六年级下册数学专题练习:数论(五) 余数问题-全国通用 无答案
数论问题之余数问题-余数问题练习题含答案
数论问题之余数问题:余数问题练习题含答案1.数11 1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007 6后余3,所以答案为7.2.求下列各式的余数:(1)2461 135 6047 11 (2)2123 6分析:(1)5;(2)6443 19=339 2,212=4096 ,4096 19余11 ,所以余数是11 .3.1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7 11 13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.4.学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.5.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.6.求下列各式的余数:(1)2461 135 6047 11(2)2123 6分析:(1)5;(2)找规律,2的n次方被6除的余数依次是(n=1,2,3,4 ):2 ,4 ,2 ,4 ,2 ,4因为要求的是2的123次方是奇数,所以被6除的余数是2.7.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .8.(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2 2 3 717=51 28=68 21=84 17,因此所求的两位数51或68或84.9.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.10.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.第二页:练习题含答案11 20题第三页:练习题含答案21 28题11.除以99,余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.12.求下列各式的余数:(1)2461 135 6047 11(2)19992000 7分析:(1)5;(2)1999 7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000 3 余2 可以得到42000除以7 的余数是2,故19992000 7的余数是2 .13.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .14.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.15.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.16.除以99的余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.17.19941994 1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994 15余14,19941994 15余4,199419941994 15余9,1994199419941994 15余14,......,发现余数3个一循环,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400 0能被15整除,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4.18.a b c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c) (a-b) (b-c)除以11的余数是多少分析:(a+b+c) 11的余数是7;(a b) 11的余数是1l+2 7=6;(b c) 11的余数是11+7 9=9.所求余数与7 6 9 11的余数相同,是4.19.盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.20.自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+(90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c 不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.21.求123456789101112 199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+ ..9=45二位数数字之和是1 10+1+2+3+ .9 (10-19)2 10+1+2+3+ .9 (20-29)9 10+1+2+3+ .9 (90-99) 余90,9余0,11余2故二位数总和为(1+2 ..+9) 10+1+2 ..+9=495100 199与1 99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3. 22: 222 22除以13所得的余数是_____.2000个分析与解答:因为222222=2111111 =21111001=211171113所以222222能被13整除. 又因为2000=6333+2 222 2=222 200+22 2000个19982213=1 9所以要求的余数是9.求除以9,11,99,101,999,1001,13和91的余数分别是多少;解答:23: 除以9的余数是0,11: 一个2007奇数位上数字和与偶数位上数字的和的差为5. 2007个2007奇数位上数字和与偶数位上数字的和的差为5 2007.5 2007 3(mod11),所以除以11的余数是399: 能被9整除,被11除余3的数最小是36,所以除以99余36200720072007能被7,13,37整除.999=27 37 1001=7 11 13 91=7 1313: 0(mod13) 除以13余091: 0(mod91) 除以91余0所以除以13,91,999的余数都是0.1001: 除以11余3,除以7,13余0,满足次条件的最小数是1092,1092除以1001余91.所以除以1001的余数是91.101: 我们发现9999=101 99,所以=0000+2007= 10000+2007= 9999++2007 +2007(mod101)同样道理+2007 +2007 2(mod101)以此类推2007 2007(mod101)=6824、今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何解答:此数除以3余2,除以5余3,除以7余2,满足条件最小数是2325、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;解答:满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)26、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出7的余数就可以知道天后是星期几. 52007(mod7),56 1(mod7)2007 3(mod6), 52007 53 6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是127、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194628、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A的倍数;同理乙-2丙也同样没有余数,是A的倍数.939 2-603=1275,939-393 2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51再实验得到A为17,余数分别为8,4,2.。
小学奥数王峰数论(5)余数问题
教案教师:__ 王鑫___ 学生:_ 王峰上课时间:学生签字:____________【知识点概述】一、带余除法的定义及性质:1.带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商2.和余数相关的一些重要性质:(以下a,b,c均为自然数)性质1:余数小于除数被除数除数商余数性质2:=⨯+除数(被除数-余数)商=÷商(被除数-余数)除数=÷性质3:a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即前两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.性质4:a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以(2316)⨯除以5的余数等于⨯=。
313当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以(2319)⨯除以5的余数等于3412⨯=除以5的余数,即2.【注】对于上述性质3,4,我们都可以推广到多个自然数的情形,尤其是性质4,对于我们求一个数的n次方除以一个数的余数时非常的有用。
二、数的同余1.同余定义若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m )同余式读作:a同余于b,模m由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)这个性质非常重要,是将同余问题与前面学过的整除问题相联系的纽带,一定要熟练掌握。
5余数问题
第五讲余数问题内容概述从此讲开始,我们来进一步研究数论的有关知识。
小学奥数中的数论问题,涉及到整数的整除性、余数问题、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
在整数的除法中,只有能整除和不能整除两种情况。
当不能整除时,就产生余数,余数问题在小学数学中非常重要。
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a=b×q+r), 0≤r<b;当r=0时,我们称a能被b整除;当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商余数问题和整除性问题是有密切关系的,因为只要我们去掉余数那么就能和整除性问题联系在一起了。
余数有如下一些重要性质,我们将通过例题给大家讲解。
例题讲析【例1】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。
分析:法1:因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088;则乙=(1088-32)÷12=88,甲=1088-乙=1000。
法2:将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(11+1)倍,所以得到:乙数=1056÷12=88 ,甲数=1088-88=1000 。
【例2】 1013除以一个两位数,余数是12。
求出符合条件的所有的两位数。
分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13、77、91 有的同学可能会粗心的认为11也是。
11小于12,所以不行。
大家做题时要仔细认真。
【例3】(小学数学奥林匹克初赛)有苹果、桔子各一筐,苹果有240个、桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分封最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?分析:此题是一道求除数的问题。
六年级下册奥数专题练习-余数问题-全国通用
余数问题【求余数】(1990年江苏宜兴市第五届小学生数学竞赛试题)一组,就可得到331组,尚余4个6。
而6666÷7=952……2。
所以,原式的余数是2。
例2 9437569与8057127的乘积被9除,余数是__。
(《现代小学数学》邀请赛试题)讲析:一个数被9除的余数与这个数各位数字之和被9除的余数是一样的。
9437569各位数字之和除以9余7;8057127各位数字之和除以9余3。
7×3=21,21÷9=2……3。
所以,9437569与8057127的乘积被9除,余数是3。
例3 在1、2、3、4、……、1993、1994这1994个数中,选出一些数,使得这些数中的每两个数的和都能被26整除,那么这样的数最多能选出_______个。
(1994年全国小学数学奥林匹克初赛试题)讲析:可将1、2、3、……、1994这1994个数,分别除以26。
然后,按所得的余数分类。
要使两个数的和是26的倍数,则必须使这两个数分别除以26以后,所得的余数之和等于26。
但本题要求的是任意两个数的和都是26的倍数,故26的倍数符合要求。
这样的数有1994÷26=76(个)……余18(个)。
但被26除余13的数,每两个数的和也能被26整除,而余数为13的数共有77个。
所以,最多能选出77个。
【同余问题】例1 一个整数,除300、262、205,得到相同的余数(余数不为0)。
这个整数是_____。
(全国第一届“华杯赛”初赛试题)讲析:如果一个整数分别除以另两个整数之后,余数相同,那么这个整数一定能整除这两个数的差。
因此,问题可转化为求(300—262)和(262—205)的最大公约数。
不难求出它们的最大公约数为19,即这个整数是19。
例2 小张在计算有余数的除法时,把被除数113错写成131,结果商比原来多3,但余数恰巧相同。
那么该题的余数是多少?(1989年上海市小学数学竞赛试题)讲析:被除数增加了131-113=18,余数相同,但结果的商是3,所以,除数应该是18÷3=6。
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
数论——因倍质合
【例9】能被210整除且恰有210个因数的数有多少个?
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
数论——因倍质合
【例10】两个自然数的最大公因数是7,最小公倍数是210,这两个自然数的 和是77,问这两个自然数分别是多少?
数论综合
目录
整除 位值原理;整除特征 因倍质合 因数与倍数;质数与合数;分解质因数;完全平方数 带余除法 余数性质;带余除法;韩信点兵
数论——位值原理
【例1】有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所 有这样的6个三位数中最小的三位数的最小值.
数论——位值原理
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
数论——因倍质合
【练一练】已知正整数a、b之差为120,它们的最小公倍数是其最大公因数的 105倍,问a、b中较大的数是多少?
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
六年级下册数学练习 小学奥数数论模块综合练习 全国通用 张
数论——带余除法
【练一练】六名小学生分别带着14元、17元、18元、21元、26元、37元钱, 一起到新华书店购买《新思维数学》,一看定价才发现有5个人带的钱不够, 但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起 恰好可买1本,问这种《成语大词典》的定价是多少元?
数论——整除特征
【例3】 (1)如果六位数1992□□能被105整除,问它的最后两位数是多少? (2)如果六位数1082□□能被23整除,问它的最后两位数有多少种情况?
六年级下册数学试题-小升初能力训练:数论综合——余数问题(解析版)全国通用
第05讲 数论综合——余数问题【一】了解“除法算式——a b qr b r ÷=> ()” 及应用1:一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是 .1010989108=910898÷=⇒∴÷=∴⨯+=最小的两位数是两位数一位数余数 求最大值一位数最大是,余数最大是 两位数 两位数2:用某自然数a 去除1707,得到商是37,余数是r ,求a 和r.17073717073717073746546461707463755375424545451707453742424645542a r a r a ra a r a a r a a r r =+⎧÷=⇒⎨>⎩÷==⎧∴=⇒÷=⇒⎨=⎩+=<=⎧∴=⇒÷=⇒⎨=⎩==⎧⎧⎨⎨==⎩⎩综上:或3:523除以一个数得到的商是10,并且除数与余数的差是5,求除数与余数.带 余 除 法52310523105555523(5)105231152310(5)x x x x x x ÷=÷=+∴÷+=∴÷=∴=++法一: 法二:除数余数 除数余数余数与除数的差是 余数与除数的差是 若设余数为,则除数为 若给余数加上 除数 =52311=48=43434348x ∴÷=∴ 除数,余数 余数是,除数是4:两数相除,商4余8,被除数、除数、商、余数四数之和等于415,则被除数是 .484848484841532448794848415794798324A B A B A B A B A B A B x A x B x x x A =+⎧÷=⇒=+÷=⇒⎨+++=⎩=⎧+∴⎨=⎩++++===⨯+=法一: 法二: 若设为,则为 则5:某个除法算式的被除数、除数、商与余数之和为115,如果被除数和除数都扩大为原来的2倍,得到的除法算式中被除数、除数、商与余数之和为223,那么原来的算式中商是 .11522222222311522237A B CD A B C D A B C D A B C D C ÷=⇒+++=÷=⇒+++=∴=⨯-=22222(22)22222a b q r a bq r a bq ra b bq r b q r a b q r a b q r÷=⇒=+⇒=+÷=+÷=∴÷=⇒÷=证明:6:某个整数除36,商和余数相等,那么这个整数可能是 .3636(1)136=8111735b c c bc c c b b b cb ÷=⇒=+=++>是的因数,但是枚举:、、、7:在大于2015的自然数中,被57除后,商与余数相等的数共有多少个?5758575756201558=3443355635122a c c c a c c c c c =+=⎧÷=⇒⎨<⎩÷⇒∴=-+= 的最大值是 的最小值是 个数(个)【二】余数性质(余数特征+余数可加可减可乘性+余数周期性)251425281253393999100001000100109999(91)99999a b c d e abcde a b c d ea b c d abcde a ⎧⎪⎨⎪⎩⎧⎨⎩=⨯+⨯+⨯+⨯+++++=⨯+⨯+⨯+⨯+=⨯被和整除:末位尾系被和整除:末位被和整除:末位被、整除:各位数字和是、的倍数和系被整除:两位一段,求和 证明: [弃9法 整特征]除0000100999999711131110001001()10000100010010()bc dea bc abcde ab cde ab cde ab abc a bc de a bd c de e +⨯+=⨯+⨯+⎧⎨⎩=⨯+=⨯+-=⨯+⨯+++⨯+⨯+ 被、和整除:三位一段,奇数段偶段和差系被整除:奇位和偶位和 证明: [()(999)910019911999910019911(]a a b b c c d e c a d e a b c d a c m e a mc e b c nf b nc f a b mc e nc f m n d b ++-+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪=⨯++⨯-+⨯++⨯-+⎪=⨯+⨯+⨯+⨯+⎩÷==+⎧⎧⇒⎨⎨÷==+⎩⎩+=+++=+ 对于(1) 余数可加可减可乘2)()()()()()()()()()()()1192329c e f a b ce f a b mc e nc f m n c e f a b ce f a b mc e nc f mnc mcf nec ef a b ce f ++⇒+÷+⇒-=+-+=-+-⇒-÷-⇒⨯=+⨯+=+++⇒⨯÷⨯⇒÷÷ (2) (3) 余数可加 举性余数可减性余数可乘性例259753295⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪÷⎧⎧⎪⎨⎨⎪÷⎩⎩⎩或者(一)余数特征+余数可加可减可乘性的“基础练习”1:将假分数5051525354557⨯⨯⨯⨯⨯化成带分数后,真分数部分是多少?5051525354557505152535455123456(24)(35)681561166(mod 7)⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯≡⨯⨯⨯⨯⨯≡⨯⨯⨯⨯=⨯⨯≡⨯⨯≡只要计算除以的余数即可(二)余数特征+余数可加可减可乘性的“拓展练习”71310010100101010110101100101001010110101101010110ABCDABCDABCD BCD DAB B C D D A B A B C D ABC DAB CDA BCD CDA ABC C D A A B C A B C D A B ⎧=+=+++++⎪=+++⎪⎨=+=+++++⎪⎪=+++⎩-=++证明:判断能被和整除奇段和 偶段和 奇偶10110110101109191919191()91713713C D A B C D B A D C B A D C ABCDABCDABCD +----=-+-=-+-=⨯∴ 能被和整除1:(1)求20172017201720172017个除以9的余数. (2)求20146666个除以7的余数.201712017201720172017201711120171(mod 9)≡≡≡个个 20146666666666100120146335466666666666660302(mod 7)=⨯÷=∴≡≡-≡≡≡个2:求1020162017201620162016个除以7的余数.9201620163603603602016201620167020162016201670201720162016201620172016000(mod 7)1428577110000001000000711000712017201600020172016(mod 7)20÷∴÷⇒≡⨯+=∴÷∴÷⇒≡个10个个个个172016201710000201620177110000742016701404=⨯+÷÷÷∴=⨯+=余数可乘,余数3:求15!除以17的余数.15!4!(56)(71113)(89)(10121415)243010017225210015!7131541415916021069654636181(mod 7)15!(29)(36)(413)(57)(815)(1012)(1114)171=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⇒≡⨯⨯⨯⨯⨯≡⨯⨯≡⨯⨯≡⨯≡⨯≡≡=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯法一:法二:每个括号内两数之积都是除以 余 15!171∴÷ 的(2)!1(mod )p p p ⇔-≡延伸说明:上一题的(2)是威尔逊原理内容: 是质数(三)余数周期性的“基础练习”1:兔子数列:1、1、2、3、5、8、13、……,第2017项除以5的余数.5112303314044320224101123033020201720100172÷=兔子数列每一项除以的余数如下:周期是, ,即余2:分别求出23456789103333333333、 、 、 、 、 、 、 、 、 除以7的余数.发现规律,并求出1003除以7的余数. 并试求231001+3+3+3++3除以7的余数.234567891010043333333333326451326461006164334(mod 7)⇒÷=⇒≡≡、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是若为01231002+2+2+2++2除以7呢?61016165(132645)1613262116162(mod 7)⇒÷=⇒≡+++++⨯++++≡⨯+≡周期是 原式3:今天是周四,100010天之后将是周几?234567891010004101010101010101010103264513264610006166410104(mod 7)⇒÷=⇒≡≡⇒、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是周一(四)余数周期性的“拓展练习” 1:求3332除以31的余数.33133333231535334812228(mod 31)n ∴÷=⇒≡≡≡研究除以的余数容易发现周期是只要考虑除以的余数,容易发现周期是42:求332的末位数字.33133481333(mod10)÷=⇒≡≡寻找末位就是相当于除以10的余数周期现象:1、3、9、7、1、3、9、7、……,周期是4(1)(2)(3)x Nx N x N x x 以下是固定值,是变量对于,其个位数字是4个一循环 对于,其个位数字是10个一循环 对于,其个位数字是20个一循环3:求123420132014123420132014+++++除以10所得的余数是多少?12341920201234192014765636901636567490944,201420100141001004(14765636901636)=463463++++++++++++++++++++++++=÷=⨯++++++++++++++除以10的余数就是相当于寻找其个位数字,底数指数都是变化的,即周期为先计算的个位数字:为“”其个位数字是即个整周期还多出14个个位数字即为“”的个3位数字是 ,即答案就是34:求2007200720072007200712342006++++计算结果的个位数字是多少?200732007320073200720072007200720073333311(mod10)22(mod10)20072007(mod10)1234200612342006(mod10)≡≡≡+++++≡+++++首先,按规律,底数不变指数变化,其个位数字的周期是每4个一循环 即 、 、 得到: 然后,按规律,底数变化指数不变,其个位数字的周期是每10个一循环 33333333333333331234105(mod10)1234200652001234561(mod10)+++++≡+++++≡⨯++++++≡ 又因为, 所以,【一】化余数为整除(余数相同) (一)余数已知1:某个整数除41,余数是5,那么这个整数可能是几? 415(415)03603636181296b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、、、2:某个整数除31,余数是7,那么这个整数可能是几? 317(317)024********b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、同 余 问 题3:某个整数除67、151得到的余数都是11,那么这个整数可能是几?(6711)05606711(15111)01400561408415111(15167)0840(56,140,84)28112814b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⇒⇒⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩=>∴=是、、的公因数是最大公因数的因数,且、4:某个额整数除229、337得到的余数都是13,这个整数最大是几?最小是几? (22913)021*******(33713)0324033713(337229)01080216324108(216,324,108)1081310818b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩⇒⇒=>∴是、、的公因数是最大公因数的因数,且最大为,最小为(二)余数未知1:某个大于1的整数除41、11得到的余数相等,那么这个整数可能是几? 41(4111)030030302153105611b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、、2:某个大于1的整数除89、71得到的余数相同,那么这个整数可能是几?89(8971)01801818293671b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、3:某个大于1的整数除17、53、113得到的余数相同,那么这个整数可能是几? 17(5317)036053(11317)0960369660113(11353)0600(36,96,60)12122634b r b bb r b b b b b r b b b ÷-÷÷⎧⎧⎧⎪⎪⎪÷⇒-÷⇒÷⇒⇒⎨⎨⎨⎪⎪⎪÷-÷÷⎩⎩⎩=∴=是、、的公因数是最大公因数的因数、、、、【二】化余数为整除(余数不同) (一)余数已知1:某个整数除47余5,除65余2,那么这个整数可能是几? 475(475)04204263652(652)0630(42,63)215217b bbb b b bbb b ÷-÷÷⎧⎧⎧⇒⇒⇒⇒⎨⎨⎨÷-÷÷⎩⎩⎩=>∴=是、的公因数是最大公因数的因数,且、2:(拓展)用一个数除200余5,除300余1,除400余10,这个数是多少? 13(二)余数未知1:某个整数除29、56的余数分别是a 、3a +,这个数可能是几? 2929(5329)0240245635333324128462924529125298524,12,8()56248561285680294129654(),6()56405662b aba bbb ba baa b b b b b b b ÷÷⎧⎧⇒⇒-÷⇒÷⇒⎨⎨÷+÷⎩⎩+≥⇒>∴=÷÷÷⎧⎧⎧===⎨⎨⎨÷÷÷⎩⎩⎩÷÷⎧⎧==⎨⎨÷÷⎩⎩是的因数、、、、验证:舍去舍去舍去综上2412b =,、2:某个整数除47、121、232的余数分别是a 、2a +、5a +,这个数可能是几?4747(11947)07201212119(22747)018002325227(227119)0108072180108(72,180,108)36536181296473636b a b a b b b a b a b b b a b a b b b b b b b ÷÷-÷÷⎧⎧⎧⎧⎪⎪⎪⎪÷+⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎪⎪⎪⎪÷+÷-÷÷⎩⎩⎩⎩⇒⇒=>∴=÷=是、、的公因数是最大公因数的因数,且、、、、验证:114718114712111213613,181211813,12121121(),2323616232181623212447924765912194(),612161()23297232643618b b b b b ÷÷⎧⎧⎧⎪⎪⎪÷=÷=÷⎨⎨⎨⎪⎪⎪÷÷÷⎩⎩⎩÷÷⎧⎧⎪⎪=÷=÷⎨⎨⎪⎪÷÷⎩⎩=舍去舍去舍去综上,、3:一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数的和a 的值.429+54248482(848791)0570791279127912(1000791)0209050050010002(1000848)0152057209152(57,209,15b a ba b a b b b a ba b a b b b a b a b a b b b b ÷÷÷-÷÷⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪÷⇒÷⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪÷÷÷-÷÷⎩⎩⎩⎩⎩⇒⇒是、、的公因数是最大公因数的因数2)19519571911192091912152196196b b b b a =>∴=÷⎧⎪=÷⎨⎪÷⎩==,且验证:综上,,4:已知60、154、200被某数除所得的余数分别是1a -、2a 、31a -,求这个自然数的值. 22222333361(3721154)03567060161154154154(61154)2001201(9394201)09193020135679193(3567,9193)b a b b b a b a b a b a b a b ab a b a b b b a b b ⎧⎛÷⇒-÷⇒÷÷-÷⎪ ⎧⎧ ÷⎪⎪⎪⎝÷⇒÷⇒⎨⎨⎨⎛⨯÷⎪⎪⎪÷-÷⇒-÷⇒÷ ⎩⎩⎪ ÷⎝⎩⇒⇒=是、的公因数是最大公因数的因数29296029229154299200292629b b b ∴=÷⎧⎪=÷⎨⎪÷⎩=验证:综上,5:(拓展)糖果254粒,饼干210块,水果186个. 某幼儿园人数超过40人,平均分给学生,余下糖果、饼干、水果比是1:3:2,求共有多少人?没人每种各分多少个?5082(508186)032202541862210321031862(440210)02300(254186)3322230(322,230)4640223254202210201862b ab b b a b a b a b a b a b b b a b b b b b ⎧÷⎧⇒-÷⇒÷÷⎧⎨⎪÷⎪⎪⎩÷⇒⎨⎨÷⎧⎪⎪÷⇒-÷⇒÷⎨⎩⎪+÷⎩⎩⇒⇒=<∴=÷=÷÷是、的公因数是最大公因数的因数,且、验证:254231()23210233018623223b b ÷⎧⎧⎪⎪=÷⎨⎨⎪⎪÷⎩⎩=舍去,综上,6:有一个整数,用它除70、110、160所得到的3个余数之和是50,那么这个整数是多少?121233111221233370110(70110160)()340502900290160707070121101333531718316011b r b r b r r r bb b b rbr b b r b r b r b r b r r r b b b b r b r b ÷⎧⎪÷⇒++÷++⇒÷⇒÷⇒⎨⎪÷⎩÷≤÷≥+⎧⎧⎪⎪÷⇒≥+⇒≥+++⇒≥⇒≥⇒≥⎨⎨⎪⎪÷≥+⎩⎩∴=是的因数现在讨论的就是范围对来说,其中,290,2,145,5,58,10,29581105815229b b =÷==对于, ,不成立综上,【三】同余方程 1:(铺垫)(1)解同余方程:45(mod11)x ≡45(mod11)41151(45)110451144(mod11)5115245(mod11)4511(mod11)416(mod11)(4,7)14(mod 7)x x x x x x x x x x ≡÷⎧⇒-÷⇒-=⇒=⇒≡⎨÷⎩≡≡+≡=∴≡ 转化: 试除:(mod )(,)1(mod )(mod )()()0()()()()(,)1(mod )ac bc m c m a b m ac m x pac bc m ac bc m x y c a b m x y bc m y p c a b m x y c m m a b a b m a m b m a b a b m m m ≡=≡÷=⎧≡⇒-÷=-⇒-=-⎨÷=⎩-=-=-≡÷÷--=证明:若,当 时,有开始:对“”,有对“”,若,为的因数若想让“”,即让“的余数等于的余数”,即“化为分数相减为整数”同时,确实为整数,得证.(2)解同余方程:729(mod13)x x ≡+729(mod13)7131(729)130(29)135913()(59)130592677(mod13)2729(mod13)59(mod13)59132(mod13)5x x x r x x x rx x x x xx x x x x ≡+÷⎧⇒--÷⎨+÷⎩-=⨯⎧⇒-÷⇒⎨-=⇒=⇒≡⎩-≡≡≡+⨯ 转化: 试除: 35(mod13)(5,13)17(mod13)x ≡=∴≡2:用枚举法检验的方法,找出有那些整数x 满足:35(mod 7)x ≡,用一个同余式来表示结果.135(mod 7)411184(mod 7)235(mod 7)357(mod 7)312(mod 7)(4,7)14(mod 7)x x x x x x x ≡=≡≡≡+≡=∴≡ ,枚举得到、、、,表示为3:求解同余方程:3843(1)(mod13)x x +≡+. 8343(1)(mod13)83433(mod13)83334(mod13)5334313(mod13)58(mod13)58x x x x x x x x x +≡++≡+-≡-≡-+⨯≡≡+第一步:化简 第二步:(试除法) 134(mod13)XX 5383(mod13)560(mod13)1524(mod13)(5,13)112(mod13)211(mod13)(XX ) 5x x x x x x ⨯⨯≡⨯≡≡=∴≡≡⨯ (法) 法888(mod13)21113(mod13)4064(mod13)224(mod13)12(mod13)12(mod13)x x x x x ≡⨯≡+≡≡≡≡5:(拓展)老师选了一个两位数,然后讲这个数乘23,并且加上79,发现正好是111的倍数,你能猜出老师选的是什么数吗?23790(mod111)2311179(mod111)2332(mod111)235325(mod111)115160(mod111)x x x x x x +≡≡-≡⨯≡⨯≡设这个两位数为,得到 4160(mod111)40(mod111)40.x x ≡≡ 即这个两位数是一:余同加余,差同减差,和同加和 1:小强家有很多巧克力:。
六年级数学专题讲义余数问题
余数问题同余:如果两个整数a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记作a≡b (mod m)。
其性质如下:1、a≡a (mod m)。
(反身性)2、若a≡b (mod m),则b≡a (mod m)。
(对称性)3、若a≡b (mod m),b≡c (mod m),则a≡c (mod m)。
(传递性)4、若a≡b (mod m),c≡d (mod m),则a±c≡b±d (mod m), ac≡bd (mod m).(可加减性与可积性)5、若a≡b (mod m),n 是自然数,则n n a b (mod m) 。
6、如果a,b 除以c 同余,那么a 与b 的差能被c 整除。
反之,如果两个整数之差被m 整除,那么这两个整数被m 除一定同余。
7、a 与b 的和除以c 的余数,等于a,b 分别除以c 的余数之和(或这个和除以c 的余数)。
例如:23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4.注意:当余数之和大于除数时,所求余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数2.8、a 与b 的乘积除以c 的余数,等于a,b 分别除以c 的余数之积(或这个积除以c 的余数)。
例如:23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3.注意:当余数之和大于除数时,所求余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数2.〖经典例题〗例1、求127×321×1994被7除的余数。
【分析】127≡1(mod 7),321≡6(mod 7),1994≡6(mod 7),127×321×1994≡1×6×6(mod 7)≡1(mod 7)。
六年级下册数学试题-小升初数论真题解析及练习 人教版
1数论杂题整体概况十一:数论的题考的不是很难,不过比较灵活。
更多的时候是把数论融入到应用题中来考察。
知识框架数论又叫数的整除理论,专门研究整数及其性质.数论模块按照一个数被另一个数除是否有余数来划分,可以分为整除和余数两大类.五年级主要考察整除类问题和简单余数问题。
具体内容如下:1、整除性和试除法2、因数倍数及应用3、质数合数和分解质因数4、公因数和公倍数及应用5、最值和数字拆分6、余数定理和周期7、数论中的计数问题8、完全平方数和位置原理9、数论综合和数字迷例题精讲【例 1】两个整数A、B的最大公约数是C,最小公倍数是D,并且已知C不等于1,也不等于A或B,C+D=187,那么A+B等于多少?(十一分班真题)【练习】现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?【例 2】某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是。
因为2、3、4、5、6、7、8、9的最小公倍数是2520。
而1993000÷2520=790余2200。
于是再加上(2520-2200)=320时,就可以了。
所以最后三位数字依次是3、2、0。
□□【练习】在六位数1111中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?【例 3】七位数175□62□的末位数字是的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。
讲析:设千位上和个位上的数字分别是a和b。
则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。
要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。
则有b-a=8,或者a-b=3。
①当b-a=8时,b可取9、8; ②当a-b=3时,b可取6、5、4、3、2、1、0。
所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。
小学奥数题库《数论》余数问题余数的判定5星题(含解析)全国通用版
数论-余数问题-余数的判定-5星题课程目标知识提要余数的判定•概念当一个数不能被另一个数整除时,虽然可以用长除法求得余数,但当被除数位数较多时,我们可以找到一个较简单的数,通过这个较简单的数除以除数得到的余数来得原来的数的余数的方法叫做余数的判定。
•判定方法1、末位判定法整数N被2或5除的余数等于这个数的个位数被2或5除的余数;整数N被4或25除的余数等于这个数的末两位数被4或25除的余数;整数N被8或125除的余数等于这个数的末三位数被8或125除的余数;2、数字求和法整数N被3除的余数等于这个数的各位数字之和被3除的余数;;整数N被9除的余数等于这个数的各位数字之和被9除的余数;3、奇偶位求差法整数N被11除的余数等于这个数的奇数位上的数字之和与偶数位上的数字之和的差被11除的余数(如果不够减,适当加11的倍数再减);4、截断作和整数N被99除的余数等于这一个数从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数)之和被99除的余数;5、截断作差整数N被7、11、13除的余数等于这一个整数,从个位开始每三位一截,奇数段之和与偶数段之和的差被7、11或13整除的余数(如果不够减,适当加7、11、13的倍数再减)精选例题余数的判定1. 11+22+33+44+⋯+20052005除以10所得的余数为多少?【答案】3【分析】求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11+22+33+44+⋯+2020的个位数字,为1+4+7+6+5+6+3+6+9+0+1+6+3+6+5+6+7+4+9+0=94的个位数字,为4,由于2005个加数共可分成100组另5个数,100组的个位数字和是4×100=400的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1+4+7+6+5=23的个位数3,所以原式的个位数字是3,即除以10的余数是3.2. ab21是一个四位数,由四个阿拉伯数字a,b,1,2组成的其他23个四位数的和等于90669,求a和b的值.【答案】a=9,b=3【分析】所有24个四位数的和等于6666(a+b+3),因此,除ab21外,其余23个四位数的和为666(a+b+3)−1000a−10b−21=5666a+6566b+19977.所以5666a+6566b=70692,即2833a+3283b=35346. ①因为3283a+3283b⩾35346,即a+b⩾353463283=1025163283,即a+b⩾11.同理得a+b⩽12.所以11⩽a+b⩽12.因为2833≡1(mod3) 3283≡1(mod3) 35346≡0(mod3)即a+b≡0(mod3).所以a+b=12. ②解由①和②联立的方程组得a=9,b=3.3. 试求不大于100,且使3n+7n+4能被11整除的所有自然数n的和.【答案】1480【分析】通过逐次计算,可以求出3n被11除的余数,依次为:31为3,32为9,33为5,34为4,35为1,⋯,因而3n被11除的余数5个构成一个周期:3,9,5,4,1,3,9,5,4,1,⋯;类似地,可以求出7n被11除的余数10个构成一个周期:7,5,2,3,10,4,6,9,8,1,⋯;于是3n+7n+4被11除的余数也是10个构成一个周期:3,7,0,0,4,0,8,7,5,6,⋯;这就表明,每一个周期中,只有第3、4、6个这三个数满足题意,即n=3,4,6,13,14,16,⋯,93,94,96时3n+7n+4能被11整除,所以,所有满足条件的自然数n的和为:3+4+6+13+14+16+⋯+93+94+96=13+43+⋯+283=1480.4. 在等差数列1,8,15,22,29,36,43,⋯中,如果前n个数乘积的末尾0的个数比前n+1个数乘积的末尾0的个数少3个,那么n最小是多少?【答案】107【分析】末尾0是由因子2和因子5的乘积得到的.数列中因子2的个数足够多,因此第n+1个数应为53的倍数,并且除以7余1.满足条件的最小数为750.而(750−1)÷7+1=108,因此n最小是107.。
六年级下册数学试题-小升初专题训练-数论专题(原卷+解析卷)全国通用
整除问题:1. 能同时被2、5、7整除的最大五位数是_____.2. 1至100以内所有不能被3整除的数的和是_____.3. 所有能被3整除的两位数的和是______.4. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.5. 形如345612345634563456n 个,且能被11整除的最小自然数中的n 等于_____.合数与质数:6. 在下面算式的方框内,各填入一个互不相同的数字,使得□□□×□=1995成立。
7. 自然数a 乘以2376,正好是自然数b 的平方。
求a 的最小值_____。
9.有一个自然数,它有3个不同的质因数,而有16个约数。
其中一个质因数是两位数,它的数字之和是11,并要求这个质数尽可能大,问这个自然数最小是_____.10.在1~300之间,求出:约数个数正好是15个的自然数_____。
11.在乘积1000×999×998×…×3×2×1 中,末尾连续有_____个零.12.在101与300之间,只有3个约数的自然数有_____个.13.有五个连续的奇数,它们的积为135135,求这五个奇数_____._____._____._____._____.14.把33拆成若干个不同质数之和,如果要使这些质数的积最大,问这几个质数分别是_____.最大公约数与最小公倍数:15.现有4个自然数,它们的和是1111,如果要求这4个数的公约数尽可能地大,那么这4个数的最大公约数是_____.16.设,A B两个数都只含有质因数3和5,它们的最大公约数是75,已知A有12个约数,B有10个约数,那么A、B两数的和等于_____.17.已知两个自然数的差为3,它们的最大公约数与最小公倍数之积为180,求这两个自然数_____.18.所有形如abcabc的六位数,它们的最大公约数是_____.19.三条圆形跑道,圆心都在操场的旗杆处,甲、乙、丙3人分别在里圈、中圈、外圈沿同样的方向跑步. 开始时,3人都在旗杆的正东方向,里圈跑道长15千米,中圈跑道长14千米,外圈跑道长38千米. 甲每小时跑72千米,乙每小时跑4千米,丙每小时跑5千米,问他们同时出发,_____小时后3人第一次同时回到出发点余数问题:20.一班同学买了310个本子,如果分给每个同学相同数量的本子后还余下37本。
六年级下册数学试题-小升初提升:余数问题(无答案)全国通用
余数问题(1)本讲重点余数综合应用——“物不知数”。
【例1】(★★)不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈。
问最多有多少名同学?【例2】(★★★)试证不小于5的质数的平方与1的差必能被24整除。
【例3】(★★★) (北京市迎春杯决赛试题)有5000多根牙签,按以下6种规格分成小包:如果10根一包,最后还剩9根;如果9根一包,最后还剩8根;如果依次以8、7、6、5根为一包,最后分别剩7、6、5、4根。
原来一共有牙签多少根?【例4】(★★★☆)在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数分别是多少?【巩固】(★★☆)有连续的三个自然数a、a+1、a+2,它们恰好分别是9、8、7的倍数,求这三个自然数中最小的数至少是多少?【例5】(★★★)请找出所有的四位数,使它除以7、11、13的余数之和尽可能大。
【本讲要点回顾】物不知数——通过不同除数下的余数找满足条件的被除数:1.去同余,添同补;2.和谐法(调系法)——除与被除双等差数列;3.中国剩余定理——逐级满足法。
余数问题(2)本讲重点余数问题——综合应用(俗称大杂烩)【例1】(★★★)(南京市“兴趣杯”少年数学邀请赛决赛)现有糖果254粒,饼干210块和桔子186个。
某幼儿园大班人数超过40,每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子。
余下的糖果、饼干和桔子的数量的比是1∶3∶2,这个大班有名小朋友,每人分得糖果粒,饼干块,桔子个。
【例2】(★★☆)桌上有111根火柴,甲乙两人轮流取火柴,每人每次可以取一根或质数根,取到最后一根者为胜方,问甲应如何取才能取得胜利?【巩固】(★★☆)请你参加一种游戏:有1996个棋子,两人轮流取棋子,每次允许取其中2个、4个或8个,谁最后把棋子取完,就算获胜。
六年级下册数学试题-余数问题人教版 (无答案)
余数问题【方法梳理】一、有规律问题的解法口诀:和同加和,差同减差,余同取余,最小公倍加(一)和同加和:如果不同被除数和余数的和相同,那么就把这个和,加到最小公倍数上。
(二)差同减差:如果不同被除数和余数的差相同,那么就把这个差,用最小公倍数减掉。
(三)余同取余:如果余数都相同,直接把余数加到最小公倍数上。
二、无规律问题的解法一筐苹果,如果按5个一堆放,最后多出2个;如果按6个一堆放,最后多3个;如果按7个一堆放,还多出1个。
这筐苹果至少有几个?(一)逐步约束法5余2的最小数字是7,看看7除以6是余1不是3,所以要看看7上面加多少个5才能除以6余3。
通常的做法是,7+5=12,余0,不对;12+5=17,余5,不对;17+5=22,余4,不对;22+5=27,余3,对了!所以是27。
27这个数字出来了,还没结束,下面考虑27除以7余6,不是余1。
要在27上面加多少个30(5和6的最小公倍数)才能余1?同样的思路,要余1,相当于余8(1+7=8),由于30除以7余2,问题就转换为,要从余6变成余8,需要多少个2,答案是1个,也就是27上面加1个30即可,最终数字是57。
(二)中国剩余定律先找出6和7的公倍数,从中选取一个最小的、能够除以5余1的数字,为42×3=126,用这个数乘以5的余数。
题目中除以5余2,所以126×3=252;再找出5和7的公倍数,从中选取一个最小的、能够除以6余1的数字,为35×5=175,用这个数乘以6的余数。
题目中除以6余3,所以175×3=525;再找出5和6的公倍数,从中选取一个最小的、能够除以7余1的数字,为30×4=120,用这个数乘以7的余数。
题目中除以7余1,所以120×1=120;252+525+120=897 ,897除以5、6、7三个数的最小公倍数210的余数,即为最终答案:897-210×4=57同余定理1 、如果a,b除以c的余数相同,那么我们说a,b对于c是同余的。
六年级下册数学竞赛试题-第十二节 数论问题能力提升(三)(寒假专版)全国通用(无答案)
第十二节数论问题能力提升(三)【典型例题】1..求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.2.一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是多少?3.有一些小朋友排成一行,从左面第一人开始每隔2人发一个苹果;从右面第一人开始每隔4人发一个桔子,结果有10个小朋友苹果和桔子都拿到。
那么这些小朋友最多有多少人?4.2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4×15天是星期______。
5. 从左向右编号为1至1991号的1991名同学排成一行。
从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列。
那么最后留下的同学中,从左边数第一个人的最初编号是________。
1.今天是星期六,过了1232001123123123个∙∙∙天之后是星期2.几个连续自然数之和是2001,其中最小的一个自然数是________。
3.一个质数的3倍与另一个质数的2倍之和等于2000,那么这两个质数的和是多少?4. 有一串数:1,3,8,22,60,164,448,……其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。
那么在这串数中,第2000个数除以9的余数是________。
5. 用1、2、3、4、5、6、7、8、9九个数字组成三个三位数(每个数字只用一次),使其中最大的三位数被3除余2,并且还尽可能地小;次大的三位数被3除余1;最小的三位数能被3整除。
那么,最大的三位数是________。
6. 一列数1,2,4,7,11,16,22,29,…这列数的组成规律是第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推。
六年级下册数学试题-奥数专题训练:第二讲 余数问题(无答案)全国通用
第二讲余数问题【知识要点】三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c 所得的余数。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b) 【经典例题】【例1】用某自然数a去除1992,得到商是46,余数是r ,求a和r .【基础巩固】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【例2】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【基础巩固】有一个整数,除39,51,147所得的余数都是3,求这个数.a ,求ab×ba.【例3】两位自然数ab与ba除以7都余1,并且b【基础巩固】学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【例4】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【基础巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________【自我检测】1.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?2. 22003与20032 的和除以7的余数是________.3.号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?4.六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是多少元?5.某年的10月有五个星期六,4个星期日,这年的10月1日是星期几?【兴趣拓展】一个大于1的数去除290,235,200时,得余数分别为a,2a,++a,5则这个自然数是多少?。
六年级下册数学试题-16讲 数论—整除(无答案)全国通用
数论—整除第十六讲一、质数、合数和分解质因数【基本概念和知识】1.质数和合数一个数除了 1 和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了 1 和它本身,还有别的约数,这个数叫做合数。
要特别记住:1 不是质数,也不是合数。
2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
【例题】例1:三个连续自然数的乘积是 210,求这三个数。
∵ 210=2×3×5×7∴ 可知这三个数是 5、6、7。
例2:两个质数的和是 40,求这两个质数的乘积的最大值是多少?解:把 40 表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37∵17×23==391>11×29=319>3×37=111,∴所求的最大值是 391。
例3:自然数 123456789 是质数,还是合数?为什么?解:123456789 是合数。
因为它除了约数 1 和它本身,至少还有约数 3,所以它是一个合数。
例 4:连续 9 个自然数中至多有几个质数?为什么?解:如果这连续九个自然数在 1 与 20 之间,那么显然其中最多有 4 个质数(如:1~9 中有 4 个质数2、3、5、7)。
如果这连续的九个自然数中最小的不小于 13,那么其中的偶数显然为合数,而其中奇数的个数最多有 5 个。
这 5 个奇数中必只有一个个位数是 5,因而 5 是这个奇数的一个因数,即这个奇数是合数。
这样,至多另 4 个奇数都是质数。
综上所述,连续九个自然数中至多有 4 个质数。
例5:把 5、6、7、14、15 这五个数分成两组,使每组数的乘积相等。
解:∵ 5=5,7=7,6=2×3,14=2×7,15=3×5。
这些数中质因数 2、3、5、7 各共有 2 个,所以如把 14(=2×7)放在第一组,那么 7 和6(=2× 3)只能放在第二组,继而 15(=3×5)只能放在第一组,则 5 必须放在第二组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识点概述】一、带余除法的定义及性质:1.带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商2.和余数相关的一些重要性质:(以下a,b,c均为自然数)性质1:余数小于除数性质2:=⨯+被除数除数商余数除数(被除数-余数)商=÷=÷商(被除数-余数)除数性质3:a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即前两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.性质4:a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以(2316)⨯除以5的余数等于⨯=。
313当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以(2319)⨯除以5的余数等于⨯=除以5的余数,即2.3412【注】对于上述性质3,4,我们都可以推广到多个自然数的情形,尤其是性质4,对于我们求一个数的n次方除以一个数的余数时非常的有用。
二、数的同余1.同余定义若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m )同余式读作:a同余于b,模m由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)这个性质非常重要,是将同余问题与前面学过的整除问题相联系的纽带,一定要熟练掌握。
例如:(1)15365(mod7)≡,因为36515350750-==⨯(2)5620(mod9)≡,因为56203694-==⨯(3)900(mod10)≡,因为90090910-==⨯由上面的(3)式我们可以得到启发,a可被m整除,可用同余式表示为0(mod)≡a m例如,我们表示a是一个偶数,可以写为2(mod2)a≡,表示b为一个奇数,可以写为1(mod2)b≡我们在书写同余式的时候,总会想起我们最熟悉的等式,但是两者又不是完全相同,在某些性质上相似。
2.同余式的性质(其中a、b、c、d是整数,而m是自然数。
)性质1:a≡a(mod m)(反身性)性质2:若a≡b ( mod m ),那么b≡a ( mod m ) (对称性)性质3:若a≡b ( mod m ),b ≡c( mod m ),那么a≡c ( mod m ) (传递性)性质4:a≡b ( mod m ),c≡d ( mod m ),那么a±c≡b±d ( mod m ) (可加减性)性质5:若a≡b ( mod m ) ,c≡d ( mod m ),那么ac≡bd ( mod m ) (可乘性)性质6:若a≡b ( mod m ) ,那么a n≡b n(mod m),(其中n为自然数)性质7:若ac≡bc ( mod m ),(c,m)=1,那么a≡b ( mod m )三.弃九法在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
上述检验方法恰好用到的就是我们前面所讲的余数的加法性质,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。
而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。
原理:任何一个整数模9同余于它的各数位上数字之和。
以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。
利用十进制的这个特性,不仅可以检验几个数相加、相减,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题错误或有可能正确,但不能保证一定正确。
例如:检验算式5678953++++=时,5除以9的余数为5,6除以9的余数为6,7除以9的余数为7,8除以9的余数为8,9除以9的余数为0,余数的和为26,除以9的余数为8,等式右边的和53除以9的余数也为8,虽然余数相同,但是很容易发现5678935++++=,所以弃九法只能告诉我们算式“一定是错的”或者“有可能是对的”。
但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。
这个思想往往可以帮助我们解决一些较复杂的算式迷问题。
四、中国剩余定理1.中国古代趣题:中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。
2.核心思想和方法:对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
先由5735⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数35270⨯=是否可以,很显然70除以3余1 类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。
最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:⨯+⨯+⨯±=-,其中k是从1开始的自然数。
270321245[3,5,7]233[3,5,7]k k也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。
例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算2703212452[3,5,7]23⨯+⨯+⨯-⨯=得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128.【习题精讲】【例1】(难度级别※)一个两位数除310,余数是37,求这样的两位数。
【例2】(难度级别※)有一个整数,除39,51,147所得的余数都是3,求这个数。
【例3】(难度级别※)求478×296×351除以17的余数。
【例4】(难度级别※)求12的余数644319【例5】(难度级别※)用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【例6】(难度级别※)用弃九法检验乘法算式5483×9117=49888511是否正确。
【例7】(难度级别※※)已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【例8】(难度级别 ※※)号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【例9】(难度级别 ※※)一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是多少?【例10】(难度级别 ※※)一堆糖果,如果每2块分一堆剩1个,每3块分一堆剩1个….每10个分一堆也剩1个,且这堆糖果的个数在99-5000之间,求这堆糖果的个数?【例11】(难度级别 ※※※)求自然数100101102234++的个位数字。
【例12】(难度级别 ※※※)自然数672222...21⨯⨯⨯⨯-个的个位数字是多少?【例13】(难度级别 ※※※)若有一数介于300与400之间,以3除剩1,以8除剩5,以11除剩4。
问此数为何?【例14】(难度级别 ※※※)有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【例15】(难度级别 ※※※)一个数去除551,745,1133,1327这4个数,余数都相同.问这个数最大可能是多少?【例16】(难度级别 ※※※※)将1,2,3,…,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?【例17】(难度级别 ※※※※)已知三个连续自然数,它们都小于2002,其中最小的一个自然数能被13整除,中间的一个自然数能被15整除,最大的一个自然数能被17整除。
那么,最小的一个自然数是多少?【例18】(难度级别 ※※※※)已知1919191919191919...1919n 个,求n 被9整除后所得的商的个位数字是几?【例19】(难度级别 ※※※※※)对于任意7个不同的整数,证明:其中一定存在2个数的和或差是10的倍数。