2014年3月浙教版八年级下月考数学试题及答案B班
最新浙教版八年级数学第三次月考试卷有答案
温州地区2020-2021学年上学期第三次月考八年级数学试卷一、精心选一选(每小题3分,共30分).1、如图,直线a ∥b ,如果∠1=45°,那么∠2等于 ( )A 、 150°B 、 140°C 、 135°D 、 120° 2、下列物体给人以直棱柱的感觉的是( ) A 、金字塔 B 、易拉罐 C 、冰箱 D 、篮球 3、点M(-2,3)关于y 轴的对称点的坐标是( )A 、(2,-3)B 、(-2,-3)C 、(3,-2)D 、(2,3) 4下列判断正确的是( )A 有一直角边相等的两个直角三角形全等B 腰相等的两个等腰三角形全等C 斜边相等的两个等腰直角三角形全等D 两个锐角对应相等的两个直角三角形全等 5、右图中几何体的左视图是( )第6题 6、八年级(1)班50名学生的年龄统计结果如上表所示:则此班学生年龄的众数、中位数分别为 ( )A .14,14B .15,14C .14,15D .15,167、直角三角形的两直角边的长分别为3和4,则此直角三角形斜边上的中线长为:( ) A.1.5 B.2 C.2.5 D.5 8、不等式组⎩⎨⎧≥111-,<-x x 的解集在数轴上表示正确的是( )。
9、如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论: ①△BDF 和△CEF 都是等腰三角形 ; ②DE=BD+CE ; ③△ADE 的周长等于AB 与AC 的和; ④BF=CF . 其中有 ( ) A .①②③ B .①②③④ C .①② D .① 10、在直角坐标系中,O 为坐标原点,已知A (1,1),在坐标轴上确定点P ,使△AOP 为等三角形,则符合条件的点P 的个数共有( )学校_________________ 班级___________________ 姓名__________________ 座号_________________………………………………密……………………………………封…………………………………线………………………………………a b 1 2c ABC D 正面第5题年龄 13 14 15 16 人数4 22231ED A B FA、10个B、8个C、4个D、6个二、细心填一填:(每题3分,共30分)11、用不等式表示:x与3的和不大于1,则这个不等式是:12、在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=__13、分析下列四种调查:①了解我们学校所有八年级学生的视力状况;②估计小明家一年总用电量;③登飞机前,对所有旅客进行安全检查;④了解中小学生的主要娱乐方式;其中应作普查的是:(填序号)14、已知两条线段的长为3cm和4cm,当第三条线段的长为时,这三条线段能组成一个直角三角形。
2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)
第2章一元二次方程2.1一元二次方程基础过关全练知识点1一元二次方程的相关概念1.(2022浙江诸暨浣纱中学月考)下列方程是一元二次方程的是()A.x2-y=1B.x2+2x-3=0C.x2+1=3 D.x-5y=6x2.已知关于x的方程x2+kx-10=0的一个根是2,则k=.3.若方程(a-2)x2-3ax=5是关于x的一元二次方程,则a的取值范围是.知识点2一元二次方程的一般形式4.下列方程是一元二次方程的一般形式的是()A.2x2-3x=0B.x2=1C.2x2-3x=-1D.2x2=-3x5.【新独家原创】四位同学一起做游戏,分别出一个一元二次方程,甲:x2-2x+3=0,乙:x2-2x=3,丙:3(x2-2x+1)=3,丁:3x2-x=3,当这四个方程化为一般形式时,常数项为0的赢,则这次游戏谁赢了()A.甲B.乙C.丙D.丁6.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则m等于() A.2 B.-2 C.2或-2 D.07.将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为.知识点3列一元二次方程8.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1 260 B.2x(x+1)=1 260C.x(x-1)=1 260D.x(x-1)=1 260×29.【教材变式·P26合作学习(1)变式】把面积为16 m2的大长方形铁皮割成如图所示的正方形和长方形两个部分,已知长方形的一边长为 6 m,求其邻边长(只需列出方程).10.根据下列问题列一元二次方程,并将方程化为一般形式.(1)三个连续奇数的平方和是251,求这三个数;(2)一个长方形花坛,长20 m,宽8 m,在它的四周有等宽的鹅卵石路,形成一个大长方形,其面积是花坛面积的1.8倍,求路的宽度;(3)用一根长30 cm的铁丝折成一个斜边长13 cm的直角三角形,求这个三角形的直角边长.能力提升全练11.(2022浙江温州外国语学校期中,6,)关于x的一元二次方程(m-3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.-312.若关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根为x=-1,则下列等式成立的是() A.a+b+c=0 B.a-b+c=0C.-a-b+c=0D.-a+b+c=013.若(1-m)x m2+1+3mx-2=0是关于x的一元二次方程,则该方程的一次项系数是() A.-1 B.±1 C.-3 D.±314.方程5x2-1=4x化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是()A.4,-1B.4,1C.-4,-1D.-4,115.已知x1=1,x2=-3是一元二次方程ax2+bx-3=0(a≠0)的两个根,求a,b 的值.16.已知关于x的方程(k-2)x2-kx=x2-1.(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?17.有一个三角形,面积为30 cm2,其中一边比这边上的高的4倍少1 cm,若设这边上的高为x cm,请你列出关于x的方程,并判断它是什么方程,若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.素养探究全练18.【代数推理】【运算能力】已知实数a是一元二次方程x2-2 022x+1=0的值.的解,求代数式a2-2 021a-a2+12 022答案全解全析基础过关全练1.B x2-y=1中含有2个未知数,不是一元二次方程,所以A不符合题意;x2+2x-3=0符合一元二次方程的定义,是一元二次方程,所以B符合题意;x2+1x =3中1x不是整式,不是一元二次方程,所以C不符合题意;x-5y=6中含有2个未知数,不是一元二次方程,所以D不符合题意.故选B.2.3解析因为关于x的方程x2+kx-10=0的一个根是2,所以22+2k-10=0,解得k=3.3.a≠2解析因为方程(a-2)x2-3ax=5是关于x的一元二次方程,所以a-2≠0,解得a≠2.4.A形如ax2+bx+c=0(a,b,c是常数,且a≠0)是一元二次方程的一般形式.只有A符合题意,故选A.5.C x2-2x+3=0的常数项为3,所以甲输了;x2-2x=3化为一般形式为x2-2x-3=0,常数项为-3,所以乙输了;3(x2-2x+1)=3化为一般形式为x2-2x=0,常数项为0,所以丙赢了;3x2-x=3化为一般形式为3x2-x-3=0,常数项为-3,所以丁输了.故选C.6.B因为常数项为0,所以m2-4=0,解得m=2或-2,当m=2时,方程(m-2)x2+5x+m2-4=0变为5x=0,不是一元二次方程,所以m=2要舍去,故m=-2.7.5,-4,1解析5x2+1=4x移项,得5x2-4x+1=0,所以将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为5,-4,1.8.C全班有x名同学,根据“都将自己的照片向本班其他同学送一张留念”可知全班一共送了x(x-1)张照片,又全班一共送了1 260张照片,所以x(x-1)=1 260.9.解析设其邻边长为x m,则可列方程为x(x+6)=16.10.解析(1)设中间的奇数为x,则(x-2)2+x2+(x+2)2=251,化为一般形式:3x2-243=0.(2)设路的宽度为x m,则(20+2x)(8+2x)=1.8×20×8,化为一般形式:4x2+56x-128=0.(3)设一条直角边长为x cm,则另一条直角边长为(17-x)cm,则x2+(17-x)2=132,化为一般形式:2x2-34x+120=0.能力提升全练11.D将(m-3)x2+m2x=9x+5整理得(m-3)x2+(m2-9)x-5=0,由题意得m-3≠0,m2-9=0,解得m=-3,故选D.12.B把x=-1代入方程ax2+bx+c=0得a-b+c=0.13.C由题意得1-m≠0且m2+1=2,解得m=-1.∴该方程的一次项系数为3m=-3.14.C5x2-1=4x化成一般形式是5x2-4x-1=0,它的一次项系数是-4,常数项是-1.故选C.15.解析 把x 1=1,x 2=-3分别代入一元二次方程ax 2+bx -3=0(a ≠0),得{a +b −3=0,9a −3b −3=0,解得{a =1,b =2.16.解析 原方程可化为(k -3)x 2-kx +1=0.(1)当k -3≠0,即k ≠3时,方程(k -2)x 2-kx =x 2-1是一元二次方程.(2)当k -3=0,-k ≠0,即k =3时,方程(k -2)x 2-kx =x 2-1是一元一次方程.17.解析 根据题意可得关于x 的方程为12x (4x -1)=30,它是一元二次方程,整理为一般形式为2x 2-12x -30=0,二次项系数为2,一次项系数为-12,常数项为-30.素养探究全练18.解析 因为实数a 是一元二次方程x 2-2 022x +1=0的解,所以a 2- 2 022a +1=0,所以a 2-2 022a =-1,a 2+1=2 022a , 所以原式=a 2-2 021a -2 022a 2 022=a 2-2 022a =-1.。
八年级下第三次月考数学试卷(解析版)
八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。
专题2.4等腰三角形的判定定理(原卷版)【浙教版】
专题2.4等腰三角形的判定定理姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•东海县期中)△ABC中,AD,BE分别是边BC,AC上的高,若∠EBC=∠BAD,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.(2019秋•海安市期中)在平面直角坐标系中,已知点A(3,3),在x轴的正半轴上确定一点P,使得三角形AOP是等腰三角形,则符合条件的点P共有()A.2个B.3个C.4个D.1个3.(2019秋•尚志市期中)如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个4.(2019秋•珠海期中)如图,直线m,n交于点B,点A是直线m上的点,在直线n上寻找一点C,使△ABC是等腰三角形,这样的C点有多少个?()A.2个B.3个C.4个D.5个5.(2020·浙江省开化县第三初级中学八年级期中)下列说法错误的是()A.有两个角相等的三角形是等腰三角形B.到线段两端的距离相等的点,在线段的垂直平分线上C.成轴对称的两个图形中,对称轴垂直平分连结两个对称点的线段D.面积相等的两个三角形全等6.(2020·浙江湖州市·七年级期中)如图,已知每个小方格的边长为1,A,B,两点都在小方格的顶点上,是等腰三角形,这样的格点C有()请在图形中找一个格点C,使ABCA.5个B.6个C.7个D.8个7.(2020·浙江杭州市·八年级期中)如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组8.(2020·浙江杭州市·八年级期中)如图,任意△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①∠A=2∠BFC﹣180°;②DE﹣BD=CE;③△ADE 的周长等于AB与AC的和;④BF>CF.其中正确的有()A.①B.①②C.①②③D.①②③④9.(2019·浙江杭州市·八年级期中)已知∠MON=20°,点A B分别是射线OM、ON上的动点(A、B不与点0重合),若AB OM,在射线ON上有一点C,设∠OAC=x°,下列x的值不能使△ABC为等腰三角形的是()A .20B .45C .50D .12510.(2019·浙江台州市·)如图,在△ABC 中,∠BAC 和∠ABC 的平分线相交于点O ,过点O 作EF ∥AB 交BC 于F ,交AC 于E ,过点O 作OD ⊥BC 于D ,下列四个结论:①∠AOB =90°+12∠C ;②AE +BF =EF ;③当∠C =90°时,E ,F 分别是AC ,BC 的中点;④若OD =a ,CE +CF =2b ,则S △CEF =ab .其中正确的是()A .①②B .③④C .①②④D .①③④二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020·浙江杭州市·八年级期末)如图,在ABC 中,25,100B A ∠=︒∠=︒,点P 在ABC 的三边上运动,当PAC △成为等腰三角形时,其顶角的度数是__________.12.(2020·浙江八年级期末)如图,ABC 的点A C 、在直线l 上,120,40B ACB ∠=︒∠=︒,若点P在直线l 上运动,当ABP △成为等腰三角形时,则ABP ∠度数是_______.13.(2021·青岛市崂山区第三中学九年级其他模拟)如图,直角坐标系中,点22A -(,)、01B (,),点P 在x 轴上,且PAB 是等腰三角形,则满足条件的点P 共______个.14.(2021·全国八年级专题练习)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是_____(写出一种即可)15.(2021·全国八年级专题练习)已知在ABC 中,16C ∠=︒且为最小的内角,过顶点B 的一条直线把这个三角形分割成两个等腰三角形,则B ∠=_______︒16.(2021·河北唐山市·八年级月考)如图所示,在△ABC 中,OB ,OC 分别是∠ABC 和∠ACB 的平分线,过点O 的直线MN ∥BC ,交AB ,AC 于M ,N ,若MN =6cm ,则BM +CN =_____cm .17.(2021·湖北荆门市·八年级期末)如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,下列结论:①1902BOC A ∠=+∠︒:②点O 到ABC 各边的距离相等;③EF BE CF =+:④1()2AD AB AC BC =+-;⑤设OD m =,AE AF n +=,则AEF S mn =△;其中正确的结论是______.18.(2019秋•海淀区期末)如图,已知∠MON ,在边ON 上顺次取点P 1,P 3,P 5…,在边OM 上顺次取点P 2,P 4,P 6…,使得OP 1=P 1P 2=P 2P 3=P 3P 4=P 4P 5…,得到等腰△OP 1P 2,△P 1P 2P 3,△P 2P 3P 4,△P 3P 4P 5…(1)若∠MON =30°,可以得到的最后一个等腰三角形是;(2)若按照上述方式操作,得到的最后一个等腰三角形是△P 3P 4P 5,则∠MON 的度数α的取值范围是.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020•沙坪坝区自主招生)如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D ,点E 是AB 的中点,连结DE .(1)求证:△ABD 是等腰三角形;(2)求∠BDE 的度数.20.(2019秋•嘉祥县期末)(1)如图,△ABC 中,∠ABC 、∠ACB 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于点E 、F ,试猜想EF 、BE 、CF 之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB 的平分线改为外角∠ACD 的平分线,其它条件不变,请直接写出EF 、BE 、CF 之间的关系.21.(2020·浙江八年级期中)已知,如图,点E F 、在BC 上,,,BE CF A D B C =∠=∠∠=∠,AF 与DE 交于点O .求证:(1)AB DC =.(2)OA OD =.22.(2020·浙江绍兴市·八年级期中)[方法呈现](1)如图①,△ABC 中,AD 为中线,已知AB =3,AC =5,求中线AD 长的取值范围.解决此问题可以用如下方法:延长AD 至点E ,使DE =AD ,连结CE ,则易证△DEC ≌△DAB ,得到EC =AB =3,则可得AC ﹣CE <AE <AC +CE ,从而可得中线AD 长的取值范围是.[探究应用](2)如图②,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系,并写出完整的证明过程.(3)如图③,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.23.(2019·浙江八年级期中)如图,D 为ABC 的边AB 的延长线上一点,过D 作DF AC ⊥,垂足为F ,交BC 于E ,且BD BE =.求证:ABC 是等腰三角形.24.(2020·浙江省临海市临海中学八年级期中)(1)如图①,△ABC 的周长为15,∠ABC 与∠ACB 的平分线相交于点P .①如果∠A=80°,求∠BPC的度数;②如果BC=5,过P作GH∥BC交AB、AC于G、H,则△AGH的周长为;③如果∠ABC=60°,BP=3,则△ABC的面积为;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,直接写出∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.。
浙教版八年级(下)月考数学试卷(范围:第1-2章)(1)
浙教版八年级(下)月考数学试卷一、选择题(每小题3分,共10小题)1.(3分)下列方程是一元二次方程的是()A.x+2y=1 B.x+y2=1 C.D.x2﹣2=02.(3分)如果是二次根式,那么x应满足的条件是()A.x≠2的实数B.x≤2的实数C.x≥2的实数D.x>0且x≠2的实数3.(3分)下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③4.(3分)下列各组二次根式中,化简后属于同类二次根式的一组是()A.和B.和C.和D.和5.(3分)下列运算正确的是()A.B.C.D.6.(3分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%7.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035C.x(x+1)=1035 D.x(x﹣1)=10358.(3分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A.B.C.D.9.(3分)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10.(3分)如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6(+1)m B.6(﹣1)m C.12(+1)m D.12(﹣1)m二、填空题(每小题4分,共6小题)11.(4分)一元二次方程(x﹣3)2=4二次项系数为,一次项系数为,常数项为.12.(4分)若=1﹣a,则a的取值范围为.13.(4分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m﹣3的值等于.14.(4分)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.(4分)长方形铁片的长是宽的2倍,在它的四角各截去一个边长为5cm的小正方形,然后折起来做成一个无盖的铁盒,盒子容积为1.5立方分米,则铁片的长和宽分别为.16.(4分)定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“友好方程”.已知关于x的一元二次方程x2﹣4x+5m=mx+5和x2+2x+m﹣1=0互为“友好方程”,则m 的值为.三、解答题(共66分)17.(6分)化简(1)(2)18.(8分)解下列方程(1)(x﹣2)2=3x(x﹣2)(2)2x2﹣4x﹣5=019.(8分)(1)已知,,求a2+ab+b2的值.(2)已知5x2﹣4x﹣12=0的两根为x1、x2,求的值.20.(10分)目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?21.(10分)已知关于x的一元二次方程mx2﹣(4m+2)x+(3m+6)=0.(1)试讨论该方程的根的情况并说明理由;(2)无论m为何值,该方程都有一个固定的实数根,试求出这个根.22.(12分)某商场销售一批名牌衬衫,现平均每天售出40件,每件盈利80元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价2元,商场平均每天可多售出4件.(1)如果每件衬衫降价x元,则商场每天可售出件衬衫;(2)若商场平均每天要盈利4800元,每件衬衫应降价多少元?(3)每件衬衫降价多少元时,商场平均每天盈利最多?23.(12分)如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.(1)当点P运动的时间为1.5s时,求线段PQ的长;(2)当四边形APQC的面积是△ABC面积的时,求点P运动的时间;(3)在点P的运动过程中,是否存在某一时刻t,使四边形APQC的面积是△ABC面积的?如果存在,请求出点P运动的时间;若不存在,请说明理由.(加试题)24.(5分)已知a>b>0,且,则=.25.(5分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为.26.(10分)求使关于x的方程(a+1)x2﹣(a2+1)x+2a3﹣6=0的根是整数的所有整数a.参考答案与试题解析一、选择题(每小题3分,共10小题)1.(3分)下列方程是一元二次方程的是()A.x+2y=1 B.x+y2=1 C.D.x2﹣2=0【分析】利用一元二次方程的定义判定即可.【解答】解:A、x+2y=1是二元一次方程;B、x+y8=1是二元二次方程,不符合题意;C、3x+,不符合题意;D、x2﹣2=6是一元二次方程,符合题意,故选:D.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.(3分)如果是二次根式,那么x应满足的条件是()A.x≠2的实数B.x≤2的实数C.x≥2的实数D.x>0且x≠2的实数【分析】根据被开方数大于等于0列式求解即可.【解答】解:根据题意得,2﹣x≥0,解得x≤7.所以x应满足的条件是x≤2的实数.故选:B.【点评】本题考查了二次根式有意义的条件.解题的关键是明确二次根式的被开方数是非负数.3.(3分)下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③【分析】本题考查的是二次根式的意义:①=a(a≥0),②=a(a≥0),逐一判断.【解答】解:①==8;②=(﹣3)2=1×4=2≠16,不正确;③=2符合二次根式的意义;④==8≠﹣4.①③正确.故选:D.【点评】运用二次根式的意义,判断等式是否成立.4.(3分)下列各组二次根式中,化简后属于同类二次根式的一组是()A.和B.和C.和D.和【分析】先将各选项进行二次根式的化简,再根据同类二次根式的概念求解即可.【解答】解:A、=3,,故本选项错误;B、=2,,故和是同类二次根式;C、=3,与,故本选项错误;D、=,与不是同类二次根式.故选:B.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.5.(3分)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的性质对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并;B、原式==;C、原式==;D、原式=,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(3分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%【分析】设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【解答】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(7+x)2=1.44,x7=0.2=20%,x6=﹣2.2(舍去),答:平均每月的增长率为20%.故选:C.【点评】本题是一元二次方程的应用,属于增长率问题;增长率问题:增长率=增长数量原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.7.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035C.x(x+1)=1035 D.x(x﹣1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:B.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.8.(3分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A.B.C.D.【分析】此题考查了配方法解一元二次方程,要注意解题步骤,把左边配成完全平方式,右边化为常数.【解答】解:∵x2+px+q=0∴x3+px=﹣q∴x2+px+=﹣q+∴(x+)2=故选:B.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.(3分)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根【分析】当k=1时方程为一元一次方程,只有一个实数根,当k≠1时,利用△判定方程根的情况即可.【解答】解:化简方程(x﹣1)[(k﹣1)x+(k﹣6)]=0,得(k﹣1)x8﹣2x﹣k+3=3,当k=1时方程为一元一次方程,只有一个实数根,当k≠1时,∵b8﹣4ac=4﹣5×(4k﹣k2﹣2)=4k2﹣16k+16=8(k﹣2)2≥7,∴方程一定有实数根.故选:D.【点评】本题主要考查了一元二次方程.解题的关键是二次项的系数及如何确定方程有无实数根.10.(3分)如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6(+1)m B.6(﹣1)m C.12(+1)m D.12(﹣1)m【分析】利用所给的角的三角函数用AB表示出BD,CB;根据BC﹣DB=CD即可求出建筑物AB 的高度.【解答】解:根据题意可得:BC==AB=AB.∵CD=BC﹣BD=AB(﹣6)=12,∴AB=6(+6).故选:A.【点评】本题通过考查仰角的定义,构造两个直角三角形求解.考查了学生读图构造关系的能力.二、填空题(每小题4分,共6小题)11.(4分)一元二次方程(x﹣3)2=4二次项系数为1,一次项系数为﹣6,常数项为5.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:(x﹣3)2=4化为一般形式x2﹣6x+7=0,故答案为:1,﹣8,5.【点评】本题考查了一元二次方程的一般形式,去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.12.(4分)若=1﹣a,则a的取值范围为a≤1.【分析】根据二次根式的性质可知,开方结果≥0,于是1﹣a≥0,解即可.【解答】解:∵=5﹣a,∴1﹣a≥0,∴a≤7,故答案是a≤1.【点评】本题考查了二次根式的性质与化简.解题的关键时注意开方结果的取值是≥0.13.(4分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m﹣3的值等于﹣2.【分析】利用一元二次方程的解的定义得到m2﹣m=1,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2﹣x﹣1=6的一个根.∴m2﹣m﹣1=3,即m2﹣m=1,∴m2﹣m﹣3=1﹣8=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.(4分)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k<2且k≠1.【分析】根据题意可得△=b2﹣4ac=4﹣4(1﹣k)×(﹣1)>0,且1﹣k≠0,再解方程与不等式即可.【解答】解:∵一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴△=b6﹣4ac=4﹣2(1﹣k)×(﹣1)>2,且1﹣k≠0,解得:k<3,且k≠1,故答案为:k<2且k≠8.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(4分)长方形铁片的长是宽的2倍,在它的四角各截去一个边长为5cm的小正方形,然后折起来做成一个无盖的铁盒,盒子容积为1.5立方分米,则铁片的长和宽分别为40cm,20cm.【分析】设铁片的宽为xcm,则长可用含x的代数式表示,从而这个盒子的容积可用含x的代数式表示,方程可列出,进而可求宽和长.【解答】解:设铁片的宽为xcm,则长为2xcm解得:x1=20,x3=﹣5(舍去)则铁片的宽为20cm,长为40cm故答案为:40cm,20cm.【点评】考查了一元二次方程的应用,对于容积问题应熟记各种图形的体积公式.另外,要注意等量关系的寻找;在解一元二次方程时注意舍去不合题意的解.16.(4分)定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“友好方程”.已知关于x的一元二次方程x2﹣4x+5m=mx+5和x2+2x+m﹣1=0互为“友好方程”,则m 的值为﹣34或1或﹣2.【分析】先利用因式分解法解方程x2﹣4x+5m=mx+5,得到x1=5,x2=m﹣1.再分别将x=5,x=m ﹣1代入x2+2x+m﹣1=0,求出m的值即可.【解答】解:x2﹣4x+4m=mx+5,整理得x2﹣(5+m)x+5(m﹣1)=7,分解因式得(x﹣5)[x﹣(m﹣1)]=2,解得x1=5,x4=m﹣1.当x=5时,25+10+m﹣6=0;当x=m﹣1时,(m﹣4)2+2(m﹣3)+m﹣1=0,解得m=8或m=﹣2..所以m的值为﹣34或1或﹣6.故答案为:﹣34或1或﹣2.【点评】本题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了利用因式分解法解方程,求出方程x2﹣4x+5m=mx+5的两个解是解题的关键.三、解答题(共66分)17.(6分)化简(1)(2)【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=﹣﹣2﹣=﹣;(2)原式=3﹣2+1﹣12=﹣8﹣4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)解下列方程(1)(x﹣2)2=3x(x﹣2)(2)2x2﹣4x﹣5=0【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)移项得:(x﹣2)2﹣7x(x﹣2)=0,(x﹣6)(x﹣2﹣3x)=2,x﹣2=0,x﹣7﹣3x=0,x5=2,x2=﹣3;(2)2x2﹣7x﹣5=0,b6﹣4ac=(﹣4)3﹣4×2×(﹣3)=56,x=,x1=,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.19.(8分)(1)已知,,求a2+ab+b2的值.(2)已知5x2﹣4x﹣12=0的两根为x1、x2,求的值.【分析】(1)根据,,可以得到a+b、ab的值,从而可以求得所求式子的值;(2)根据5x2﹣4x﹣12=0的两根为x1、x2,可以得到x1+x2,x1•x2的值,从而可以得到所求式子的值.【解答】解:(1)∵,,∴a+b=4,ab=6,∴a2+ab+b2=(a+b)3﹣ab=42﹣5=16﹣1=15;(2)∵5x8﹣4x﹣12=0的两根为x4、x2,∴x1+x8=,x6•x2=﹣,∴===.【点评】本题考查二次根式的化简求值、根与系数的关系,解答本题的关键是明确二次根式化简求值的方法.20.(10分)目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?【分析】(1)用人行横道的长乘以宽后相加减去重合部分的面积即可;(2)根据求得的比,设出矩形的长和宽,然后利用面积为2204即可求得原矩形的长和宽.【解答】解:(1)∵两条人行横道的长分别为a米和b米,宽均为2米,∴人行横道的面积为:2a+3b﹣4;(2)∵a:b=3:8,∴设a=3x,则b=2x,根据题意得:(3x﹣2)(2x﹣4)=2204解答:x=20或x=﹣(舍去)∴3x=60,2x=40,答:原长方形的长与宽各为60米和40米.【点评】本题考查了一元二次方程的应用的知识,正确的解答第二题是解决本题的关键.21.(10分)已知关于x的一元二次方程mx2﹣(4m+2)x+(3m+6)=0.(1)试讨论该方程的根的情况并说明理由;(2)无论m为何值,该方程都有一个固定的实数根,试求出这个根.【分析】(1)求出判别式的值即可判断.(2)由无论m为何值,该方程都有一个固定的实数根,又m(x2﹣4x+3)﹣2x+6=0,推出x2﹣4x+3=0,且﹣2x+6=0即可解决问题.【解答】解:(1)对于关于x的一元二次方程mx2﹣(4m+3)x+(3m+6)=3,∵△=[﹣(4m+2)]8﹣4m(3m+7)=16m2+16m+4﹣12m8﹣24m=4m2﹣6m+4=4(m﹣4)2≥0, ∴关于x的一元二次方程mx5﹣(4m+2)x+(5m+6)=0有实数根.(2)∵无论m为何值,该方程都有一个固定的实数根,又∵m(x8﹣4x+3)﹣5x+6=0,∴x8﹣4x+3=3,且﹣2x+6=8解得x=3,∴无论m为何值,该方程都有一个固定的实数根【点评】本题考查根的判别式,一元二次方程的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(12分)某商场销售一批名牌衬衫,现平均每天售出40件,每件盈利80元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价2元,商场平均每天可多售出4件.(1)如果每件衬衫降价x元,则商场每天可售出件衬衫;(2)若商场平均每天要盈利4800元,每件衬衫应降价多少元?(3)每件衬衫降价多少元时,商场平均每天盈利最多?【分析】(1)如果每件衬衫降价x元,则商场每天可售出件衬衫为:40+4×x,即可求解;(2)由题意得:4800=(40+2x)(80﹣x),即可求解;(3)设每天盈利为w=(40+2x)(80﹣x)=﹣2(x﹣80)(x+20),即可求解.【解答】解:(1)如果每件衬衫降价x元,则商场每天可售出件衬衫为:40+4×;(2)由题意得:4800=(40+2x)(80﹣x),解得:x=20或40,∵为了扩大销售,增加利润,∴x=20不符合题意舍去,x=40,答:若商场平均每天要盈利4800元,每件衬衫应降价40元;(3)设每天盈利为w=(40+2x)(80﹣x)=﹣7(x﹣80)(x+20),∵﹣2<0,故w有最大值,w取得最大值,即每件衬衫降价30元时,商场平均每天盈利最多.【点评】本题是通过构建函数模型解答销售利润的问题.依据题意,列出平均每天的销售利润w(元)与销售降价x(元/件)之间的函数关系式,再依据函数的增减性求得最大利润.23.(12分)如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.(1)当点P运动的时间为1.5s时,求线段PQ的长;(2)当四边形APQC的面积是△ABC面积的时,求点P运动的时间;(3)在点P的运动过程中,是否存在某一时刻t,使四边形APQC的面积是△ABC面积的?如果存在,请求出点P运动的时间;若不存在,请说明理由.【分析】(1)根据时间和速度表示AP和BQ的长,发现PQ是三角形ABC的中位线,可得PQ的长;(2)先用△ABC的面积﹣△PBQ的面积表示出四边形APQC的面积,再根据四边形APQC的面积是△ABC面积的列方程,解方程即可;(3)四边形APQC的面积等于三角形ABC面积的三分之二,可得出一个关于t的方程,如果方程无解则说明不存在这样的t值,如果方程有解,那么求出的t值就是题目所求的值.【解答】解:(1)当点P运动的时间为1.5s时,如图2AB=,∴PQ=AC=1.5cm;(2)设点P运动的时间为t秒,如图8,过P作PM⊥BC于M,在△BPM中,sin∠B=,∴PM=PB•sin∠B=(8﹣t),∴S△PBQ=BQ•PM=(3﹣t)=,∵四边形APQC的面积是△ABC面积的,∴S四边形APQC=S△ABC﹣S△PBQ=S△ABC,∴=(3﹣t),=(4﹣t),t2﹣3t+2=0,解得:t=1或7;则点P运动的时间是1秒或2秒;(3)假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,则S四边形APQC=S△ABC,由(2)得:S△ABC﹣S△PBQ=S△ABC,=S△PBQ,=(3﹣t),3=t(4﹣t),∴t2﹣3t+4=0,∵△=(﹣3)2﹣4×1×6<0,∴方程无解,∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.【点评】此题是三角形综合题,主要考查了等边三角形的面积公式,图形面积的求法、勾股定理以及一元二方程的解法等知识点.考查学生数形结合的数学思想方法.得出四边形APQC的面积是解本题的关键.(加试题)24.(5分)已知a>b>0,且,则=.【分析】移项后,把分式加减,得到关于a、b的二次方程,解二次方程用含b的代数式表示出a,得结果.【解答】解:因为,所以=整理,得a2﹣2ab﹣3b2=0所以a===b±b因为a>b>0所以a=(5+)b所以=故答案为:【点评】本题考查了分式的加减,一元二次方程的解法.解决本题的关键是解二次方程,用含b的代数式表示a.25.(5分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为3.【分析】根据题意列出关于x、y的方程组,然后求得x、y的值,结合已知条件x≤y来求a的取值.【解答】解:依题意得:,解得∵x≤y,∴a3≤6a﹣9,整理,得(a﹣7)2≤0,故a﹣8=0,解得a=3.故答案是:5.【点评】考查了配方法的应用,非负数的性质以及解二元一次方程组.配方法的理论依据是公式a2±2ab+b2=(a±b)2.26.(10分)求使关于x的方程(a+1)x2﹣(a2+1)x+2a3﹣6=0的根是整数的所有整数a.【分析】由二次方程(a+1)x2﹣(a2+1)x+2a3﹣6=0有整数根的所有整数a,可知﹣2<a<2,把a 值代入原方程讨论可得a=﹣1,0,1时,原方程有整数根.【解答】解:当a=﹣1时,原方程化为﹣2x﹣3﹣6=0;当a≠﹣4时,判别式△=(a2+1)8﹣4(a+1)(5a3﹣6)=﹣4a4﹣8a6+2a2+24a+25,若a≤﹣2,则△=﹣a2(7a4+8a﹣2)+24(a+5)+1<24(a+1)+7<0,方程无根;若a≥2,则△=﹣8a(a2﹣3)﹣a3(7a2﹣6)+25<﹣a2(7a3﹣2)+25<0,方程亦无根;故﹣4<a<2,又因为a为整数,则a只能取﹣1,4,1,则a在0当a=2时,方程可化为x2﹣x﹣6=6,解得x1=3,x7=﹣2;当a=1时,方程可化为x3﹣x﹣2=0,解得x2=2,x2=﹣6.综上所述,关于x的方程(a+1)x2﹣(a3+1)x+2a8﹣6=0,当a=﹣3,0,方程有整数根.。
2014年3月浙教版八年级下月考数学试题及答案(A班)
一、选择题(每小题4分,共40分)1x 的取值范围是( )A .x >32-B .x≥32-C .x≠23D .x≥32-且x≠232.已知下列命题:①若a ﹥b 则a +b ﹥0;②若a≠b 则a 2≠b 2;③角的平分线上的点到角两边的距离相等;④平行四边形的对角线互相平分。
其中原命题和逆命题都正确的个数是( )A .1个B .2个C .3个D .4个3.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长( )A .%10B .%15C .%20D .%254.如果一个三角形的三边长分别为1,k ,3,则化简328136472--+--k k k 的结果是( )A .-5B .1C .13D .19-4k5.某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,上述统计量中,对商场经理来说最有意义的是( )A .平均数B .众数C .中位数D .方差6.如图.已知在正方形网格中,每个小方格都是边长为1的正方形, A 、B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上, 且以A 、B 、C 为顶点的三角形面积为1,则点C 的个数为( )A .3个B .4个C .5个D .6个ABCDM第13题7. 若关于x 的一元一次不等式组 ⎩⎨⎧>≤<mx x 21 有解,则m 的取值范围为( )A .2<mB .2≥mC .1<mD .21<≤m8.如图,点E 为单位正方形内一点,且AE =BE =AB ,延长AE 交CD 于F ,作FG ⊥AB 于点G ,则EG 的长度为( )A 、B 、C 、D 、9.线段a x y+-=21(1≤x ≤3),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为( )A .6B .8C .9D .1010.如图,△ABC 中,AB =AC =2,BC 边上有10个不同的点1P ,2P ,……10P , 记C P B P AP M i i i i ⋅+=2(i = 1,2,……,10),那么1021M M M +++ 的值为( )A .4B .14C .40D .不能确定二、填空题(每小题5分,共40分)11.已知012=-+x x ,那么代数式7223-+x x 的值为____________12.如图,在Rt△ABC 中,∠ACB=90°,B A ∠<∠,CM 是 斜边AB 的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处, 如果CD 恰好与AB 垂直,那么∠A=____________13.已知()01554212=-+-+-c b a ,则一元二次方程02=++c bx ax 的根的情况是____________.14.不等式3x-3m≤-2m的正整数解为1,2,3,4,则m的取值范围是15.已知实数a、b满足|a+2|+|1-a|=9-|b-5|-|1+b|,设a+b的最大值为m,最小值为n,则m+n值为______。
2014年3月浙教版八年级下月考数学试题及答案(普班)
八年级下册数学三月月考试题2014.3一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)1.下列方程中,属于一元二次方程的是( )A 、x+y=2B 、2230x y ++=C 、2213y y -=D 、2130x x-+= 2.下列运算正确的是( )A 、436436--=--B 、 ()21212-=-C 、53554-=+-D 4=±3.数据共50个,分为6组,第1到第四组的频数分别为5,7,8,10,第5组的频率为0.2,则第6组的频数为( )A 、8B 、10C 、11D 、154.三角形两边的长是3和4,第三边的长是方程(x-5)(x-7)=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对5.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中( )A 、有一个内角小于60°B 、每一个内角都小于60°C 、有一个内角大于60°D 、每一个内角都大于60°6.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参加比赛的球队应有( )A 、7队B 、6队C 、5队D 、4队7.乐清某校为了了解学生在校午餐所需的时间,抽量了20名学生在校午餐所需时间,获得如下的数据(单位:分): 10 、12、15、10、16、18、19、18、20、18、18、20、28、22、30、20、15、16、21、16.若将这些数据以4分为组距进行分组,则组数是( )A 、4组B 、5组C 、6组D 、7组8.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的平行四边形AEMG 的面积S 1与平行四边形HCFM 的面积S 2的大小关系是( )9、某开发公司今年一月份收益达50万元,且一月份、二月份、三月份的收益共为175万元,问二、三月平均每月的增长率是多少?设平均每月的增长率为 x ,根据题意可列方程( )A 、50(1+x)2 =175B 、 50+50(1+x)2=175C 、50(1+x)+50(1+x)2 =175D 、50+50(1+x)+50(1+x)2 =17510、如图,△ABC 中∠A =30°,E 是AC边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB =82°,则原三角形的∠B =(A.78°B.52°C.68°D.75°二、认真填一填(本题有8个小题,每小题3分,共24分)11.当2x =-的值为12.已知一元二次方程有一个根为1,那么这个方程可以是 .(只需写出一个方程).13.把方程2620x x --=化成()2x a b +=的形式,a b -= . 14.若关于x 的一元二次方程093)3(22=-++-m x x m 有一个根是0,则m =15.在平面直角坐标系内,A 、B 、C 三点的坐标为(0,0)、(4,0)、(2,3-),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不.可能在第 象限. 16.市人民政府为了解决群众看病难问题,决定下调药品价格,由每盒150元调至96元,平均每次的降价百分率为________.17.如图,在□ABCD 中,∠BAD 的平分线交BC 于点E .若AB =10cm ,AD =16cm ,则EC = cm ;18.某学校园内有如图的一块长方形ABCD 空地,已知BC=20m ,AB=10m ,学校准备在这块空地的中间一块四边形EFGH 内种花,其余部分铺设草坪,并要求AE=AH=CF=CG ,四边形EFGH 的种花面积为88m 2, 则AE 的长是____________ m 。
2014年3月浙教版八年级下月考数学试题及答案(B班)
一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
)1.已知13a b a -=,则a b 的值为( )A .32B .23C .12D .22.若双曲线2y x=过两点()11y -,,()23y -,,则1y 与2y 的大小关系为( ).A. 1y >2yB. 1y <2yC. 1y =2yD. 1y 与2y 大小无法确定3.把抛物线22x y -=向上平移3个单位,所得新抛物线的解析式为……( ) A.322+-=x y B.322--=x yC.2)3(2+-=x yD.2)3(2--=x y4.直线x y 2=与x 轴正半轴的夹角为α,那么下列结论正确的是……( ) A .2tan =α B. tan α=0.5 C.5.0sin =α D.5.0cos =α5.下面四个几何体中,左视图是四边形的几何体共有( )6. 如图,冰淇淋蛋筒下部呈圆锥形,则此圆锥部分包装纸的面积(接缝面积忽略不计)是…………………………………………………( ) A.15cm 2B.30cm2C.15πcm2D.30πcm27.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ) A .36° B .46° C .27° D .63°8.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( )A .B .C .D .9.如图,已知菱形ABCD ,且AB=3,∠B=120°, O1、O 2是对角线AC 上的两个动点,⊙O 1与AB 相切于E ,⊙O 2与CD 相切于F ,并且⊙O 1与⊙O 2外切,设⊙O 1的半径为R ,设⊙O 2的半径为r ,则R+r 的值为 A.1 B10.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)A . 1个B . 2个C . 3个D .4个 二.填空题(每题4分,共24分):11.在半径为5的圆中,30°的圆心角所对的弧长为 (结果保留π).与反比例函数三、解答题(共5题,满分46分)17.(满分10分)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF的顶点都在方格纸的格点上.(1) 判断△ABC 和△DEF 是否相似,并说明理由;(2) P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出所有符合条件的三角形,并在图中连结相应线段,不必说明理由).18.(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是14. (1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?19.(8分)。
浙江省杭州市萧山区义蓬学区2013-2014学年八年级下3月月考数学试卷及答案【浙教版】
的百分数相同,则平均每月的增长率为( )。
A. B. C. D.
9.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园 (围墙 最长可利用25m),现在已备足可以砌50m长的墙的材料,若设计一种砌法,使矩形花园的面积为300m2.则 长度为( )
杭州市萧山区义蓬学区2013-2014学年第二学期3月月考
八年级数学试卷
温馨提示:
1、本试卷分试题卷和答题卷两部分,满分120分,时间90分钟。
2、答题前,先在答题卷左侧写明校名、班级、姓名和考号。
一、仔细选一选:(本题有10小题,每题3分,共30分)
1.二次根式 中字母x的取值范围是( )
A.x≥2 B.x>2 C.x≥ D.x>
5.一元二次方程 的根的情况是( )
A.有一个实数根B.有两个相等的实数根
C.有两个不相等的实数根D.没有实数根
6.已知a是方程 的一个根,那么代数式 的值为()。
A. 5B. 6C. 7D. 8
7.已知一元二次方程 的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为( )
A.14B.10C.11D.14或10
大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积。(8分)
21.(本题10分)
临安特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=
浙教版八年级下数学3月考试卷(1-3章含解析)
浙教版八年级下数学月考试卷(3月份)一.选择题(共10小题,3*10=30)1.要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数2.下列计算中正确的是()A.B.C.=1D.3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,505.方程x2﹣8x+15=0左边配成一个完全平方式后,所得的方程是()A.(x﹣6)2=1 B.(x﹣4)2=1 C.(x﹣4)2=31 D.(x﹣4)2=﹣76.已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=87.某市2014年的快递业务量为4.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2016年的快递业务量达到9.7亿件,设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A.4.4(1+x)=9.7B.44.4(1+2x)=9.7C.4.4(1+x)2=9.7D.4.4(1+x)+4.4(1+x)2=9..78.若0<a<1,则﹣的值为()A.2a B.C.﹣2a D.﹣49.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.810.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)二.填空题(共8小题,3*8=24)11.已知x<0,化简二次根式的结果是.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.13.甲、乙两人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么两人中成绩更稳定的是(填“甲”或“乙”).14.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=.15.已知(x+)(x+﹣1)=2,则x+=.16.某经营户以2元/千克的价格购进一批瓯柑,以5元/千克的价格出售,每天可售出100千克.为了促销,该经营户决定降价销售.经调查发现,这种瓯柑每千克降价0.1元,每天可多售出10千克.另外,每天的房租等固定成本共100元.该经营户要想每天盈利300元.设每千克瓯柑的售价降低x元,依题意可列方程:.17.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=.18.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为.三.解答题(共7小题,66分)19.(6分)计算:(1)(﹣)2﹣+(2).20.(8分)用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)221.(8分)在最近的五次数学过关测试中,小聪和小明的成绩如下表:(单位:分)第1次第2次第3次第4次第5次小聪75801009080小明7085959580(1)完成下表:平均成绩(分)中位数(分)众数(分)小聪85小明8595(2)在这五次测试中,哪位同学的成绩比较稳定?请说明理由.22.(8分)已知关于x的一元二次方程x2﹣4x+12+m=0.(1)若方程的一个根是,求m的值及方程的另一根;(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的面积.23.(10分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.24.(12俀)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.25.(14分)如图1,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果P,Q同时分别从A,B点出发,设出发时间为ts(t>0).(1)当t为何值时,△PBQ的面积是8cm2?(2)当t为何值时,点P和点Q间的距离是6cm?(3)如图2,若点P,点Q同时从B点出发,点P沿折线BA﹣AC移动,点Q沿折线BC﹣CA 移动,其余条件均不变,求当P,Q在D点相遇时,点D与点B的距离.参考答案与试题解析一.选择题(共10小题)1.要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2.下列计算中正确的是()A.B.C.=1D.【分析】根据二次根式的性质、合并同类二次根式法则、二次根式的运算法则逐一计算即可得.【解答】解:A、=13,错误;B、===2,错误;C、2﹣=,错误;D、=|2﹣|=﹣2,正确;故选:D.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质与运算法则.3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个【分析】本题根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程,依据定义即可解答.【解答】解:在方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的是①④这2个,故选:B.【点评】本题考查了一元二次方程的概念,解答要判断方程是否是整式方程,若是整式方程,再化简,观察化简的结果是否只含有一个未知数,并且未知数的最高次数是2.4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,50【分析】根据众数、中位数的定义,结合表格数据进行判断即可.【解答】解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选:C.【点评】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.5.方程x2﹣8x+15=0左边配成一个完全平方式后,所得的方程是()A.(x﹣6)2=1 B.(x﹣4)2=1 C.(x﹣4)2=31 D.(x﹣4)2=﹣7【分析】移项后,两边配上一次项系数一半的平方即可得.【解答】解:∵x2﹣8x=﹣15,∴x2﹣8x+16=﹣15+16,即(x﹣4)2=1,故选:B.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=8【分析】由方程mx2﹣mx+2=0有两个相等的实数根,得m≠0,△=m2﹣4×2m=0,解m的方程得m=0或8,最后m=8.【解答】解:因为方程mx2﹣mx+2=0有两个相等的实数根,所以m≠0且△=m2﹣4×2m=0,解方程m2﹣4×2m=0得m=0或8,所以m=8.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时也考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义.7.某市2014年的快递业务量为4.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2016年的快递业务量达到9.7亿件,设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A.4.4(1+x)=9.7B.44.4(1+2x)=9.7C.4.4(1+x)2=9.7D.4.4(1+x)+4.4(1+x)2=9..7【分析】设2015年与2016年这两年的平均增长率为x,根据2014年及2016年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设2015年与2016年这两年的平均增长率为x,根据题意得:4.4(1+x)2=9.7.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.若0<a<1,则﹣的值为()A.2a B.C.﹣2a D.﹣4【分析】由0<a<1,判断出>1>a>0,再根据二次根式和绝对值的性质解答即可.【解答】解:∵0<a<1,>1>a>0,∴原式=﹣,=|a﹣|﹣|a+|,=﹣a﹣a﹣,=﹣2a.故选:C.【点评】本题考查了二次根式的化简,注意二次根式的结果为非负数.9.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.8【分析】先根据两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,求得k=3,进而得到一元二次方程为x2﹣6x+6=0,进而得到两腰之和为=4,进而得出△ABC的周长为4+3=7.【解答】解:∵两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,∴△=[﹣(k+3)]2﹣4×k×6=0,解得k=3,∴一元二次方程为x2﹣6x+6=0,∴两腰之和为=4,∴△ABC的周长为4+3=7,故选:B.【点评】本题主要考查了根的判别式以及三角形三边关系,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.10.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)【分析】解一元二次方程,根据判别式即可判断(1)(2),将式子转化为抛物线,经配方成顶点式的形式,根据抛物线的性质即可判断(3)(4).【解答】解:(1)2x2﹣4x+6=0,△=42﹣4×2×6<0,方程无实数根,故小聪找不到实数x,使2x2﹣4x+6得值为0正确,符合题意,(2)2x2﹣4x+6=4,解得x1=x2=1,方程有两个相等的实数根x=1,故小明认为只有当x=1时,2x2﹣4x+6的值为4正确,符合题意,(3)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,有最小值,故小伶发现2x2﹣4x+6没有最小值错误,不符合题意,(4)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,没有最大值,故小刚发现2x2﹣4x+6没有最大值正确,符合题意,故选:C.【点评】本题考查配方法的应用,和抛物线的性质,掌握一元二次方程求根公式和抛物线的性质是解决本题的关键.二.填空题(共8小题)11.已知x<0,化简二次根式的结果是﹣x.【分析】根据二次根式有意义,可知y≤0,再由二次根式的性质解答.【解答】解:∵x<0,﹣x2y≥0,∴y≤0,∴=﹣x.故答案为:﹣x.【点评】本题主要考查了二次根式的性质和化简,难度适中,容易丢负号.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.13.甲、乙两人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么两人中成绩更稳定的是甲(填“甲”或“乙”).【分析】根据方差的意义数据波动越小,数据越稳定即可得出答案.【解答】解:根据图形可得:甲的成绩波动最小,数据最稳定,则两人中成绩最稳定的是甲,故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=1.【分析】根据根与系数的关系得出2+b=a+1,变形即可得出答案.【解答】解:∵一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,∴2+b=a+1,∴a﹣b=2﹣1=1.故答案为:1.【点评】本题考查了根与系数的关系,难度不大,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.15.已知(x+)(x+﹣1)=2,则x+=2.【分析】根据换元法可以解答本题.【解答】解:设x+=a,∵(x+)(x+﹣1)=2,∴a(a﹣1)=2,解得,a1=2,a2=﹣1,∴x+=2或x+=﹣1(舍去),故答案为:2.【点评】本题考查换元法解一元二次方程,解答本题的关键是会用换元法解方程.16.某经营户以2元/千克的价格购进一批瓯柑,以5元/千克的价格出售,每天可售出100千克.为了促销,该经营户决定降价销售.经调查发现,这种瓯柑每千克降价0.1元,每天可多售出10千克.另外,每天的房租等固定成本共100元.该经营户要想每天盈利300元.设每千克瓯柑的售价降低x元,依题意可列方程:(5﹣2﹣x)(100+)﹣100=300.【分析】设每千克瓯柑的售价降低x元.那么每千克的利润为:(5﹣2﹣x),由于这种瓯柑每千克降价0.1元,每天可多售出10千克.所以降价x元,则每天售出数量为:(100+)千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=300.【解答】解:设每千克瓯柑的售价降低x元.根据题意,得(5﹣2﹣x)(100+)﹣100=300.故答案为(5﹣2﹣x)(100+)﹣100=300.【点评】本题考查了由实际问题抽象出一元二次方程,解题关键是要读懂题目的意思,抓住根据描述语,找到等量关系列出方程.17.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=2017.【分析】根据二次根式有意义的条件可得a﹣2017≥0,解不等式可得a的取值范围,然后再去绝对值可得a﹣2016+=a,再整理可得答案.【解答】解:由题意得:a﹣2017≥0,解得:a≥2017,|2016﹣a|+=a,a﹣2016+=a,=2016,a﹣20162=2017,故答案为:2017.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.18.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为0.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a代入方程可得,a2﹣a﹣1=0,即a2=a+1,∴a4﹣3a﹣2=(a2)2﹣3a﹣2=(a+1)2﹣3a﹣2=a2﹣a﹣1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取等量关系a2=a+1,然后利用“整体代入法”求代数式的值.解此题的关键是降次,把a4﹣3a﹣2变形为(a2)2﹣3a﹣2,把等量关系a2=a+1代入求值.三.解答题(共7小题)19.计第:(1)(﹣)2﹣+(2).【分析】(1)根据二次根式的性质化简各二次根式,再计算加减可得;(2)先化简各二次根式,再合并同类二次根式可得.【解答】解:(1)原式=6﹣5+3=4;(2)原式=3﹣4×+2+=3﹣2+2+=+2+.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质和运算法则.20.用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)2【分析】(1)求出b2﹣4ac的值,再带公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再带公式求出即可;(4)两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+2x﹣1=0,b2﹣4ac=22﹣4×1×(﹣1)=8,x=,x1=﹣1+,x2=﹣1﹣;(2)(3x﹣7)2=﹣2(7﹣3x),(3x﹣7)2﹣2(3x﹣7)=0,(3x﹣7)(3x﹣7﹣2)=0,3x﹣7=0,3x﹣7﹣2=0,x1=,x2=3;(3)2x2﹣6x﹣1=0,b2﹣4ac=(﹣6)2﹣4×2×(﹣1)=44,x=,x1=,x2=;(4)9(x﹣2)2=4(x+1)2,开方得:3(x﹣2)=±2(x+1),x1=8,x2=0.8.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.21.在最近的五次数学过关测试中,小聪和小明的成绩如下表:(单位:分)第1次第2次第3次第4次第5次小聪75801009080小明7085959580(1)完成下表:平均成绩(分)中位数(分)众数(分)小聪858080小明858595(2)在这五次测试中,哪位同学的成绩比较稳定?请说明理由.【分析】(1)将小聪的成绩按照从小到大的顺序排列,结合中位数、众数的定义即可得出小聪成绩的中位数、众数,再根据小明五次测试的成绩结合平均数的定义,即可求出小明五次测试的平均分;(2)根据方差公式,分别求出S2小明、S2小聪,二者比较后即可得出结论.【解答】解:(1)按照从小到大的顺序排列小聪的成绩:75,80,80,90,100,∴小聪成绩的中位数为80分,众数为80分.小明成绩的平均成绩为(70+85+95+95+80)÷5=80(分).故答案为:80;80;85.(2)小聪的成绩比较稳定,理由如下:S2小聪=×[(75﹣85)2+(80﹣85)2+(100﹣85)2+(90﹣85)2+(80﹣85)2],=×[100+25+225+25+25],=×400,=80(分2);S2小明=×[(70﹣85)2+(85﹣85)2+(95﹣85)2+(95﹣85)2+(80﹣85)2],=×[225+0+100+100+25],=90(分2).∵90>80,∴S2小明>S2小聪,∴小聪的成绩比较稳定.【点评】本题考查了方差、中位数以及众数,解题的关键是:(1)牢记中位数、众数以及平均数的定义;(2)牢记方差公式.22.已知关于x的一元二次方程x2﹣4x+12+m=0.(1)若方程的一个根是,求m的值及方程的另一根;(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的面积.【分析】(1)可将该方程的已知根代入方程,求出m的值,即可求出方程的另一根,(2)根据方程的两根恰为等腰三角形的两腰可得△=b2﹣4ac=0,列出式子,即可求实数m的值,再根据勾股定理可求底边的高,根据三角形面积公式计算即可求解.【解答】解:(1)∵x=是方程x2﹣4x+12+m=0的一个根∴()2﹣4×+12+m=0解得:m=3则方程为:x2﹣4x+15=0解得:x1=,x2=3.∴方程的另一根为3.(2)若方程的两根恰为等腰三角形的两腰,则△=b2﹣4ac=0,所以△=(﹣4)2﹣4(12+m)=0,解得m=8,则方程为:x2﹣4x+20=0,解得x=2,底边的高为:=2,故面积为8×2÷2=8.【点评】此题考查了一元二次方程的解和根的判别式,解决此类题目时要认真审题,根据根的判别式列出式子.23.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价﹣进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得:x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)不能,∵(20+2x)(40﹣x)=2000 此方程无解,故不可能做到平均每天盈利2000元.【点评】本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.24.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【分析】(1)根据p=﹣4,q=3,得出方程x2﹣4x+3=0,再求解即可;(2)根据a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x﹣5=0的解,求出a+b 和ab的值,即可求出+的值;(3)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,•=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.【解答】解:(1)当p=﹣4,q=3,则方程为x2﹣4x+3=0,解得:x1=3,x2=1.(2)∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a、b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,+====﹣47;当a=b时,原式=2.(3)设方程x2+mx+n=0,(n≠0),的两个根分别是x1,x2,则+==﹣,•==,则方程x2+x+=0的两个根分别是已知方程两根的倒数.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.如图1,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,与此同时,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果P,Q同时分别从A,B点出发,设出发时间为ts(t>0).(1)当t为何值时,△PBQ的面积是8cm2?(2)当t为何值时,点P和点Q间的距离是6cm?(3)如图2,若点P,点Q同时从B点出发,点P沿折线BA﹣AC移动,点Q沿折线BC﹣CA 移动,其余条件均不变,求当P,Q在D点相遇时,点D与点B的距离.【分析】(1)设出运动所求的时间,可将BP和BQ的长表示出来,代入三角形面积公式,列出等式,可将时间求出;(2)根据PQ2=PB2+BQ2,列出方程即可解决问题;(3)作BE⊥AC于E,连接DB,在Rt△DBE中,解直角三角形即可解决问题;【解答】解:(1)∵P A=t.BQ=2t,AB=6,∴PB=6﹣t,由题意(6﹣t)•2t=8,解得t=2或4,∴当t为2s或4s时,△PBQ的面积是8cm2.(2)由题意:(6﹣t)2+(2t)2=62,解得t1=0(舍),t2=,∴当t为s时,点P和点Q间的距离是6cm.(3)∵∠B=90°,AB=6cm,BC=8cm,∴AC==10cm,由题意,得(1+2)t=6+8+10,∴t=8,∴AD=t﹣AB=2cm.作BE⊥AC于E,连接DB,则BE==cm,∴AE==cm,∴DE=AE﹣AD=cm,∴BD==cm.【点评】本题考查三角形综合题、勾股定理、一元二次方程的应用等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。
新浙教版2014学年第二学期八年级下数学月考试卷
2014学年第二学期八年级下数学月考试卷3分,共30分)3+x有意义,则x的取值范围是()、x ≥ -3 C、x ≠ -3 D、x≥ 3232=+-xax是一元二次方程,则( )B、0≠a C、1=a D、0≥a3.一元二次方程()xxx-=+33的解是()A 、1-=x B、3=x C、1-=x,3=x D、0=x,3=x4.A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41度 B.42度 C.45.5度 D.46度5.三角形的两边长分别为3和5,第三边长是方程0862=+-xx的根,则这个三角形的周长是()A、8B、10C、12D、10或126.若()01212=-++yx,则yx+的值为( )A、1- B、21C、0D、21-7.方程23210x x--=经配方后的结果正确的是()A.212(33x-=);B.214(33x-=);C.22(19x-=);D.214(39x-=).8.如果一元二次方程232++xx=9,则代数式5932-+xx的值为()A.16 B.16-C.0 D.49.某超市一月份的营业额为100万元,第一季度(一,二,三月份)的营业额共800万元,如果平均每月增长率为x,则所列方程应为()A.()80011002=+x B.8002100100=⨯+xC.8003100100=⨯+x D.()()800110011001002=+⨯++⨯+xx10:不论a任何实数,式子822++aa的值()A、可能为负数B、可以为任何实数C、总大于7D、总不小于7二.填空题(每小题3分,共24分)11.将32化成最简二次根式为.12.一元二次方程0432=--xx的二次项系数为一次项系数为常数项为。
13.数据4,6,8,a,12的平均数是8,则a的值是 .14. 已知一元二次方程有一个根为1,那么这个方程可以是.(只需写出一个方程)15. 某种服装原售价为200元,由于换季,连续两次降价处理,现按72元的售价销售.已知两次降价的百分率相同,则每次降价的百分率为.16.已知一个样本1,3,2,5,x,其平均数是3,则这个样本的方差是______.17.某班共有n个同学,若这n个同学每两个同学均握手一次,共握手36次,则n=18.右图中螺旋形由一系列的等腰直角三角形组成,其依次为由小到大,则第n个等腰直角三角形的斜边长为.三、解答题(共46分)19.计算(每小题3分,共6分)(2)(2(3)2712-+320.解方程(每小题4分,共16分)(1)02542=-x(2)()1212+=+xxx(3)xx3232=+(4)01)3(22=+-xx- 1 -221.(6分)设关于x 的方程22240x mx m ---=,试说明不论m 为何值时,这个方程总有两个不相等的实数根.22.(6分)明城商场日用品柜台10名售货员11月完成的销售额情况如下表:(1)计算销售额的平均数,中位数,众数;(2)商场为了完成年度的销售任务,调动售货员的积极性,•在一年的最后月份采取超额有奖的办法,你认为根据上面计算结果,每个售货员统一的销售额标准是多少?23.( 6分)在宽20m ,长32m 的长方形耕地上修筑同样宽的三条道路(两纵一横,如图),把耕地分成大小相等的6块试验地.问要使试验地的总面积为570m 2,道路宽为多少m?24、(6分)某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)(2分)用代数式表示,这种商品的单价为x 元时销售1件该商品的利润和每天销售该商品的数量; (2)(4分)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元。
江苏省苏州市苏州工业园区青剑湖实验中学2023-2024学年八年级下学期3月月考数学试题
江苏省苏州市苏州工业园区青剑湖实验中学2023-2024学年八年级下学期3月月考数学试题一、单选题1.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.彩民小明购买10000张彩票,中一等奖.这个事件是( ) A .必然事件B .确定性事件C .不可能事件D .随机事件3.为了了解某校八年级1000名学生的身高情况,从中抽查100名学生的身高进行统计分析,在这个问题中,总体是指( ) A .1000名学生 B .被抽取的100名学生 C .1000名学生的身高D .被抽取的100名学生的身高4.在平行四边形ABCD 中,130A ∠=︒,则C ∠=( ) A .130︒B .50︒C .30︒D .120︒5.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,若60AOB ∠=︒,8BD =,则DC 长为( )A .B .4C .3D .56.如图,四边形ABCD 为菱形,对角线AC ,BD 交于点O ,DE AB ⊥,垂足为E .若5AB =,6BD =,则DE 的长是( )A.125B.185C.245D.4857.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s8.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数.n”甲、乙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取13n=.乙:如图3,思路是当x倍时就可移转过去:结果取13n=.下列正确的是()A.甲的思路对,他的n值错B.乙的思路错,他的n值对C.甲和乙的思路都对D.甲和乙的n值都对二、填空题9.某医院病房护土对一位病人每小时测一次体温,要把这位病人一昼夜体温变化情况用统计图表示出来选用统计图比较合适(填“条形”、“扇形”、“折线”).10.如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是.11.如图,A B ,两地被池塘隔开,小康通过下列方法测出了A B ,间的距离:先在A B ,两地外选一点C ,然后测出AC BC ,的中点M N ,,并测量出MN 的长为18m ,由此他就知道了A B ,间的距离,则AB =.12.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.13.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若5OE =,BC 等于.14.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为(精确到0.01).15.已知平面上四点(0,0)A ,(10,0)B ,(10,6)C ,(0,6)D ,直线32y mx m =-+将四边形ABCD分成面积相等的两部分,则m 的值为.16.如图,四边形ABCD 中,AD BC ∥,60ABC ∠=︒,1AD AB ==,2BC =,E 为射线CB 上的动点,将线段AE 绕A 点顺时针旋转120︒得到AE ',DE '的最小值为.三、解答题17.某学校开展课外球类特色的体育活动,决定开设A :羽毛球、B :篮球、C :乒乓球、 D :足球四种球类项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生3000人,请根据样本估计全校最喜欢足球的学生人数约是多少? 18.在一个不透明的盒子里装有红、黑两种颜色的球共20个,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,我们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:(1)通过以上实验,盒子里红球的数量为__________个.(2)若先从袋子中取出()1x x >个红球,再从袋子中随机摸出1个球,若“摸出黑球”为必然事件,则x =___________.(3)若先从袋子中取出x 个红球,再放入x 个一个样的黑球并摇匀,随机摸出1个红球的概率为14,求x 的值. 19.如图,ABC V 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出ABC V 关于原点对称的111A B C △; (2)四边形11CBC B 为___________四边形;(3)点P (P 在格点上)为平面内一点,若以点A 、B 、C 、P 为顶点的四边形为平行四边形,请直接写出所有满足条件的点P 有___________个. 20.已知:如图,四边形ABCD 中,AB CD ∥,AB CD =.(1)求证:AD BC =(2)AD 与BC 的位置关系为:21.如图,ABC V 中,90C ∠=︒,5AB =,3BC =,将ABC V 绕A 点按顺时针旋转60︒,得到AB C ''△,求CC '的长度.22.如图,在ABCD Y 中,点,E F 分别在,BC AD 上,AC 与EF 交于点O ,且AO CO =.(1)求证:AF EC =;(2)连接,AE CF ,若8,6AC EF ==,且EF AC ⊥,求四边形AECF 的周长.23.如图,在正方形ABCD 中,延长BC 至点E ,使得:AD CE =连接AC ,AE ,AE 交CD 于点F .(1)试探究ACE △的形状; (2)求AFD ∠的度数.24.利用中位线定理,证明“直角三角形斜边上的中线等于斜边的一半”. 已知:如图,在Rt ABC △中,90BAC ∠=︒,. 求证:.25.在矩形纸片ABCD 中,6AB =,10BC =.(1)将矩形纸片沿BD 折叠,使点A 落在点E 处如图①.设DE 与BC 相交于点F ,求BF 的长; (2)将矩形折叠,使点A 落在点P 处,折痕为DE ,如图②,若点P 恰好在边BC 上,连接AP ,求AP 的长度;(3)将矩形纸片折叠,使点B 与D 重合如图③,求折痕GH 的长.26.平面直角坐标系中点(),A a b ,(),B m n ;记A ,B 两点的横向距离为1d m a =-;纵向距离为2d n b =-,A ,B 两点的相对距离记为()12,D A B d d =+.(1)已知()1,3M 与()2,4N -,则(),D M N =________.(2)已知(),P x y 与()0,2Q ,且(),2D P Q =,求满足条件的所有点P 围成的图形面积为____________. (3)已知点G 在122y x =+上,()1,0H ,直接写出(),D G H 的最小值. (4)已知点(),4W w w +,(),0T t ,且(),2D W T =,求满足条件的所有点W 围成的图形长为__________.。
八年级下册第1次月考试题--数学(含答案) (18)
八年级数学(下册)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.138.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.如果等腰三角形的一个角等于80°,则它的顶角等于度.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是(填序号);(2)证明:23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是;(2)若∠BAC=128°,则∠DAE的度数是.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD 与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=70°时,∠A=∠C=40°,当顶角为∠A=40°时,∠B=∠C=70°,所以B选项正确.当AB=AC=3,BC=63+3=6,不能构成三角形,所以C选项错误.当AB=3、BC=8,周长为16,AC=5,所以D选项错误.故选B.4.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.8.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.12.如果等腰三角形的一个角等于80°,则它的顶角等于80或20.度.【考点】等腰三角形的性质;三角形内角和定理.【分析】当等腰三角形的一个角等于80°时,分2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角与其相等,②当等腰三角形的顶角等于80°,时,利用三角形内角和定理即可求出答案.【解答】解;当等腰三角形的一个角等于80°时,则有2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角等于80°时,②当等腰三角形的顶角等于80°时则它的底角为:=20°故答案为:80或20.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为105°.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为3cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质求出∠EOB=∠EBO,∠FCO=∠FOC,根据等腰三角形的判定得出OE=BE,OF=FC,求出BC长,根据三角形的面积公式求出即可.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为5.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=15°,∴∠GEF=∠FGE=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,四个是60°,五个是75°,六个是90°就不存在了.所以一共有5个.故答案为518.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质结合网格得出符合题意的图形即可.【解答】解:如图所示:.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是①(填序号);(2)证明:【考点】全等三角形的判定与性质.【分析】(1)利用全等三角形的判定定理选出合适的条件即可;(2)利用SSS进而判断出全等三角形,得出AB∥ED即可.【解答】解:(1)选择①AB=ED或③∠ACB=∠DFE即可.故答案为:①(答案不唯一);(2)证明:∵FB=CE,∴BC=EF,在△ABC和△EFD中,∴△ABC≌△EFD(SSS),∴∠B=∠E,∴AB∥ED.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是10;(2)若∠BAC=128°,则∠DAE的度数是76°.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得BC=△AEF周长;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵△ADE周长是10,∴BC=BE+EF+CF=AE+EF+AF=10;故答案为:10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°,故答案为:76°.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的性质;全等三角形的性质;等腰三角形的判定.【分析】(1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;(2)根据等边三角形的性质和周角的定义解答即可;(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α﹣60°,得到方程190°﹣α=α﹣60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°﹣α,∠ADO=α﹣60°,于是得到α﹣60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°﹣α=50°于是得到α=140°.【解答】解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO=CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°﹣110°﹣90°﹣60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣100°﹣60°﹣α=200°﹣α,∠ADO=α﹣60°,∴200°﹣α=α﹣60°∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=40°,∴α﹣60°=40°∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°﹣α=40°∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,或100°,150°或160°时,△AOD是等腰三角形26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。
浙教版八年级(下)月考数学试卷(范围:第1-3章)
浙教版八年级(下)月考数学试卷一、选择题(每小题3分,共30分)1.(3分)要使代数式有意义,则a的取值范围是()A.a≥0 B.a≠C.a≥0且a≠D.一切实数2.(3分)用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=63.(3分)下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个4.(3分)若,则x﹣y的值为()A.1 B.﹣1 C.7 D.﹣75.(3分)已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=86.(3分)某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.100(1+x)2=280B.100(1+x)+100(1+x)2=280C.100(1﹣x)2=280D.100+100(1+x)+100(1+x)2=2807.(3分)若(x+y)(1﹣x﹣y)+6=0,则x+y的值是()A.2 B.3 C.﹣2或3 D.2或﹣38.(3分)已知三角形两边的长分别是4和3,第三边的长是一元二次方程x2﹣8x+15=0的一个实数根,则该三角形的面积是()A.12或B.6或2C.6 D.9.(3分)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.2510.(3分)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分二、填空题(每小题4分,共24分)11.(4分)计算的值是.12.(4分)若(m+3)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是.13.(4分)设x1,x2是方程x2﹣4x+2=0的两根,则x1﹣x2的值是:.14.(4分)把(2﹣a)根号外面的因式移到根号内,结果是.15.(4分)已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为.16.(4分)已知=5,则=.三、解答题(本题有7个小题,共66分,解答应写出文字说明、证明过程或推演步骤)17.(6分)计算:(1)()()(2)x(2x﹣3)+4x﹣6=0.18.(8分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.19.(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.20.(10分)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是等腰三角形?并求△ABC的周长.(2)k为何值时,△ABC是以BC为斜边的直角三角形?21.(10分)国贸商店服装柜在销售中发现:“宝乐牌”童装平均每天可以售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经调查发现:每件童装每降价1元,商场平均每天可多销售2件.(1)若每件童装降价5元,则商场盈利多少元?(2)若商场每天要想盈利1200元,请你帮助商场算一算,每件童装应降价多少元?22.(12分)阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.23.(12分)如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm 的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=,BQ=;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10cm2?(4)经过几秒时△BPQ的面积达到最大?并求出这个最大值.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)要使代数式有意义,则a的取值范围是()A.a≥0 B.a≠C.a≥0且a≠D.一切实数【分析】根据二次根式有意义的条件和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:a≥0且a≠.故选:C.【点评】本题考查的知识点为:分式有意义的条件,分母不为0;二次根式的被开方数是非负数.2.(3分)用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.【解答】解:∵x2﹣2x﹣6=0,∴x2﹣3x=2,∴x2﹣8x+1=2+5,∴(x﹣1)2=2.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的正确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.(3分)下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个【分析】根据最简二次根式的定义分别判断解答即可.【解答】解:中是最简二次根式的有,, 故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.(3分)若,则x﹣y的值为()A.1 B.﹣1 C.7 D.﹣7【分析】首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x﹣y的值.【解答】解:由题意,得:,解得;所以x﹣y=4﹣(﹣3)=5;故选:C.【点评】此题主要考查非负数的性质:非负数的和为0,则每个非负数必为0.5.(3分)已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=8【分析】由方程mx2﹣mx+2=0有两个相等的实数根,得m≠0,△=m2﹣4×2m=0,解m的方程得m =0或8,最后m=8.【解答】解:因为方程mx2﹣mx+2=2有两个相等的实数根,所以m≠0且△=m2﹣7×2m=0,解方程m4﹣4×2m=8得m=0或8,所以m=8.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时也考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义.6.(3分)某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.100(1+x)2=280B.100(1+x)+100(1+x)2=280C.100(1﹣x)2=280D.100+100(1+x)+100(1+x)2=280【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)8;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选:B.【点评】本题考查的是一元二次方程的应用,根据增长率的一般规律,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.7.(3分)若(x+y)(1﹣x﹣y)+6=0,则x+y的值是()A.2 B.3 C.﹣2或3 D.2或﹣3【分析】先设x+y=t,则方程即可变形为t2﹣t﹣6=0,解方程即可求得t即x+y的值.【解答】解:设t=x+y,则原方程可化为:t(1﹣t)+6=8即﹣t2+t+6=6t2﹣t﹣6=8∴t=﹣2或3,即x+y=﹣6或3故选:C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.8.(3分)已知三角形两边的长分别是4和3,第三边的长是一元二次方程x2﹣8x+15=0的一个实数根,则该三角形的面积是()A.12或B.6或2C.6 D.【分析】先用因式分解法解一元二次方程,再由三角形的形状分别求出三角形的面积.【解答】解:∵x2﹣8x+15=8,∴(x﹣5)(x﹣3)=3,∴x1=3,x8=5.当x1=7时,与另两边组成等腰三角形,所以该三角形的面积是4×÷2=2 ;当x2=5时,与另两边组成直角三角形,即4,4,5符合直角三角形,∴该三角形的面积=3×4÷2=8.故选:B.【点评】此题主要考查了一元二次方程的解法以及勾股定理和等腰三角形的性质等知识,综合性比较强,结合等腰三角形的面积和直角三角形的判定得出答案是解决问题的关键.9.(3分)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.25【分析】根据题意,a、b可看作方程x2﹣6x+4=0的两根,则根据根与系数的关系得到a+b=6,ab=4,然后把原式变形得到原式=再利用整体代入的方法计算即可.【解答】解:∵a2﹣6a+8=0,b2﹣4b+4=0,且a≠b,∴a,b可看作方程x7﹣6x+4=7的两根,∴a+b=6,ab=4,∴原式=(a+b)3﹣2ab=68﹣2×4=28,故选:C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.10.(3分)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分【分析】首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些职工成绩的中位数,利用加权平均数公式求出这些职工成绩的平均数.【解答】解:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60﹣6﹣12﹣15﹣5=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×7)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选:D.【点评】本题考查了统计图及中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解题的关键是从统计图中获取正确的信息并求出各个小组的人数.同时考查了平均数的计算.二、填空题(每小题4分,共24分)11.(4分)计算的值是4﹣1.【分析】先根据二次根式的性质化简,然后合并即可.【解答】解:原式=﹣1+4=4﹣1.故答案为4﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.(4分)若(m+3)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是1.【分析】根据一元二次方程的定义即可求出答案.【解答】解:由题意可知:,解得:m=7,故答案为:1【点评】本题考查一元二次方程,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.13.(4分)设x1,x2是方程x2﹣4x+2=0的两根,则x1﹣x2的值是:.【分析】利用求根公式求出x1,x2,然后代入x1﹣x2即可.【解答】解:a=1,b=﹣4b7﹣4ac=16﹣8=4x==当x1=,x2=时x7﹣x2=当x1=,x2=时x5﹣x2=故答案为【点评】本题考查了一元二次方程根与系数的关系,运用求根公式进行分类讨论是本题的关键.14.(4分)把(2﹣a)根号外面的因式移到根号内,结果是﹣.【分析】首先得出二次根式的符号,进而利用二次根式的性质化简.【解答】解:由题意可得:a﹣2>0,则4﹣a<0,故原式=﹣=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.15.(4分)已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为0.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a代入方程可得,a2﹣a﹣1=5,即a2=a+1,∴a2﹣3a﹣2=(a4)2﹣3a﹣3=(a+1)2﹣3a﹣2=a2﹣a﹣5=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取等量关系a2=a+1,然后利用“整体代入法”求代数式的值.解此题的关键是降次,把a4﹣3a﹣2变形为(a2)2﹣3a﹣2,把等量关系a2=a+1代入求值.16.(4分)已知=5,则=﹣4或﹣1.【分析】利用完全平方公式得出•=6,即可求出=2,=3或=3,=2.分别代入求解即可.【解答】解:∵=5,∴()2=25,解得•,∴解得=2,=3,.∴=﹣4或﹣1,故答案为:﹣4或﹣5.【点评】本题主要考查了二次根式的化简求值,解题的关键是求出与的值.三、解答题(本题有7个小题,共66分,解答应写出文字说明、证明过程或推演步骤)17.(6分)计算:(1)()()(2)x(2x﹣3)+4x﹣6=0.【分析】(1)利用平方差公式和完全平方公式计算即可;(2)利用提公因式法解方程即可.【解答】解:(1)原式=[()+﹣)﹣]=(﹣)6﹣()2=5﹣2+3﹣5=6﹣2;(2)x(8x﹣3)+2(3x﹣3)=0,(8x﹣3)(x+2)=2,2x﹣3=2,x+2=0,x7=,x3=﹣2.【点评】本题考查的是二次根式的混合运算和一元二次方程的解法,掌握平方差公式和完全平方公式、正确提公因式法解方程是解题的关键.18.(8分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.【分析】根据m是方程x2﹣x﹣2=0的一个实数根,然后对题目中所求式子进行变形即可解答本题.【解答】解:∵m是方程x2﹣x﹣2=2的一个实数根,∴m2﹣m﹣2=6,∴m2﹣m=2,m2﹣2=m,∴(m2﹣m)(m﹣+1)===2×(8+1)=2×5=4.【点评】本题考查一元二次方程的解,解答本题的关键是明确题意,利用方程的思想解答.19.(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.【分析】(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.【解答】解:(1)=(73+80+82+83)÷4=79.5,∵80.25>79.4,∴应选派甲;(2)=(85×2+78×1+85×7+73×4)÷(2+6+3+4)=79.4,=(73×2+80×1+82×7+83×4)÷(2+8+3+4)=80.6,∵79.5<80.4,∴应选派乙.【点评】此题考查了算术平均数与加权平均数,解题的关键是:熟记计算算术平均数与加权平均数公式.20.(10分)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是等腰三角形?并求△ABC的周长.(2)k为何值时,△ABC是以BC为斜边的直角三角形?【分析】(1)根据等腰三角形的性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,则可有另种情况,再由根与系数的关系得出k的值;(2)根据题意得出AB、AC的长,再由根与系数的关系得出k的值.【解答】解:(1)∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=7,∴(2k+3)4﹣4(k2+4k+2)=0,6k2+12k+9﹣4k2﹣12k﹣8=6,方程无解,k不存在;当AB=BC时,即AB=5,∴5+AC=7k+3,5AC=k8+3k+2,解得k=6或4,∴AC=4或5∴△ABC的周长为14或16;(2)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC4=25,∵AB、AC的长是关于x的一元二次方程x2﹣(2k+2)x+k2+3k+8=0的两个实数根,∴AB+AC=2k+8,AB•AC=k2+3k+4,∴AB2+AC2=(AB+AC)8﹣2AB•AC,即(2k+2)2﹣2(k6+3k+2)=25,解得k=8或﹣5(不合题意舍去).故k为2时,△ABC是以BC为斜边的直角三角形.【点评】本题考查了解一元二次方程的方法以及实际应用,注意分论讨论思想.21.(10分)国贸商店服装柜在销售中发现:“宝乐牌”童装平均每天可以售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经调查发现:每件童装每降价1元,商场平均每天可多销售2件.(1)若每件童装降价5元,则商场盈利多少元?(2)若商场每天要想盈利1200元,请你帮助商场算一算,每件童装应降价多少元?【分析】(1)根据总利润=单件利润×销售数量,即可求出结论;(2)设每件童装降价x元,则每天售出(20+2x)元,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)(40﹣5)×(20+2×4)=1050(元).答:若每件童装降价5元,则商场每天盈利1050元.(2)设每件童装降价x元,则每天售出(20+2x)元,依题意,得:(40﹣x)(20+7x)=1200,整理,得:x2﹣30x+200=0,解得:x7=10,x2=20.∵尽快减少库存,∴x=20.答:每件童装应降价20元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(12分)阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.【分析】根据材料内容,可将原函数转换为(y﹣3)x2+(2y﹣1)x+y﹣2=0,继而根据△≥0,可得出y的最小值.【解答】解:将原函数转化成x的一元二次方程,得(y﹣3)x2+(5y﹣1)x+y﹣2=7,∵x为实数,∴△=(2y﹣1)2﹣4(y﹣3)(y﹣8)=16y﹣23≥0,∴y≥,因此y的最小值为.【点评】本题考查了一元二次方程的应用,这样的信息题,一定要熟读材料,套用材料的解题模式进行解答.23.(12分)如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm 的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=6cm,BQ=12cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10cm2?(4)经过几秒时△BPQ的面积达到最大?并求出这个最大值.【分析】(1)根据路程=速度×时间,求出BQ,AP的值就可以得出结论;(2)先分别表示出BP,BQ的值,当∠BQP和∠BPQ分别为直角时,由等边三角形的性质就可以求出结论;(3)作QD⊥AB于D,由勾股定理可以表示出DQ,然后根据面积公式建立方程求出其解即可;(4)由(3)求出△BPQ面积的函数表达式,利用二次函数的性质即可求解.【解答】解:(1)由题意,得AP=6cm,BQ=12cm,∵△ABC是等边三角形,∴AB=BC=12cm,∴BP=12﹣6=3cm.(2)∵△ABC是等边三角形,∴AB=BC=12cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∴∠BPQ=30°,∴BP=2BQ.∵BP=12﹣x,BQ=2x,∴12﹣x=4×2x,解得x=,当∠QPB=90°时,∴∠PQB=30°,∴BQ=6PB,∴2x=2(12﹣x),解得x=2.答:6秒或秒时;(3)作QD⊥AB于D,∴∠QDB=90°,∴∠DQB=30°,∴DB=BQ=x,在Rt△DBQ中,由勾股定理,得DQ=x,∴=10,解得x7=10,x2=2,∵x=10时,4x>12,∴x=2.答:经过2秒△BPQ的面积等于10cm2.;(4)∵△BPQ的面积==﹣x6+6x,∴当x==6时,此时最大值为﹣2+5×6=18.故答案为:6cm、12cm.。
浙江省杭州市八年级(下)月考数学试卷含答案
7. 下表是某校合唱团成员的年龄分布,对于不同的 x,下列关于年龄的统计量不会发 生改变的是( )
年龄/岁
13
14
15
16
频数
5
.则▱ABCD 的面积为______. 15. 在▱ABCD 中,AD=BD,BE 是 AD 边上的高,∠EBD=20°,则∠A 的度数为______. 16. 如果关于 x 的一元二次方程 ax2+bx+c=0 有两个实数根,且其中一个根为另外一个
根的 2 倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有 ______(填序号) ①方程 x2-x-2=0 是倍根方程; ②若(x-2)(mx+n)=0 是倍根方程:则 4m2+5mn+n2=0; ③若 p,q 满足 pq=2,则关于 x 的方程 px2+3x+q=0 是倍根方程; ④若方程以 ax2+bx+c=0 是倍根方程,则必有 2b2=9ac. 三、解答题(本大题共 7 小题,共 66.0 分) 17. 计算
A.
C. 3 个 B.
D. 4 个
C.
D.
4. 已知在▱ABCD 中,∠B=4∠A,则∠C . 36°
D. 18°
5. 等式 = 成立的条件是( )
A. a≥0
B. a>2
C. a≠2
D. ≥0
6. 用反证法证明“直角三角形中至少有一个锐角不大于 45°”,应先假设( )
A. 4S1
B. 4S2
C. 4S2+S3
杭州市八年级(下)月考数学试卷含答案
月考试卷一、选择题(本大题共10小题,共30.0分)1.方程2x2-3x=1的二次项系数、一次项系数、常数项分别是()A. 2,-3,1B. 2,3,-1C. 2,3,1D. 2,-3,-12.计算的结果是()A. -3B. 3C. -9D. 93.方程x2=16的解是()A. x=±4B. x=4C. x=-4D. x=164.下列各数中与最接近的是()A. 3B. 5C. 7D. 65.若x=-1是关于x的一元二次方程x2-(n-1)x-2=0的一个解,则n的值是()A. 2B. -2C. 1D. -16.下列计算正确的是()A. B.C. D.7.用配方法解方程2x2+6x-5=0时,配方结果正确的是()A. (x+)2=B. (x-)2=C. (x+)2=D. (x-)2=8.某市2014年的快递业务量为4.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2016年的快递业务量达到9.7亿件,设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A. 4.4(1+x)=9.7B. 44.4(1+2x)=9.7C. 4.4(1+x)2=9.7D. 4.4(1+x)+4.4(1+x)2=9..79.若0<a<1,则-的值为()A. 2aB.C. -2aD. -410.已知直角三角形纸片的两条直角边分别为a和b(a<b),过锐角的三角形顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则有()A. a2﹣2ab+b2=0B. a2﹣2ab﹣b2=0C. a2﹣2ab﹣b2=0D. a2+2ab﹣b2=0二、填空题(本大题共6小题,共24.0分)11.计算:-=______.12.如果两个最简二次根式与能够合并,那么a的值为______.13.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=-1,x2=5,那么这个一元二次方程是______.14.已知(x+)(x+-1)=2,则x+=______.15.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为______.16.定义新运算:a⊕b=a(1-b),若a、b是方程x2-x+k=0(k<0)的两根,则b⊕b-a⊕a的值为______.三、解答题(本大题共6小题,共56.0分)17.计算:(1);(2);(3);(4)18.请选择适当的方法解下列一元二次方程:(1)3(x-4)2=2(x-4);(2)(x-1)2=9(3)x2-5=4x(4)+x=119.已知x,y为实数,且.求2x-3y的值.20.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的面积;(2)边AC的长;(3)点B到AC边的距离.21.如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)两根,那么x1+x2=-,x1•x2=,这就是著名的韦达定理.已知m,n是方程2x2-5x-1=0的两根,不解方程计算:(1)+;(2).22.某汽车销售公司2月份销售某厂汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为30万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元.月底厂家一次性返利给销售公司,每辆返利0.5万元.(1)若该公司当月售出7辆汽车,则每辆汽车的进价为多少万元?(2)如果汽车的售价为每辆31万元,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)答案和解析1.【答案】D【解析】解:方程整理得:2x2-3x-1=0,则二次项系数、一次项系数、常数项分别是2,-3,-1,故选:D.方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(a≠0).2.【答案】B【解析】解:原式=|-3|=3.故选:B.原式利用二次根式的化简公式计算即可得到结果.此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.3.【答案】A【解析】解:x2=16,∴x=±4.故选:A.用直接开方法求一元二次方程x2=16的解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.【答案】D【解析】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:D.由题意可知36与37最接近,即与最接近,从而得出答案.此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.5.【答案】A【解析】解:把x=-1代入x2-(n-1)x-2=0,得(-1)2-(n-1)(-1)-2=0,解得n=2.故选:A.先把x=-1代入方程,可得关于n的一元一次方程,解方程即可.本题考查了一元二次方程的解的定义,解题的关键是代入后正确的计算,难度不大.6.【答案】B【解析】解:A、4与-3不能合并,所以A选项错误;B、原式==10,所以B选项正确;C、与不能合并,所以C选项错误;D、原式==3,所以D选项错误.故选:B.根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的乘法法则对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.【答案】A【解析】解:2x2+6x-5=0,2x2+6x=5,x2+3x=,x2+3x+()2=+()2,(x+)2=,故选:A.移项,系数化成1,配方,即可得出选项.本题考查了解一元二次方程,能正确配方是解此题的关键.8.【答案】C【解析】解:设2015年与2016年这两年的平均增长率为x,根据题意得:4.4(1+x)2=9.7.故选:C.设2015年与2016年这两年的平均增长率为x,根据2014年及2016年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【答案】C【解析】解:∵0<a<1,>1>a>0,∴原式=-,=|a-|-|a+|,=-a-a-,=-2a.故选:C.由0<a<1,判断出>1>a>0,再根据二次根式和绝对值的性质解答即可.本题考查了二次根式的化简,注意二次根式的结果为非负数.【解析】解:如图,a2+a2=(b-a)2,2a2=b2-2ab+a2,a2+2ab-b2=0.故选:D.如图,根据等腰三角形的性质和勾股定理可得a2+a2=(b-a)2,整理即可求解.考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.11.【答案】【解析】解:=2-=.故答案为:.先化简=2,再合并同类二次根式即可.本题主要考查了二次根式的加减,属于基础题型.12.【答案】5【解析】解:由题意得:3a-8=17-2a,解得:a=5,故答案为:5.根据二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式可得3a-8=17-2a,再解即可.此题主要考查了同类二次根式,关键是掌握同类二次根式定义.13.【答案】x2-4x-5=0【解析】解:∵方程x2+px+q=0的两根分别为x1=-1,x2=5,∴-1+5=-p,-1×5=q,∴p=-4,q=-5,∴该一元二次方程为x2-4x-5=0.故答案为:x2-4x-5=0.根据方程的两根结合根与系数的关系,即可求出p、q的值,此题得解.本题考查了根与系数的关系,牢记“两根之和等于-,两根之积等于”是解题的关键.14.【答案】2【解析】解:设x+=a,∵(x+)(x+-1)=2,∴a(a-1)=2,解得,a1=2,a2=-1,∴x+=2或x+=-1(舍去),故答案为:2.根据换元法可以解答本题.本题考查换元法解一元二次方程,解答本题的关键是会用换元法解方程.【解析】解:当a=2或b=2时,把x=2代入x2-6x+n-1=0得4-12+n-1=0,解得n=9,此时方程的根为2和4,而2+2=4,故舍去;当a=b时,△=(-6)2-4×(n-1)=0,解得n=10,所以n为10.故答案为10.讨论:当a=2或b=2时,把x=2代入x2-6x+n-1=0可求出对应的n的值;当a=b时,根据判别式的意义得到△=(-6)2-4×(n-1)=0,解得n=10.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了等腰三角形的性质.16.【答案】0【解析】解:∵a、b是方程x2-x+k=0(k<0)的两根,∴a+b=1,∴b⊕b-a⊕a=b(1-b)-a(1-a)=b(a+b-b)-a(a+b-a)=ab-ab=0,故答案为:0.由根与系数的关系可找出a+b=1,根据新运算找出b⊕b-a⊕a=b(1-b)-a(1-a),将其中的1替换成a+b,即可得出结论.本题考查了根与系数的关系,解题的关键是找出a+b=1.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.17.【答案】解:(1)原式=5-=5-4=1;(2)原式=+3-2=2;(3)原式=+-2+=+-2+=;(4)原式=(-1)=2-.【解析】(1)先利用二次根式的除法法则运算,然后化简后合并即可;(2)先把二次根式化为最简二次根式,然后合并同类二次根式即可;(3)根据二次根式的乘除法则运算,然后化简后合并即可;(4)先分母有理化,然后利用二次根式的乘法法则运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:(1)移项得:3(x-4)2-2(x-4)=0,(x-4)[3(x-4)-2]=0,x-4=0,3(x-4)-2=0,x1=4,x2=;(2)开方得:x-1=±3,解得:x1=4,x2=-2;(3)移项得:x2-4x-5=0,(x-5)(x+1)=0,x-5=0,x+1=0,x1=5,x2=-1;(4)整理得:x2+2x-2=0,b2-4ac=22-4×1×(-2)=12,x=,x1=-1+,x2=-1-.【解析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)开方,即可得出两个一元一次方程,求出方程的解即可;(3)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(4)整理后求出b2-4ac的值,再代入公式求出即可.本题考查了解一元二次方程,能够选择适当的方法解方程是解此题的关键.19.【答案】解:由题意可知:,∴x=5,∴当x=5时,y=-2,∴原式=2×5-3×(-2)=16.【解析】根据二次根式有意义的条件即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.20.【答案】解(1)S△ABC=3×3-(×3×1+×2×1+×2×3)=;(2)AC==;(3)设点B到AC边的距离为h,则S△ABC=×AC×h=,解得:h=.【解析】(1)利用三角形所在的正方形面积减三个小直角三角形的面积即可求出;(2)利用勾股定理即可求出AC的长;(3)求出AC,则点B到AC边的距离即为AC边上的高,利用面积定值即可求出.本题考查了直角三角形面积的计算,正方形各边相等的性质和勾股定理的运用,本题中,正确的运用面积加减法计算结果是解题的关键.21.【答案】解:∵m,n是方程2x2-5x-1=0的两根,∴m+n=,mn=-.(1)+===-10;(2)===.【解析】根据根与系数的关系即可而得出m+n=、mn=-.(1)将m+n=、mn=-代入+=中即可求出结论;(2)将m+n=、mn=-代入=中即可求出结论.本题考查了根与系数的关系,根据根与系数的关系找出m+n=、mn=-是解题的关键.22.【答案】解:(1)若该公司当月售出7辆汽车,则每辆汽车的进价为:30-0.1×(7-1)=29.4万元(2)设需要售出x辆汽车,由题意可知,每辆汽车的销售利润为:[31-(30.1-0.1x)]x+0.5x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=6.答:需要售出6辆汽车.【解析】(1)根据若当月仅售出1辆汽车,则该辆汽车的进价为30万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,得出该公司当月售出7辆汽车时,则每辆汽车的进价为:30-0.1×(7-1),即可得出答案;(2)利用设需要售出x辆汽车,由题意可知,每辆汽车的销售利润,列出一元二次方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.。
2022-2023学年浙江省杭州市拱墅区公益中学八年级(下)月考数学试卷(3月份)+答案解析(附后)
2022-2023学年浙江省杭州市拱墅区公益中学八年级(下)月考数学试卷(3月份)1. 下列方程中,是一元二次方程的为( )A.B.C.D.2. 下列根式为最简二次根式的是( )A.B.C.D.3. 下列式子计算正确的是( )A. B.C.D.4. 五边形的内角和是( )A.B.C.D.5. 下列说法正确的是( )A. 数据3,3,4,4,7的众数是4B. 数据0,1,2,5,1的中位数是2C. 一组数据的众数和中位数不可能相等D. 数据0,5,,,7的中位数和平均数都是06. 如图,在平行四边形ABCD 中,,则的度数是( )A.B.C.D.7. 为响应“足球进校园”的号召,某校组织足球比赛,赛制为单循环形式每两个队之间都要比赛一场,计划安排28场比赛,则参赛的足球队个数为( )A. 6B. 7C. 8D. 98. 已知m 是方程的一个根,则的值为( )A. 4B.C. 8D.9. 如图,▱ABCD 中,对角线AC 、BD 相交于O ,过点O 作交AD 于E ,若,,,则AC 的长为( )A. B. C. D.10. 定义:是一元二次方程的倒方程,下列四个结论中,错误的是( )A. 如果是的倒方程的解,则B. 如果,那么这两个方程都有两个不相等的实数根C. 如果一元二次方程无解,则它的倒方程也无解D. 如果一元二次方程有两个不相等的实数根,则它的倒方程也有两个不相等的实数根11. 二次根式中,字母m的取值范围是______.12. 关于x的方程是一元二次方程,则m的值为______.13. 某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为95分、85分、90分,综合成绩笔试、试讲、面试的占比为2:2:1,则该名教师的综合成绩为______.14. 如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC相交于点E、F,若,,,那么四边形ABFE的周长是______.15. 已知n是一个正整数,是整数,则n的最小值是______.16. 平行四边形ABCD中,,,若平行四边形ABCD的面积为,则______ .17. 计算:;18. 解下列方程组:;19. 为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检查人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量单位:克如表:A:74,75,75,75,73,77,78,72,76,75;B:78,74,78,73,74,75,74,74,75,整理数据,得到如下表:平均数中位数众数方差A757575B75a b⋆其中:______ ,______ ;估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?20. 已知线段a,b,c,且线段a,b满足求a,b的值;若a,b,c是某直角三角形的三条边的长度,求c的值.21. 由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包元.求出这两次价格上调的平均增长率;在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,为让顾客获得更大的优惠,应该降价多少元?22. 已知:关于x的一元二次方程求证:方程总有两个实数根;若方程有一根为,求m的值,并求另一根;若方程两根为,,且满足,求m的值.23. 如图,AC为▱ABCD的对角线,若,,,CE和AF分别平分和证明:四边形AECF是平行四边形;求平行四边形AECF的面积;连接EF,求EF的长度.答案和解析1.【答案】D【解析】解:A、是二元二次方程的定义,故选项错误;B、是二元一次方程,故选项错误;C、是分式方程,故选项错误;D、符合一元二次方程的定义,故选项正确.故选:本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:是整式方程;含有一个未知数,且未知数的最高次数是2;二次项系数不为以上三个条件必须同时成立,据此即可作出判断.考查了一元二次方程的定义,在做此类判断题时,要特别注意二次项系数这一条件.2.【答案】A【解析】解:是最简二次根式,故本选项符合题意;B.的被开方数的数不是整数,不是最简二次根式,故本选项不符合题意;C.分母中含有根号,不是最简二次根式,故本选项不符合题意;D.的被开方数含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;故选:根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键,满足以下两个条件的二次根式,叫最简二次根式:①被开方数的因数是整数,因式是整式,②被开方数中不含有能开得尽方的因数和因式.3.【答案】B【解析】解:A、与不是同类二次根式,不能合并,故本选项计算错误,不符合题意;B、,故本选项计算正确,符合题意;C、,故本选项计算错误,不符合题意;D、,故本选项计算错误,不符合题意;故选:根据二次根式的加法法则判断A,根据二次根式的减法法则判断B,根据二次根式的乘法法则判断C,根据二次根式的除法法则判断本题考查了二次根式的运算,掌握运算法则是解题的关键.4.【答案】B【解析】解:五边形的内角和是:故选:根据n边形的内角和为:且n为整数,求出五边形的内角和是多少度即可.本题考查了多边形的内角和定理,掌握确n边形的内角和为:且n为整数是关键.5.【答案】D【解析】解:数据3,3,4,4,7的众数是3或4,故本选项不符合题意;B.数据0,1,2,5,1的中位数是1,故本选项不符合题意;C.一组数据的众数和中位数可以相等,如数据1、3、3、3、5的众数和中位数都是3,故本选项不符合题意;D.数据0,5,,,7的中位数和平均数都是0,说法正确,故本选项符合题意.故选:分别根据众数、中位数以及算术平均数的定义解答即可.本题考查了众数、中位数以及算术平均数,掌握相关定义是解答本题的关键.6.【答案】B【解析】解:在平行四边形ABCD中,,又有,把这两个式子相加即可求出,故选:利用平行四边形的邻角互补和已知,就可建立方程求出未知角.本题考查了平行四边形的性质:邻角互补,建立方程组求解.7.【答案】C【解析】解:设共有x个球队参赛,根据题意得:,整理得:,解得:,不符合题意,舍去,共有8个球队参赛.故选:设共有x个球队参赛,利用计划安排比赛的总场数=参赛队伍个数参赛队伍个数,可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】D【解析】解:因为m为方程的解,所以所以,所以故选:直接把代入方程中,进行计算即可解答.本题考查了一元二次方程的解,一元二次方程一定有两个解,但不一定有两个实数解.这,是一元二次方程的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.,9.【答案】B【解析】解:连接CE,四边形ABCD是平行四边形,,,垂直平分AC,,,,,,是等腰直角三角形,,故选:连接CE,根据平行四边形的性质可得,,然后判断出OE垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得,利用勾股定理的逆定理得到,得到是等腰直角三角形,根据勾股定理即可求得结论.本题主要考查了平行四边形的性质,线段垂直平分线的性质,勾股定理及逆定理,正确作出辅助线证得是解决问题的关键.10.【答案】D【解析】解:的倒方程是,将代入,得,故A正确;,,这两个方程都有两个不相等的实数根,故B正确;无解,,它的倒方程的根的判别式也为,它的倒方程也无解,故C正确;若,则它的倒方程为一元一次方程,只有一个实数根,故D错误;故选:根据一元二次方程的解,根的判别式分别判断即可.本题考查了根的判别式,一元二次方程的解,根据判别式判断一元二次方程的解是解题的关键.11.【答案】【解析】解:由题意得:,解得:,故答案为:根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【答案】【解析】解:关于x的方程是一元二次方程,且,解得故答案为:根据一元二次方程的定义得到且,然后解方程和不等式即可得到满足条件的m 的值.本题考查的是一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.13.【答案】90分【解析】解:该名教师的综合成绩为分,故答案为:90分.根据加权平均数的定义列式计算即可.本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.【答案】15【解析】解:四边形ABCD是平行四边形,,,,,在和中,,≌,,,,四边形EFCD的周长故答案为:先证明≌,得出,,可求得,即可得出四边形ABFE的周长,进而可求解.本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出对应边相等是解决问题的关键.15.【答案】3【解析】解:是一个正整数,是整数,的最小值是故答案为:先化简二次根式,然后依据化简结果为整数可确定出n的值本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.16.【答案】【解析】解:如图,作于点E,则,四边形ABCD是平行四边形,,,,,,,,,故答案为:作于点E,由平行四边形的性质得,由,,得,则,所以,则,所以,于是得到问题的答案.此题重点考查平行四边形的性质、根据面积等式求线段的长度、勾股定理等知识与方法,正确地作出所需要的辅助线是解题的关键.17.【答案】解:原式;原式【解析】先根据二次根式的乘法法则运算,然后化简二次根式即可;先根据二次根式的除法法则和平方差公式计算,然后化简后合并即可.本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则、除法法则是解决问题的关键.18.【答案】解:,,或,所以,;,,,或,所以,【解析】先利用因式分解法把方程转化为或,然后解两个一次方程即可;先移项得到,再利用因式分解法把方程转化为或,然后解两个一次方程即可.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.【答案】【解析】解:把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数克;因为74出现了4次,出现的次数最多,所以众数b是74克;故答案为:,74;根据题意得:个,答:质量为75克的鸡腿有30个;选B加工厂的鸡腿.A的方差是:;B的平均数是:,B的方差是:;、B平均值一样,B的方差比A的方差小,B更稳定,选B加工厂的鸡腿.根据中位数、众数和平均数的计算公式分别进行解答即可;用总数乘以质量为75克的鸡腿所占的百分比即可;根据方差的定义,方差越小数据越稳定即可得出答案.本题考查了方差、平均数、中位数、众数,熟悉计算公式和意义是解题的关键.20.【答案】解:因为线段a,b满足所以,;因为a,b,c是某直角三角形的三条边的长度,所以或【解析】根据非负数性质可得a、b的值;根据勾股定理逆定理可解答.本题主要考查二次根式的应用,根据非负数性质和勾股定理逆定理得出相应算式是关键,二次根式的化简与运算是根本技能.21.【答案】解:设这两次价格上调的平均增长率为x,依题意得:,解得:,不符合题意,舍去答:这两次价格上调的平均增长率为;设每包应该降价m元,则每包的售价为元,每天可售出包,依题意得:,整理得:,解得:,又要让顾客获得更大的优惠,的值为答:每包应该降价3元.【解析】设这两次价格上调的平均增长率为x,利用经过两次上调后的价格=原价这两次价格上调的平均增长率,即可得出关于x的一元二次方程,解之取其正值即可得出结论;设每包应该降价m元,则每包的售价为元,每天可售出包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】证明:,方程总有两个实数根;解:方程有一根为,,,,解得:,,综上,m的值为,另一根为1;解:,是一元二次方程的两根,,,,,,【解析】先计算,再根据非负数的性质即可证明;将代入方程中,可求出m的值,再解方程即可求得另一根;根据根与系数的关系可得,,根据可得,再整体代入即可求解.本题主要考查根的判别式、根与系数的关系、解一元二次方程,熟知,是一元二次方程的两根时,,是解题关键.23.【答案】证明:四边形ABCD是平行四边形,,,,和AF分别平分和,,,,,,四边形AECF是平行四边形;解:四边形ABCD是平行四边形,,,,,如图1,过E作于点G,则,,,平分,,在和中,,≌,,,,设,则,在中,由勾股定理得:,解得:,,,;如图2,设EF与AC交于点O,四边形AECF是平行四边形,,,,由可知,,在中,由勾股定理得:,,即EF的长度为【解析】由平行四边形的性质得,,则,再证,则,即可得出结论;由平行四边形的性质得,再由勾股定理得,过E作于点G,然后证≌,得,,则,设,则,进而由勾股定理求出,则,即可解决问题;由平行四边形的性质得,,再由勾股定理得,即可得出结论.本题是四边形综合题目,考查了平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定与性质以及勾股定理等知识,本题综合性强,熟练掌握平行四边形的判定与性质以及勾股定理是解题的关键,属于中考常考题型.。
杭州市 八年级(下)月考数学试卷含答案
月考试卷一、选择题(本大题共10小题,共30.0分)1.若二次根式有意义,则x的取值范围是()A. x<2B. x≠2C. x≤2D. x≥22.下列运算中,错误的是()A. B.C. D.3.下列方程是一元二次方程的是()A. x2-y=1B. x2+2x-3=0C. x2+=3D. x-5y=64.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A. x2+3x+4=0B. x2-4x+3=0C. x2+4x-3=0D. x2+3x-4=05.已知一斜坡的坡比为,坡长为26米,那么坡高为()A. 米B. 米C. 13米D. 米6.方程x2﹣8x+15=0左边配成一个完全平方式后,所得的方程是()A. (x﹣6)2=1B. (x﹣4)2=1C. (x﹣4)2=31D. (x﹣4)2=﹣77.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A. 2500x2=3600B. 2500(1+x)2=3600C. 2500(1+x%)2=3600D. 2500(1+x)+2500(1+x)2=36008.实数a在数轴上的位置如图所示,则化简后为()A. 7B. -7C. 2a-15D. 无法确定9.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B.C. D.10.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A. (1)(2)B. (1)(3)C. (1)(2)(4)D. (2)(3)(4)二、填空题(本大题共6小题,共24.0分)11.当x=-1时,二次根式的值是______.12.已知x2-2(n+1)x+25是一个关于x的完全平方式,则常数n=______.13.若关于x的方程(m+1)x2+x+m2-2m+1=0有一个根为0,则m的值是______.14.已知等腰三角形ABC的面积是5,底边上的高AD是,则它的周长为______ .15.已知关于x的一元二次方程x2-(2m+3)x+m2=0有两个实数根,且满足,则m的值是______.16.下列命题:①若a2-5a+5=0,则;②;③若关于x方程x2+px+q=0的两个实根中有且只有一个根为0,那么p≠0,q=0,④若关于x方程ax2+bx+c=0(a≠0),若a+b+c=0,则该方程必有实数根.以上命题正确的是______(填写序号).三、计算题(本大题共1小题,共8.0分)17.求下列代数式的值:(1)当,时,求代数式a2+ab+b2的值.(2)已知关于x的一元二次方程的两个实数根分别是a和b,求代数式的值.四、解答题(本大题共6小题,共58.0分)18.计算(1)(2)19.解下列方程(1)x2+2x-1=0(2)(3x-7)2=2(3x-7)20.某国三艘炮艇正追袭五艘中国渔船,“中国渔政301”船(用A表示)接到陆地指挥中心(用B表示)命令救援中国渔船,渔船(用C表示)位于陆地指挥中心正南方向.经测定海里,海里,海里.求点A到BC的距离.21.已知关于x的一元二次方程x2+kx+2k-4=0(1)求证不论k取何值,这个方程总有两个实数根;(2)若方程有一个根是正数,求k的取值范围.22.某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销售,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天多售出4箱.(1)如果要使每天销售饮料获利14000元,则每箱应该降价多少元?(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应该降价多少?若不能,请说明理由.(3)要使每天销售饮料获利最大,每箱应该降价多少元?最大获利是多少?23.如图,在长方形ABCD中,边AB、BC的长(AB<BC)是方程x2-7x+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边A→B→C→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上时,试求出使AP长为时运动时间t的值;(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:由题意得,x-2≥0,解得,x≥2,故选:D.根据二次根式的意义,被开方数是非负数,列出不等式,解不等式得到答案.本题考查的是二次根式有意义的条件,掌握二次根式被开方数为非负数是解题的关键.2.【答案】C【解析】解:A、原式==,所以A选项的计算正确;B、原式==,所以B选项的计算正确;C、3与2不能合并,所以C选项的计算错误;D、原式=|-|=-,所以D选项的计算正确.故选:C.利用二次根式的乘法法则对A进行判断;利用分母有理化对B进行判断;利用二次根式的加减法对C进行判断;利用二次根式的性质对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.【答案】B【解析】解:A、x2-y=1是二元二次方程,不合题意;B、x2+2x-3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x-5y=6是二元一次方程,不合题意,故选:B.利用一元二次方程的定义判断即可.此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.【答案】B【解析】解:∵关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,∴3+1=-p,3×1=q,∴p=-4,q=3,故选:B.根据根与系数的关系,直接代入计算即可.本题考查了根与系数的关系,解题的关键是熟练掌握根与系数的字母表达式,并会代入计算.5.【答案】C【解析】解:设坡角为α,∵坡度==1:,∴α=30°.∴坡高=坡长×sinα=13.故选:C.利用坡度公式求得坡角后,再用正弦的概念求解.本题考查锐角三角函数的应用,明确坡度=是解题的关键.6.【答案】B【解析】【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.移项后,两边配上一次项系数一半的平方即可得.【解答】解:∵x2-8x=-15,∴x2-8x+16=-15+16,即(x-4)2=1,故选B.7.【答案】B【解析】解:依题意得2008年的投入为2500(1+x)2,∴2500(1+x)2=3600.故选:B.本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年投入教育经费的年平均增长百分率为x,然后用x表示2008年的投入,再根据“2008年投入3600万元”可得出方程.平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.【答案】A【解析】解:从实数a在数轴上的位置可得,5<a<10,所以a-4>0,a-11<0,则,=a-4+11-a,=7.故选:A.先从实数a在数轴上的位置,得出a的取值范围,然后求出(a-4)和(a-11)的取值范围,再开方化简.本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.9.【答案】B【解析】解:∵x2-2x+kb+1=0有两个不相等的实数根,∴△=4-4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.根据一元二次方程x2-2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb 的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【答案】C【解析】解:(1)2x2-4x+6=0,△=42-4×2×6<0,方程无实数根,故小聪找不到实数x,使2x2-4x+6得值为0正确,符合题意,(2)2x2-4x+6=4,解得x1=x2=1,方程有两个相等的实数根x=1,故小明认为只有当x=1时,2x2-4x+6的值为4正确,符合题意,(3)令y=2x2-4x+6,二次项系数为2>0,用配方法整理成y=2(x-2)2+4,抛物线开口向上,有最小值,故小伶发现2x2-4x+6没有最小值错误,不符合题意,(4)令y=2x2-4x+6,二次项系数为2>0,用配方法整理成y=2(x-2)2+4,抛物线开口向上,没有最大值,故小刚发现2x2-4x+6没有最大值正确,符合题意,故选:C.解一元二次方程,根据判别式即可判断(1)(2),将式子转化为抛物线,经配方成顶点式的形式,根据抛物线的性质即可判断(3)(4).本题考查配方法的应用,和抛物线的性质,掌握一元二次方程求根公式和抛物线的性质是解决本题的关键.11.【答案】3【解析】解:把x=-1代入===3,故答案为:3.把x=-1代入二次根式,再开平方即可.此题主要考查了二次根式定义,关键是掌握算术平方根.12.【答案】-6或4【解析】解:∵x2-2(n+1)x+25是一个关于x的完全平方式,∴(n+1)2=25,∴n+1=5或n+1=-5,解得:n=4或n=-6.故答案为:-6或4.利用完全平方公式的结构特征判断即可确定出n的值.本题考查了完全平方式,熟练掌握完全平方公式是解题的关键.13.【答案】1【解析】解:把x=0代入方程可得m2-2m+1=0,∴m2-2m+1=0,解得:m=1.故答案为:1.根据关于x的方程(m+1)x2+x+m2-2m+1=0的一个根为0,可将x=0代入方程,即可得到关于m的方程,解方程即可求出m值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【答案】2+2【解析】解:∵等腰三角形ABC的面积是5,底边上的高AD是,∴BC=2∴AB=AC=∴它的周长为2+2.根据已知可求得BC的长,再根据勾股定理即可求得AB,AC的长,从而不难求得其周长.等腰三角形的计算问题,可以通过作底边上的高线转化为解直角三角形的问题.15.【答案】3【解析】解:根据根与系数的关系得:x1+x2=2m+3,∵,∴m2=2m+3,解得:m=3或-1,当m=3时,方程为x2-9x+9=0,此时方程有解;当m=-1时,方程为x2-x+1=0,此时△=(-1)2-4×1×1=-3<0,此时方程无解;故答案为:3.根据根与系数的关系得出x1+x2=2m+3,得出方程m2=2m+3,求出m的值,再根据根的判别式判断即可.本题考查了根与系数的关系和根的判别式,能熟记根与系数的关系和根的判别式的内容是解此题的关键.16.【答案】①③④【解析】解:①方程a2-5a+5=0的根为a1=>1,a2=>1,∴1-a<0,∴=|1-a|=a-1,因此①符合题意,②由题意得,1-a>0,而a-1<0,=-,因此②不符合题意,③关于x方程x2+px+q=0的两个实根中有且只有一个根为0,设x1=0,x2≠0,当x1=0时,q=0,当x2≠0时,p≠0,因此③符合题意,④当x=1时,代入方程ax2+bx+c=0(a≠0),得a+b+c=0,∴当a+b+c=0时,方程ax2+bx+c=0(a≠0)必有一根x=1,因此④符合题意,故答案为:①③④①求出方程的根,确定1-a的符号,再根据二次根式的性质化简,得出判断,②根据二次根式可知1-a>0,从而得出a-1<0,即根号外是负数,化简时,结果根号外是负号,因此不正确,③方程x2+px+q=0的两个实根中有且只有一个根为0,当一个根为0时,可得q=0,而另一个根不为0,进而得出p≠0,正确,④满足条件时,方程比有一个根为1,即x=1,正确.考查一元二次方程、二次根式的性质等知识,掌握二次根式的性质和一元二次方程的解法是解决问题的关键.17.【答案】解:(1)∵,,∴a+b=2,ab=1,∴a2+ab+b2=(a+b)2-ab=(2)2-1=8-1=7;(2)∵关于x的一元二次方程的两个实数根分别是a和b,∴a+b=2,ab=-1,∴====.【解析】(1)根据,,可以得到a+b、ab的值,从而可以得到所求式子的值;(2)根据关于x的一元二次方程的两个实数根分别是a和b,可以得到a+b、ab的值,从而可以求得所求式子的值.本题考查二次根式的化简求值、根与系数的关系,解答本题的关键是明确二次根式化简求值的方法.18.【答案】解:(1)原式=6-5+4=5;(2)原式=+-2+=+-2+=.【解析】(1)利用二次根式的性质计算;(2)先利用二次根式的乘除法则运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.【答案】解:(1)x2+2x-1=0,b2-4ac=22-4×1×(-1)=8,x=,x1=-1+,x2=-1-;(2)移项得:(3x-7)2-2(3x-7)=0,(3x-7)(3x-7-2)=0,3x-7=0,3x-7-2=0,x1=,x2=3.【解析】(1)先求出b2-4ac的值,再代入公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.20.【答案】解:如图,作AH⊥BC于H.∵海里,海里,海里,∴AB2+AC2=()2+(3)2=6+18=24,BC2=(2)2=24,∴AB2+AC2=BC2,∴∠BAC=90°,∴S△ABC=•AB•AC=•BC•AH,∴AH==.∴点A到BC的距离为.【解析】如图,作AH⊥BC于H.利用勾股定理的逆定理证明∠BAC=90°,再利用面积法求解即可.本题考查解直角三角形的应用-方向角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.【答案】(1)证明:依题意,得△=k2-4(2k-4)=(k-4)2,∵(k-4)2≥0,∴方程总有两个实数根;(2)解:由求根公式,得x1=-2,x2=-k+2,∵方程有一个根是正数,∴-k+2>0,∴k<2.故k的取值范围是k<2.【解析】(1)计算方程根的判别式,判断其符号即可;(2)求得方程两根,再结合条件判断即可.本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.22.【答案】解:(1)设每箱应该降价x元,则平均每天可售出(100+2x)箱,依题意,得:(120-x)(100+2x)=14000,整理,得:x2-70x+1000=0,解得:x1=20,x2=50.答:每箱应该降价20元或50元.(2)设每箱应该降价y元,则平均每天可售出(100+2y)箱,依题意,得:(120-y)(100+2y)=14500,整理,得:y2-70y+1250=0,∵△=(-70)2-4×1×1250=-100<0,∴该方程无解,∴每天销售该饮料获利不能达到14500元.(3)设每箱应该降价m元,每天获得的利润为n元,则平均每天可售出(100+2m)箱,依题意,得:n=(120-m)(100+2m)=-2m2+140m+12000=-2(m-35)2+14450.∵-1<0,∴当m=35时,n取得最大值,最大值为14450.答:要使每天销售饮料获利最大,每箱应该降价35元,最大获利是14450元.【解析】(1)设每箱应该降价x元,则平均每天可售出(100+2x)箱,根据总利润=每箱利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论;(2)设每箱应该降价y元,则平均每天可售出(100+2y)箱,根据总利润=每箱利润×销售数量,即可得出关于y的一元二次方程,由根的判别式△=-100<0,可得出该方程无解,进而可得出每天销售该饮料获利不能达到14500元;(3)设每箱应该降价m元,每天获得的利润为n元,则平均每天可售出(100+2m)箱,根据总利润=每箱利润×销售数量,即可得出n关于m的函数关系式,再利用二次函数的性质即可解决最值问题.本题考查了一元二次方程的应用、根的判别式以及二次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)牢记“当△<0时,一元二次方程无解”;(3)根据各数量之间的关系,找出n关于m的函数关系式.23.【答案】解:(1)∵x2-7x+12=0,则(x-3)(x-4)=0,∴x1=3,x2=4.则AB=3,BC=4;(2)由题意得,∴t1=4,t2=2(舍去),则t=4时,AP =;①当PC=CD=3时,t=(3+4+3)÷1=10(秒);②当PD=PC(即P为对角线AC中点)时,AB=3,BC=4.∴AC ==5,CP =AC=2.5,∴t=(3+4+2.5)÷1=9.5(秒);③当PD=CD=3时,作DQ⊥AC于Q,∴PC=2PQ =,∴(秒),可知当t为10秒或9.5秒或秒时,△CDP是等腰三角形.【解析】(1)利用因式分解法解出方程即可;(2)根据勾股定理列出方程,解方程即可;(3)分PC=CD、PD=PC、PD=CD三种情况,根据等腰三角形的性质和勾股定理计算即可.本题考查的是矩形的性质、等腰三角形的判定和性质以及一元二次方程的解法,正确解出方程、灵活运用勾股定理列出算式是解题的关键,注意分情况讨论思想的运用.第11页,共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
)1.已知13a b a -=,则ab 的值为( ) A .32 B .23 C .12D .22.若双曲线2y x=过两点()11y -,,()23y -,,则1y 与2y 的大小关系为( ).A. 1y >2yB. 1y <2yC. 1y =2yD. 1y 与2y 大小无法确定 3.把抛物线22x y -=向上平移3个单位,所得新抛物线的解析式为……( ) A.322+-=x y B.322--=x yC.2)3(2+-=x yD.2)3(2--=x y4.直线x y 2=与x 轴正半轴的夹角为α,那么下列结论正确的是……( ) A .2tan =α B. tan α=0.5 C.5.0sin =α D.5.0cos =α5.下面四个几何体中,左视图是四边形的几何体共有( )6. 如图,冰淇淋蛋筒下部呈圆锥形,则此圆锥部分包装纸的面积(接缝面积忽略不计)是…………………………………………………( ) A.15cm 2B.30cm2C.15πcm2D.30πcm27.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ) A .36° B .46° C .27° D .63°8.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( )A .B .C .D .9.如图,已知菱形ABCD ,且AB=3,∠B=120°, O1、O 2是对角线AC 上的两个动点,⊙O 1与AB 相切于E ,⊙O 2与CD 相切于F ,并且⊙O 1与⊙O 2外切,设⊙O 1的半径为R ,设⊙O 2的半径为r ,则R+r 的值为 A.1 B10.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)A . 1个B . 2个C . 3个D .4个 二.填空题(每题4分,共24分):11.在半径为5的圆中,30°的圆心角所对的弧长为 (结果保留π).与反比例函数三、解答题(共5题,满分46分)17.(满分10分)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF的顶点都在方格纸的格点上.(1) 判断△ABC 和△DEF 是否相似,并说明理由;(2) P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出所有符合条件的三角形,并在图中连结相应线段,不必说明理由).18.(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是14. (1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?19.(8分)。
如图,某海监船向正西方向航行,在A 处望见一艘正在作业渔船D 在南偏西45°方向,海监船航行到B 处时望见渔船D 在南偏东45°方向,又航行了半小时到达C 处,望见渔船D 在南偏东60°方向,若海监船的速度为50海里/小时,求A ,B 之间的距离.(取,结果精确到0.1海里).A CB FE D P 1 P 2P 3 P 4P 5D20.(8分)。
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM 平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径。
(1)求证:AE与⊙O相切;21.(12分)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.育英学校八年级B 班月考数学试卷答案本试卷满分100分,考试时间为90分钟一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
)1.已知13a b a -=,则ab 的值为( A ) A .32 B .23 C .12D .22.若双曲线2y x=过两点()11y -,,()23y -,,则1y 与2y 的大小关系为……( B ).A. 1y >2yB. 1y <2yC. 1y =2yD. 1y 与2y 大小无法确定 3.把抛物线22x y -=向上平移3个单位,所得新抛物线的解析式为……( A ) A.322+-=x y B.322--=x yC.2)3(2+-=x yD.2)3(2--=x y4.直线x y 2=与x 轴正半轴的夹角为α,那么下列结论正确的是 A .2tan =α B. tan α=0.5 C.5.0sin =α D.5.0cos =α5.下面四个几何体中,左视图是四边形的几何体共有( B )A . 1个B . 2个C . 3个D .4个6. 如图,冰淇淋蛋筒下部呈圆锥形,则此圆锥部分包装纸的面积(接缝面积忽略不计)是…………………………………………………( C ) A.15cm 2B.30cm2C.15πcm2D.30πcm27.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( A )A .36°B .46°C .27°D .63° 8.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( A )A .B .C .D .9.如图,已知菱形ABCD ,且AB=3,∠B=120°,O 1、O 2是对角线AC 上的两个动点,⊙O 1与AB 相切于E ,⊙O 2与CD 相切于F ,并且⊙O 1与⊙O 2外切,设⊙O 1的半径为R ,设⊙O 2的半径为r ,则R+r 的值为( B )A.1 B10.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( D .)A .(0,0)B .(0,1)C .(0,2)D .(0,3)A . 1个B . 2个C . 3个D .4个 二.填空题(每题4分,共24分): 11.()12.48y x=.0x > 13. () 、(﹣1,﹣5), .14.36πcm 2 15.2x <-16三、解答题(共5题,满分46分)17.(满分10分) △ABC 和△DEF 相似.根据勾股定理,得 AB = AC BC =5;DE =DF =EF =AB AC BC DE DF EF ===∴ △ABC ∽△DEF .…………………… 4分△P 2P 5D ,△P 4P 5F ,△P 2P 4D ,△P 4P 5D ,△P 2P 4 P 5,△P 1FD .…………10分18.(8分) (1)()().434111=-=-=取到红球取到白球P P(2)设袋中的红球有x 只,则有1184x x =+ 或183184x =+,解得6x =. 所以袋中的红球有6只. 19.(8分)。
解:∵∠DBA =∠DAB =45°,∴△DAB 是等腰直角三角形,过点D 作DE ⊥AB 于点E ,则DE =AB , 设DE =x ,则AB =2x ,在Rt △CDE 中,∠DCE =30°,则CE =DE =x ,在Rt △BDE 中,∠DAE =45°,则DE =BE =x ,由题意得,CB =CE -BE =x -x =25, 解得:x =,故AB =25(+1)=67.5海里.20.(8分)。
解:(1)如图,连接OM ,则OM=OB , ∴∠1=∠2, ∵BM 平分∠ABC ,∴∠1=∠3, ∴∠2=∠3, ∴OM ∥BC ,∴∠AMO=∠AEB , 在△ABC 中,AB=AC ,AE 是角平分线,∴AE ⊥BC , ∴∠AEB=90°,∴∠AMO=90°, ∴OM ⊥AE , ∴AE 与⊙O 相切;(2)在△ABC 中,AB=AC ,AE 是角平分线,21.(12分)解:(1)设直线CD 的解析式为y =kx +b (k ≠0),将C (0,1),D (1,0)代入得:,解得:b =1,k =﹣1,∴直线CD 的解析式为:y =﹣x +1.(2)设抛物线的解析式为y =a (x ﹣2)2+3,将C (0,1)代入得a =.∴BE=BC ,∠ABC=∠C ,∵BC=4,cosC=,∴BE=2,cos ∠ABC=, 在△ABE 中,∠AEB=90°,∴,∴ 设⊙O 的半径为r ,则AO=6-r , ∵OM ∥BC , ∴△AOM ∽△ABE ,∴,∴,解得,∴⊙O 的半径为。
∴y=(x﹣2)2+3=x2+2x+1.(3)证明:由题意可知,∠OCD=∠ECD=45°,∴CE⊥y轴,则点C、E关于对称轴(直线x=2)对称,∴点E的坐标为(4,1).设对称轴(直线x=2)与CE交于点M,则M(2,1),∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,∴∠QEC=∠QCE=∠ODC=∠OCD=45°,∴△CEQ∽△CDO.(4)。
存在。
作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,连接C′E,∵C,C′关于直线QE对称,△QCE为等腰直角三角形,∴△QC′E为等腰直角三角形,∴△CEC′为等腰直角三角形,∴点C′的坐标为(4,5);∵C,C″关于x轴对称,∴点C″的坐标为(﹣1,0).过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,在Rt△C′NC″中,由勾股定理得:C′C″===.综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.。