2016年秋季学期新人教A版高中必修四1.4.2 正弦函数、余弦函数的性质导学案(一)
2016年秋季学期新人教A版高中必修四1.4.2 正弦函数、余弦函数的性质(一)
题型二 三角函数的奇偶性
例2 判断下列函数的奇偶性.
1 π (1)f(x)=sin-2x+2 ;
1 解 显然 x∈R,f(x)=cos 2x,
f
1 (-x)=cos-2x =cos
1 x=f(x), 2
∴f(x)是偶函数.
解析答案
(2)f(x)=lg(1-sin x)-lg(1+sin x);
∵定义域不关于原点对称,∴该函数是非奇非偶函数.
反思与感悟
解析答案
跟踪训练2
(1)f(x)=
判断下列函数的奇偶性.
5 2 x + π 2sin ; 2
解
函数的定义域为R,
5 2sin2x+2π = π 2sin2x+2
其图象如图所示,
所以该函数的最小正周期为π.
反思与感悟 解析答案
跟踪训练1
求下列函数的最小正周期.
1 π (1)y=3cos(2x-3); 1 π 解 ∵y=3cos(2x-3)中,ω=2,
2π ∴函数的最小正周期为 T= 2 =π.
(2)y=cos|x|.
解 ∵y=cos|x|=cos x,
∴y=cos|x|的最小正周期T=2π.
解
1-sin x>0, 由 得-1<sin x<1. 1+sin x>0,
π . x | x ∈ R 且 x ≠ k π + , k ∈ Z 解得定义域为 2
∴f(x)的定义域关于原点对称.
又∵f(x)=lg(1-sin x)-lg(1+sin x)
答案
知识点三
正弦、余弦函数的奇偶性
正弦曲线
余弦曲线
【人教A版】高中数学必修四 1.4.2 正弦函数、余弦函数的性质(新教材)
题型二 三角函数值的大小比较
ห้องสมุดไป่ตู้
【典例 2】 比较下列各组数的大小:
(1)sin250°与
sin260°;(2)cos158π与
14π cos 9 .
[思路导引] 利用正、余弦函数的单调性比较大小.
[ 解] (1)∵函数 y=sinx 在[90°,270°]上单调递减,且 90°<250°<260°<270°,∴sin250°>sin260°.
[变式] 将本例(2)中函数改为 y=2cos2x+2sinx-12,其他条 件不变,结果如何?
[解] y=2cos2x+2sinx-12 =2(1-sin2x)+2sinx-12 =-2sin2x+2sinx+32 =-2sinx-122+52. ∵x∈6π,56π,∴sinx∈12,1.所以32≤y≤52. 故原函数的值域32,52.
[针对训练] 1.求函数 y=3sin3π-2x的单调递减区间.
[解] ∵y=3sinπ3-2x=-3sin2x-3π, ∴y=3sin2x-3π是增函数时,y=3sinπ3-2x是减函数. ∵函数 y=sinx 在-2π+2kπ,π2+2kπ(k∈Z)上是增函数,∴ -π2+2kπ≤2x-π3≤2π+2kπ, 即-1π2+kπ≤x≤152π+kπ(k∈Z). ∴函数 y=3sin3π-2x的单调递减区间为-1π2+kπ,152π+kπ (k∈Z).
[答案] y=sinx 在-2π,π2上,曲线逐渐上升,是增函数, 函数值 y 由-1 增大到 1;在2π,32π上,曲线逐渐下降,是减函 数,函数值 y 由 1 减小到-1;
y=cosx 在[0,π]上,曲线逐渐下降,是减函数,函数值由 1 减小到-1,在[π,2π]上,曲线逐渐上升,是增函数,函数值由 -1 增大到 1
高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(1)导学案 新人教A版必修4(2
高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)导学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)导学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)导学案新人教A版必修4的全部内容。
1。
4。
2 正余弦函数的性质(1)【学习目标】1.了解周期函数及最小正周期的概念。
2.会求一些简单三角函数的周期.【学习重点】理解周期函数的意义会求周期函数的周期【基础知识】函数 x x k y sin )2sin(=+=π,说明当自变量x 的值增加π2的整数倍时,函数的值重复出现,数学上用周期来刻画这一变化规律.1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x+T)=f (x),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。
问题:(1)对于函数sin y x =,x R ∈有2sin()sin 636πππ+=,能否说23π是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠)(3)若函数()f x 的周期为T ,则kT ,*k Z ∈也是()f x 的周期吗?为什么?(是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+)2.一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且0A ≠)的周期2||T πω= 说明:①周期函数x定义域M ,则必有x+T M , 且若T>0则定义域无上界;T<0则定义域无下界; ②“每一个值”只要有一个反例,则f (x)就不为周期函数(如f (x 0+t)f (x 0)) ③T 往往是多值的(如y=sinx 2,4,…,—2,—4,…都是周期)周期T 中最小的正数叫做f(x)的最小正周期(有些周期函数没有最小正周期)y=sinx, y=cosx 的最小正周期为2 (一般称为周期)从图象上可以看出sin y x =,x R ∈;cos y x =,x R ∈的最小正周期为2π;判断:是不是所有的周期函数都有最小正周期? (()f x c =没有最小正周期)3.求周期的方法:(1)公式法:一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且0A ≠)的周期2||T πω= (2)定义法:f (x+T )=f (x )(3)图像法:如果函数的图像有一定的变化规律,在某一范围内函数图像重复出现,并且图像一方(左或者右)无限延伸。
高中数学必修四1.4.2正弦函数、余弦函数的性质(二)学案新人教A版必修4
二.探究与发现
【探究点一】正、余弦函数的定义域、值域 正弦曲线:
余弦曲线:
由正、余弦曲
线很
容易看出正弦函数、余弦函数的定义域都是实数集
R,值域都是
.
对于正弦函数 y= sin x ,x∈R 有:
当且仅当 x=
时,取得最大值
对于余弦函数 y= cos x ,x∈R 有:
1;当且仅当 x=
时,取得最小值- 1.
(即
同则增,异则减 ) 求解.
余弦函数 y= Acos( ω x+φ ) 的单调区间类似可求.
请同学们根据上面介绍的方法,写出求函数
1π y= sin -2x+ 3 单调递增区间的求法.
例 1.利用三角函数的单调性,比较下列各组数的大小.
(1)sin
-π18 与 sin
-
π 10
;
(2)sin 196 °与 cos 156 °;
(2)cos 870 °与 sin 980 °.
1π 例 2.求函数 y= 1+ sin - 2x+ 4 ,x∈[ - 4π , 4π] 的单调减区间.
小结
确定函数 y= Asin( ω x+ φ) 或 y= Acos( ω x+φ ) 单调区间的基本思想是整体换元思想,即将 ω x+ φ 视为一个整体.若 x 的系数为负,通常利用诱导公式化为正数再求解.有时还应兼顾 函数的定义域.
当 x∈ __________ 时,曲线逐渐上升,是增函数, 1;
当 x∈ __________ 时,曲线逐渐下降,是减函数,
sin x 的值由- 1 增大到 sin x 的值由 1 减小到-
1.
推广到整个定义域可得: 当 x∈ ___________________________ 时,正弦函数 y= sin x 是增函数,函数值由- 1 增大到 1; 当 x∈ ___________________________ 时,正弦函数 y= sin x 是减函数,= cos x ,x∈[ - π , π ] 的图象如图所示: 观察图象可知: 当 x∈ __________ 时,曲线逐渐上升,是增函数, cos x 的值由- 1 增大到 1;
人教a版必修4学案:1.4.2正弦函数、余弦函数的性质(2)(含答案)
1.4.2 正弦函数、余弦函数的性质(二)自主学习知识梳理自主探究正弦曲线与余弦曲线都既是轴对称图形又是中心对称图形,那么:(1)正弦函数y =sin x 的对称轴方程是______________,对称中心坐标是______________.(2)余弦函数y =cos x 的对称轴方程是______________,对称中心坐标是______________.对点讲练知识点一 求正、余弦函数的单调区间例1 求函数y =sin ⎝⎛⎭⎫π3-2x 的单调递减区间.回顾归纳 求y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.变式训练1 求函数y =2cos ⎝⎛⎭⎫π4-x 2的单调增区间.知识点二 比较三角函数值的大小例2 利用三角函数的单调性,比较下列各组数的大小.(1)sin 196°与cos 156°;(2)sin 1,sin 2,sin 3.回顾归纳 用正弦函数和余弦函数的单调性来比较大小时,应先将异名化同名,再将不是同一单调区间的角用诱导公式转化到同一单调区间,再利用单调性来比较大小.变式训练2 比较下列各组数的大小.(1)cos 870°,cos 890°;(2)sin ⎝⎛⎭⎫-37π6,sin 49π3.知识点三 正、余弦函数的最值问题例3 已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.回顾归纳 此类问题应特别注意正、余弦函数值域的有界性,即当x ∈R 时,-1≤sin x ≤1,-1≤cos x ≤1,另外还应注意定义域对值域的影响.变式训练3 若函数y =a -b cos x (b >0)的最大值为32,最小值为-12,求函数y =-4a cosbx 的最值和最小正周期.1.求函数y =A sin(ωx +φ) (A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+3π2(k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法(1)将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.(2)将sin x 或cos x 用所求变量y 来表示,如sin x =f (y ),再由|sin x |≤1,构建关于y 的不等式|f (y )|≤1,从而求得y 的取值范围.课时作业一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.函数y =sin ⎝⎛⎭⎫x -π2 (x ∈k )在( ) A .[0,π]上是增函数 B.⎣⎡⎦⎤-π2,π2上是增函数 C .[0,π]上是减函数 D.⎣⎡⎦⎤-π2,π2上是减函数 3.当-π2≤x ≤π2时,函数f (x )=2sin ⎝⎛⎭⎫x +π3有( ) A .最大值为1,最小值为-1B .最大值为1,最小值为-12C .最大值为2,最小值为-2D .最大值为2,最小值为-14.函数y =sin(x +φ)的图象关于y 轴对称,则φ的一个取值是( ) A.π2 B .-π4C .π B .2π 5.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54二、填空题6.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是________________. 7.函数y =log 12(1+λcos x )的最小值是-2,则λ的值是________.8.函数y =-cos 2x +cos x (x ∈R )的值域是________.三、解答题9.求下列函数的单调增区间.(1)y =1-sin x 2; (2)y =log 12(cos 2x ).10.求下列函数的值域.(1)y =1-2cos 2x +2sin x ; (2)y =2-sin x2+sin x.1.4.2 正弦函数、余弦函数的性质(二)答案(1)x =k π+π2(k ∈Z ) (k π,0) (k ∈Z )(2)x =k π (k ∈Z ) ⎝⎛⎭⎫k π+π2,0 (k ∈Z ) 对点讲练例1 解 由已知函数为y =-sin ⎝⎛⎭⎫2x -π3,则欲求函数的单调递减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调递增区间. 由-π2+2k π≤2x -π3≤π2+2k π (k ∈Z ),解得-π12+k π≤x ≤5π12+k π (k ∈Z ).∴函数的单调递减区间为⎣⎡⎦⎤-π12+k π,5π12+k π (k ∈Z ). 变式训练1 解 y =2cos ⎝⎛⎭⎫π4-x 2=2cos ⎝⎛⎭⎫x 2-π4.由2k π-π≤x 2-π4≤2k π,k ∈Z ,解得2k π-3π4≤x 2≤2k π+π4,k ∈Z .即4k π-3π2≤x ≤4k π+π2,k ∈Z ,∴函数的单调增区间是⎣⎡⎤4k π-3π2,4k π+π2 (k ∈Z ). 例2 解 (1)sin 196°=sin(180°+16°)=-sin 16°, cos 156°=cos(180°-24°)=-cos 24°=-sin 66°, ∵0°<16°<66°<90°,∴sin 16°<sin 66°.从而-sin 16°>-sin 66°,即sin 196°>cos 156°.(2)∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.0<π-3<1<π-2<π2且y =sin x 在⎝⎛⎭⎫0,π2上递增, ∴sin(π-3)<sin 1<sin(π-2), 即sin 3<sin 1<sin 2.变式训练2 解 (1)cos 870°=cos(2×360°+150°)=cos 150°, cos 890°=cos(2×360°+170°)=cos 170°, ∵余弦函数y =cos x 在[0°,180°]上是减函数, ∴cos 150°>cos 170°,即cos 870°>cos 890°.(2)sin ⎝⎛⎭⎫-37π6=sin ⎝⎛⎭⎫-6π-π6=sin ⎝⎛⎭⎫-π6, sin 49π3=sin ⎝⎛⎭⎫16π+π3=sin π3, ∵正弦函数y =sin x 在⎣⎡⎦⎤-π2,π2上是增函数, ∴sin ⎝⎛⎭⎫-π6<sin π3,即sin ⎝⎛⎭⎫-37π6<sin 49π3. 例3 解 ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1, f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1, f (x )min =2a +b =-5.由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 变式训练3 解 ∵y =a -b cos x (b >0),∴y max =a +b =32,y min =a -b =-12.由⎩⎨⎧a +b =32a -b =-12,解得⎩⎪⎨⎪⎧a =12b =1.∴y =-4a cos bx =-2cos x , ∴y max =2,y min =-2,T =2π. 课时作业 1.C 2.A3.D [∵-π2≤x ≤π2,∴-π6≤x +π3≤5π6.∴当x +π3=-π6,即x =-π2时,f (x )有最小值-1.当x +π3=π2,即x =π6时,f (x )有最大值2.]4.A [若y =sin(x +φ)的图象关于y 轴对称.则φ=k π+π2,∴当k =0时,φ=π2.]5.C [y =sin 2x +sin x -1=⎝⎛⎭⎫sin x +122-54 ∵-1≤sin x ≤1,∴当sin x =-12时,y 取最小值-54,当sin x =1时,y 取最大值1.] 6.⎣⎡⎦⎤π2,π 7.±3解析 由题意,1+λcos x 的最大值为4, 当λ>0时,1+λ=4,λ=3; 当λ<0时,1-λ=4,λ=-3. ∴λ=±3.8.⎣⎡⎦⎤-2,14 解析 y =-⎝⎛⎭⎫cos x -122+14 ∵-1≤cos x ≤1,∴当cos x =12时,y max =14.当cos x =-1时,y min =-2.∴函数y =-cos 2x +cos x 的值域是⎣⎡⎦⎤-2,14. 9.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ).(2)由题意得cos 2x >0且cos 2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z .∴k π<x <k π+π4,k ∈Z .∴y =log 12(cos 2x )的增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 10.解 (1)y =1-2cos 2x +2sin x =2sin 2x +2sin x -1=2⎝⎛⎭⎫sin x +122-32 当sin x =-12时,y min =-32;当sin x =1时,y max =3.∴函数y =1-2cos 2x +2sin x 的值域为⎣⎡⎦⎤-32,3. (2)方法一 y =4-(2+sin x )2+sin x =42+sin x-1∵-1≤sin x ≤1,∴1≤2+sin x ≤3, ∴13≤12+sin x ≤1,∴43≤42+sin x ≤4, ∴13≤42+sin x -1≤3,即13≤y ≤3.∴函数y =2-sin x 2+sin x的值域为⎣⎡⎦⎤13,3. 方法二 由y =2-sin x 2+sin x ,解得sin x =2-2yy +1,由|sin x |≤1,得⎪⎪⎪⎪⎪⎪2-2y y +1≤1,∴(2-2y )2≤(y +1)2, 整理得3y 2-10y +3≤0,解得13≤y ≤3.∴函数y =2-sin x 2+sin x 的值域为⎣⎡⎦⎤13,3.。
人教A版高中数学必修四第一章:1.4.2正、余弦函数的性质2课时课件
(2)y 3sin 2x, x R.
解(:2)令t=2x,因为使函数y 3sin t,t R取最大值的t的集合是
{t | t 2k , k Z}
由 2x t 2k 2
得
x k
2
4
所以使函数 y 3sin 2x, x R 取最大值的x的集合是 {x | x k , k Z} 4
y= sinx,x[0, 2] 和 y= cosx,x[ , 3 ]的简图:
22
x
0 2
20
csoinsxx 10
01
3
2
2
232
-01
0-1
10
y 2
向左平移 个单位长度 2
1
o
2
-1
3
2
2
y=
cosx,x[
2
,
3 ]
2
y=sinx,x[0, 2]
2
x
新课讲授
下面我们研究正弦函数、余弦函数的主要性质:
同理,使函数y 3sin 2x, x R 取最小值的x的集合是 {x | x k , k Z} 4
函数 y 3sin 2x, x R取最大值是3,最小值是-3。
练习: P40 1、2、3 作业: P46 习题2、 5
1.4.2 正弦函数、余弦函数的 性质(二)
复习
正弦曲线:y sin x x R y
例2.下列函数有最大、最小值吗?如果有,请写出取最大、最 小值时的自变量x的集合,并说出最大、最小值分别是什么.
(1)y cos x 1, x R; (2)y 3sin 2x, x R.
解: 这两个函数都有最大值、最小值.
(1)使函数 y cos x 1, x R取得最大值的x的集合,就是 使函数y cos x, x R 取得最大值的x的集合
《红对勾》2015-2016学年人教A版高中数学必修4课件1-4-2正弦函数、余弦函数的性质-2
若函数 f(x)=sin(2x+φ)(|φ|<π2)与函数 g(x)=cos(ωx- π6)(ω>0)的图象具有相同的对称中心,则 φ=________.
解析:∵两函数图象具有相同的对称中心, ∴它们的周期相同, ∴ω=2.令 2x+φ=kπ(k∈Z),则 x=k2π-φ2(k∈Z),即 f(x) 的图象的对称中心为(k2π-φ2,0)(k∈Z).令 2x-π6=k′π+2π (k′∈Z),则 x=k′2 π+π3(k′∈Z),即 g(x)的图象的对称中 心为(k′2 π+3π,0)(k′∈Z).又 g(x),f(x)的图象的对称中心
解:(1)由 x∈(-4π,π)知,23x∈(-6π,23π). 当23x∈(-π6,2π],即 x∈(-π4,34π]时, 函数 y=-2sin23x 为减函数.
所以 2kπ<x+π4<2kπ+π,k∈Z, 即 2kπ-π4<x<2kπ+34π,k∈Z. 所以 u= 2sin(x+π4)的单调递减区间为[2kπ+π4,2kπ+34 π),k∈Z. 所以 y=log 1 [ 2sin(x+4π)]的单调递增区间为[2kπ+4π,
π
2kπ+34π),k∈Z.
求函数的单调区间:y=-2sin23x,x∈(-4π,π).
(4)要注意定义域对单调区间的制约.
2.求三角函数最值或值域的常用方法 (1)对于求形如y=asinx+b(或y=acosx+b)的函数的最 值或值域问题,常利用正、余弦函数的有界性(-1≤sinx, cosx≤1)求解.求三角函数取最值时相应自变量x的集合 时,要注意考虑三角函数的周期性.
(2)求解形如y=asin2x+bsinx+c(或y=acos2x+bcosx+ c),x∈D的函数的值域或最值时,一般先通过换元,令t= sinx(或cosx),将原函数转化为关于t的二次函数,然后利用 配方法求值域或最值即可.求解过程中要注意t=sinx(或 cosx)的取值范围.
高中数学 1.4.2《正弦函数余弦函数的性质》导学案 新人教A版必修4
π54sin π45cos -π532sin π125cos 【学习目标】:会根据图象观察得出正弦函数、余弦函数的性质;会求含有x x cos ,sin 的三角式的性质;会应用正、余弦的值域来求函数)0(sin ≠+=a b x a y 和函数c x b x a y ++=cos cos 2)0(≠a 的值域。
【重点难点】正弦函数和余弦函数的性质及简单应用。
【学法指导】探究正弦函数、余弦函数的周期性,周期,最小正周期;会比较三角函数值的大小,会求三角函数的单调区间.【知识链接】1. _____________________________________________________________________叫做周期函数,___________________________________________叫这个函数的周期.2. _____________________________________叫做函数的最小正周期.3.正弦函数,余弦函数都是周期函数,周期是____________,最小正周期是________.4.由诱导公式_________________________可知正弦函数是奇函数.由诱导公式_________________________可知,余弦函数是偶函数.5.正弦函数图象关于____________________对称,正弦函数是_____________.余弦函数图象关于________________对称,余弦函数是_____________________.6.正弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间_________________上都是减函数,其值从1减少到-1.7.余弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间______________上都是减函数,其值从1减少到-1.8.正弦函数当且仅当x =___________时,取得最大值1,当且仅当x =_________________时取得最小值-1.9.余弦函数当且仅当x =______________时取得最大值1;当且仅当x =__________时取得最小值-1.10.正弦函数sinx 3y =的周期是___________________________.11.余弦函数y cos2x =的周期是___________________________.12.函数y =sinx +1的最大值是__________,最小值是_____________,y =-3cos2x 的最大值是_____________,最小值是_________________.13.y =-3cos2x 取得最大值时的自变量x 的集合是_________________.14.把下列三角函数值从小到大排列起来为:_____________________________, , ,三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容【学习过程】例1、求函数y=sin(2x+3π)的单调增区间.解:变式训练1. 求函数y=sin(-2x+3π)的单调增区间解:例2:判断函数33()sin()42f x x π=+的奇偶性解:变式训练2. 2()lg(sin 1sin f x x x =++)解:例3. 比较sin2500、sin2600的大小解:变式训练3. cos 914cos 815ππ、解:【学习反思】1、数学知识:2、数学思想方法:【基础达标】一、选择题1.函数2sin 2y x =的奇偶数性为( ). A. 奇函数 B. 偶函数C .既奇又偶函数 D. 非奇非偶函数2.下列函数在[,]2ππ上是增函数的是( )A. y =sin xB. y =cos xC. y =sin 2xD. y =cos2x3.下列四个函数中,既是0,2π⎛⎫⎪⎝⎭上的增函数,又是以π为周期的偶函数的是(). A. sin y x = B. sin 2y x =C. cos y x =D. cos2y x =二、填空题4.把下列各等式成立的序号写在后面的横线上。
高中数学 必修四 1.4.2 正弦函数、余弦函数的性质素材 新人教A版必修4
1.4.2 正弦函数、余弦函数的性质1.是“三角”还是“函数”应当说,三角函数是由“三角”和“函数”两部分知识构成的.三角本是几何学的衍生物,起始于古希腊的希帕克,经由托勒玫、利提克思等至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科,历史上的很长一段时期,只有《三角学》盛行于世,却无“三角函数”之名.“三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年.但是,此概念一经引入,立刻极大地改变了三角学的面貌,特别是经过罗巴切夫斯基的开拓性工作,致使三角函数可以完全独立于三角形之外,而成为分析学的一个分支,其中的角也不限于正角,而是任意实数了.有的学者甚至认为可将它更名为角函数,这是有见地的,所以,作为一门学科的《三角学》已经不再独立存在.现行中学教材也取消了原来的《代数》《三角》《几何》的格局,将三角并入了代数内容.这本身即足以说明“函数”在“三角”中应占有的比重.从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的.所以,书中的分式变形、根式变形、指数式变形和对数式变形可谓连篇累牍,所在皆是.这是由当时的数学认知水平决定的.而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值.1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”.现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图象和性质及应用,对这三种代数式的变形却轻描淡写.所以,三角函数部分应重在“函数的图象和性质”是无疑的,这也是国际上普遍认可的观点.2.是“图象”还是“变换”现行高中三角函数部分,单列了一章专讲三角函数,这是与数学发展的潮流相一致的.大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图象和性质”倒是在其次的,这一点,与前面所述的“幂、指、对”函数有着极大的反差.调整以后,降低这部分的要求,大面积地减少了题量.把“函数”作为关键词,将目光放在“图象和性质”上,应当是正确的选择,负担轻了,障碍小了,这更方便于我们将注意力转移到对函数图象和性质的关注上,这才是“三个有利于”得以贯彻的根本.3.国外的观点及启示下面来看一下美国和德国的观点:美国没有全国统一的教材和《考试说明》,只有一个《课程标准》,在《课程标准》中,他们对三角函数提出了下面的要求:“会用三角学的知识解三角形;会用正弦、余弦函数研究客观实际中的周期现象;掌握三角函数图象;会解三角函数方程;会证基本的和简单的三角恒等式;懂得三角函数同极坐标、复数等之间的联系”.他们还特别指出,不要在推导三角恒等式上花费过多的时间,只要掌握一些简单的恒等式推导就可以了,比较复杂的恒等式就应该完全避免了.德国在10到12年级(相当于中国的高一到高三)每年都有三角内容,10年级要求如下:(1)一个角的弧度;(2)三角函数sinx、cosx、tanx和它们的图象周期性;(3)三角形中角和边的计算;(4)重要关系(特指同角三角函数的平方关系、商数关系和倒数关系).另外,在11年级和12年级的“无穷小分析”中,继续研究三角函数的图象变换、求导、求积分、求极限.从以上罗列,我们可以看出下面的共同点:第一,突出强调三角函数的图象和性质;第二,淡化三角式的变形,仅涉及同角变换,而且要求较低,8公式根本不予介绍;第三,明确变换的目的是为了三角形中的实际计算;第四,注意三角函数和其他知识的联系.这带给我们的启示还是很强烈的,美国和德国的中学教育以实用为主,并不太在乎教材体系是否严谨,知识系统是否完整;我国的教材虽作调整,怎样实施且不去细说,有一个意图是可猜到的,那就是要让学生知道教材是严谨与完整的.现在看来严谨的东西,在更高的观点下是否还严谨?在圈内看是完整的,跳出圈子看,是否还完整?在一个小地方钻得太深,在另外更大的地方就可能无暇顾及.人家能在中学学到向量、行列式、微分、积分,我们却热衷于在个别地方穷追不舍,这早已引起行家的注意,从这个意义上说,此次调整应当只是第一步.在中学阶段即试图严谨与完整,其实是受前苏联教育家赞可夫的三高(高速度、高难度、高理论)影响太深的缘故.二、备用习题1.函数y=sin(3π-2x)的单调减区间是( ) A.[2k π-12π,2k π+125π](k∈Z ) B.[4k π-35π,4k π+311π](k∈Z ) C.[k π-125π,k π+1211π](k∈Z ) D.[k π12π-,k π+125π](k∈Z ) 2.满足sin(x-4π)≥21的x 的集合是( ) A.{x|2k π+125π≤x≤2k π+1213π,k∈Z } B.{x|2k π12π-≤x≤2k π+127π,k∈Z } C.{x|2k π+6π≤x≤2k π+65π,k∈Z } D.{x|2k π≤x≤2k π+6π,k∈Z }∪{x|2k π+65π≤x≤(2k+1)π,k∈Z } 3.求下列函数的定义域和值域: (1)y=lgsinx;(2)y=2cos3x .4.已知函数y=f(x)的定义域是[0,41],求下列函数的定义域: (1)f(cos 2x);(2)f(sin 2x-21). 5.已知函数f(x)=21log |sinx-cosx|.(1)求出它的定义域和值域;(2)指出它的单调区间;(3)判断它的奇偶性;(4)求出它的周期.6.若cos 2θ+2msin θ-2m-2<0恒成立,试求实数m 的取值范围.7.求函数y=lgsin(4π-2x )的单调增区间,以下甲、乙、丙有三种解法,请给予评判. 同学甲:令t=sin(4π-2x ),则y=lgt. ∵y=lgt 是增函数,∴原函数的单调增区间就是t=sin(4π-2x)的增区间.又sin μ的增区间为[2π-+2k π,2π+2k π](k∈Z ), ∴2π-+2k π≤4π-2x ≤2π+2k π(k∈Z ),解得4k π-2π≤x≤4k π+23π(k∈Z ).∴原函数的增区间为[4k π-2π,4k π+23π](k∈Z ).同学乙:令t=sin(4π-2x),则y=lgt.∵y=lgt 是增函数,∴原函数的单调区间就是t 的增区间. ∵t=sin(4π-2x )=cos(4π+2x),∴只需求出cos(4π+2x)的增区间.由于cos μ的增区间为[2k π-π,2k π](k∈Z ).∴2k π-π≤4π+2x≤2k π⇒4k π25π-≤x≤4k π-2π(k∈Z ).∴原函数的增区间为[4k π25π-,4k π-2π](k∈Z ).同学丙:令t=sin(4π-2x),则y=lgt.∵y=lgt 是增函数,∴原函数的单调增区间是使t>0且t 为增函数的x 的范围. ∵t=sin(4π-2x )=cos(4π+2x),∴只需求出使t=cos(4π+2x)>0且t 为增函数的x 的区间.于是有2k π-2π<4π+2x ≤2k π⇒4k π-23π<x≤4k π-2π(k∈Z ),∴原函数的增区间为(4k π-23π,4k π-2π](k∈Z ).参考答案:1.D2.A3.解:(1)由题意得sinx>0,∴2k π<x<(2k+1)π,k∈Z .又∵0<sinx≤1,∴lgsinx≤0.故函数的定义域为[2k π,(2k+1)π],k∈Z ,值域为(-∞,0].(2)由题意得cos3x≥0,∴2k π-2π≤3x≤2k π+2π,k∈Z . ∴32πk -6π≤x≤32πk +6π,k∈Z . 又∵0≤cosx≤1,∴0≤2cos3x ≤2.故函数的定义域为[32πk -6π,32πk +6π],k∈Z ,值域为[0,2]. 4.解:(1)由题意得0≤cos 2x≤41,∴-21≤cosx≤21. 利用单位圆中的三角函数线或余弦函数图象,可得x∈[k π+3π,k π+32π],k∈Z . (2)由题意得0≤sin 2x-21≤41,∴23-≤sinx≤22-或22≤sinx≤23. ∴x∈[k π+4π,k π+3π]∪[k π+32π,k π+43π],k∈Z . 5.解:f(x)=21log |sinx-cosx|=21log |2sin(x-4π)|. (1)它的定义域应满足2sin(x-4π)≠0,x -4π≠k π,x≠k π+4π(k∈Z ), 故定义域为{x|x≠k π+4π,k∈Z }. ∵|sinx -cosx|=|2sin(x-4π)|, ∴0≤|sinx -cosx|≤2.根据y=21log |t,t∈(0,+∞)是减函数,可知21log ||sinx-cosx|≥21log |2=-21, 故值域为[-21,+∞). (2)函数的单调增区间是[k π-4π,k π+4π](k∈Z ),单调减区间是(k π+4π,k π+43π](k∈Z ). (3)由于其定义域关于原点不对称,所以此函数非奇非偶.(4)由于y=|sinx|的周期为π,故原函数的周期为π.6.解:令sin θ=t,则-1≤t≤1.要使cos 2+2msin θ-2m-2<0恒成立,即sin 2θ-2msin θ+2m+1>0恒成立.设f(t)=t 2-2mt+2m+1,则只要f(t)>0在[-1,1]上恒成立即可,由于f(t)=(t-m)2+2m+1-m 2(-1≤t≤1),所以只要f(t)的最小值大于零即可.若m<-1,则当t=-1时,f(t)min =2+4m,令2+4m>0,得m>-21,这与m<-1矛盾,故舍去; 若-1≤m≤1,则当t=m 时,f(t)min =-m 2+2m+1,令-m 2+2m+1>0,解得1-2<m<1+2,∴1-2<m≤1;若m>1,则当t=1时,f(t)min =2>0,∴m>1.综上所述,m>1-2.7.解:由于函数的单调区间是其定义域的子区间,该函数的定义域是使sin(4π-2x )>0的x 的取值范围,甲、乙两名同学都没有考虑到定义域,因此其解法是错误的;同时,甲同学还有一处错误,即sin μ的增区间不是t 的增区间(因为μ=4π-2x 中μ是自变量x 的减函数).丙生既考虑了函数的定义域,也考虑到将x 的系数变为正数,其解法是正确的.。
高中数学 (1.4.2 正弦函数、余弦函数的性质)教案 新人教A版必修4
1.4.2 正弦函数、余弦函数的性质整体设计教学分析对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦、余弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.单调性只要求由图象观察,不要求证明,而正弦、余弦函数的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.课时安排2课时教学过程第1课时导入新课思路 1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生建立在比较牢固的理解周期性的认知基础上,来理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究提出问题问题①正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的?问题②阅读教材并思考:怎样从代数的角度定义周期函数?活动:教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对问题①,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1问题②,从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考察结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映.讨论结果:①正弦函数、余弦函数是周期函数,每隔2π就重复一次.②略.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.提出问题①怎样正确理解三角函数是周期函数的定义?并举例说明.②通过探求思考怎样求一些简单三角函数的周期?活动:对问题①,学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c为常数,x∈R)是周期函数,所有非零实数T都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f(x+T)=f(x),那么T就不是f(x)的周期.例如,分别取x 1=2k π+4π(k∈Z ),x 2=6π,则由sin(2k π+4π+2π)≠sin(2k π+4π),sin(6π+2π)≠sin 6π,可知2π不是正弦函数的周期.又如sin(30°+120°)=sin30°,但不是对所有x 都有f(x+120°)=f(x),所以120°不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2k π(k∈Z ,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T 是函数f(x)的周期,那么对于任意的k∈Z ,k≠0,kT 也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c 为常数,x∈R),所有非零实数T 都是它的周期,由于T 可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T 是f(x)的周期,那么2T 、3T 、…呢?怎样求?实际上,由于T 是f(x)的周期,那么2T 、3T 、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.讨论结果:①略.②定义法、公式法和图象法.应用示例思路1例1 求下列函数的周期:(1)y=3cosx,x∈R ;(2)y=sin2x,x∈R ; (3)y=2sin(2x -6π),x∈R . 活动:教师引导学生紧扣定义,一切从定义出发来求.(1)因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx≠3cosx,所以π不是周期.(2)教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π). 所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π;(2)周期为π;(3)周期为4π.点评:通过本例我们看到函数周期的变化仅与自变量的系数有关,关键是让学生认识到,f(x+T)=f(x)中,T 是相对于自变量x 而言的,让学生总结归纳一下这些函数的周期与解析式中哪些量有关.一般地,函数y=Asin(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0,x∈R )的周期为T=ωπ2.可以按照如下的方法求它的周期:y=Asin(ωx+φ+2π)=Asin [ω(x+ωπ2)+φ]=Asin(ωx+φ). 于是有f(x+ωπ2)=f(x),所以其周期为ωπ2.例如,在第(3)小题,y=2sin(21x-6π),x∈R 中,ω=21,所以其周期是4π.由上述解法可以看到,思考的基本依据还是y=sinx 的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例3中的第(3)小题:T=ωπ2=4π.这是求简单三角函数周期的最基本方法,即公式法.变式训练1.已知f(x)是周期为5的周期函数,且f(1)=2 007,求f(11).解:因为5是函数f(x)在R 上的周期,所以f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2 007.2.已知奇函数f(x)是R 上的函数,且f(1)=2,f(x+3)=f(x),求f(8).解:由题意知,3是函数f(x)的周期,且f(-x)=-f(x),所以f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2.思路2例1 判断函数f(x)=2sin 2x+|cosx |,x∈R 的周期性.如果是周期函数,最小正周期是多少?活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f(x+T)=f(x)成立的T 的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决.解:因为f(x+π)=2sin 2(x+π)+|cos(x+π)|=2sin 2x+|cosx |=f(x).所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f(x)中的x 以x+π代替后看看函数值变不变.为此需将π, 2π等都代入试一试.实际上,在f(x)=2sin 2x+|cosx |,x∈R 中,学生应看到平方与绝对值的作用是一样的,与负号没有关系.因而π肯定是原函数的一个周期.变式训练1.求函数y=2sin31(π-x)的周期. 解:因为y=2sin 31(π-x)=-2sin(31x-3π), 所以周期T=6π.2.证明正弦、余弦函数的最小正周期是2π.证明:(反证法)先证正弦函数的最小正周期是2π.由于2π是它的一个周期,所以只需证明任意一个小于2π的正数都不是它的周期.假设T 是正弦函数的周期,且0<T<2π,那么根据周期函数的定义,当x 取定义域内的每一个值时,都有sin(x+T)=sinx.令x=2π, 代入上式,得sin(2π+T)=sin 2π=1, 但sin(2π+T)=cosT,于是有cosT=1. 根据余弦函数的定义,当T∈(0,2π)时,cosT<1.这说明上述cosT=1是不可能的.于是T 必须等于2π,即正弦函数的最小正周期是2π.同理可证,余弦函数的最小正周期也是2π.知能训练课本本节练习解答:1.成立.但不能说12°是正弦函数的一个周期,因为此等式不是对x 的一切值都成立. 例如sin(20°+120°)≠sin20°.点评:理解周期函数概念中“当x 取定义域内每一个值时”的“每一个值”的含义. 2.(1)38π; (2)2π; (3)2π; (4)6π. 点评:利用周期函数的图象和定义求周期,体会周期与自变量x 的系数有关.3.可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域.点评:了解如何利用函数的周期性来认识周期函数的其他性质.可让学生课堂讨论,然后归纳总结.课堂小结由学生回顾本节所学的数学知识有哪些?〔周期函数的概念,最小正周期的定义,正弦、余弦函数的周期性,y=Asin(ωx+φ)(ω>0)的周期〕.并思考总结本节都用了哪些数学方法?(观察与归纳,特殊到一般,定义法,数形结合,辩证的观点)作业1.课本习题 A 组3,B 组3.2.预习正弦函数、余弦函数的奇偶性.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么,以后有些题就会很难做.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形到数、由特殊到一般、由易到难,这符合学生的认知规律.让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.(设计者:郑吉星)第2课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sinx,y=cosx是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么;③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么;由值域又能得到什么;④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时的给予点拨、指导. 在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R 〔或(-∞,+∞)〕. 对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sinx |≤1,|cosx |≤1,即-1≤sinx≤1,-1≤cosx≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y=sinx(x∈R ),(1)当且仅当x=2π+2k π,k∈Z 时,取得最大值1. (2)当且仅当x=-2π+2k π,k∈Z 时,取得最小值-1. 对于余弦函数y=cosx(x∈R ),(1)当且仅当x=2k π,k∈Z 时,取得最大值1.(2)当且仅当x=(2k+1)π,k∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-2π,23π](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4这个变化情况也可从下表中显示出来: x-2π … 0 … 2π … π … 23π sinx -1↗ 0 ↗ 1 ↘ 0 ↘ -1 就是说,函数y=sin x,x∈[-2π,23π].当x∈[-2π,2π]时,曲线逐渐上升,是增函数,sinx 的值由-1增大到1; 当x∈[2π,23π]时,曲线逐渐下降,是减函数,sinx 的值由1减小到-1. 类似地,同样可得y=cosx,x∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5引导学生列出下表: x-π … -2π … 0 … 2π … π cosx -1 ↗ 0 ↗ 1 ↘ 0 ↘ -1 结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k-1)π,2k π](k∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k+1)π](k∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y=sinx 为奇函数,y=cosx 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x)=-sinx,cos(-x)=cosx,∴y=sinx 为奇函数,y=cosx 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x=2π对称,余弦曲线还关于点(2π,0)对称,等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习打下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1 数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y=cosx+1,x∈R ;(2)y=-3sin2x,x∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y=cosx+1,x∈R 取得最大值的x 的集合,就是使函数y=cosx,x∈R 取得最大值的x 的集合{x|x=2k π,k∈Z };使函数y=cosx+1,x∈R 取得最小值的x 的集合,就是使函数y=cosx,x∈R 取得最小值的x 的集合{x|x=(2k+1)π,k∈Z }.函数y=cosx+1,x∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令Z =2x,使函数y=-3sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =-2π+2k π,k∈Z }, 由2x=Z =-2π+2k π,得x=-4π+k π. 因此使函数y=-3sin2x,x∈R 取得最大值的x 的集合是{x|x=-4π+k π,k∈Z }. 同理,使函数y=-3sin2x,x∈R 取得最小值的x 的集合是{x|x=4π+k π,k∈Z }. 函数y=-3sin2x,x∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y=Asin(ωx+φ)+B 的函数,一般通过变量代换(如设Z =ωx+φ化归为y=Asin Z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2 函数的单调性,比较下列各组数的大小: (1)sin(-18π)与sin(-10π);(2)cos(523π-)与cos(417π-). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为2π-<10π-<18π-<0,正弦函数y=sinx 在区间[2π-,0]上是增函数,所以sin(18π-)>sin(10π-). (2)cos(523π-)=cos 523π=cos 53π,cos(417π-)=cos 417π=cos 4π. 因为0<4π<53π<π,且函数y=cosx,x∈[0,π]是减函数,所以cos 4π>cos 53π,即cos(523π-)<cos(417π-). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题,如本例中,cos4π>0,cos 53π<0,显然大小立判. 例3 函数y=sin(21x+3π),x∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向: 把21x+3π看成Z ,这样问题就转化为求y=sin Z 的单调区间问题,而这就简单多了. 解:令Z =21x+3π.函数y=sin Z 的单调递增区间是 [2π-+2k π,2π+2k π]. 由-2π+2k π≤21x+3π≤2π+2k π,得35π-+4k π≤x≤3π+4k π,k∈Z . 由x∈[-2π,2π]可知,-2π≤35π-+4k π且3π+4k π≤2π,于是121-≤k≤125,由于k∈Z ,所以k=0,即35π-≤x≤3π,而[35π-,3π][-2π,2π], 因此,函数y=sin(2x +3π),x∈[-2π,2π]的单调递增区间是[35π-, 3π]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1 求下列函数的定义域: (1)y=xsin 11+;(2)y=cosx . 活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sinx≠0,得sinx≠-1,即x≠23π+2k π(k∈Z ). ∴原函数的定义域为{x |x≠23π+2k π,k∈Z }. (2)由cosx≥0,得2π-+2k π≤x≤2π+2k π(k∈Z ). ∴原函数的定义域为[2π-+2k π,2π+2k π](k∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2 在下列区间中,函数y=sin(x+4π4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 活动:函数y=sin(x+4π)是一个复合函数,即y=sin[φ(x)],φ(x)=x+4π,欲求y=sin(x+4π)的单调增区间,因φ(x)=x+4π在实数集上恒递增,故应求使y 随φ(x)递增而递增的区间.也可从转化与化归思想的角度考虑,即把x+4π看成一个整体,其道理是一样的. 解:∵φ(x)=x+4π在实数集上恒递增,又y=sinx 在[2k π-2π,2k π+2π](k∈Z )上是递增的,故令2k π-2π≤x+4π≤2k π+2π. ∴2k π-43π≤x≤2k π+4π. ∴y=sin(x+4π)的递增区间是[2k π-43π,2k π+4π]. 取k=-1、0、1分别得[411π-,47π]、[43π-,4π]、[45π,49π], 对照选择肢,可知应选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y=Asin(ωx+φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y=f(t),t=φ(x);(3)根据函数f(t)的单调性确定φ(x)的单调性;(4)写出满足φ(x)的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.结论:对于复合函数的单调性,可以直接根据构成函数的单调性来判断.变式训练1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=2π B.T=1,θ=π C.T=2,θ=π D.T=1,θ=2π 解:T=ππ2=2,又当x=2时,sin(π·2+θ)=sin(2π+θ)=sin θ,要使上式取得最大值,可取θ=2π. 答案:A。
高中数学 1.4.2 正弦、余弦函数的性质(一)教案 新人教A版必修4
1.4.2正弦、余弦函数的性质教学目标:1、知识与技能掌握正弦函数和余弦函数的性质. 2、过程与能力目标通过引导学生观察正、余弦函数的图像,从而发现正、余弦函数的性质,加深对性质的理解.并会求简单函数的定义域、值域、最小正周期和单调区间.3、情感与态度目标渗透数形结合思想,培养学生辩证唯物主义观点.教学重点:正、余弦函数的周期性;正、余弦函数的奇、偶性和单调性。
教学难点:正、余弦函数周期性的理解与应用;正、余弦函数奇、偶性和单调性的理解与应用。
正弦、余弦函数的性质(一)教学过程:一、复习引入: 1.问题:(1)今天是星期一,则过了七天是星期几?过了十四天呢?……(2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?2自变量x 2π-32π-π- 2π- 0 2ππ 32π2π 函数值sin x0 1- 01- 0正弦函数()sin f x x =性质如下:(观察图象) 1︒ 正弦函数的图象是有规律不断重复出现的;2︒ 规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒ 这个规律由诱导公式sin(2k π+x)=sinx 可以说明 结论:象这样一种函数叫做周期函数。
文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。
–– π2π2π-2π5ππ-2π-5π- Ox y1 1-余弦函数也具有同样的性质,这种性质我们就称之为周期性。
二、讲解新课:1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。
1.4.2正弦函数余弦函数的性质 课件(人教A版必修4)
1.4.2正弦函数余弦函数的性质
知识回顾:
y
1-
正、余弦函数图像特征:
y sin x x[0,2]
-
-1
o
6
3
2
2 3
5
7
4
6
6
3
3 2
5 3
11 6
2
x
-1 -
注意:函数图
像的凹凸性!
在函数 y sin x, x [0, 2 ] 的图象上,起关键作用的点有:
最高点: ( ,1)
2
最低点:
2
-1
x
-
…
2
…
cosx -1
0
x
3
2
2
5 2
3
7 2
4
0… 2 …
1
0
-1
y=cosx (xR)
增区间为 [ +2k , 2 +2k],kZ 其值从-1增至1
减区间为 [2k, 2k, + ], kZ 其值从 1减至-1
四.最值
探究:正弦函数的最大值和最小值 y
1
3 5
2
2 3
2
O
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
余弦函数 y cos x 定义域:R 值域:[-1,1] | sin x |≤1 | cos x |≤1
练习
▪ 下列等式能否成立?
(1)2cos x 3 (2)sin2 x 0.5
× cos x 3 1 2
√ sin x 0.5 [1,1]
o
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.2 正弦函数、余弦函数的性质(一)[学习目标] 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.思考1 满足条件:f (x +a )=-f (x )(a 为常数且a ≠0)的函数y =f (x )是周期函数吗?如果是,给出一个周期,如果不是,说明理由.答案 ∵f (x +a )=-f (x ),∴f (x +2a )=f [(x +a )+a ]=-f (x +a )=-[-f (x )]=f (x ).∴f (x +2a )=f (x ).∴函数y =f (x )是周期函数,且2a 就是它的一个周期.思考2 满足条件:f (x +a )=-1f (x )(a 为常数且a ≠0)的函数y =f (x )是周期函数吗?如果是,给出一个周期,如果不是,说明理由.答案 ∵f (x +a )=-1f (x ), ∴f (x +2a )=f [(x +a )+a ]=-1f (x +a )=-1[-1f (x )]=f (x ). ∴f (x +2a )=f (x ),∴函数y =f (x )是周期函数,且2a 就是它的一个周期.知识点二 正弦函数、余弦函数的周期性由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π.思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知:对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝⎛⎭⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝⎛⎭⎫x +2πω=f (x ), 所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.知识点三 正弦、余弦函数的奇偶性正弦曲线余弦曲线从函数图象看,正弦函数y =sin x 的图象关于原点对称,余弦函数y =cos x 的图象关于y 轴对称;从诱导公式看,sin(-x )=-sin x ,cos(-x )=cos x 均对一切x ∈R 恒成立,所以说,正弦函数是R 上的奇函数,余弦函数是R 上的偶函数.题型一 三角函数的周期例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,∵x ∈R ,∴z ∈R . 函数f (x )=sin z 的最小正周期是2π,就是说变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得,而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,从而函数f (x )=sin ⎝⎛⎭⎫2x +π3(x ∈R )的最小正周期是π.方法二 f (x )=sin ⎝⎛⎭⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧sin x ,(2k π≤x ≤2k π+π),-sin x ,(2k π+π<x ≤2k π+2π)(k ∈Z ). 其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),ω≠0时的最小正周期求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解.跟踪训练1 求下列函数的最小正周期.(1)y =13cos(2x -π3); (2)y =cos|x |.解 (1)∵y =13cos(2x -π3)中,ω=2, ∴函数的最小正周期为T =2π2=π. (2)∵y =cos|x |=cos x ,∴y =cos|x |的最小正周期T =2π.题型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝⎛⎭⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , f (-x )=cos ⎝⎛⎭⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z . ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x )∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性,要先判断函数的定义域是否关于原点对称,定义域关于原点对称是函数为奇函数或偶函数的前提条件,然后再判断f (-x )与f (x )之间的关系. 跟踪训练2 判断下列函数的奇偶性.(1)f (x )=2sin ⎝⎛⎭⎫2x +52π; (2)f (x )=lg(sin x +1+sin 2x ).解 (1)函数的定义域为R ,且f (x )=2sin ⎝⎛⎭⎫2x +52π=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,显然有f (-x )=f (x )恒成立.∴函数f (x )=2sin ⎝⎛⎭⎫2x +52π为偶函数. (2)函数的定义域为R .f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg(sin x +1+sin 2x )=-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数.题型三 三角函数周期性和奇偶性的综合运用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,求f ⎝⎛⎭⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-2π=f ⎝⎛⎭⎫-π3, ∵f (x )是R 上的偶函数,∴f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. ∴f ⎝⎛⎭⎫5π3=32.反思与感悟 解决此类问题关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝⎛⎭⎫π3=1,求f ⎝⎛⎭⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝⎛⎭⎫-5π6=f ⎝⎛⎭⎫-5π6+π2=f ⎝⎛⎭⎫-π3=-f ⎝⎛⎭⎫π3=-1.三角函数周期性的应用例4 欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎨⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2. 点评 由正弦、余弦函数的图象可知,正弦、余弦函数在每一个周期区间上有且只有一个最小值,因此,可以根据周期的个数和区间关系建立关于参数ω的不等式来求解.1.函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π 答案 D2.下列函数中,周期为π2的是( ) A .y =sin x 2 B .y =sin 2xC .y =cos x 4D .y =cos(-4x )答案 D解析 T =2π|-4|=π2. 3.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 答案 B解析 ∵sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为. 答案 ±π解析 T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若f (x )是奇函数,当x >0时,f (x )=x 2-sin x ,求当x <0时,f (x )的解析式. 解 设x <0,则-x >0,∴f (-x )=(-x )2-sin(-x )=x 2+sin x .又∵f (x )是奇函数,f (-x )=-f (x ),∴-f (x )=x 2+sin x ,∴f (x )=-x 2-sin x ,x <0.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2π.2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.一、选择题1.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A .0B .1C .-1D .±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.2.下列函数中,周期为2π的是( )A .y =sin x 2B .y =sin 2xC .y =|sin x 2|D .y =|sin 2x |答案 C解析 y =sin x 2的周期为T =2π12=4π;y =sin 2x 的周期为T =2π2=π;y =|sin x 2|的周期为T =2π;y =|sin 2x |的周期为T =π2.故选C.3.函数y =sin(2 0132π-2 014x )是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数答案 B解析 因为y =sin(2 0132π-2 014x )=sin[(π2-2 014x )+1 006π] =sin(π2-2 014x )=cos 2 014x , 所以为偶函数.4.下列函数中,不是周期函数的是( )A .y =|cos x |B .y =cos|x |C .y =|sin x |D .y =sin|x |答案 D解析 画出y =sin|x |的图象,易知D 选项不是周期函数.5.函数y =cos(sin x )的最小正周期是( )A.π2B .πC .2πD .4π 答案 B解析 ∵cos [sin(x +π)]=cos(-sin x )=cos(sin x ).∴T =π.6.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( ) A .-12B.12C .-32D.32答案 D解析 f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3 =-sin ⎝⎛⎭⎫-π3=sin π3=32. 二、填空题7.函数y =sin ⎝⎛⎭⎫ωx +π4的最小正周期是2π3,则ω=. 答案 ±3解析 2π|ω|=2π3,∴|ω|=3,∴ω=±3. 8.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式为.答案 f (x )=sin |x |,x ∈R解析 当x <0时,-x >0,f (-x )=sin(-x )=-sin x ,∵f (-x )=f (x ),∴x <0时,f (x )=-sin x .∴f (x )=sin |x |,x ∈R .9.关于x 的函数f (x )=sin(x +φ)有以下命题:①对任意的φ,f (x )都是非奇非偶函数;②不存在φ,使f (x )既是奇函数,又是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中的假命题的序号是.答案 ①④解析 易知②③成立,令φ=π2,f (x )=cos x 是偶函数,①④都不成立. 10.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)=. 答案 0解析 ∵f (x )=sin π3x 的周期T =2ππ3=6. ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2014)+f (2015)=335⎝⎛⎭⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin xe sin x -e sin x . 解 (1)x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ).∴y =f (x )是奇函数.(2)对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0.∴f (x )=1+sin x +1-sin x 的定义域是R . ∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x )e sin (-x )-e -sin (-x ) =e -sin x +e sin xe -sin x -e sin x =-f (x ),∴该函数是奇函数.12.已知f (x )是以π为周期的偶函数,且x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎡⎦⎤52π,3π时,f (x )的解析式.解 x ∈⎣⎡⎦⎤52π,3π时,3π-x ∈⎣⎡⎦⎤0,π2, ∵x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤52π,3π. 13.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性. 解 ∵sin x +1+sin 2x ≥sin x +1≥0,若两处等号同时取到,则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0.∵f (-x )=ln(-sin x +1+sin 2x )=ln(1+sin 2x -sin x )=ln(1+sin 2x +sin x )-1 =-ln(sin x +1+sin 2x )=-f (x ),∴f (x )为奇函数.。