()211ln H x x x ⎛⎫'=-+⎪⎝⎭,所以()H x 在()0,1单调递增,在()1,+∞单调递减. 而222130H e e e⎛⎫=-<⎪⎝⎭,()120H =>,所以有且仅有唯一()00,1x ∈,使得()00H x =, 所以()011,x ∈+∞,有010H x ⎛⎫= ⎪⎝⎭.所以方程()0H x =有且仅有两个根0x ,01x , 即1111111ln 0x x x x x ⎛⎫++-= ⎪⎝⎭有且仅有两根0x ,01x , 又因为()11110a x x x =->单调递减,所以()y h a =有两个零点设为1a ,2a (不妨设12a a <),则12000011101a a x x x x ⎛⎫⎪⎛⎫ ⎪+=-+-= ⎪ ⎪⎝⎭ ⎪⎝⎭.(2)由题意知1a =时,()()1ln g x f x x x x =-=+,因为()22111x g x x x x-'=-=, 令()0g x '>,得1x >,()0g x '<,得1x <.所以()g x 在()0,1上递减,在()1,+∞递增,则有()()11g x g ≥=,因为()10,1x ∈,所以()211x g x =>,()321x g x =>,…,()11n n x g x +=>.令()()1ln m x g x x x x x=-=+-,1x ≥,()2222131240x x x m x x x ⎛⎫--- ⎪-+-⎝⎭'==<,所以()m x 在区间[)1,+∞单调递减,所以()()10m x m ≤=. 所以()21110n n n n x x g x x ++++-=-<,即21n n x x ++< 又因为函数()m x 单调递减,所以()()21n n m x m x ++>, 即22112111ln ln n n n n n n x x x x x x +++++++->+-,即3221n n n n x x x x ++++->-,所以1322n n n x x x ++++>.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学
2019.11
本试卷共6页.满分150分.
注意事项:
1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生
要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写
在本试卷上无效.
3.考试结束,考生必须将试题卷和答题卡一并交回.
第I 卷(选择题共52分)
一、单项选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合220,03A x x x B x x ,则A B
A .1,3
B .(0,2]
C .[2,3)
D .(2,3)
2.sin 225=
A .1
2B .2
2C .3
2D .1
3.已知1
432
log 2,3,ln 3a b c a b c ,则,,的大小关系为
A .a b c
B .b a c
C .c>b>a
D .c a b
4.若,l m 是平面外的两条直线,且//l ,则//m l 是//m 的
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
5.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马
优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现齐王与田忌各出上等马、中等马、下等马一匹,共进行三场比赛,规定:每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.则田忌获胜的概率为
A.1
3
B.
1
6
C.
1
9
D.
1
36
6.函数
ln x
f x x
x
的大致图象为
7.
8
2x展开式中3x的系数为
A.112B.28 C.56 D.112
8.已知函数sin cos
f x x x,则
A.f x的最小正周期为B.y f x图象的一条对称轴方程为
4
x
C.f x的最小值为2D.f x在0,
2
上为增函数
9.如图,已知1,3,,,
OA OB OC OC OB OA,
30
OC若OC xOA yOB x y
,
A.1 B.2
C.3 D.4
10.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、
可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.
为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t 生活垃圾.经分拣以后数据统计如下表(单位:t):
根据样本估计本市生活垃圾投放情况,下列说法错误的是
A .厨余垃圾投放正确的概率为2
3
B .居民生活垃圾投放错误的概率为3
10
C .该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱
D .厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000
二、多项选择题:本大题共3个小题,每小题4分,共12分,在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得
4分,选对但不全的得2分,有选错的得0分.11.若
x y ,则下列不等式中正确的是A .22x y B .2x
y xy C .22x y D .222x y xy
12.正方体1111ABCD
A B C D 的棱长为2,已知平面1AC ,则关于截此正方体所得
截面的判断正确的是A .截面形状可能为正三角形B .截面形状可能为正方形
C .截面形状可能为正六访形
D .截面面积最大值为33
13.已知函数22,02,0x
x x f x f x x ,以下结论正确的是
A .320193
f f B .f x 在区间[4,5]上是增函数
C .若方程1f x kx 恰有3个实根,则1
1
,24
D .若函数4y f x b 在,上有6个零点1,2,3,4,5,6i x i ,则
6
1i i i x f x 的取
值范围是(0,6)
第Ⅱ卷(非选择题
共98分) 三、填空题:本大题共4小题,每小题4分,共16分.
14.已知向量,a b 满足1,1a a b a a b ,则___________.
l5.“2,20x Rx x a ”为假命题,则实数a 的最大值为___________.
16.已知函数f x 是定义在R 上的偶函数,且在0,上是减函数, 1
0,3f 则不
等式18log 0f x
的解集为___________.
17.如图,平行四边形形状的纸片是由六个边长为
1的正三角形构成的,将它沿虚线折起来,可以得到右图所示粽子形状的六面体,
则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.
四、解答题:本大题共
6小题,共82分.解答应写出文宇说明、证明过程或演算步骤.
18.(12分)
在ABC 中,内角A ,B ,C 所对的边分别为,,a b c .已知10,5,sin 2sin 0a b c B B .
(1)求,a b 的值:
(2)求sinC 的值.
19.(14分)
已知函数321
12f x x x ax .
(1)当2a 时,求曲线y f x 在点0,0f 处的切线方程;
(2)若函数1f x x 在处有极小值,求函数f x 在区间3
2,2上的最大值.
20.(14分)
如图,在棱长均为2的三棱柱111ABC
A B C 中,平面1ACB 平面1111,,A ABB AB A B O 为11AB A B 与的交点.
(1)求证:1AB CO ;
(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.
21.(14分)
在经济学中,函数f x 的边际函数Mf x 定义为1Mf x
f x f x .某医疗设备公司生产某医疗器材,已知每月生产
x 台x N 的收益函数为2300020R x x x (单位:万元),成本函数5004000C x x (单位:万元),该公司每月最多生产
100台该医疗器材.(利润函数=收益函数-成本函数
) (1)求利润函数P x 及边际利润函数MP x ;
(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少
?(精确到0.1)
(3)求x 为何值时利润函数P x 取得最大值,并解释边际利润函数MP x 的实际意义.
22.(14分)
已知函数1
1
ln f x x m x m R x x .
(1)当m>1时,讨论f x 的单调性;
(2)设函数1
m g x f x x ,若存在不相等的实数12,x x ,使得12g x g x ,
证明:120m x x .
23.(14分)
如图,直角坐标系中,圆的方程为221,1,0x y A ,
1
3
1
3
,,,2222B C 为圆上三个定点,某同学从A 点
开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把
一枚棋子从一个定点沿圆弧移动到相邻下一个定点;
②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.
设掷骰子n 次时,棋子移动到A ,B ,C 处的概率分别为,,n n n P A P B P C .例如:
掷骰子一次时,棋子移动到A ,B ,C 处的概率分别为1111
1,,22P A O P B P C .
(1)分别掷骰子二次,三次时,求棋子分别移动到A ,B ,C 处的概率;
(2)掷骰子n 次时,若以x 轴非负半轴为始边,以射线
OA ,OB ,OC 为终边的角的余弦值记为随机变量n X ,求4X 的分布列和数学期望;
(3)记,,n n n n n n P A a P B b P C c ,其中1n n n a b c .证明:数列13n b 是等比数列,并求2020
a 】。