1.4.3正切函数的图像与性质(教、学案)
【学案】1.4.3正切函数的图象和性质
1.4.3 正切函数的性质与图象学习目标:1、用单位圆中的正切线作正切函数的图象;2、用正切函数图象解决函数有关的性质;3、理解并掌握作正切函数图象的方法;4、理解用函数图象解决有关性质问题的方法;知识要点:一:正切函数x y tan =的性质:1.定义域: 。
2.周期性:由诱导公式 知,正切函数是周期函数,其最小正周期 =T ;)0,0)(tan(>≠+=ωϕωA x A y 的最小正周期是 。
3.奇偶性:由诱导公式 知,正切函数是 函数。
4.单调性:观察右图中的正切线,正切函数在x ∈⎪⎭⎫⎝⎛-2,2ππ为 函数;结合周期性知,正切函数 。
5. 值域:由上图的正切线知正切函数在x ∈⎪⎭⎫⎝⎛-2,2ππ时,y ∈ ;结合周期性知,正切函数的值域为 ;最值情况为 。
二:正切函数的图象:1.利用正切线作正切函数x y tan =在x ∈⎪⎭⎫⎝⎛-2,2ππ的图象2.结合周期性, 画出正切函数在整个定义域内的图象:3.直线2π-=x 和2π=x 与函数图象的位置关系如何?4. 正切函数x y tan =的渐近线方程为: 。
5. 正切函数x y tan =的对称中心为: ;对称轴情况如何?6.利用图象知函数x y tan =的最小正周期为 ; )sin(ϕω+=x A y 的最小正周期为 。
典型例题:【例1】求函数)32tan(ππ+=x y 的定义域、周期和单调区间。
当堂检测:1.写出利用正切线作正切函数x y tan =在x ∈⎪⎭⎫⎝⎛-2,2ππ的图象的方法。
2.观察正切曲线,写出下列条件的x 的范围: (1)0tan >x ; (2)0tan =x ; (3)0tan <x 。
3.求x y 3tan =的定义域。
4.求周期:(1))(24,2tan Z k k x x y ∈+≠=ππ;(2))()12(,2tan 5Z k k x x y ∈+≠=π。
5. (1)正切函数在整个定义域是增函数吗?为什么?(2)正切函数会在某一区间是减函数吗?为什么? 6.比较大小:(1)0138tan 与0143tan ; (2))413tan(π-与)517tan(π-。
学案7:1.4.3 正切函数的性质与图象
1.4.3 正切函数的性质与图象预习导引区[核心必知]1.预习教材,问题导入根据以下提纲,预习教材的内容,回答下列问题. (1)正切函数y =tan x 的定义域是什么?(2)诱导公式tan(π+x )=tan x 说明了正切函数的什么性质?tan(k π+x )(k ∈Z )与tan x 的关系怎样?(3)诱导公式tan(-x )=-tan x 说明了正切函数的什么性质?(4)从正切线上观察,正切函数值是有界的吗?(5)从正切线上观察正切函数值,在⎝⎛⎭⎫0,π2上是增大的吗?2.归纳总结,核心必记 (1)正切函数的性质(2)①正切函数的图象:②正切函数的图象叫做 . ③正切函数的图象特征:正切曲线是由被相互平行的直线x =π2+k π,k ∈Z 所隔开的无穷多支曲线组成的.[问题思考](1)正切函数在整个定义域上都是增函数吗?(2)可以怎样快速作出正切函数的图象?课堂互动区知识点1 正切函数的定义域、值域问题 讲一讲1.求下列函数的定义域和值域: (1)y =tan ⎝⎛⎭⎫x +π4;(2)y =3-tan x .类题·通法求正切函数定义域的方法及求值域的注意点求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义,即x ≠π2+k π,k ∈Z .而对于构建的三角不等式,常利用三角函数的图象求解.解形如tan x >a 的不等式的步骤:练一练1.函数f (x )=1tan x -1的定义域是________.知识点2 正切函数的单调性及应用 讲一讲2.(1)求函数y =tan ⎝⎛⎭⎫12x -π4的单调区间; (2)比较tan ⎝⎛⎭⎫-13π4与tan ⎝⎛⎭⎫-12π5的大小. 类题·通法(1)求函数y =A tan(ωx +φ)(A ,ω,φ都是常数)的单调区间的方法①若ω>0,由于y =tan x 在每一个单调区间上都是增函数,故可用“整体代换”的思想,令k π-π2<ωx +φ<k π+π2,求得x 的范围即可. ②若ω<0,可利用诱导公式先把y =A tan(ωx +φ)转化为y =A tan[-(-ωx -φ)]=-A tan(-ωx -φ),即把x 的系数化为正值,再利用“整体代换”的思想,求得x 的范围即可. (2)运用正切函数单调性比较大小的方法①运用函数的周期性或诱导公式将角化到同一单调区间内. ②运用单调性比较大小关系. 练一练2.(1)比较tan 1,tan 2, tan 3的大小; (2)求函数y =3tan ⎝⎛⎭⎫π4-2x 的单调区间.知识点3 与正切函数有关的奇偶性、周期性问题 讲一讲3.(1)求f (x )=tan ⎝⎛⎭⎫2x +π3的周期; (2)判断y =sin x +tan x 的奇偶性.类题·通法正切型函数y =A tan(ωx +φ)的周期性、奇偶性(1)一般地,函数y =A tan(ωx +φ)的最小正周期为T =π|ω|,常常利用此公式来求周期. (2)若函数y =A tan(ωx +φ)为奇函数,则φ=k π或φ=k π+π2(k ∈Z ),否则为非奇非偶函数.练一练3.关于x 的函数f (x )=tan(x +φ)有以下几种说法:①对任意的φ,f (x )都是非奇非偶函数;②f (x )的图象关于⎝⎛⎭⎫π2-φ,0对称;③f (x )的图象关于(π-φ,0)对称;④f (x )是以π为最小正周期的周期函数. 其中不正确的说法的序号是________.——————————————[课堂归纳·感悟提升]——————————————— 1.本节课的重点是正切函数的定义域、单调性以及奇偶性和周期性,难点是正切函数单调性的应用.2.本节课要学会“三点两线法”画正切函数的图象类似于正弦、余弦函数的“五点法”作图,正切曲线的简图可用“三点两线法”作出,这里的三个点分别为(k π,0),⎝⎛⎭⎫k π+π4,1,⎝⎛⎭⎫k π-π4,-1,其中k ∈Z .两线为直线x =k π+π2(k ∈Z ),直线x =k π-π2(k ∈Z ).3.要掌握与正切函数性质有关的三个问题 (1)与正切函数有关的定义域、值域问题,见讲1; (2)正切函数的单调性及应用,见讲2;(3)与正切函数有关的奇偶性、周期性问题,见讲3. 4.本节课的易错点有两处(1)易忽视正切函数y =tan x 的定义域为{x |x ≠k π+⎭⎬⎫π2,k ∈Z ,如讲1的第(1)题.(2)易忽视正切曲线只有对称中心而没有对称轴.参考答案预习导引区[核心必知]1.预习教材,问题导入 (1)提示:⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .(2)提示:周期性.tan(k π+x )=tan_x (k ∈Z ). (3)提示:奇偶性.(4)提示:不是,正切函数没有最大值和最小值. (5)提示:是的. 2.归纳总结,核心必记(1)⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z (-∞,+∞) π 奇函数 ⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z ) (2)②正切曲线[问题思考](1)提示:不是.正切函数在每一个开区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )上是增函数.但在整个定义域上不是增函数.(2)提示:正切函数的图象的简图可以用“三点两线法”作出,三点指的是(k π,0),⎝⎛⎭⎫k π+π4,1,⎝⎛⎭⎫k π-π4,-1,k ∈Z ,两线为直线x =k π+π2和直线x =k π-π2,其中k ∈Z .课堂互动区知识点1 正切函数的定义域、值域问题 讲一讲1.解:(1)由x +π4≠k π+π2(k ∈Z )得,x ≠k π+π4,k ∈Z ,所以函数y =tan ⎝⎛⎭⎫x +π4的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π4,k ∈Z ,其值域为(-∞,+∞).(2)由3-tan x ≥0得,tan x ≤ 3.结合y =tan x 的图象可知,在⎝⎛⎭⎫-π2,π2上,满足tan x ≤3的角x 应满足-π2<x ≤π3,所以函数y =3-tan x 的定义域为{x |k π⎭⎬⎫-π2<x ≤k π+π3,k ∈Z ,其值域为[0,+∞). 练一练1.【答案】⎝⎛⎭⎫k π+π4,k π+π2(k ∈Z ) 【解析】若使函数f (x )有意义,需使tan x -1>0, 即tan x >1.结合正切曲线,可得k π+π4<x <k π+π2(k ∈Z ).所以函数f (x )的定义域是⎝⎛⎭⎫k π+π4,k π+π2(k ∈Z ). 知识点2 正切函数的单调性及应用 讲一讲2.解:(1)由k π-π2<12x -π4<k π+π2(k ∈Z )得,2k π-π2<x <2k π+3π2,k ∈Z ,所以函数y =tan ⎝⎛⎭⎫12x -π4的单调递增区间是(2k π-⎭⎫π2,2k π+3π2(k ∈Z ). (2)由于tan ⎝⎛⎭⎫-13π4=tan ⎝⎛⎭⎫-4π+3π4=tan 3π4=-tan π4, tan ⎝⎛⎭⎫-12π5=-tan ⎝⎛⎭⎫2π+2π5=-tan 2π5, 又0<π4<2π5<π2,而y =tan x 在⎝⎛⎭⎫0,π2上单调递增, 所以tan π4<tan 2π5,-tan π4>-tan 2π5,即tan ⎝⎛⎭⎫-13π4>tan ⎝⎛⎭⎫-12π5. 练一练2.解:(1)因为tan 2=tan(2-π),tan 3=tan(3-π). 又因为π2<2<π,所以-π2<2-π<0.因为π2<3<π,所以-π2<3-π<0.显然-π2<2-π<3-π<1<π2,又y =tan x 在⎝⎛⎭⎫-π2,π2内是增函数, 所以tan(2-π)<tan(3-π)<tan 1, 即tan 2<tan 3<tan 1.(2)y =3tan ⎝⎛⎭⎫π4-2x =-3tan ⎝⎛⎭⎫2x -π4, 由-π2+k π<2x -π4<π2+k π得,-π8+k π2<x <3π8+k π2(k ∈Z ), 所以y =3tan ⎝⎛⎭⎫π4-2x 的单调递减区间为⎝⎛⎭⎫-π8+k π2,3π8+k π2(k ∈Z ). 知识点3 与正切函数有关的奇偶性、周期性问题讲一讲3.解:(1)∵tan ⎝⎛⎭⎫2x +π3+π=tan ⎝⎛⎭⎫2x +π3, 即tan ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2+π3=tan ⎝⎛⎭⎫2x +π3, ∴f (x )=tan ⎝⎛⎭⎫2x +π3的周期是π2. (2)定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z ,关于原点对称,∵f (-x )=sin(-x )+tan(-x )=-sin x -tan x =-f (x ), ∴它是奇函数. 练一练 3.【答案】①【解析】①若取φ=k π(k ∈Z ),则f (x )=tan x ,此时,f (x )为奇函数,所以①错;观察正切函数y =tan x 的图象,可知y =tan x 关于⎝⎛⎭⎫k π2,0(k ∈Z )对称,令x +φ=k π2得x =k π2-φ,分别令k =1,2知②、③正确,④显然正确.。
正切函数的性质与图像教案
正切函数的性质与图像教案第一篇:正切函数的性质与图像教案1.4.3 正切函数的性质和图像一、教学目标1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质;二、课时 1课时三、教学重点正切函数的性质与图象的简单应用.四、教学难点正切函数性质的深刻理解及其简单应用.五、教具多媒体、实物投影仪六、教学过程导入新课思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课新知探究提出问题①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?你能类比“五点法”也用几个字总结出作正切简图的方法吗?活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性由诱导公式tan(x+π)=tanx,x∈R,x≠π+kπ,k∈Z2可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性由诱导公式 tan(-x)=-tanx,x∈R,x≠π+kπ,k∈Z 2可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(kπ,0)k∈Z.2(3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(-又由正切函数的周期性可知,正切函数在开区间(-ππ22,)内是增函数,π2+kπ,π+kπ),k∈Z内都是增函数.2(4)定义域根据正切函数的定义tanα=y,显然,当角α的终边落在y轴上任意一点时,都有x=0,这时x正切函数是没有意义的;又因为终边落在y轴上的所有角可表示为kπ+数的定义域是{α|α≠kπ+π,k∈Z,所以正切函2ππ,k∈Z},而不是{α≠+2kπ,k∈Z},这个问题不少初学者很不理解,在22解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域由多媒体课件演示正切线的变化规律,从正切线知,当x大于-切线AT向Oy轴的负方向无限延伸;当x小于向无限延伸.因此,tanx在(-π2且无限接近-π2时,正ππ且无限接近时,正切线AT向Oy轴的正方22ππ22,)内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是实数集R.问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1 问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-ππ,]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整22ππ,)的图象为好.22π+kπ(k∈Z)2个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠的图象,我们称正切曲线,如图3.图2图3问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(-ππ22,)的简图.学生可看出有三个点很关键:(-π4,-1),(0,0),(π,1),还有两4条竖线.因此,画正切函数简图的方法就是:先描三点(-x=-π4,-1),(0,0),(π,1),再画两条平行线4π2,x=π,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.2讨论结果:①略.②正切线是AT.③略.④能,“三点两线”法.提出问题①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质.②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=π+kπ,k∈Z所隔开的无2穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y轴方向看,上下无限延伸,得到它的哪一性质——值域为R;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性π+kπ),k∈Z,没有减区间.它的图象是关于原点对称22kπ的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(,0),k∈Z.2质——单调性,单调增区间是(-+kπ,问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性.讨论结果:①略.②略.应用示例略课堂小结1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义?作业课本习题1.4 A组6、8、9.第二篇:正切函数的图像与性质教案高中数学正切函数的图像与性质昆明市教师资格审查教育教学能力测评试讲教案试讲科目:高中数学学校:云南师范大学姓名:何会芳2013年5月3日制高中数学正切函数的图像与性质一.教材分析1、教材的地位和作用本节课是在学生学习了正弦余弦函数图像及基本性质的基础上对又一个具体三角函数的学习,其研究方法与前面正余弦函数图像与性质的研究方法类似,是对学生所学知识的融通和运用,也是学生对学习函数规律的总结和探索。
1.4.3正切函数的图象与性质
x 变式题:求函数y 3 tan(- )的单调区间. 2 4 x
4 3 (2k , 2k ),k Z . 2 2
y 3 tan(-
3 2k - x 2k ,k Z 2 2 x
2
)的单调递减区间为 :
1、函数y tan( x A.{ x R | x k
4
)的周期是( C )
C、 3
D、 6
课堂练习
3、直线y=a(a为常数)与正切曲线y=tanx 相交的 相邻两点间的距离是( A )
A、
B、/2
C、2
D、与a值有关
4、与函数y tan( 2 x 一条直线是( D) A. x
4
)的图象不相交的
2
B. x -
2
C.x
4
D. x
8
课堂练习 课本P45 练习2
3 2
y
y tan x
1
2
-1
0
2
3 2
x
观察正切曲线,写出满足下列条件的x的值的范围:
(1) tan x 0
(2) tan x 0
︱ k x k , k Z} {x 2 {x︱ x k , k Z }
(2)
3 (0, ) ( , ) 4 4
课本P45 小(1)tan138与tan143
课堂练习 练习6 比较下列各组是两个正切值的大
思想:在同一个单调区间比较!
13 17 (2) tan 与 tan 4 5 (1) 90 138 143 270 tan 138 tan 143 13 17 2 (2) tan tan , tan tan 4 4 5 5 2 且 0 2 5 4 2 17 13 tan tan tan tan 5 4 5 4
人教版数学必修四第一章1.4.3 正切函数的性质和图象 导学案
1.4.3正切函数的图像与性质【学习目标】1、能正确作出正切函数图像;2、借助图像理解正切函数的性质;3、进一步研究正切函数的综合运用.【重点难点】正切函数的图像与性质【学习过程】一、复习旧知1.画出下列各角的正切线:2.正、余弦函数的图象是通过什么方法作出的?3.正、余弦函数的基本性质包括哪些内容?二、自主学习预习教材P42~ P45思考以下问题:知识探究(一):正切函数的图象思考1:类比正弦函数图象的作法,利用正切线在下图中作正切函数tan ((,))22y x x ππ=∈-图象,具体应如何操作?思考2:上图中,直线2π-=x 和2π=x 与正切函数的图象的位置关系如何?图象的凸向有什么特点?思考3:结合正切函数的周期性, 如何画出正切函数在整个定义域内的图象?A 思考4:正切函数Z k k x x y ∈+≠=,2,tan ππ的图象叫做正切曲线.它是由被相互平行的直线Z k k x ∈+=,2ππ所隔开的无穷多支完成相同的曲线组成的。
因为正切函数是奇函数,所以正切曲线关于原点对称,此外,正切曲线是否还关于其它的点和直线对称? 知识探究(二):正切函数的性质观察正切函数Z k k x x y ∈+≠=,2,tan ππ的图象,完成下列思考:思考1:正切函数的定义域是 , 用区间表示为 思考2:根据诱导公式与周期函数的定义结合正切函数Z k k x x y ∈+≠=,2,tan ππ的图象,你能判断正切函数是周期函数吗?其最小正周期是什么?思考3:根据图像你能判断正切函数具有奇偶性吗?思考4:观察右图中的正切线,当角x 在⎪⎭⎫ ⎝⎛-2,2ππ内增加时, 正切函数值发生什么变化?由此反映出一个什么性质?思考5:结合正切函数的周期性,正切函数的单调性如何?思考6:正切函数在整个定义域内是增函数吗?正切函数会不会在某一区间内是减函数?思考7:正切函数的值域是什么?三、典型例题例1:比较下列两个三角函数值的大小.(1)710tan 72tan)1(ππ与(2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-517tan 413tan )2(ππ与变式练习1:比较下列两个三角函数值的大小.(1)815tanπ 914tan π (2)ο240tan ο260tan例2:根据正切函数图象,分别写出满足下列条件的x 的集合:(1)0tan >x (2)tan x >(3)0tan 1≥+x变式练习2:(1)函数1tan 2-=x y 的定义域是(2)函数)tan 1lg(x y -=的定义域是 例3:研究函数⎪⎭⎫ ⎝⎛+=4tan πx y 的基本性质变式训练3:(1)求函数⎪⎭⎫ ⎝⎛+=42tan πx y 的基本性质 (2)求函数)32tan(ππ+=x y 的定义域、周期和单调区间.课后思考:研究函数x y tan =的相关性质课后练习与提高1. 下列函数不等式中正确的是( ).A .43tan tan 77ππ>B .23tan tan 55ππ<{}C.|22,|2,2x k x k k x x k k Z ππππππ⎧⎫≤<+∈⋃=+∈⎨⎬⎩⎭ C . 1315tan()tan()78ππ-<- D .1312tan()tan()45ππ-<-2. 若,则( ).A .B .C .D .3.函数y = ).A .|22,2x k x k k ππππ⎧⎫≤<+∈⎨⎬⎩⎭B .|22,2x k x k k ππππ⎧⎫<≤+∈⎨⎬⎩⎭D .|222x k x k πππ⎧≤<+⎨⎩且}2,x k k Z ππ≠+∈4. 函数)43tan(2π+=x y 的周期是( )A .32πB .2πC .3πD .6π5. 函数x y π3tan =的最小正周期是( )A .31B .32C .π6D .π36. 函数tan()(0)6y ax a π=+≠的周期为( ).A .2a πB .2a πC .a πD .a πtan 0x ≤22,2k x k k Z πππ-<<∈2(21),2k x k k Z πππ+≤<+∈,2k x k k Z πππ-<≤∈,2k x k k Z πππ-≤≤∈7. 直线y a =(a 为常数)与正切曲线tan (y x ωω=为常数,且0)ω>相交的两相邻点间的距离为( ).A .πB .2πω C .πω D .与a 值有关8. 函数)4tan(x y -=π的定义域是( )A. {R x x ∈|且4π-≠x } B. {R x x ∈|且43π≠x }C. {R x x ∈|且z k k x ∈-≠,4ππ}D. {R x x ∈|且z k k x ∈+≠,43ππ}9. 在下列函数中,同时满足:①在0,2π⎛⎫⎪⎝⎭上递增;②以2π为周期;③是奇函数的是().A .tan y x =B .cos y x =C .tan 2xy = D .tan y x =-10. 3tan ,2tan ,1tan 的大小关系是 .11. 函数)42tan(1π-=x y 的定义域为 .12. 函数sin y x =与tan y x =的图像在[]1,1-上有 个交点。
人教版高中数学必修4学案 1.4.3正切函数的性质与图象
第一章 三角函数三角函数1.4 三角函数的图象与性质1.4.3 正切函数的性质与图象1.理解正切函数的性质,掌握正切函数的图象的作法.2.能利用正切函数的图象与性质解决与正切函数有关的基本问题.基础梳理 一、 正切函数的性质1.正切函数的定义域和值域:定义域为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z ,值域为R .2.正切函数的周期性:y =tan x 的周期是k π(k ∈Z ,k ≠0),最小正周期是π.3.正切函数的奇偶性与对称性:正切函数是奇函数,其图象关于原点中心对称.4.正切函数的单调性:正切函数在开区间⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z)内都是增函数.练习:正切函数y =tan x 在区间⎣⎢⎢⎡⎦⎥⎥⎤-π4,π4上的值域为[-1,1].思考应用1.能否说正切函数在整个定义域上是增函数?解析:不能.正切函数在整个定义域上不具有单调性,因为它的定义域不连续,所以,不能说它在整个定义域上是增函数,正切函数在它的任一个连续区间内是单调递增函数.举反例:x 1=π4,x 2=5π4,x 1<x 2,tan x 1=tan x 2这与单调性的定义矛盾.对每一个k ∈Z ,在开区间⎝⎛⎭⎪⎪⎫k π-π2,k π+π2内,函数单调递增. 二、正切函数的图象1.根据正切函数y =tan x 的定义和周期,通过平移单位圆中的正切线来作出它在区间⎝ ⎛⎭⎪⎫-π2,π2上的图象.2.将正切函数y =tan x 在区间⎝ ⎛⎭⎪⎫-π2,π2上的图象向左、右扩展,就可以得到正切函数y =tan x ⎝ ⎛⎭⎪⎫x ≠k π+π2,k ∈Z 的图象,我们把它叫做正切曲线.正切曲线是被互相平行的直线x =k π+π2(k ∈Z)所隔开的无数多支曲线组成的.这些平行直线x =k π+π2(k ∈Z)叫做正切曲线各支的渐近线.3.结合正切曲线的特征,类比正弦、余弦函数的“五点法”作图,也可用三点两线作图法作出正切函数y =tan x 在一个单调区间⎝ ⎛⎭⎪⎫-π2,π2上的简图.其中,三点为:⎝ ⎛⎭⎪⎫-π4,-1,(0,0),⎝ ⎛⎭⎪⎫π4,1.二线为:x =-π2,x =π2.画图时,注意图象不能与直线x =k π+π2(k ∈Z)相交.思考应用2.你能求不等式tan x ≥3的解集吗? 分析:本题可利用图象直观解决.解析:作正切函数y =tan x 在区间⎝ ⎛⎭⎪⎪⎫-π2,π2上的简图,观察图象,且由正切函数y =tan x 在区间⎝ ⎛⎭⎪⎪⎫-π2,π2上单调递增,tan π3=3.∵tan x ≥ 3,即tan x ≥tan π3,∴在区间⎝ ⎛⎭⎪⎪⎫-π2,π2内,不等式tan x ≥3的解集⎣⎢⎢⎡⎭⎪⎪⎫π3,π2,故由正切函数的周期性可知原不等式的解集为⎣⎢⎢⎡⎭⎪⎪⎫k π+π3,k π+π2(k ∈Z).自测自评1.函数y =tan 2x 的最小正周期是(C ) A .2π B .π C.π2 D.π4解析:T =π2,故选C.2.下列命题正确的是(C ) A .正切函数在定义域内是增函数 B .正弦函数在定义域内是增函数 C .函数y =3tan x 2的图象关于y 轴对称D .若x 是第一象限角,则y =tan x 是增函数,y =cos x 是减函数 解析: 正弦函数、余弦函数与正切函数都是区间上的单调函数,可排除A 、B 、D ,故选C.3.函数y =tan ⎝⎛⎭⎪⎪⎫x -π4的定义域是(D ) A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠π4 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠-π4 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠k π+π4,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠k π+3π4,k ∈Z 解析:x -π4≠k π+π2⇒x ≠k π+3π4,k ∈Z.4.函数y =tan x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤π6,π4的值域为⎣⎢⎡⎦⎥⎤33,1.基础提升1.函数y =lg tan x 的增区间是(B )A.⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z)B.⎝⎛⎭⎪⎫k π,k π+π2(k ∈Z)C.⎝⎛⎭⎪⎫2k π-π2,2k π+π2 (k ∈Z)D .(k π,k π+π)(k ∈Z)解析:由tan x >0,得k π<x <k π+π2(k ∈Z).又y =tan x 在⎝ ⎛⎭⎪⎪⎫k π-π2,k π+π2上是增函数.∴函数y =lg tan x 的增区间是⎝⎛⎭⎪⎪⎫k π,k π+π2(k ∈Z).故选B.2.tan 600°的值是(D )A .-33 B.33 C .- 3 D. 3解析:tan 600°=tan(360°+240°)=tan 240° =tan(180°+60°)=tan 60°= 3.3.直线y =a (a 为常数)与函数y =tan ωx (ω为常数且ω>0)的图象相交的相邻两点间的距离是(C )A .π B.2πω C.πωD .与a 值有关解析:利用图象,直线y =a 与函数y =tan ωx 的图象相交,相邻两点间的距离就是y =tan ωx 的一个最小正周期,即为πω.故选C.4.函数f (x )=tan ⎝ ⎛⎭⎪⎫x +π4的单调增区间为(C )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈ZC.⎝ ⎛⎭⎪⎫k π-3π4,k π+π4,k ∈ZD.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z5.方程tan x =-3(-π<x <π)的解集为(C )A.⎩⎨⎧⎭⎬⎫-π6,56πB.⎩⎨⎧⎭⎬⎫-23π,23πC.⎩⎨⎧⎭⎬⎫-π3,23π D.⎩⎨⎧⎭⎬⎫23π,53π巩固提高6.若f (x )=tan ⎝⎛⎭⎪⎫x +π4,则(A)A .f (0)>f (-1)>f (1)B .f (0)>f (1)>f (-1)C .f (1)>f (0)>f (-1)D .f (-1)>f (0)>f (1) 解析:由k π-π2<x +π4<k π+π2,k ∈Z 得k π-3π4<x <k π+π4,k ∈Z ,∴f (-1)<f (0).又∵f (1)=tan ⎝ ⎛⎭⎪⎪⎫1+π4=tan ⎝⎛⎭⎪⎪⎫1-3π4, ∴1-3π4,-1,0∈⎝⎛⎭⎪⎪⎫-3π4,π4且1-3π4<-1<0,∴f (1)<f (-1)<f (0),故选A. 7.函数f (x )=tan 2x tan x的定义域为(A )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π+π2,k ∈ZC.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π-π4,k ∈Z8.利用正切函数图象解不等式. (1)tan x ≥-1; (2)tan 2x ≤-1.分析:本题可先作出y =tan x 在⎝ ⎛⎭⎪⎪⎫-π2,π2上的图象,然后由tan ⎝ ⎛⎭⎪⎪⎫-π4=-1,并结合图象的升降(单调性)便可去掉法则“tan ”,从而建立自变量间的关系.解析:(1)因为tan x ≥-1,tan ⎝ ⎛⎭⎪⎪⎫-π4=-1,在⎝ ⎛⎭⎪⎪⎫-π2,π2内,满足条件的x 为:-π4≤x <π2,由正切函数的图象及周期性可知,满足此不等式的x的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪-π4+k π≤x <π2+k π,k ∈Z . (2)在 ⎝ ⎛⎭⎪⎪⎫-π2,π2内,tan ⎝ ⎛⎭⎪⎪⎫-π4=-1.所以不等式tan 2x ≤-1的解集由不等式k π-π2<2x ≤k π-π4,k ∈Z 确定.解得k π2-π4<x ≤k π2-π8,k ∈Z.所以不等式tan 2x ≤-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪k π2-π4<x ≤k π2-π8,k ∈Z .9.已知f (x )=x 2+2x ·tan θ-1,x ∈[-1,3],其中θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当θ=-π6时,求函数f (x )的最大值与最小值; (2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数. 解析:(1)当θ=-π6时,f (x )=x 2-233x -1.∵x ∈[-1,3],∴当x =33时,f (x )min =-43;当x =-1时,f (x )max =233.(2)函数f (x )=x 2+2x ·tan θ-1的对称轴为x =-tan θ, ∵y =f (x )在区间[-1,3]上是单调函数, ∴-tan θ≤-1或-tan θ≥3, 即tan θ≥1或tan θ≤- 3.又θ∈⎝ ⎛⎭⎪⎪⎫-π2,π2,∴-π2<θ≤-π3或π4≤θ<π2,即θ的取值范围是⎝ ⎛⎦⎥⎥⎤-π2,-π3∪⎣⎢⎢⎡⎭⎪⎪⎫π4,π2.1.正切函数单调区间的求法:求y =A tan(ωx +φ)的单调区间,可先用诱导公式把ω化为正值,再由不等式k π-π2<ωx +φ<k π+π2(k ∈Z)求得x的范围即可.2.比较大小问题:比较两个同名函数值的大小,应先保证自变量在同一单调区间内,再利用函数单调性比较大小.如果自变量不在同一单调区间内,则可用介值法比较大小.高中数学-打印版3.解简单的三角不等式:一般地,求解简单的三角不等式时,既可以用三角函数线,又可以用三角函数的图象,先得到一个周期内的解集,再加上周期的整数倍,即可得所求的解集.精校版。
1.4.3正切函数的性质与图象(教案)(最新整理)
具有的的性质,学生思考后举手
新课 (3)奇偶性:奇函数
回答,教师总结
(4)值域:R
(1) 图象关于原点成中心对
(5)单调性: 在每个区间
称——奇函数
感知正切函数图
( k , k , k Z ) 上单调递增
2
2
(2)图象上下无限延伸并接近
直线 x k , k Z.——值 2
域为 R
象的特点,培养 学生的观察能力 和归纳总结能 力。
4
5
(1)学生思考,给出解题思路,
教师板书解题步骤,(2)题交
给学生自己,完成后教师与学生
一起总结解此类型题的方法
——把相应的角诱导到的同一
单调区间内,利用的单调递增性 函数单调性的利
来解决!
用
2.求函数
y
tan(
x
) 的定义域、周
23
期和单调区间。
学生思考后,给出解题思路,教 师板书解题过程,完成后,总结 此道题中所用到的常用数学方 法
七、教学过程
环节 导入
教学内容
回忆:在前面已经研究了正弦函数、余 弦函数的图象及其性质,通常研究函数 的哪些性质?
师生互动 教师提出问题,学生集体回答 后,引出:这节课我们将采用类 似的方法研究正切函数的性质 与图象(定义域、周期性、奇偶 性、单调性、值域等)(给出课 题)
设计意图
通过复习,引出 这节课的课题和 明确研究方向。
(3)图象在每个区间
(
3
,
), (
,
), (
,
3
)
2 2 22 2 2
上单调递增——单调性
6.思考:正切函数在其定义域上为单调 递增函数吗?
高中数学必修四1.4.3正切函数的性质和图象导学案
高中数学必修四1.4.3正切函数的性质和图象导学案正切函数的性质和图象【学习目标】1.能借助单位圆中正切线画出y=tanx的图象.2.理解正切函数在上的性质.(预习课本第页42----44页的内容)【新知自学】知识回顾:1、周期性2、奇偶性3.单调性:x在每一个区间__________上是增函数,在每一个区间___________上是减函数;x在每一个区间__________上是增函数,在每一个区间___________上是减函数;最值:当且仅当x=_______时,y=sinx取最大值___,当且仅当x=______ _时,y=s inx取最小值______.当且仅当x=_______时,取最大值____,当且仅当x=_______时,y=cosx取最小值______.新知梳理:1.正切函数的性质(1)周期性:正切函数的最小正周期为_____;y=tanx( )的最小正周期为_____.(2)定义域、值域:正切函数的定义域为_________,值域为_________.(3)奇偶性:正切函数是__ ____函数.(4)单调性:正切函数的单调递增区间是______________________.2.正切函数的图象:正切函数y=tanx,x R且的图象,称“正切曲线”.探究:1. 正切函数图象是被平行直线y= 所隔开的无穷多支曲线组成。
能否认为正切函数在它的定义域内是单调递增的?2.正切曲线的对称中心是什么?对点练习:函数的周期是()A. B. C. D.2.函数的定义域为 ( )A.BD下列函数中,同时满足(1)在(0, )上递增,(2)以2 为周期,(3)是奇函数的是( )A. BD求函数y=的定义域【合作探究】典例精析:题型一:与正切函数有关的定义域问题例1.求函数的定义域.变式1.求函数的定义域.题型二:正切函数的单调性例2.(1)求函数y=tan(3x- )的周期及单调区间.(2)比较tan 与tan 的大小.变式2.(1)求函数y=tan( -x)的周期及单调区间.(2)比较大小:tan 与tan (- ).【课堂小结】【当堂达标】1.下列各式正确的是()A.B.C.D.大小关系不确定2.函数y=5tan(2x+1)的最小正周期为________.3.函数y=tan 的单调区间是____________________,且此区间为函数的________区间(填递增或递减).4.写出函数y=|tanx|的定义域、值域、单调区间、奇偶性和周期.【课时作业】1、在定义域上的单调性为().A.在整个定义域上为增函数B.在整个定义域上为减函数C.在每一个上为增函数D.在每一个上为增函数2、若 ,则().A.B.C.D.与函数的图象不相交的一条直线是()4. 已知函数的图象过点,则可以是.tan1,tan2,tan3的大小关系是_________________________________.6.下列四个命题:①函数y=tan x在定义域内是增函数;②函数y=tan(2x+1)的最小正周期是π;③函数y=tan x的图象关于点(π,0)成中心对称;④函数y=tan x的图象关于点成中心对称.其中正确命题的序号为__________________.7.求函数y=3tan(2x+ ),( )的值域、单调区间。
高中数学必修四学案 1.4.3 正切函数的性质与图象
1.4.3 正切函数的性质与图象学习目标1.会求正切函数y=tan(ωx+φ)的周期.2.掌握正切函数y=tan x的奇偶性,并会判断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法.知识点一 正切函数的性质 思考1 正切函数的定义域是什么?[答案] ⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠π2+k π,k ∈Z . 思考2 诱导公式tan(π+x )=tan x ,x ∈R 且x ≠π2+k π,k ∈Z 说明了正切函数的什么性质?[答案] 周期性.思考3 诱导公式tan(-x )=-tan x ,x ∈R 且x ≠π2+k π,k ∈Z 说明了正切函数的什么性质?[答案] 奇偶性.思考4 从正切线上看,在⎝⎛⎭⎫0,π2上正切函数值是增大的吗? [答案] 是.梳理 函数y =tan x ⎝⎛⎭⎫x ∈R 且x ≠k π+π2,k ∈Z 的图象与性质见下表:知识点二 正切函数的图象思考1 利用正切线作正切函数图象的步骤是什么?[答案] 根据正切函数的定义域和周期,首先作出区间⎝⎛⎭⎫-π2,π2上的图象.作法如下: (1)作平面直角坐标系,并在平面直角坐标系y 轴的左侧作单位圆. (2)把单位圆的右半圆分成8等份,分别在单位圆中作出正切线. (3)描点(横坐标是一个周期的8等分点,纵坐标是相应的正切线的长度). (4)连线,得到如图①所示的图象.(5)根据正切函数的周期性,把上述图象向左、右扩展,就可以得到正切函数y =tan x ,x ∈R 且x ≠π2+k π(k ∈Z )的图象,把它称为正切曲线(如图②所示).可以看出,正切曲线是被相互平行的直线x =π2+k π,k ∈Z 所隔开的无穷多支曲线组成的.思考2 我们能用“五点法”简便地画出正弦函数、余弦函数的简图,你能类似地画出正切函数y =tan x ,x ∈⎝⎛⎭⎫-π2,π2的简图吗?怎样画? [答案] 能,三个关键点:⎝⎛⎭⎫π4,1,(0,0),⎝⎛⎭⎫-π4,-1,两条平行线:x =π2,x =-π2. 梳理 (1)正切函数的图象(2)正切函数的图象特征正切曲线是被相互平行的直线x =π2+k π,k ∈Z 所隔开的无穷多支曲线组成的.1.函数y =tan x 在其定义域上是增函数.( × )提示 y =tan x 在开区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )上是增函数,但在其定义域上不是增函数. 2.函数y =tan x 的图象的对称中心是(k π,0)(k ∈Z ).( × ) 提示 y =tan x 图象的对称中心是⎝⎛⎭⎫12k π,0(k ∈Z ). 3.正切函数y =tan x 无单调递减区间.( √ ) 4.正切函数在区间⎣⎡⎦⎤-π2,π2上单调递增.( × )提示 正切函数在区间⎝⎛⎭⎫-π2,π2上是增函数,不能写成闭区间,当x =±π2时,y =tan x 无意义.类型一 正切函数的定义域、值域问题例1 (1)函数y =3tan ⎝⎛⎭⎫π6-x 4的定义域为________. [考点] 正切函数的定义域、值域 [题点] 正切函数的定义域[答案] ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-4π3-4k π,k ∈Z [解析] 由π6-x 4≠π2+k π,k ∈Z ,得x ≠-4π3-4k π,k ∈Z ,即函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-4π3-4k π,k ∈Z . (2)求函数y =tan 2⎝⎛⎭⎫3x +π3+tan ⎝⎛⎭⎫3x +π3+1的定义域和值域. [考点] 正切函数的定义域、值域 [题点] 正切函数的值域 解 由3x +π3≠k π+π2,k ∈Z ,得x ≠k π3+π18,k ∈Z ,所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π3+π18,k ∈Z . 设t =tan ⎝⎛⎭⎫3x +π3, 则t ∈R ,y =t 2+t +1=⎝⎛⎭⎫t +122+34≥34,所以原函数的值域是⎣⎡⎭⎫34,+∞. 反思与感悟 (1)求定义域时,要注意正切函数自身的限制条件,另外解不等式时,要充分利用三角函数的图象或三角函数线.(2)处理正切函数值域时,应注意正切函数自身值域为R ,将问题转化为某种函数的值域求解. 跟踪训练1 求函数y =tan x +1+lg(1-tan x )的定义域. [考点] 正切函数的定义域、值域 [题点] 正切函数的定义域解 由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.在⎝⎛⎭⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎡⎭⎫-π4,π4. 又y =tan x 的周期为π,所以函数的定义域是⎣⎡⎭⎫k π-π4,k π+π4(k ∈Z ).类型二 正切函数的单调性问题 命题角度1 求正切函数的单调区间例2 求函数y =tan ⎝⎛⎭⎫-12x +π4的单调区间及最小正周期. [考点] 正切函数的单调性 [题点] 判断正切函数的单调性 解 y =tan ⎝⎛⎭⎫-12x +π4=-tan ⎝⎛⎭⎫12x -π4, 由k π-π2<12x -π4<k π+π2(k ∈Z ),得2k π-π2<x <2k π+32π(k ∈Z ),所以函数y =tan ⎝⎛⎭⎫-12x +π4的单调递减区间是⎝⎛⎭⎫2k π-π2,2k π+32π,k ∈Z ,周期T =π⎪⎪⎪⎪-12=2π. 反思与感悟 y =tan(ωx +φ)(ω>0)的单调区间的求法是把ωx +φ看成一个整体,解-π2+k π<ωx +φ<π2+k π,k ∈Z 即可.当ω<0时,先用诱导公式把ω化为正值再求单调区间.跟踪训练2 (2017·太原高一检测)求函数y =3tan ⎝⎛⎭⎫π4-2x 的单调区间. [考点] 正切函数的单调性 [题点] 判断正切函数的单调性 解 y =3tan ⎝⎛⎭⎫π4-2x =-3tan ⎝⎛⎭⎫2x -π4, 由-π2+k π<2x -π4<π2+k π,k ∈Z ,得-π8+k π2<x <3π8+k π2(k ∈Z ), 所以y =3tan ⎝⎛⎭⎫π4-2x 的单调递减区间为⎝⎛⎭⎫-π8+k π2,3π8+k π2(k ∈Z ). 命题角度2 利用正切函数的单调性比较大小 例3 比较大小:(1)tan 32°________tan 215°; (2)tan 18π5________tan ⎝⎛⎭⎫-28π9. [考点] 正切函数的单调性 [题点] 正切函数的单调性的应用 [答案] (1)< (2)<[解析] (1)tan 215°=tan(180°+35°)=tan 35°, ∵y =tan x 在(0°,90°)上单调递增,32°<35°, ∴tan 32°<tan 35°=tan 215°.(2)tan 18π5=tan ⎝⎛⎭⎫4π-2π5=tan ⎝⎛⎭⎫-2π5, tan ⎝⎛⎭⎫-28π9=tan ⎝⎛⎭⎫-3π-π9=tan ⎝⎛⎭⎫-π9, ∵y =tan x 在⎝⎛⎭⎫-π2,π2上单调递增,且-2π5<-π9, ∴tan ⎝⎛⎭⎫-2π5<tan ⎝⎛⎭⎫-π9,即tan 18π5<tan ⎝⎛⎭⎫-28π9. 反思与感悟 运用正切函数的单调性比较大小的步骤 (1)运用函数的周期性或诱导公式将角化到同一单调区间内; (2)运用单调性比较大小关系.跟踪训练3 比较大小:tan ⎝⎛⎭⎫-7π4_______tan ⎝⎛⎭⎫-9π5.[考点] 正切函数的单调性 [题点] 正切函数的单调性的应用 [答案] >[解析] ∵tan ⎝⎛⎭⎫-7π4=-tan ⎝⎛⎭⎫2π-π4=tan π4, tan ⎝⎛⎭⎫-9π5=-tan ⎝⎛⎭⎫2π-π5=tan π5. 又0<π5<π4<π2,y =tan x 在⎝⎛⎭⎫0,π2内单调递增, ∴tan π5<tan π4,∴tan ⎝⎛⎭⎫-7π4>tan ⎝⎛⎭⎫-9π5.类型三 正切函数综合问题 例4 设函数f (x )=tan ⎝⎛⎭⎫x 2-π3.(1)求函数f (x )的最小正周期,对称中心; (2)作出函数f (x )在一个周期内的简图. [考点] 正切函数的综合应用 [题点] 正切函数的综合应用解 (1)∵ω=12,∴最小正周期T =πω=π12=2π.令x 2-π3=k π2(k ∈Z ),得x =k π+2π3(k ∈Z ), ∴f (x )的对称中心是⎝⎛⎭⎫k π+2π3,0(k ∈Z ). (2)令x 2-π3=0,则x =2π3;令x 2-π3=π4,则x =7π6;令x 2-π3=-π4,则x =π6;令x 2-π3=π2,则x =5π3; 令x 2-π3=-π2,则x =-π3. ∴函数y =tan ⎝⎛⎭⎫x 2-π3的图象与x 轴的一个交点坐标是⎝⎛⎭⎫2π3,0,在这个交点左,右两侧相邻的两条渐近线方程分别是x =-π3,x =5π3,从而得到函数y =f (x )在一个周期⎝⎛⎭⎫-π3,5π3内的简图(如图).反思与感悟 熟练掌握正切函数的图象和性质是解决正切函数综合问题的关键,正切曲线是被相互平行的直线x =π2+k π,k ∈Z 隔开的无穷多支曲线组成,y =tan x 的对称中心为⎝⎛⎭⎫k π2,0,k ∈Z .跟踪训练4 画出f (x )=tan |x |的图象,并根据其图象判断其单调区间、周期性、奇偶性.[考点] 正切函数的综合应用[题点] 正切函数的综合应用解 f (x )=tan |x |化为f (x )=⎩⎨⎧ tan x ,x ≠k π+π2,x ≥0(k ∈Z ),-tan x ,x ≠k π+π2,x <0(k ∈Z ),根据y =tan x 的图象,作出f (x )=tan |x |的图象,如图所示,由图象知,f (x )不是周期函数,是偶函数,单调增区间为⎣⎡⎭⎫0,π2,⎝⎛⎭⎫k π+π2,k π+3π2(k ∈N );单调减区间为⎝⎛⎦⎤-π2,0,⎝⎛⎭⎫k π-3π2,k π-π2(k =0,-1,-2,…).1.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调递增区间为( ) A.⎝⎛⎭⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈ZC.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z [考点] 正切函数的单调性[题点] 判断正切函数的单调性[答案] C2.函数y =tan x +1tan x是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[考点] 正切函数的周期性、对称性[题点] 正切函数的奇偶性[答案] A[解析] 函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12k π,k ∈Z ,且tan(-x )+1tan (-x )=-tan x -1tan x =-⎝⎛⎭⎫tan x +1tan x ,所以函数y =tan x +1tan x是奇函数. 3.将tan 1,tan 2,tan 3按大小排列为________.(用“<”连接)[考点] 正切函数的单调性[题点] 正切函数单调性的应用[答案] tan 2<tan 3<tan 1[解析] tan 2=tan(2-π),tan 3=tan(3-π),∵-π2<2-π<3-π<1<π2, 且y =tan x 在⎝⎛⎭⎫-π2,π2上单调递增, ∴tan(2-π)<tan(3-π)<tan 1,即tan 2<tan 3<tan 1.4.(2017·西安高一检测)函数y =4tan ⎝⎛⎭⎫3x +π6的最小正周期为________. [考点] 正切函数的周期性、对称性[题点] 正切函数的周期性[答案] π3[解析] T =π|ω|=π3. 5.函数y =tan x ⎝⎛⎭⎫π4≤x ≤3π4,且x ≠π2的值域是________________. [考点] 正切函数的定义域、值域[题点] 正切函数的值域[答案] (-∞,-1]∪[1,+∞)[解析] 函数y =tan x 在⎣⎡⎭⎫π4,π2上单调递增,在⎝⎛⎦⎤π2,3π4上也单调递增,所以函数的值域是(-∞,-1]∪[1,+∞).1.正切函数的图象正切函数有无数多条渐近线,渐近线方程为x =k π+π2,k ∈Z ,相邻两条渐近线之间都有一支正切曲线,且单调递增.2.正切函数的性质(1)正切函数y =tan x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z ,值域是R . (2)正切函数y =tan x 的最小正周期是π,函数y =A tan(ωx +φ)(Aω≠0)的最小正周期为T =π|ω|. (3)正切函数在⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z )上单调递增,不能写成闭区间,正切函数无单调减区间.。
正切函数的性质与图像教学优秀教案
1.4.3正切函数的性质与图象一、教材分析:本节课前承正、余弦函数,后启必修五中的直线斜率问题。
研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。
正切函数与正弦函数在研究方法上类似,我采用类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。
本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程和由图象获得性质的过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣。
二、学情分析:本节课是研究了正、余弦函数的图象与性质后学习的,所以学生对图象和性质的研究有了一定的基础,在作图和通过图象获得性质有一定的分析能力及解决能力。
三、教学目标:知识与技能(1)掌握正切线的画法;(2)能利用单位圆中的正切线作正切函数的图象;(3)熟练根据正切函数的图象推导出正切函数的性质;(4)能熟练掌握正切函数的图象与性质;过程与方法类比正弦函数图象的作法,通过单位圆中的有向线段得到正切函数的图象;能学以致用,结合图象分析得到正切函数的性质。
情感态度与价值观会用联系的观点看问题,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
四、教学重、难点:重点: 正切函数的性质与图象。
难点: 熟练运用正切函数的性质与图象分析问题、解决问题。
五、教学思路:【创设情境,揭示课题】1、常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,本节课以同样的方法研究正切函数的性质与图象提问1:我们在前面是如何作出正弦函数的图象?有哪些步骤?提问2:如何作出正切线?设计意图:复习旧知,引入新课。
【探究新知】1、正切函数y =tanx 的图象(1)请同学们类比正弦函数图象的画法,分组利用正切线作出函数x y tan =在区间⎪⎭⎫ ⎝⎛-2,2ππ的图象。
正切函数的性质和图像教案
观
察
图像
,丰富性质
【值域】
【单调性】
对每一个 ,在开间 内,函数单调递增.
【对称性】
对称中心: ,无对称轴。
对称性由几何画板先直观演示,然后给与严格的证明。
【渐近线】
正切函数的图像是被相互平行的直线 所隔开的无穷多支形状完全相同的曲线组成的。
形与数
对比正切函数的性质和图像,分析各个性质在图像上的反映,得出:函数的性质有利于画函数的图像,函数的图像是其性质的直观反映。
正切函数的性质和图像教案
教学任务分析
科目
数学
课题
必修41.4.3正切函数的性质和图像
班级
教师
教学
目标
知识技能
1、探索并掌握正切函数的性质;
2、能根据正切线画出正切函数的图象。
过程方法
1、在对正切函数已有认知的基础上,分析正切函数的性质;
2、通过已知的性质,利用正切线画出正切函数在 上图
像,得到正切曲线;
例题解析
例1.比较 的大小。
例2.求函数 的定义域。
例3.求下列函数的周期:
说明:函数 的周期 .
例4.解关于x的不等式 .
3、根据正切曲线,完善正切函数的性质。
情感态度
在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯。
重点
掌握正切函数的基本性质。
难点
利用正切函数的性质画出其图像,特别是对正切函数图像的渐近线的认识。
教学过程设计
教学过程
设计说明
复习旧知
提问1:首先我们回忆角的正切是如何定义的?
提问2:角 是任意的吗?引出正切函数的定义域。
高二数学(人教A版)必修4精品教案—1.4.3正切函数的性质与图像
1. 4.3 正切函数的性质与图象班级 姓名学习目标:1、用单位圆中的正切线作正切函数的图象;2、用正切函数图象解决函数有关的性质;3、理解并掌握作正切函数图象的方法;4、理解用函数图象解决有关性质问题的方法;教学重点:正切函数的性质与图象的简单应用. 教学难点:正切函数性质的深刻理解及其简单应用. 教学过程:知识探究(一):正切函数的性质:思考1:正切函数的定义域是__________,思考2:根据诱导公式与周期函数的定义,你能判断正切函数是周期函数吗?若是,其最小正周期 T=_______思考3: 函数)82tan(π-=x y 的周期T=__ ,一般地,函数)0(),tan(>+=ωφωx y 的周期T=____.思考4:根据相关诱导公式,你能判断正切函数具有奇偶性吗?思考5:观察右图中的正切线,当角x 在 (2,2ππ-)内增加时,正切函数值发生什么变化? 由此反映出一个什么性质?思考6:结合正切函数的周期性,正切函数的单调性如何?正切函数在开区间( )(z k ∈)内都是(增、减)函数。
思考7:正切函数在整个定义域内是增函数吗?正切函数会不会在某一区间内是减函数?T 1OxvAT 2O思考8:当x 大于2π-且无限接近2π-时,正切值如何变化? 当x 小于2π且无限接近2π时, 正切值又如何变化? 由此分析,正切函数的值域是什么?知识探究(二):正切函数的图象:思考1:类比正弦函数图象的作法,可以利用正切线作正切函数y=tanx, x ∈(2,2ππ-)的图象,具体应如何操作?思考2:右图中,直线x=2π-和x= 2π与正切函数的图象的位置关系如何?思考3:结合正切函数的周期性, 如何画出正切函数在整个定义域内的图象?思考4:正切函数y=tanx,x ∈R,x ≠2π+k π ,z x ∈ 的图象叫做正切曲线.因为正切函数是奇函数,所以正切曲线关于原点对称,此外,正切曲线是否还关于其它的点和直线对称?思考5:根据正切曲线如何理解正切函数的基本性质? 一条平行于x 轴的直线与相邻两支曲线的交点的距离为多少?应用示例例1 比较大小. (1)tan138°与tan143°; (2)tan(413π-)与tan(517π-).练习:比较大小. (1)tan1519°与tan1493°; (2)tan1175π与tan(1158π-).例2 求函数y=tan(2πx+3π)的定义域、周期和单调区间.变式训练 求函数y=tan(x+4π)的定义域,值域,单调区间,周期性.课堂小结 知识:正切函数的性质有哪些?正切函数的图象怎么画?能力:正切函数的性质和图象的应用及数形结合法。
1.4.3正切函数的图像与性质(教、学案)
§1.4.3正切函数的图像与性质【教材分析】正切函数的图象和性质》 它前承正、余弦函数,后启必修五中的直线斜率问题。
研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。
教材单刀直入,直接进入画图工作,没有给出任何提示。
正切函数与正弦函数在研究方法上类似,我采用以类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。
教材上直接圈定了区间(2,2ππ-),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法。
这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。
在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质,并用比大小的题型启发学生从代数和几何两种角度看问题。
【教学目标】正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。
本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:1.会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。
2.首先学生自主绘图,通过投影仪纠正图像,投影完整的正确图象,然后再让学生观察,类比正弦,探索知识。
3.在得到正切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
【教学重点难点】教学重点:正切函数的图象及其主要性质。
教学难点:利用正切线画出函数y =tan x 的图象,对直线x =2ππ+k ,Zk ∈是y =tan x 的渐近线的理解,对单调性这个性质的理解。
高中数学第一章三角函数1.4.3正切函数的图像与性质学案新人教A版必修
§1.4.3正切函数的图像与性质课前预习学案一、预习目标利用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质二、预习内容1.画出下列各角的正切线:2.类比正弦函数我们用几何法做出正切函数x y tan =图象:3.把上述图象向左、右扩展,得到正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”4.观察正切曲线,回答正切函数的性质: 定义域: 值域: 最值: 渐近线: 周期性: 奇偶性 单调性: 图像特征: 三、提出疑惑课内探究学案一、学习目标:会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。
学习重难点:正切函数的图象及其主要性质。
二、学习过程例1.讨论函数⎪⎭⎫⎝⎛+=4tan πx y 的性质 变式训练1. 求函数y =tan2x 的定义域、值域和周期例2.求函数y =2tan x 1-的定义域变式训练2. y 例3. 比较tan 27π与tan 107π的大小 变式训练3. tan 65π与tan (-135π)三、反思总结 1、数学知识: 2、数学思想方法: 四、当堂检测一、选择题1. 函数)43tan(2π+=x y 的周期是 ( )(A) 32π (B) 2π (C)3π (D)6π 2.函数)4ta n (x y -=π的定义域为( )(A)},4|{R x x x ∈≠π(B)},4|{R x x x ∈-≠π(C) },,4|{Z k R x k x x ∈∈+≠ππ (D)},,43|{Z k R x k x x ∈∈+≠ππ 3.下列函数中,同时满足(1)在(0, 2π)上递增,(2)以2π为周期,(3)是奇函数的是 ( )(A)x y tan = (B)x y cos = (C)x y 21tan = (D)x y tan -= 二、填空题4.tan1,tan2,tan3的大小关系是_______________________.5.给出下列命题:(1)函数y =sin|x |不是周期函数; (2)函数y =|cos2x +1/2|的周期是π/2; (3)函数y =tan x 在定义域内是增函数; (4)函数y =sin(5π/2+x )是偶函数; (5)函数y =tan(2x +π/6)图象的一个对称中心为(π/6,0)其中正确命题的序号是_______________(注:把你认为正确命题的序号全填上) 三、解答题6.求函数y=lg(1-tanx)的定义域课后练习与提高一、选择题1、tan (,)2y x x k k Z ππ=≠+∈在定义域上的单调性为( ).A .在整个定义域上为增函数B .在整个定义域上为减函数C .在每一个开区间(,)()22k k k Z ππππ-++∈上为增函数D .在每一个开区间(2,2)()22k k k Z ππππ-++∈上为增函数2、下列各式正确的是( ).A .1317tan()tan()45ππ-<-B .1317tan()tan()45ππ->-C .1317tan()tan()45ππ-=- D .大小关系不确定3、若tan 0x ≤,则( ).A .22,2k x k k Z πππ-<<∈ B .2(21),2k x k k Z πππ+≤<+∈C .,2k x k k Z πππ-<≤∈ D .,2k x k k Zπππ-≤≤∈二、填空题 4、函数tan 2()tan xf x x=的定义域为 .5、函数y =的定义域为 . 三、解答题6、 函数tan()4y x π=-的定义域是( ).精美句子1、善思则能“从无字句处读书”。
高中数学 第一章 三角函数 1.4.3 正切函数的图像与性质学案 新人教A版必修4(2021年整理)
高中数学第一章三角函数1.4.3 正切函数的图像与性质学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.4.3 正切函数的图像与性质学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.4.3 正切函数的图像与性质学案新人教A版必修4的全部内容。
§1.4。
3正切函数的图像与性质课前预习学案一、预习目标利用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质二、预习内容1。
画出下列各角的正切线:2.类比正弦函数我们用几何法做出正切函数x y tan =图象:3.把上述图象向左、右扩展,得到正切函数R x x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”4。
观察正切曲线,回答正切函数的性质:定义域: 值域:最值: 渐近线:周期性: 奇偶性单调性: 图像特征:三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标:会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。
学习重难点:正切函数的图象及其主要性质.二、学习过程例1。
讨论函数⎪⎭⎫ ⎝⎛+=4tan πx y 的性质 变式训练1. 求函数y =tan2x 的定义域、值域和周期例2.求函数y =2tan x 1-的定义域变式训练2. y 例3。
比较tan 27π与tan 107π的大小 变式训练3。
tan 65π与tan (-135π) 三、反思总结1、数学知识:2、数学思想方法:四、当堂检测 一、选择题1。
高中数学 第1章 三角函数 1.4.3 正切函数的性质与图象教案(含解析)高一数学教案
(2)y=3tan =-3tan ,
由- +kπ<2x- < +kπ,k∈Z得,
- + π<x< + π,k∈Z,
所以y=3tan 的减区间为 ,k∈Z.
1.将本例(2)中的函数改为“y=3tan ”,结果又如何?
[解]由kπ- < x- <kπ+ (k∈Z),
得2kπ- <x<2kπ+ π(k∈Z),
2.在下列函数中同时满足:①在 上递增;②以2π为周期;③是奇函数的是( )
A.y=tanxB.y=cosx
C.y=tan D.y=-tanx
C[A,D的周期为π,B中函数在 上递减,故选C.]
3.函数y=|tanx|在 上的单调减区间为________.
和 [如图,观察图象可知,y=|tanx|在 上的单调减区间为 和 .
]
4.求函数y=tan 的定义域、最小正周期、单调区间及其图象的对称中心.
[解]①由 - ≠kπ+ ,k∈Z,得x≠2kπ+ ,k∈Z,
∴函数的定义域为 .
②T= =2π,∴函数的最小正周期为2π.
③由kπ- < - <kπ+ ,k∈Z,得2kπ- <x<2kπ+ ,k∈Z,∴函数的单调递增区间为 ,k∈Z.
3.函数y=tan 3x的最小正周期是________.
[函数y=tan 3x的最小正周期是 .]
4.函数y=tan 的对称中心是________.
(k∈Z)[令x- = (k∈Z)得x= + (k∈Z),
∴对称中心为 (k∈Z).]
有关正切函数的定义域、值域问题
【例1】 (1)函数y= 的值域是( )
→
(2) →
[解](1)①因为tan =tan ,tan =tan ,
高中数学必修4教案 1.4.3正切函数的性质与图象
④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?
你能类比“五点法”也用几个字总结出作正切简图的方法吗?
2.在学习了正弦函数、余弦函数的图象与性质的基础上,运用类比的方法,学习正切函数的图象与性质,从而培养学生的类比思维能力.
情感态度价值观
3.通过正切函数图象的教学,培养学生欣赏(中心)对称美的能力,激发学生热爱科学、努力学好数学的信心.
教材分析
重难点
教学重点:正切函数的性质与图象的简单应用.
教学难点:正切函数性质的深刻理解及其简单应用.
可知,正切函1)tan138°与tan143°;(2)tan( )与tan( ).
解:(1)∵y=tanx在90°<x<180°上为增函数,
∴由138°<143°,得tan138°<tan143°.
(2)∵tan( )=-tan =-tan(3π+ )=-tan ,
计
一周期性 三 单调性
二奇偶性四值域
教学反思
教学设想
教法
引导探究
学法
自学探究
教具
多媒体直尺,圆规
课堂设计
一、目标展示
.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.
二.预习检测
①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?
1.4.3正切函数的性质与图象 教案
1.4.3正切函数的性质与图象教案(人教A版必修4)授课题目授课时间课型新授课授课地点授课教师授课班级授课方法启发和探究教学相结合教学辅助手段多媒体课件教学目标1.掌握正切函数的周期性、奇偶性、单调性、值域等相关性质的同时学会本节课研究数学问题的方法,培养积极主动的学习态度。
2.利用迁移、类比的方法提高分析、探究问题的能力,拓展研究数学问题的视角,加强理性思考,体验数学的严谨之美.3.领悟和内化数形结合的思想,让学生在学习中收获成功和快乐,感受到数学的无穷魅力.教学重点正切函数的性质与图象. 教学难点利用正切线研究函数的单调性及值域.教学过程教学流程教学内容教师活动学生活动学情预设设计意图复习引入1.正、余弦函数的图象是通过什么方法作出的?2.正、余弦函数的基本性质包括哪些内容?这些性质是怎样得到的?提出问题引导学生回忆,迁移到对正切函数的研究中.1.学生和老师一起回忆研究正弦函数余弦函数的思路与方法.学生易于得到描点作图和函数的性质.激发学生的学习兴趣和探究欲望.探究一正切函数y=tan x的定义域.强调研究函数定义域优先. 2.学生回忆正切函数的定义.类比正、余弦函数定义学生容易遗漏定义域,老师提醒.培养学生缜密的思维. 探究二1.当x大于-2π且无限接近-2π时,正切线AT向y轴负方向无限延伸;2.当x小于2π且无限接近2π时,正切线AT向y轴正方向无限延伸;因此,正切函数没有最大值、最小值;所以,正切函数的值域是实数集R.展示正切线的变化规律,引导学生观察正切函数的值域;指定学生回答.3.学生观察探究正切函数的值域.学生会想到正切函数线,老师再引导和动画演示.展示单位圆中三角函数线的重要性,进一步让学生体会数形结合的思想.探究三诱导公式tan(-x)= -tan x,x R∈,,2x k k Zππ≠+∈知,正切函数是奇函数.让学生类比研究正、余弦函数奇偶性的方法,自己探究正切函数的奇偶性.4.利用诱导公式探究正切函数的奇偶性.学生可能遗漏函数奇偶性对定义域的要求.展示数学中的对称美. 探究四诱导公式tan( x+π)=tan x ,x R∈,,2x k k Zππ≠+∈)可知:正切函数是周期函数,周期为π.让学生类比研究弦函数的方法来研究正切函数的周期性.5.学生类比思考探究正切函数是否为周期函数.学生会想到诱导公式,老师需要解释是最小正周期.让学生感受类比,体会类比在研究问题中的重要性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临清三中数学组 编写人:桑立红 审稿人:庞红玲 李怀奎§1.4.3正切函数的图像与性质【教材分析】正切函数的图象和性质》 它前承正、余弦函数,后启必修五中的直线斜率问题。
研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。
教材单刀直入,直接进入画图工作,没有给出任何提示。
正切函数与正弦函数在研究方法上类似,我采用以类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。
教材上直接圈定了区间(2,2ππ-),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法。
这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。
在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质,并用比大小的题型启发学生从代数和几何两种角度看问题。
【教学目标】正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。
本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标: 1.会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。
2.首先学生自主绘图,通过投影仪纠正图像,投影完整的正确图象,然后再让学生观察,类比正弦,探索知识。
3.在得到正切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
【教学重点难点】教学重点:正切函数的图象及其主要性质。
教学难点:利用正切线画出函数y =tan x 的图象,对直线x =2ππ+k ,Z k ∈是y =tan x的渐近线的理解,对单调性这个性质的理解。
【学情分析】 知识结构:在函数中我们学习了如何研究函数,而对正弦函数的研究又再一次做了一个模板,所以学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。
但在画正切函数图象时,还有许多需要注意的地方,这又提升了学生分析问题的能力及严密认真的态度。
心理特征:高一学生已经初步形成了是非观,具备了分辨是非的能力及语言表达能力。
能够通过讨论、合作交流、辩论得到正确的知识。
但在处理问题时学生很容易“想当然”用事,考虑问题不深入,往往会造成错误的结果。
【教学方法】1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】1.学生的学习准备:预习“正切函数的图像与性质”,初步把握作图的方法与性质的推导。
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
【课时安排】1课时 【教学过程】一、预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复 习导入、展示目标。
问题1:就我们前面所学的内容中,正切函数与正余弦函数的有何区别?大家怎么知道正切函数的值域是R? 通过单位圆中的正切线可以得到。
那请同学们回忆正切线在每一个象限的画法。
(设计意图:①通过此问题确定本节课的一个基调:类比学习;②通过此问题来复习我们已经研究过的正切函数的性质;③通过比较让学生了解正切与正弦的区别,在画图像的时候注意区别;④因为在作图时必须用正切线的知识,所以在此做一个相应的复习和准备工作,顺应学生的思维在知识链接处提问)问题2:我们用什么样的方式得到正余弦函数的图像的?利用单位圆内的正弦线,得到在一个周期,即[0,2 ]内的图象,再利用周期性得到在定义域内的图象。
问题3:请同学们根据所学知识设计一个研究正切函数图像与性质的方案。
方案:第一步:画出正切函数的在一个周期内的图象; 第二步:将图象向左、向右平移拓展到整个定义域上去; 第三步:根据图象总结性质。
三、合作探究、精讲点拨。
①请同学们解决方案的第一步,先画出y =tan x 在一个周期内的简图。
给学生充足的时间与空间,发挥学生的主动性,这样不仅提高了学生的动手实践能力,还培养了学生对数学的兴趣。
注:有的学生可能会想到利用函数的奇偶性来画图,很多学生会画出(0.π)的图象,教师暂时不予评价,等待学生形成图象。
②教师用投影仪展示作图结果,学生之间相互评价,指出优点和不足之处,并鼓励学生阐述自己的观点。
教师直接在投影仪上纠正学生错误的图像;并将(0,π)的图象与⎪⎭⎫ ⎝⎛-2,2ππ的图像进行比较来说明只是周期的选择不同,拓展到整个定义域上也是一致的。
通过学生之间的点评与总结,引出渐近线,并请同学们总结出:要画出一个周期内的图象,首先,选择哪段区间较好,其次,在画图象的过程中应该注意什么?③投影仪展示完整图像。
目的是规范作图,理顺思路的作用,并画出在定义域上的图象。
(设计意图:在做好整体知识方法的铺垫后,学生完全有能力自己得到图象,并且通过交流发现自己的问题,所以整体做了一个这样的处理。
而根据知识的发生发展和获得结论这个过程,在最后给学生展示标准的图象以留下正确和深刻的印象)④总结正切函数的性质。
分小组根据正切函数图象去验证正切函数已有的性质,并找出其它的性质(主要就指单调性,若学生提及对称性就一起分析,若学生不提也不加以讨论,因为高考要求没有对对称性的涉及)。
一组总结后,其它各小组补充或改正。
培养学生之间的团结协作能力及勇于探索的精神。
有部分学生会得到正切函数在定义域上是单调增函数的结论,所以为了突破这个难点,另外又设计了三道判断题让学生小组讨论形成结果。
判断下列语句是否正确:(1) y =tan x 在定义域上是单调增函数; (2)y =tan x 在第一象限是单调增函数; (3)8716ππ<,而y =tan x 是单调增函数,87tan 16tan ππ<∴ 在整体形成应该如何理解正切函数的单调性的基础上,再完成两个比大小的问题。
不求值,判断下列各式的大小①tan1380 tan1430, ②tan (— 13π4 ) tan (53π)引导学生从数和形两个角度来完成,可以直接看图象,可以转化到同一个单调区间,也可以利用三角函数线来比大小。
(设计意图:根据原来的教学经验,学生在后续使用这个性质的时候经常会认为正切在定义域上是单调增函数,或者对第一象限的认识就认为是0~2π,所以准备这些辨析题就是让学生缩短这个反复讲解的过程,留下正确的印象,而比较大小是检验能否认识三角单调性的一个很好的工具,诱导公式的使用又将前后内容联系起来)四、例题分析例1.讨论函数⎪⎭⎫⎝⎛+=4tan πx y 的性质 解析:考察正切函数图像,该图像可通过正切函数图像向左平移4π单位得到 解:定义域:⎭⎬⎫⎩⎨⎧∈+≠∈z k k x R x x ,4|ππ且值域:R 奇偶性:非奇非偶函数 单调性:在⎪⎭⎫⎝⎛+-4,43ππππk k 上是增函数 点评:本题考察了图像的平移变换,培养学生的作图能力与通过图像观察性质的能力变式训练1. 求函数y =tan2x 的定义域、值域和周期解:要使函数y =tan2x 有意义,必须且只须2x ≠2π+kπ,k∈Z 即x ≠4π+2πk ,k∈Z ∴函数y =tan2x 的定义域为{x ∈R |,x ≠24ππk +,k∈Z }(2)设t=2x ,由x ≠24ππk +,k∈Z }知t≠2π+kπ,k∈Z ∴y =tan t的值域为(-∞,+∞)即y =tan2x 的值域为(-∞,+∞) (3)由tan2(x +2π)=tan (2x +π)=tan2x ∴y =tan2x 的周期为2π. 例2.求函数y =2tan x 1-的定义域解析:通过图像解三角不等式解:tan x ≠1且x ≠k π+2π,k ∈Z ,得x ≠k π+4π且x ≠k π+2π,k ∈Z 则定义域为{x | x ∈R 且x ≠k π+4π且x ≠k π+2π,k ∈Z}点评:通过本题培养学生数形结合的能力变式训练2. y 解:tan x +1≥0,即tan x ≥-1,得k π-4π≤x <k π+2π,k ∈Z 则定义域为{x | k π-4π≤x <k π+2π,k ∈Z} 例3. 比较tan 27π与tan 107π的大小解析:通过诱导公式把角度化为同一单调区间,利用正切函数单调性比较大小解:tan 107π=tan 37π ∵0<27π<37π<2π 又∵y =tan x 在(0,2π)上单调递增∴tan 27π<tan 37π,则tan 27π<tan 107π点评:注意诱导公式的准确应用变式训练3. tan 65π与tan (-135π)解:tan 65π=-tan 5π,tan (-135π)=-tan 135π=-tan 35π∵0<5π<35π<π 又∵y =tan x 在(0,π)上单调递增∴tan 5π<tan 35π,则tan 65π>tan (-135π)由学生分析,得到结论,其他学生帮助补充、纠正完成。
五、反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
课堂小结:1、数学知识:正切函数的定义与图像,定义域、值域和周期性、奇偶性、单调性。
2、数学思想方法:数形结合。
达标检测:1. 函数)43tan(2π+=x y 的周期是 ( )(A)32π (B) 2π (C)3π (D)6π 2.函数)4tan(x y -=π的定义域为 ( )(A)},4|{R x x x ∈≠π(B)},4|{R x x x ∈-≠π(C) },,4|{Z k R x k x x ∈∈+≠ππ (D)},,43|{Z k R x k x x ∈∈+≠ππ 3.下列函数中,同时满足(1)在(0,2π)上递增,(2)以2π为周期,(3)是奇函数的是 ( ) (A)x y tan = (B)x y cos = (C)x y 21tan = (D)x y tan -= 4.tan1,tan2,tan3的大小关系是_______________________. 5.给出下列命题:(1)函数y =sin|x |不是周期函数; (2)函数y =|cos2x +1/2|的周期是π/2; (3)函数y =tan x 在定义域内是增函数; (4)函数y =sin(5π/2+x )是偶函数; (5)函数y =tan(2x +π/6)图象的一个对称中心为(π/6,0)其中正确命题的序号是_______________(注:把你认为正确命题的序号全填上) 6.求函数y=lg(1-tanx)的定义域参考答案:1.C 2.D 3.C 4. tan2<tan3<tan1 5.(1)(4)(5)6.,24x k x k k Z ππππ⎧⎫-+<<+∈⎨⎬⎩⎭设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。