1.1.1集合的表示方法

合集下载

高中数学:1.1.1集合的概念

高中数学:1.1.1集合的概念

1.1 集合与集合的表示方法1.1.1 集合的概念1.了解集合的概念. 2.理解元素与集合的关系. 3.掌握集合中元素的特性的应用.1.集合的概念(1)集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).通常用英语大写字母A ,B ,C ,…表示.(2)元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a ,b ,c ,…表示.2.元素与集合的关系 知识点关系 概念记法 读法 元素与集合的关系属于如果a 是集合A 的元素,就说a 属于Aa ∈A“a 属于A ” 不属于 如果a 不是集合A 的元素,就说a 不属于Aa ∉A“a 不属于A ”元素 意义确定性元素与集合的关系是确定的,即给定元素a 和集合A ,a ∈A 与a ∉A 必居其一互异性 集合中的元素互不相同,即a ∈A 且b ∈A 时,必有a ≠b无序性集合中的元素可以任意排列顺序4集合⎩⎨⎧空集:不含任何元素,记作∅非空集合:按含有元素的个数分为⎩⎪⎨⎪⎧有限集:含有有限个元素无限集:含有无限个元素5.常用数集的意义及表示意义名称记法非负整数全体构成的集合自然数集N在自然数集内排除0的集合正整数集N+或N*整数全体构成的集合整数集Z有理数全体构成的集合有理数集Q实数全体构成的集合实数集R1.下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2016届本科生D.满足3x-2>x+3的全体实数答案:A2.设M是所有偶数组成的集合,下列选项正确的是()A.3∈M B.1∈MC.2∈M D.2∉M答案:C3.方程x2-2x+1=0的解集中有________个元素.答案:14.指出下列集合是有限集还是无限集.(1)满足2 011≤x≤2 013的整数构成的集合;(2)平面α内所有直线构成的集合.答案:(1)有限集(2)无限集集合概念的理解判断下列各组对象能否构成一个集合:(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)直角坐标平面内第一象限的一些点.【解】(1)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(2)类似于(1),也能构成集合.(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.判断一组对象构成集合的依据判断一组对象能否构成集合的关键是看是否有明确的判断标准,给定的对象是“确定无疑”的还是“模棱两可”的,如果是“确定无疑”的,就可构成集合;如果是“模棱两可”的,就不能构成集合.下列各组对象能构成集合的有________(填序号).①中国农业银行的所有员工; ②我国的大河流; ③不大于3的所有自然数;④在平面直角坐标系中,和原点距离等于1的点; ⑤未来世界的高科技产品; ⑥所有的好心人.解析:①能,①中的对象是确定的;②不能,“大”无明确标准;③能,不大于3的所有自然数有0、1、2、3,其对象是确定的;④能,在平面直角坐标系中任给一点,可明确地判断是不是“和原点的距离等于1”,故能组成一个集合;⑤不能,“高科技”的标准不能确定;⑥不能,没有一个确定的标准来判断某个人是否是“好心人”.答案:①③④元素与集合的关系(1)下列关系中,正确的有( ) ①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个B .2个C .3个D .4个(2)满足“a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ”,有且只有2个元素的集合A 的个数是( )A .0B .1C .2D .3扫一扫 进入91导学网(www .91daoxue .com )元素与集合的关系【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)因为a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,若a =0,则4-a =4,此时A 满足要求;若a =1,则4-a =3,此时A 满足要求;若a =2,则4-a =2,此时A 含1个元素不满足要求.故有且只有2个元素的集合A 有2个,故选C .【答案】 (1)C (2)C判断元素和集合关系的两种方法(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可. 此时应首先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2解析:选D .因为1∉A ,2∈A ,所以⎩⎪⎨⎪⎧2×1+a ≤0,2×2+a >0即-4<a ≤-2.集合中元素的特性已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 【解】 因为-3∈P ,a 2+4≥4, 所以a -3=-3或2a -1=-3, 解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性; a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性. 综上可知,a 的值为0或-1.由集合中元素的特性求解字母取值(范围)的步骤已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解:若1∈A ,则a =1或a 2=1, 即a =±1. 当a =1时,集合A 有重复元素,不符合互异性, 所以a ≠1; 当a =-1时,集合A 含有两个元素1,-1, 符合互异性. 所以a =-1.1.集合中的元素具有确定性、互异性、无序性三大特性.利用集合中元素的三个特性,一方面可以判断一些对象是否构成集合,另一方面可以解决与集合有关的问题.2.(1)符号“∈”“∉”是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系;(2)a ∈A 与a ∉A 取决于a 是不是集合A 中的元素.根据集合中元素的确定性,对任何a 与A ,在a ∈A 与a ∉A 这两种情况中必有一种且只有一种成立.初学者由于对集合中元素的特性把握不准,而容易忽视集合中元素的互异性致错.1.下列各组对象,能构成集合的是( ) A .平面直角坐标系内x 轴上方的y 轴附近的点 B .平面内两边之和小于第三边的三角形 C .新华书店中有意义的小说 D .π(π=3.141…)的近似值的全体解析:选B .选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为∅,故能构成集合.2.所给下列关系正确的个数是( ) ①-12∈R ;②2∉∅;③0∈N +;④-3∉N .A .1B .2C .3D .4解析:选C .①②④正确,③错误,故选C .3.由“book 中的字母”构成的集合中元素个数为( )A .1B .2C .3D .4解析:选C .“book 中的字母”构成的集合中有b ,o ,k 共3个元素.4.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________.解析:由题意知,m =2或m 2-3m +2=2, 解得m =2或m =0或m =3,经验证, 当m =0或m =2时, 不满足集合中元素的互异性, 当m =3时, 满足题意,故m =3. 答案:3[A 基础达标]1.下列各组对象中能构成集合的是( ) A .2017年中央电视台春节联欢晚会中好看的节目 B .某学校高一年级高个子的学生 C .2的近似值D .2016年全国经济百强县解析:选D .由于集合中的元素是确定的,所以D 中对象可构成集合.2.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的个数为( )A .1B .2C .3D .4解析:选B .13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数, (4)正确.故选B .3.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A .矩形 B .平行四边形 C .菱形D .梯形解析:选D .因为a ,b ,c ,d 为集合A 中的四个元素,故a ,b ,c ,d 均不相同,故选D .4.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A解析:选C .因为-1=3×0-1∈A ,故A 错; -11=3×(-4)+1=3×(-3)-2∉A ,故B 错; -34=3×(-11)-1∈A ,故D 错; 因为k ∈Z ,所以k 2∈Z , 所以3k 2-1∈A ,故C 正确.5.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有( ) A .2个元素 B .3个元素 C .4个元素D .5个元素解析:选A .x 2=|x |,-3x 3=-x . 当x =0时,它们均为0;当x >0时,它们分别为x ,-x ,x ,x ,-x ; 当x <0时,它们分别为x ,-x ,-x ,-x ,-x .通过以上分析,它们最多表示两个不同的数,故集合中元素最多含有2个.6.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 含有三个元素3,4,6,且当a ∈A ,有8-a ∈A ,那么a =________. 解析:若a =3,则8-a =5∉A ,故a ≠3; 若a =4,则8-4=4∈A ,故a =4合适; 若a =6,则8-6=2∉A ,故a ≠6. 答案:48.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a >0且b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2. 即元素的个数为3. 答案:39.由三个数a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,求a 2 017+b 2 017的值.解:由a ,ba ,1组成一个集合,可知a ≠0,且a ≠1.由题意可得⎩⎪⎨⎪⎧a 2=1,a =a +b ,b a =0或⎩⎪⎨⎪⎧a 2=a ,a +b =1,b a =0,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去), 所以a 2 017+b 2 017=(-1)2 017+0=-1.10.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时, 有0=-3,不成立; 当a =2a -1时,有a =1, 此时A 中有两个元素-2,1, 符合题意.综上知a =1.[B 能力提升]11.集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ).则下列选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C .集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,经验证,(3,10)∈B ,故选C .12.已知集合A 中的元素满足ax 2-bx +1=0,又集合A 中只有唯一的一个元素1,则实数a +b 的值为________.解析:当a ≠0时,由题意可知方程ax 2-bx +1=0有两个相等的实数根, 故⎩⎨⎧1+1=--ba,1×1=1a,解得a =1,b =2.故a +b =3.当a =0时,b =1,此时也满足条件, 所以a +b =1, 故a +b 的值为1或3. 答案:1或313.已知集合A 中含有1,0,x 这三个元素. (1)求实数x 的取值范围; (2)若x 2∈A ,求实数x 的值.解:(1)由集合中元素的互异性可知,x 的取值范围为x ≠1,x ≠0的实数.(2)若x 2=0,则x =0,此时三个元素为1,0,0,不符合集合中元素的互异性,舍去. 若x 2=1,则x =±1.当x =1时,集合中元素为1,0,1,舍去; 当x =-1时,集合中元素为1,0,-1,符合题意. 若x 2=x ,则x =0或x =1,不符合元素的互异性, 所以x =-1.14.(选做题)某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为:若x 号同学去,则8-x 号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M ,则有x ∈M ,8-x ∈M . 若只有一个名额,即M 中只有一个元素,必须满足x =8-x ,故x =4,所以应该派学号为4的同学去.(2)若有两个名额,即M 中有且仅有两个不同的元素x 和8-x ,从而全部含有两个元素的集合M 应含有1,7或2,6或3,5.也就是两个名额的分派方法有3种.。

1.1.1集合的含义与表示2

1.1.1集合的含义与表示2

【解题探究】1.典例1中用列举法表示集合首先要确定什么? 提示:用列举法表示集合应首先确定集合中的元素. 2.典例2中数集和点集中的元素有什么不同? 提示:元素类别不同,点集中的元素是点,而数集中的元素是数.
【解析】1.(1)我国的直辖市有四个:北京、上海、天津、重庆,即我 国的直辖市组成的集合为: {北京,上海,天津,重庆}; (2)联合国安理会五大常任理事国有:中国、美国、俄罗斯、法国和英 国.即联合国安理会五大常任理事国组成的集合为 :{中国,美国,俄罗 斯,法国,英国}. 答案:(1){北京,上海,天津,重庆} (2){中国,美国,俄罗斯,法国,英国}
类型二
描述法表示集合
【典例】用描述法表示下列集合:
(1)被3除余2的正整数的集合.
(2)平面直角坐标系中坐标轴上的点组成的集合.
【解题探究】典例中用描述法表示集合时,解题顺序是什么? 提示:先找出代表元素,再在竖线后写出该集合中元素的公共属性.
【解析】(1)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数, 故x=3n+2,n∈N,所以被3除余2的正整数集合可表示为{x|x=3n+2,
【变式训练】已知f(x)=x2-ax+b(a,b∈R),A={x∈R|f(x)-x=0},
B={x∈R|f(x)-ax=0},若A={1,-3},试用列举法表示集合B.
【解析】因为f(x)-x=0,即x2-(a+1)x+b=0.
又因为A={1,-3}, 所以由根与系数的关系,得 1+ 3 a+1, 所以
第2课时
集合的表示
【知识提炼】
1.列举法表示集合
(1)定义:把集合的元素_________出来,并用_____________括起来表 一一列举 花括号“{}” 示集合的方法. (2)形式:A={a1,a2,a3,…,an}.

1.1.1集合的表示方法

1.1.1集合的表示方法
8 2 ∴ B= {( ,- )}. 3 3 (2)n∈ N,当 n 为奇数时 (- 1)n=- 1; 当 n 为偶数时 (- 1)n= 1, ∴ C= {- 1,1}.

(3)当 a>0,b>0 时,x=2; 当 a<0,b<0 时,x=-2; 当 a,b 异号时,x=0,∴D={-2,0,2}.
用描述法表示下列集合
⑴{-1,1}; ⑵所有的奇数构成的集合; ⑶不等式x+4<7的解的集合 ⑷平面直角坐标系内所有第三象限的点的 集合. 解: ⑴{x︱︱x︱=1}或{x︱x2=1} ⑵{x︱x=2k+1,k∈z} ⑶ {x| x<3 ,x ∈R} ⑷{(x,y)︱x<0,且y<0}
用列举法表示下列集合: A x | 0 x 5且x N
类型二
用描述法表示集合 【例2】 用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集. 思路分析: 用描述法表示集合,需找准 x 所属 的集合I和集合的一个特征性质p(x).
解:(1){x|x=2n,n∈N*}; (2){x|x = 3n + 2 , n∈N} 或 {x|x = 3n - 1 ,
例:由两个元素0,1构成的集合可以表示为{0,1}
说明:用列举法表示集合时,要注意以下几点: (1)要把集合中的元素都列举出来,写在“ { } ”内 (2)元素间分隔用逗号 “,” (3)元素不重复 (4)元素无顺序,但通常按一定顺序排列 (5)元素个数有限,且个数较少
(6)适用情况: ①集合是有限集,元素又不太多. 例:由构成英语单词good的字母组成的集合 {g,o,d} ②集合元素较多,排列呈现一定的规律.可列出几 个元素为代表,其他元素用省略号表示. 例:不大于100的自然数 {0,1,2, …, 100} ③有规律的无限集. 例:N={0,1,2,3,…,n, …} Z={…,-2,-1,0,1,2, …}

【数学】1.1.1集合的含义与表示

【数学】1.1.1集合的含义与表示

3、元素与集合的关系
关系 元 素 与 集 合 的 关 系 概念 记法 读法
如果a是集合A中的 于 属于 元素,就说a属于集 a∈A 集合 合A 如果a不是集合A中 不 的元素,就说a不属 a∉A 属于 于集合A
a属 A a不 A
属于 集合
4、常用的数集及记法 名称 意义 记法 非负整数集 全体非负整数组成的 N (自然数集) 集合 所有正整数组成的集 * 正整数集 N 或N+ 合 整数集 有理数集 实数集 全体整数组成的集合 全体有理数组成的集 合 全体实数组成的集合 Z Q R
练习2:已知集合A={a+2,(a+1)2,a2+3a +3},若1∈A,求实数a的值.
解:若a+2=1,则a=-1,所以A={1,0,1}, 与集合中元素的互异性矛盾,应舍去; 若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3},满足题意. 当 a =- 2 时, A = {0,1,1} ,与集合中元素的互 异性矛盾,舍去; 若a2+3a+3=1,则a=-1或a=-2(均舍去). 综上可知,a=0.
例4
用适当的方法表示下列集合.
* *
(1)A={(x,y)|x+y=4,x∈N ,y∈N };
6 ; ∈ Z| x ∈ N (2)B= 1+x
(3)方程 x +y -4x+6y+13=0 的解集; (4)平面直角坐标系中所有第二象限的点.
先明确集合中元素的特点,再选择 适当的方法来表示.
(4)我国古代四大发明; (5)抛物线y=x2上的点.
知识梳理: 1、定 义 一般地, 指定的某些对象的全体称 为集合. 集合中每个对象叫做这个集合的元素.
2、集合与元素 (1)、元素:一般地,我们把研究对象统 称为元素,元素常用小写拉丁字母 a , b , c„表示. (2)、集合:把一些元素组成的总体叫做 集合 ( 简称集 ) ,集合通常用大写拉丁字 母A,B,C,„表示. (3)、集合元素的三个特性:确定性、互 异性、无序性.

高中数学一章集合与常用逻辑用语1.1.1集合及其表示方法集合的表示

高中数学一章集合与常用逻辑用语1.1.1集合及其表示方法集合的表示

第2课时集合的表示考点学习目标核心素养列举法表示集合掌握用列举法表示有限集数学抽象理解描述法格式及其适用情况,并会数学抽象描述法表示集合用描述法表示相关集合区间及其表示会用区间表示集合数学抽象学会在集合的不同表示法中作出选择集合表示法的简单应用数学抽象和转换问题导学预习教材P5倒数第4行-P8的内容,思考以下问题:1.集合有哪几种表示方法?它们如何定义?2.列举法的使用条件是什么?如何用符号表示?3.描述法的使用条件是什么?如何用符号表示?4.如何用区间表示集合?1.列举法把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法称为列举法.■名师点拨(1)应用列举法表示集合时应关注以下四点①元素与元素之间必须用“,”隔开;②集合中的元素必须是明确的;③集合中的元素不能重复;④集合中的元素可以是任何事物.(2)a与{a}是完全不同的,{a}表示一个集合,这个集合由一个元素a构成,a是集合{a}的元素.2.描述法一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.■名师点拨(1)应用描述法表示集合时应关注以下三点①写清楚集合中元素的符号,如数或点等;②说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等;③不能出现未被说明的字母.(2)注意区分以下四个集合①A={x|y=x2+1}表示使函数y=x2+1有意义的自变量x的取值范围,且x的取值范围是R,因此A=R;②B={y|y=x2+1}表示使函数y=x2+1有意义的函数值y的取值范围,而y的取值范围是y=x2+1≥1,因此B={y|y≥1};③C={(x,y)|y=x2+1}表示满足y=x2+1的点(x,y)组成的集合,因此C表示函数y =x2+1的图像上的点组成的集合;④P={y=x2+1}是用列举法表示的集合,该集合中只有一个元素,且此元素是一个式子y=x2+1.3.区间的概念及表示(1)区间的定义及表示设a,b是两个实数,而且a<b.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)关于无穷大的两点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.判断正误(正确的打“√”,错误的打“×”)(1)一个集合可以表示为{s,k,t,k}.( )(2)集合{-5,-8}和{(-5,-8)}表示同一个集合.( )(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )(4)集合{x|x>3,且x∈N}与集合{x∈N|x>3}表示同一个集合.( )(5)集合{x∈N|x3=x}可用列举法表示为{-1,0,1}.( )答案:(1)×(2)×(3)√(4)√(5)×方程x2-1=0的解集用列举法表示为( )A.{x2-1=0} B.{x∈R|x2-1=0}C.{-1,1} D.以上都不对解析:选C.解方程x2-1=0得x=±1,故方程x2-1=0的解集为{-1,1}.集合{x∈N*|x-3<2}的另一种表示法是( )A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:选B.因为x-3<2,x∈N*,所以x<5,x∈N*,所以x=1,2,3,4.由大于-1小于5的自然数组成的集合用列举法表示为________,用描述法表示为________.解析:大于-1小于5的自然数有0,1,2,3,4.故用列举法表示集合为{0,1,2,3,4},用描述法表示可用x表示代表元素,其满足的条件是x∈N且-1<x<5.故用描述法表示集合为{x∈N|-1<x<5}.答案:{0,1,2,3,4} {x∈N|-1<x<5}(1){x|-1≤x≤2}可用区间表示为________;(2){x|1<x≤3}可用区间表示为________;(3){x|x>2}可用区间表示为________;(4){x|x≤-2}可用区间表示为________;答案:(1)[-1,2] (2)(1,3] (3)(2,+∞)(4)(-∞,-2]用列举法表示集合用列举法表示下列集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ; (2)方程(x -2)2(x -3)=0的解组成的集合M ;(3)方程组⎩⎪⎨⎪⎧2x +y =8,x -y =1的解组成的集合B ;(4)15的正约数组成的集合N . 【解】 (1)因为-2≤x ≤2,x ∈Z , 所以x =-2,-1,0,1,2, 所以A ={-2,-1,0,1,2}. (2)因为2和3是方程的根, 所以M ={2,3}.(3)解方程组⎩⎪⎨⎪⎧2x +y =8,x -y =1得⎩⎪⎨⎪⎧x =3,y =2. 所以B ={(3,2)}.(4)因为15的正约数有1,3,5,15, 所以N ={1,3,5,15}.列举法表示的集合的种类(1)元素个数少且有限时,全部列举,如{1,2,3,4}.(2)元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000}.(3)元素个数无限但有规律时,也可以类似地用省略号列举,如“自然数集N ”可以表示为{0,1,2,3,…}.[注意] (1)花括号“{}”表示“所有”“整体”的含义,如实数集R 可以写为{实数},但如果写成{实数集}、{全体实数}、{R }都是不确切的.(2)用列举法表示集合时,要求元素不重复、不遗漏.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A ; (2)方程x 2-9=0的实数根组成的集合B ; (3)小于8的质数组成的集合C ;(4)一次函数y =x +3与y =-2x +6的图像的交点组成的集合D .解:(1)大于1且小于6的整数包括2,3,4,5, 所以A ={2,3,4,5}.(2)方程x 2-9=0的实数根为-3,3, 所以B ={-3,3}.(3)小于8的质数有2,3,5,7, 所以C ={2,3,5,7}.(4)由⎩⎪⎨⎪⎧y =x +3,y =-2x +6,解得⎩⎪⎨⎪⎧x =1,y =4,所以一次函数y =x +3与y =-2x +6的图像的交点为(1,4),所以D ={(1,4)}. 用描述法表示集合用描述法表示下列集合:(1)函数y =-2x 2+x 的图像上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合; (3)如图中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.【解】 (1)函数y =-2x 2+x 的图像上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }.(2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)题图中阴影部分的点(含边界)的集合可表示为{(x ,y )|-1≤x ≤32,-12≤y ≤1,xy≥0}.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.使用描述法表示集合应注意的问题(1)写清楚该集合的代表元素,如数或点等. (2)说明该集合中元素的共同属性. (3)不能出现未被说明的字母.(4)所有描述的内容都要写在花括号内,用于描述的内容力求简洁、准确.试分别用描述法和列举法表示下列集合:(1)由方程x (x 2-2x -3)=0的所有实数根组成的集合;(2)大于2小于7的整数.解:(1)用描述法表示为{x ∈R |x (x 2-2x -3)=0},用列举法表示为{0,-1,3}. (2)用描述法表示为{x ∈Z |2<x <7},用列举法表示为{3,4,5,6}. 区间及其表示把下列数集用区间表示:(1)⎩⎨⎧⎭⎬⎫x |x ≥-12;(2){x |x <0}; (3){x |-2<x ≤3}; (4){x |-3≤x <2}; (5){x |-1<x <6}.【解】 (1)⎣⎢⎡⎭⎪⎫-12,+∞; (2)(-∞,0); (3)(-2,3]; (4)[-3,2); (5)(-1,6).解决区间问题应注意的五点(1)区间的左端点必须小于右端点,有时我们将b -a 称为区间长度,对于只有一个元素的集合我们仍然用集合来表示,如{a }.(2)注意开区间(a ,b )与点(a ,b )在具体情景中的区别. (3)用数轴来表示区间时,要特别注意实心点与空心圆的区别.(4)对于一个不等式的解集,我们既可以用集合形式来表示,也可以用区间形式来表示. (5)要注意区间表示实数集的几条原则,数集是连续的,左小,右大,开或闭不能混淆,用“∞”作为区间端点时,要用开区间符号.1.若[2a +1,3a -1]为一确定区间,则实数a 的取值范围为________. 解析:由题意知3a -1>2a +1,即a >2. 答案:(2,+∞)2.不等式2x +3≤0的解集可用区间表示为________. 解析:由2x +3≤0,得x ≤-32.答案:⎝ ⎛⎦⎥⎤-∞,-32 3.使15-x有意义的x 的取值范围为________(用区间表示). 解析:要使15-x有意义,则5-x >0,即x <5. 答案:(-∞,5) 集合表示方法的简单应用已知集合A ={x ∈R |mx 2-2x +3=0,m ∈R },若A 中元素至多只有一个,求m 的取值范围.【解】 ①当m =0时,原方程为-2x +3=0,x =32,符合题意.②当m ≠0时,方程mx 2-2x +3=0为一元二次方程,由Δ=4-12m ≤0,得m ≥13,即当m ≥13时,方程mx 2-2x +3=0无实根或有两个相等的实数根,符合题意.由①②知m =0或m ≥13.1.(变条件)若将本例中的“至多只有一个”改为“恰有一个”,如何求解?解:当m =0时,A =⎩⎨⎧⎭⎬⎫32,即集合A 中只有一个元素32,符合题意;当m ≠0时,Δ=4-12m =0, 即m =13.综上可知,m =0或m =13.2.(变条件)若将本例中的“至多只有”改为“至少有”,如何求解?解:A 中至少有一个元素,即A 中有一个或两个元素.由例题解析可知,当m =0或m =13时,A 中有一个元素;当A 中有两个元素时,Δ=4-12m >0,即m <13且m ≠0.所以A 中至少有一个元素时,m 的取值范围为⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m ≤13.此题容易漏解m =0,漏解的原因是默认所给的方程一定是一元二次方程.其实,当m =0时,所给的方程是一个一元一次方程;当m ≠0时,所给的方程才是一个一元二次方程,求解时要注意对m 进行分类讨论.已知集合A ={x |x 2+px +q =x },B ={x |(x -1)2+p (x -1)+q =x +3},当A ={2}时,集合B =( )A .{1}B .{1,2}C .{2,5}D .{1,5}解析:选D.由A ={x |x 2+px +q =x }={2}知,22+2p +q =2,且Δ=(p -1)2-4q =0.计算得出,p =-3,q =4.则(x -1)2+p (x -1)+q =x +3可化为(x -1)2-3(x -1)+4=x +3; 即(x -1)2-4(x -1)=0; 则x -1=0或x -1=4, 计算得出,x =1或x =5. 所以集合B ={1,5}.1.已知集合A ={x |-1<x <3,x ∈Z },则一定有( ) A .-1∈A B .12∈A C .0∈AD .1∉A解析:选C.因为-1<0<3,且0∈Z ,所以0∈A .2.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1用列举法表示,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3}D .(2,3)解析:选B.解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1得⎩⎪⎨⎪⎧x =2,y =3,所以集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1={(2,3)}. 3.给出下列说法:①平面直角坐标系中,第一象限内的点组成的集合为{(x ,y )|x >0,y >0}; ②方程x -2+|y +2|=0的解集为{2,-2};③集合{y |y =x 2-1,x ∈R }与{y |y =x -1,x ∈R }是不相同的;④不等式2x +1>0的解集可用区间表示为⎝ ⎛⎭⎪⎫-12,+∞. 其中正确的是________(填序号).解析:对于①,在平面直角坐标系中,第一象限内的点的横、纵坐标均大于0,且集合中的代表元素为点(x ,y ),所以①正确;对于②,方程x -2+|y +2|=0的解为⎩⎪⎨⎪⎧x =2y =-2,解集为{(2,-2)}或{(x ,y )|⎩⎪⎨⎪⎧x =2y =-2},所以②不正确;对于③,集合{y |y =x 2-1,x ∈R }={y |y ≥-1},集合{y |y =x -1,x ∈R }=R ,这两个集合不相同,所以③正确;对于④,不等式2x +1>0的解集为{x |x >-12},用区间表示为⎝ ⎛⎭⎪⎫-12,+∞,所以④正确. 答案:①③④4.设集合A ={4,a },集合B ={2,ab },若A 与B 的元素相同,则a +b =______. 解析:因为集合A 与集合B 的元素相同,所以⎩⎪⎨⎪⎧a =2,ab =4,即a =2,b =2.故a +b =4.答案:4[A 基础达标]1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .一次函数y =2x -1的图像上的所有点组成的集合解析:选D.本题中的集合是点集,其表示一次函数y =2x -1的图像上的所有点组成的集合.故选D.2.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N *,且s ≤5}解析:选D.A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中除给定集合中的元素外,还有-3,-7,-11,…;C 中t =0时,x =-3,不属于给定的集合;只有D 是正确的.故选D.3.已知集合{x |x 2+ax =0}={0,1},则实数a 的值为( ) A .-1 B .0 C .1D .2解析:选A.由题意,x 2+ax =0的解为0,1,利用根与系数的关系得0+1=-a ,所以a =-1.4.(2019·襄阳检测)已知集合A ={1,2,4},集合B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =x y ,x ∈A ,y ∈A ,则集合B 中元素的个数为( )A .4B .5C .6D .7解析:选B.因为A ={1,2,4}.所以集合B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =x y ,x ∈A ,y ∈A =⎩⎨⎧⎭⎬⎫1,12,14,2,4,所以集合B 中元素的个数为5. 5.下列说法中正确的是( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解组成的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .只有②和④解析:选C.①中“0”不能表示集合,而“{0}”可以表示集合,故①错误.根据集合中元素的无序性可知②正确;根据集合中元素的互异性可知③错误;④不能用列举法表示,原因是集合中有无数个元素,不能一一列举.6.不等式3x -13≤x 的解集可用区间表示为________.解析:由3x -13≤x ,得x ≤16,故不等式的解集为{x |x ≤16},可用区间表示为⎝ ⎛⎦⎥⎤-∞,16. 答案:⎝⎛⎦⎥⎤-∞,167.用列举法表示集合A ={(x ,y )|x +y =3,x ∈N ,y ∈N *}为____________.解析:集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1,故A ={(0,3),(1,2),(2,1)}.答案:{(0,3),(1,2),(2,1)}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-3x +a =0}用列举法表示为________. 解析:因为-5∈{x |x 2-ax -5=0},所以(-5)2+5a -5=0,解得a =-4.所以x 2-3x -4=0,解得x =-1或x =4,所以{x |x 2-3x +a =0}={-1,4}.答案:{-1,4}9.用列举法表示下列集合:(1){x |x 2-2x -8=0};(2){x |x 为不大于10的正偶数};(3){a |1≤a <5,a ∈N };(4)A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪169-x ∈N ; (5){(x ,y )|x ∈{1,2},y ∈{1,2}}.解:(1){x |x 2-2x -8=0},列举法表示为{-2,4}.(2){x |x 为不大于10的正偶数},列举法表示为{2,4,6,8,10}.(3){a |1≤a <5,a ∈N },列举法表示为{1,2,3,4}.(4)A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪169-x ∈N ,列举法表示为{1,5,7,8}. (5){(x ,y )|x ∈{1,2},y ∈{1,2}},列举法表示为{(1,1),(1,2),(2,1),(2,2)}.10.用描述法表示下列集合:(1){0,2,4,6,8};(2){3,9,27,81,…};(3)⎩⎨⎧⎭⎬⎫12,34,56,78,…; (4)被5除余2的所有整数的全体构成的集合.解:(1){x ∈N |0≤x <10,且x 是偶数}.(2){x |x =3n ,n ∈N *}.(3)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2n -12n ,n ∈N *. (4){x |x =5n +2,n ∈Z }.[B 能力提升]11.若集合A ={x |kx 2+4x +4=0,x ∈R }只有一个元素,则实数k 的值为( )A .0B .1C .0或1D .2解析:选C.集合A 中只有一个元素,即方程kx 2+4x +4=0只有一个根.当k =0时,方程为一元一次方程,只有一个根;当k ≠0时,方程为一元二次方程,若只有一根,则Δ=16-16k =0,即k =1.所以实数k 的值为0或1.12.设P 、Q 为两个实数集,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9B .8C .7D .6解析:选B.因为0+1=1,0+2=2,0+6=6,2+1=3,2+2=4,2+6=8,5+1=6,5+2=7,5+6=11,所以P +Q ={1,2,3,4,6,7,8,11}.故选B.13.(2019·襄阳检测)设集合M ={x |x =2m +1,m ∈Z },P ={y |y =2m ,m ∈Z },若x 0∈M ,y 0∈P ,a =x 0+y 0,b =x 0y 0,则( )A .a ∈M ,b ∈PB .a ∈P ,b ∈MC .a ∈M ,b ∈MD .a ∈P ,b ∈P解析:选A.设x 0=2n +1,y 0=2k ,n ,k ∈Z ,则x 0+y 0=2n +1+2k =2(n +k )+1∈M ,x 0y 0=2k (2n +1)=2(2nk +k )∈P ,即a ∈M ,b ∈P ,故选A.14.设a ∈N ,b ∈N ,a +b =2,集合A ={(x ,y )|(x -a )2+(y -a )2=5b },(3,2)∈A ,求a ,b 的值.解:由a +b =2,得b =2-a ,代入(x -a )2+(y -a )2=5b 得:(x -a )2+(y -a )2=5(2-a )①,又因为(3,2)∈A ,将点代入①,可得(3-a )2+(2-a )2=5(2-a ),整理,得2a 2-5a +3=0,得a =1或1.5(舍去,因为a 是自然数),所以a=1,所以b=2-a=1,综上,a=1,b=1.[C 拓展探究]15.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n,当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,在此定义下,求集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素有多少个?解:若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2×5+1=11(个);若a,b一奇一偶,有12=1×12=3×4,每种可以交换位置,这时有2×2=4(个).所以共有11+4=15(个).。

1.1.1集合的含义与表示(1)

1.1.1集合的含义与表示(1)

这两个集合是相等的.
(3)整数集,记作Z;
6,集合的表示方法
(1)列举法:把集合的元素一一列举出来,并且用花 括号"{}"括起来表示集合的方法. 例:我们可以把"方程(x+1)(x-2)=0的所有实数根" 组成的集合表示为{-1,2}.
例1,用列举法表示下列集合: (1)方程(x2-1)(x2+2x-8)=0的解集为________. (2)方程|x-1|=3的解集为________. (3)绝对值小于3的整数的集合为________.
构成的集合怎么表示?
福建宏翔高级中学
知识引入
其实在初中,大家也接触过“集合”一词。 那么,请大家回忆一下在初中有哪些地方接触过 “集合”一词呢?
观察下列实例:
(1) 1~20以内的所有质数; 2,3,5,7,9,11,13,17,19
(2)绝对值小于3的整数; (3)满足x-3>2 的实数;
-2,-1,0,1,2
x>5
(2)若a不是集合A的元素,就说a不属于集合A,记作 a∈ / A。
只要构成两个集合的元素是一样的,我们就称 4,集合的三个特征
(1)确定性:它的元素必须是确定的。 (2)互异性:同一集合中不应重复出现同一元素. (3)无序性:集合中的元素无顺序,可以任意排列, 调换. 5,数学中常用的数集及其记法 (1)自然数集,记作N; (2)正整数集,记作N*或N+; (4)有理数集,记作Q; (5)实数集,记作R;
(4)我国古代四大发明; 造纸术,印刷术,指南针,火药 (5)宏翔高中高一(10)班的所有同学; (6)平面上到定点O的距离等于定长的所有的点.
知识新知
1,集合的含义:一般地,我们把研究的对象统称为 元素,把一些元素组成的总体叫做集合(简称集). 2,表示方法:集合通常用{}或大写的拉丁字母 A,B,C…表示,而元素用小写的拉丁字母a,b,c…表 示。 3,元素与集合关系: (1)若a是集合A的元素,就说a属于集合A,记作a∈A。

1.1.1集合的概念及表示方法

1.1.1集合的概念及表示方法
第一章 集合与逻辑用语
教师:张友蛟
1.1集合及其运算
1.1.1集合的概念及表示方法
集合
举例1: (1)小于5的自然数,0,1,2,3,4,5; (2)中国古典四大名著; (3)云南医药健康职业学院护理x班的全体学生; (4)到线段两端距离相等的点;
举例2: 某商店进了一批货,包括:面包、牛奶、汉堡、彩笔、
例1 下列对象能否组成集合? (1)所有小于10的自然数; (2)某班个子高的同学; (3)方程 x2 1 0的所有解; (4)不等式 x 2 0的所有解;
(三)集合的分类:
由方程的所有解组成的集合叫做这个方程的解集; 由不等式的所有解组成的集合叫做这个不等式的解集; 元素个数有限的集合叫做有限集; 元素个数无限的集合叫做无限集; 像平面上与原点 O 的距离为2厘米的所有点组成的集合那样,由平 面内的点组成的集合叫做平面点集; 由数组成的集合叫做数集,方程的解集与不等式的解集都是数集
• ①很小的数
②不超过 30的非负实数
• ③直角坐标平面的横坐标与纵坐标相等的点
• ④的近似值 ⑤高一年级优秀的学生
• ⑥所有无理数 ⑦大于2的整数
• ⑧正三角形全体
• A.⑥⑦
D. ②③⑤⑥⑦⑧
• 练习1.下列指定的对象,能构成一个集合的是 (B)
• ①很小的数
水笔、橡皮、果冻、薯片、裁纸刀、尺子。那么如何将这 些商品放在指定的篮筐里? 食品篮筐:
面包、牛奶、汉堡、果冻、薯片; 文具篮筐:
彩笔、水笔、橡皮、裁纸刀、尺子
(一)集合的概念
1.集合
由某些确定的对象组成的整体叫做集合,简称 “集”。
组成集合的每一个对象叫做这个集合的元素。
• 练习1.下列指定的对象,能构成一个集合的是 ()

第一章 集合1.1.1集合的概念

第一章    集合1.1.1集合的概念

• 用一条封闭的曲线的内部来表示一个集合 的办法,叫文氏图。
多用于解题些指定的对象集在一起就形成一个集合。 • 集合的表示以及元素与集合间关系表示方 法。 • 集合表示方法: 列举法、描述法、文氏图法。 D:\高一PPT\集合的表示方法.doc D:\高一PPT\集合概念与表示方法练习题.doc
如何表示一个集合呢?
1.1.2集合的表示方法
1.1.2 集合的表示方法
• 列举法 如果一个集合是有限集,元素又不太多,常 常把集合的所有元素都列举出来,写在话 括号“{ }”内表示这个集合。例如,由两 个元素0,1构成的集合可表示为 {0,1}. 又如,24的所有正因数1,2,3,4,6,8,12,24构成 的集合可以表示为 {1,2,3,4,6,8,12,24}.
• 大括号内竖线左边的x表示这个集合的任意 一个元素,元素x从实数集合中取值,在竖 线集合右边写出只有集合内的元素x才具有 的性质
• 一般地,如果在集合I中,属于集合A的任意一 个元素x都具有性质p(x),而不属于集合A的 元素都不具有性质p(x),则性质p(x)叫做集合A的 一个特征性质。于是,集合A可以用它的特征性 质p(x)描述为
例题:
• 下列各组对象能确定一个集合吗? (1)所以很大的实数; (2)市四中高一(二)班的高个子同学; (3)1,1,2,3,4,5.
上面我们用自然的语言来描述集合的几个例 子,下面我们来看下集合的表示方法。
• 集合通常用英语大写字母A,B,C,...来表示,它们的元 素通常用英语小写字母a,b,c,...来表示。 • 如果a是集合A的元素,就说a属于A,记作 读作“a属于A”. 如果a不是集合A的元素,就说a不属于A,记作
例题:
• 由方程 x 2 − 1 = 0 的所有解组成的集合,可 以表示为{-1,1}

1.1.1集合的含义及表示

1.1.1集合的含义及表示

考点:元素与集合的关系
一、用合适的符号填空 1、已知A表示大于1且小于10的 所有质数,则 1___A; 2___A;4___A;5___A 2、用P表示我国的直辖市,则 广州___P;重庆___P;北京___P
四、常用数集的符号表示(熟记)
N 正整数集: 或N
整数集:Z 自然数集:N

有理数集:Q
{, 12 }与{, 21 }是相同的集合√ { }与{ 是相同的集合 3.14 }
×
二、集合的概念和性质
3、集合相等:两个集合中的元素 完全相同
{, 12 }与{, 21 }是相同的集合 {1 2 , {, }= 2 1 }
三、元素与集合的关系
1、元素与集合的表示 元素:用a,b,c…表示 集合:用A,B,C…表示 2、元素与集合的关系: 属于,不属于 符号表示:a A, a A
一、接触过的集合的概念
垂直平分线:到线段两端点的距 离相等的点的集合
角平分线:到角两边的距离相等的 点的集合 圆:到定点的距离等于定长的点 的集合
学过的数集: 自然数集→ 整数集 →有理数集→ 实数集 → Z → Q → R N
注: 1、正整数集与自然数集的区别 2、研究的每一个对象称为元素; 这些元素的全体则构成一个集合
实数集:R
五、分析与研究
1、给出下列四个关系:
3 R,0.7 Q,0 {0},0 N
其中正确的个数是_______ A、1 B、2 C、3 D、4
2、下列四个命题:
(1)集合N中最小的元素是1
若 (2) a N , 则
小值是2
a N
(3)若a N , b N ,则a+b中的最 (4) x 4 4 x 的解集是{2,2}

1.1.1集合的含义与表示

1.1.1集合的含义与表示

3
2.集合: 集合常用大写字母表示,元素常用小 写字母表示.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
4
3.集合与元素的关系: 如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA. 例如:A表示方程x2=1的解. 2A,1∈A.
Hale Waihona Puke 12• 例2试分别用列举法和描述法表示下 列集合: • (1)方程x2-2=0的所有实数根组成的集 合; • (2)由大于10小于20的所有整数组成 的集合。 思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点和 适用的对象。
13
• 练习与思考 教材P5练习1、2
14
课堂小结
那么{(1,2)},{(2,1)}是否为同一集合?
7
判断下列例子能否构成集合 中国的直辖市

× ×
身材较高的人
著名的数学家
高一(3)班眼睛很近视的同学
×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
8
5.集合的表示方法 1、列举法: 无序 互异
将集合中的元素一一列举出来,并 用花括号{ }括起来的方法叫做列 举法
5
4.常用的数集:
N:自然数集(含0)
N+或N*:正整数集(不含0)
Z:整数集
Q:有理数集
R:实数集
6
5.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.

1.1.1集合及其表示方法(新教材教师用书)

1.1.1集合及其表示方法(新教材教师用书)

1.1.1集合及其表示方法(教师独具内容)课程标准:1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3.在具体情境中,了解空集的含义.4.能正确使用区间表示一些数集.教学重点:1.集合概念的正确理解.2.元素的三性(确定性、互异性、无序性).3.元素与集合关系的判定.4.集合常用的两种表示方法(列举法、描述法).5.区间的概念.教学难点:1.对元素的确定性的理解.2.描述法表示集合.【情境导学】(教师独具内容)一位渔民非常喜欢数学,但他怎么也想不明白集合的意义.于是他请教一位数学家:“先生,您能告诉我,集合是什么吗?”由于集合是不定义的概念,数学家很难向那位渔民讲清楚.直到有一天,数学家来到渔民的船上,看到渔民撒下渔网,然后轻轻一拉,许多鱼虾在网中跳动.数学家非常激动,高兴地对渔民说:“这就是集合!”你能理解这位数学家的话吗?【知识导学】知识点一集合与元素的定义(1)集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集).(2)元素:组成集合的每个对象都是这个集合的元素.(3)表示:通常用英文大写字母A,B,C,…表示集合,用英文小写字母a,b,c,…表示集合中的元素.知识点二元素与集合的关系(1)“属于”:如果a是集合A的元素,就记作□01a∈A,读作“a属于A”.(2)“不属于”:如果a不是集合A的元素,就记作□02a∉A,读作“a不属于A”.知识点三空集□01空集(empty set),记作□02∅.知识点四集合中元素的三个特性(1)确定性;(2)互异性;(3)无序性.知识点五集合的分类(1)有限集;(2)无限集.知识点六几个常用数集的固定字母表示知识点七集合的表示方法集合常见的表示方法有:□01自然语言、□02列举法、□03描述法、□04“区间”(以及后面将要学习的维恩图法和数轴表示法等直观表示方法).(1)列举法:把集合中的元素□05一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法称为列举法.(2)描述法:如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个□06特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.知识点八区间实数集R可以用区间表示为□01(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.我们可以把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为□02[a,+∞),(a,+∞),(-∞,b],(-∞,b).可以看出,区间实质上是一类特殊数集(即由数轴某一段上所有点对应的实数组成的集合)的符号表示;例如,大于1且小于10的所有自然数组成的集合就不能用区间(1,10)表示.【新知拓展】1.元素和集合关系的判断(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否出现即可.此时应先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.此时应先明确已知集合的元素具有什么特征,即该集合中元素要满足哪些条件.2.集合的三个特性(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”“线”“面”等概念一样都只是描述性的说明.(2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物,甚至一个集合也可以是某集合的一个元素.3.使用列举法表示集合时需注意的几点(1)元素之间用“,”隔开;(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.()(2)已知A是一个确定的集合,a是任一元素,要么a∈A,要么a∉A,二者必居其一且只居其一.()(3)对于数集A={1,2,x2},若x∈A,则x=0.()(4)对于区间[2a,a+1],必有a<0.()(5)集合{y|y=x2,x∈R}与{s|s=t2,t∈R}的元素完全相同.()答案(1)√(2)√(3)×(4)×(5)√2.做一做(1)下列所给的对象能组成集合的是()A.“金砖国家”成员国B.接近1的数C.著名的科学家D.漂亮的鲜花(2)用适当的符号(∈,∉)填空.0________∅,0________{0},0________N,-2________N*,13________Z,2________Q,π________R.(3)不等式2x-1≥3的解集可以用区间表示为________.答案(1)A(2)∉∈∈∉∉∉∈(3)[2,+∞)题型一集合概念的理解例1下列所给的对象能构成集合的是________.①所有的正三角形;②高一数学必修第一册课本上的所有难题;③比较接近1的正数全体;④某校高一年级的全体女生;⑤平面直角坐标系内到原点的距离等于1的点的集合;⑥参加2019年世乒赛的年轻运动员;⑦a,b,a,c.[解析]①能构成集合.其中的元素需满足三条边相等.②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合.③不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合.④能构成集合.其中的元素是“高一年级的全体女生”.⑤能构成集合.其中的元素是“到坐标原点的距离等于1的点”.⑥不能构成集合.因为“年轻”的标准是模糊的,不确定的,故不能构成集合.⑦不能构成集合.因为两个a是重复的,不符合集合元素的互异性.[答案]①④⑤金版点睛判断一组对象能否构成集合的方法(1)关键:看是否给出一个明确的标准,使得对于任何一个对象能按此标准确定它是不是给定集合的元素.(2)切入点:解答此类问题的切入点是集合元素的特性,即确定性、互异性和无序性.[跟踪训练1]判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)出席2019年全国两会的所有参会代表组成一个集合.解(1)中的对象是确定的,互异的,所以可构成一个集合,故正确.(2)中的“高科技”标准是不确定的,所以不能构成集合,故错误.(3)中由于0.5=12,不符合集合中元素的互异性,故错误.(4)中的对象是确定的,所以可以构成一个集合,故正确.题型二元素与集合关系的判断与应用例2(1)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2 C.3 D.4(2)集合A中的元素x满足66-x∈N,x∈N,则集合A中的元素为________.[解析](1)∵π是实数,3是无理数,∴①②正确;∵N*表示正整数集,而0不是正整数,故③不正确;又|-4|=4是正整数,故④不正确,∴正确的共有2个.(2)∵66-x∈N,x∈N,∴⎩⎪⎨⎪⎧66-x≥0,x≥0,即⎩⎨⎧6-x>0,x≥0,∴0≤x<6,∴x=0,1,2,3,4,5.当x分别为0,3,4,5时,66-x相应的值分别为1,2,3,6,也是自然数,故填0,3,4,5.[答案](1)B(2)0,3,4,5金版点睛1.常用数集之间的关系2.确定集合中元素的三个注意点(1)判断集合中元素的个数时,注意集合中的元素必须满足互异性.(2)集合中的元素各不相同,也就是说集合中的元素一定要满足互异性.(3)若集合中的元素含有参数,要抓住集合中元素的互异性,采用分类讨论的方法进行研究.[跟踪训练2](1)用符号“∈”或“∉”填空.①0________N*;②1________N;③1.5________Z;④22________Q;⑤4+5________R;⑥若x2+1=0,则x________R.(2)设x∈R,集合A中含有三个元素3,x,x2-2x.①求实数x应满足的条件;②若-2∈A,求实数x的值.答案 (1)①∉ ②∈ ③∉ ④∉ ⑤∈ ⑥∉ (2)见解析 解析 (1)①∵0不是正整数,∴0∉N *. ②∵1是自然数,∴1∈N .③∵1.5是小数,不是整数,∴1.5∉Z . ④∵22是无理数,∴22∉Q .⑤∵4+5是无理数,无理数是实数,∴4+5∈R . ⑥∵满足x 2+1=0的实数不存在, ∴x 为非实数,∴x ∉R .(2)①根据集合元素的互异性,可知⎩⎨⎧x ≠3,x ≠x 2-2x ,x 2-2x ≠3,即x ≠0,且x ≠3且x ≠-1.②∵x 2-2x =(x -1)2-1≥-1,且-2∈A ,∴x =-2. 题型三 集合中元素的特性例3 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x . (1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值.[解] (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. 得a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. 金版点睛利用集合元素互异性求参数问题(1)根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对集合中元素进行检验.(也是本讲易错问题)(2)利用集合中元素的特性解题时,要注意分类讨论思想的应用.[跟踪训练3] 已知集合A 包含三个元素:a -2,2a 2+5a,12,且-3∈A ,求a 的值. 解 因为A 包含三个元素a -2,2a 2+5a,12,且-3∈A ,所以a -2=-3或2a 2+5a =-3, 解得a =-1或a =-32.当a =-1时,A 中三个元素为:-3,-3,12,不符合集合中元素的互异性,舍去. 当a =-32时,A 中三个元素为:-72,-3,12,满足题意.故a =-32. 题型四 集合的分类例4 下列各组对象能否构成集合?若能,请指出它们是有限集、无限集,还是空集. (1)非负奇数;(2)小于18的既是正奇数又是质数的数; (3)在平面直角坐标系中所有第三象限的点; (4)在实数范围内方程(x 2-1)(x 2+2x +1)=0的解集; (5)在实数范围内方程组⎩⎨⎧x 2-x +1=0,x +y =1的解构成的集合.[解] (1)能构成集合,是无限集.(2)小于18的质数是2,3,5,7,11,13,17.只有2是偶数,其余的都是正奇数,所以能构成集合,是有限集.(3)第三象限的点的横坐标和纵坐标都小于0,能构成集合,是无限集.(4)能构成集合,注意集合中元素的互异性,集合中的元素是-1,1,是有限集. (5)由x 2-x +1=0的判别式Δ=-3<0,方程无实根,由此可知方程组⎩⎨⎧x 2-x +1=0,x +y =1无解,能构成集合,是空集.金版点睛集合的分类方法判断集合是有限集,还是无限集,关键在于弄清集合中元素的构成,从而确定集合中元素的个数.[跟踪训练4] 指出下列各组对象是否能组成集合,若能组成集合,则指出集合是有限集、无限集,还是空集.(1)平方等于1的数;(2)所有的矩形;(3)平面直角坐标系中第二象限的点;(4)被3除余数是1的正数;(5)平方后等于-3的实数;(6)15的正约数.解 (1)中对象能组成集合,它是一个有限集;(2)中对象能组成集合,它是一个无限集;(3)中对象能组成集合,它是一个无限集;(4)中对象能组成集合,它是一个无限集;(5)中对象能组成集合,它是一个空集;(6)中对象能组成集合,它是一个有限集.题型五 用列举法表示集合例5 用列举法表示下列集合:(1)方程x 2-4x +2=0的所有实数根组成的集合; (2)不大于10的质数集;(3)一次函数y =x 与y =2x -1图像的交点组成的集合.[解] (1)方程x 2-4x +2=0的实数根为2, 故其实数根组成的集合为{2}.(2)不大于10的质数有2,3,5,7,故不大于10的质数集为{2,3,5,7}.(3)由⎩⎨⎧ y =x ,y =2x -1,解得⎩⎨⎧ x =1,y =1.故一次函数y =x 与y =2x -1图像的交点组成的集合为{(1,1)}.金版点睛用列举法表示集合应注意的三点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素.(2)集合中的元素一定要写全,但不能重复.(3)若集合中的元素是点,则应将有序实数对用小括号括起来表示一个元素.[跟踪训练5] 用列举法表示下列集合:(1)不等式组⎩⎨⎧ 2x -6>0,1+2x ≥3x -5的整数解组成的集合; (2)式子|a |a +|b |b (a ≠0,b ≠0)的所有值组成的集合.解 (1)由⎩⎨⎧2x -6>0,1+2x ≥3x -5得3<x ≤6, 又x 为整数,故x 的取值为4,5,6,组成的集合为{4,5,6}.(2)∵a≠0,b≠0,∴a与b可能同号也可能异号,则:①当a>0,b>0时,|a|a+|b|b=2;②当a<0,b<0时,|a|a+|b|b=-2;③当a>0,b<0或a<0,b>0时,|a|a+|b|b=0.故所有值组成的集合为{-2,0,2}.题型六用描述法表示集合例6用描述法表示下列集合:(1)坐标平面内,不在第一、三象限的点的集合;(2)所有被3除余1的整数的集合;(3)使y=1x2+x-6有意义的实数x的集合.[解](1)因为不在第一、三象限的点分布在第二、四象限或坐标轴上,所以坐标平面内,不在第一、三象限的点的集合为{(x,y)|xy≤0,x∈R,y∈R}.(2)因为被3除余1的整数可表示为3n+1,n∈Z,所以所有被3除余1的整数的集合为{x|x=3n+1,n∈Z}.(3)要使y=1x2+x-6有意义,则x2+x-6≠0.由x2+x-6=0,得x1=2,x2=-3.所以使y=1x2+x-6有意义的实数x的集合为{x|x≠2且x≠-3,x∈R}.金版点睛用描述法表示集合的注意点(1)用描述法表示集合,首先应弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.[跟踪训练6] 试用描述法表示下列集合:(1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解 (1)方程x 2-x -2=0的解可以用x 表示,它满足的条件是x 2-x -2=0,因此,方程的解集用描述法表示为{x ∈R |x 2-x -2=0}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z ,且-1<x <7,因此,该集合用描述法表示为{x ∈Z |-1<x <7}.题型七 列举法和描述法的综合运用例7 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .[解] ①当k =0时,原方程为16-8x =0,∴x =2,此时A ={2},符合题意.②当k ≠0时,由集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根.即Δ=64-64k =0,即k =1,从而x 1=x 2=4,∴集合A ={4}.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.[条件探究] 把本例条件“只有一个元素”改为“有两个元素”,求实数k 取值范围的集合.解 由题意可知方程kx 2-8x +16=0有两个不等的实根.∴⎩⎨⎧k ≠0,Δ=64-64k >0,解得k <1且k ≠0.∴k 的取值范围的集合为{k |k <1且k ≠0}.金版点睛分类讨论思想在集合中的应用(1)①本题在求解过程中,常因忽略讨论k 是否为0而漏解.②由kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0两种情况,注意做到不重不漏.(2)解答与集合描述法有关的问题时,明确集合中的代表元素及其共同特征是解题的切入点.[跟踪训练7] (1)设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪ 62+x ∈N . ①试判断元素1,2与集合B 的关系;②用列举法表示集合B .(2)已知集合A ={x |x 2-ax +b =0},若A ={2,3},求a ,b 的值.解 (1)①当x =1时,62+1=2∈N . 当x =2时,62+2=32∉N .所以1∈B,2∉B . ②∵62+x∈N ,x ∈N ,∴2+x 只能取2,3,6, ∴x 只能取0,1,4.∴B ={0,1,4}.(2)由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系,得⎩⎨⎧2+3=a ,2×3=b ,因此a =5,b =6.题型八 集合中的新定义问题例8 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9[解析] 根据已知条件,列表如下:由上表可知,B 中的元素有9个,故选D.[答案]D金版点睛本例借助表格语言,运用列举法求解.表格语言是常用的数学语言,表达问题清晰,明了;列举法是分析问题的重要的数学方法,通过“列举”直接解决问题或发现问题的规律,此方法通常配合图表(含树形图)使用.[跟踪训练8]定义A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 中的所有元素之和为()A.0 B.2 C.3 D.6答案D解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知A*B={0,2,4},故集合A*B中所有元素之和为0+2+4=6,故选D.1.下列所给的对象不能组成集合的是()A.我国古代的四大发明B.二元一次方程x+y=1的解C.我班年龄较小的同学D.平面内到定点距离等于定长的点答案C解析C项中“年龄较小的同学”的标准不明确,不符合确定性.故选C.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为()A.2 B.2或4 C.4 D.0答案B解析集合A中含有三个元素2,4,6,且当a∈A时,有6-a∈A.当a=2∈A时,6-a=4∈A,∴a=2符合题意;当a=4∈A时,6-a=2∈A,∴a=4符合题意;当a=6∈A时,6-a=0∉A,综上所述,a=2或4.故选B.3.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是()A.1 B.2 C.3 D.4答案B解析对a进行分类讨论:①当a=0时,四个数都为0,只含有一个元素;②当a≠0时,含有两个元素a,-a,所以集合中最多含有2个元素.故选B.4.用适当符号(∈,∉)填空.(1)(1,3)________{(x,y)|y=2x+1};(2)2________{m|m=2(n-1),n∈Z}.答案(1)∈(2)∈解析(1)当x=1时,y=2×1+1=3,故(1,3)∈{(x,y)|y=2x+1}.(2)当n=2∈Z时,m=2×(2-1)=2,故2∈{m|m=2(n-1),n∈Z}.5.设a∈R,关于x的方程(x-1)(x-a)=0的解集为A,试分别用描述法和列举法表示集合A.解A={x|(x-1)(x-a)=0},当a=1时,A={1};当a≠1时,A={1,a}.A级:“四基”巩固训练一、选择题1.已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案D解析因为集合S={a,b,c}中的元素是△ABC的三边长,由集合元素的互异性可知a,b,c互不相等,所以△ABC一定不是等腰三角形.故选D.2.下列集合的表示方法正确的是()A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.{全体整数}D.实数集可表示为R答案D解析A中应是xy<0;B中的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x,应为{x|x<5};C中的“{}”与“全体”意思重复.故选D.3.下列集合恰有两个元素的是()A.{x2-x=0} B.{x|y=x2-x}C.{y|y2-y=0} D.{y|y=x2-x}答案C解析A为一个方程集,只有一个元素;B为方程y=x2-x的定义域,有无数个元素;C为方程y2-y=0的解,有0,1两个元素;D为函数y=x2-x的值域,有无数个元素.故选C.4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.9答案C解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知B={0,-1,-2,1,2},因此集合B中共含有5个元素.故选C.5.若2∉{x|x-a>0},则实数a的取值范围是()A.a≠2 B.a>2 C.a≥2 D.a=2答案C解析因为2∉{x|x-a>0},所以2不满足不等式x-a>0,即满足不等式x-a≤0,所以2-a≤0,即a≥2,故选C.二、填空题6.若A={-2,2,3,4},B={x|x=t2,t∈A},则用列举法表示B=________.答案{4,9,16}解析由题意,A={-2,2,3,4},B={x|x=t2,t∈A},依次计算出B中元素,用列举法表示可得B={4,9,16},故答案为{4,9,16}.7.已知集合A={x|ax2-3x-4=0,x∈R},若A中至多有一个元素,则实数a的取值范围是________.答案a=0或a≤-9 16解析当a=0时,A={x|x=-43};当a≠0时,关于x的方程ax2-3x-4=0应有两个相等的实数根或无实数根,所以Δ=9+16a ≤0,即a ≤-916.故所求的a 的取值范围是a =0或a ≤-916.8.已知集合A 中的元素均为整数,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是A 的一个“孤立元”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析 根据“孤立元”的定义,由S 的3个元素构成的所有集合中,不含“孤立元”的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共有6个.故答案为6.三、解答题9.用适当的方法表示下列集合:(1)绝对值不大于3的偶数的集合;(2)被3除余1的正整数的集合;(3)一次函数y =2x -3图像上所有点的集合;(4)方程组⎩⎨⎧x +y =1,x -y =-1的解集. 解 (1){-2,0,2}.(2){m |m =3n +1,n ∈N }.(3){(x ,y )|y =2x -3}.(4){(0,1)}.10.已知集合A ={a +3,(a +1)2,a 2+2a +2},若1∈A ,求实数a 的值.解 ①若a +3=1,则a =-2,此时A ={1,1,2},不符合集合中元素的互异性,舍去.②若(a +1)2=1,则a =0或a =-2.当a =0时,A ={3,1,2},满足题意;当a =-2时,由①知不符合条件,故舍去.③若a 2+2a +2=1,则a =-1,此时A ={2,0,1},满足题意.综上所述,实数a 的值为-1或0.B 级:“四能”提升训练1.已知集合A ={x |x =3n +1,n ∈Z },B ={x |x =3n +2,n ∈Z },M ={x |x =6n +3,n ∈Z}.(1)若m∈M,则是否存在a∈A,b∈B,使m=a+b成立?(2)对于任意a∈A,b∈B,是否一定存在m∈M,使a+b=m?证明你的结论.解(1)设m=6k+3=3k+1+3k+2(k∈Z),令a=3k+1,b=3k+2,则m=a+b.故若m∈M,则存在a∈A,b∈B,使m=a+b成立.(2)不一定.证明如下:设a=3k+1,b=3l+2,k,l∈Z,则a+b=3(k+l)+3.当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时存在m∈M,使a+b=m成立;当k+l=2p+1(p∈Z)时,a+b=6p+6∉M,此时不存在m∈M,使a+b=m成立.故对于任意a∈A,b∈B,不一定存在m∈M,使a+b=m.2.设实数集S是满足下面两个条件的集合:①1∉S;②若a∈S,则11-a∈S.(1)求证:若a∈S,则1-1a∈S;(2)若2∈S,则S中必含有其他的两个数,试求出这两个数;(3)求证:集合S中至少有三个不同的元素.解(1)证明:∵1∉S,∴0∉S,即a≠0.由a∈S,则11-a∈S可得11-11-a∈S,即1 1-11-a =1-a1-a-1=1-1a∈S.故若a∈S,则1-1a∈S.(2)由2∈S,知11-2=-1∈S;由-1∈S,知11-(-1)=12∈S,当12∈S时,11-12=2∈S,因此当2∈S时,S中必含有-1和1 2.(3)证明:由(1),知a∈S,11-a∈S,1-1a∈S.下证:a,11-a,1-1a三者两两互不相等.①若a=11-a,则a2-a+1=0,无实数解,∴a≠11-a;②若a=1-1a,则a2-a+1=0,无实数解,∴a≠1-1 a;③若11-a=1-1a,则a2-a+1=0,无实数解,∴11-a≠1-1a.综上所述,集合S中至少有三个不同的元素.。

1.1.1集合的含义与表示

1.1.1集合的含义与表示
解 : (1)设方程x 2 − 2 = 0的实数根为x, 并且满足条 件x 2 − 2 = 0, 因此, 用描述法表示为 A = {x ∈ R | x 2 − 2 = 0}. 方程 x − 2 = 0有两个实数根 2 ,− 2 , 因此,
2
用列举法表示为A = { 2 ,− 2}.
(2)设大于 小于20的整数为 , 它满足条件 ∈ Z 10 x x 且10 < x < 20,因此, 用描述法表示为 B = {x ∈ Z | 10 < x < 20}. 大于 小于20的整数有 ,12,13,14,15,16,17,18, 10 11 19,因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
我们以前已经接触过的集合: 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合; 自然数集合,正分数集合,有理数集合; 到角的两边的距离相等的所有点的集合; 到角的两边的距离相等的所有点的集合;
是角平分线
到线段的两个端点距离相等的所有点的集合; 到线段的两个端点距离相等的所有点的集合;
是线段垂直平分线
1.1.1 集合的含义与表示
1、集合的含义: 、集合的含义:
把研究对象统称为元素, 把研究对象统称为元素,把一些 元素 元素组成的总体叫做集合 简称集)。 集合( 元素组成的总体叫做集合(简称集)。 用大写字母A, , 表示集合, 用大写字母 ,B,C…表示集合,用 表示集合 小写字母a,b, 小写字母 ,c …表示集合中的元素 表示集合中的元素
2、 若方程x2-5x+6=0和方程 若方程x 5x+6=0和方程 x2-x-2=0的解为元素的集合 则 2=0的解为元素的集合M,则 的解为元素的集合 M中元素的个数为 ( C) 中元素的个数为 A.1 . B.2 . 3、已知集合 、 C.3 . D.4 .

1.1.1集合的含义与表示

1.1.1集合的含义与表示

集合
无限集(元素的个数是无数多个)
空集 ø(集合中不含有元素)
集合的另一种表示方法:图示法
为了形象,常常用一条封闭曲线的 内部表示一个集合 。 (称为韦恩图 或文氏图)
A
小结
集合与元素
集合与元素的关系: ∈ 、 集合的表示法:1、列举法;2、描述法;
3、图示法
集合的分类:有限集、无限集、空集。 集合中元素的特性: 确定性、互异性、 无序性
例1
具有下列特征的对象能否构成一个集合:
(1) 体重很重的人.
(2) 直角坐标平面内第二象限的点.
(3) 直角坐标平面内某些点.
(4) 不大于5 的实数. (5) 方程x2- 3 x=0的有理数解. 解:(1)不能. “体重很重”的标准不明确。 (2)能.横坐标小于0且纵坐标大于0的点都是第二象限的点. (3)不能.“某些”指哪些?标准不明确. (4)能.就是小于或等于5的数. (5)能.该方程的有理数解为x=0
集合的含义与表示
[来源:学_科_网]
一,集合的定义
定义大西洋,印度洋,北冰洋”组成一个集合。
集合表示方法:
A)大括号表示:{太平洋,大西洋,印度洋,北冰洋} B)大写拉丁字母表示: A={太平洋,大西洋,印度洋,北冰洋}
二,元素:集合中的每个对象叫做这个集合的
练习3 P6 4
练习4:用描述法表示下列集合:
(1){ 4,6,8,10,12 }
(2)不在坐标轴的点的集合。
(3)被5除余1的自然数的集合。
答案:(1){x|x=2k,1<k<7,k∈z}
(2){(x,y)|x≠0且y≠0}
(3){x|x=5k+1,k∈z}

高中数学 第一章 集合与函数概念 1.1 集合 1.1.1 集合的含义与表示 第2课时 集合的表示学

高中数学 第一章 集合与函数概念 1.1 集合 1.1.1 集合的含义与表示 第2课时 集合的表示学

第2课时 集合的表示学习目标 1.掌握集合的两种表示方法:列举法和描述法(重点).2.能够运用集合的两种表示方法表示一些简单的集合(难点).知识点 集合的表示方法 (1)列举法:①定义:把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法;②形式:A ={a 1,a 2,a 3,…,a n }. (2)描述法:①定义:用集合所含元素的共同特征表示集合的方法称为描述法;②写法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 【预习评价】(1)集合{x ∈N *|x -4<2}的另一种表示形式是( ) A.{0,1,2,3,4} B.{0,1,2,3,4,5} C.{1,2,3,4}D.{1,2,3,4,5}(2)方程x 2-1=8的解集用列举法表示为________.解析 (1)由x -4<2得x <6,又x ∈N *,故x 的值为1,2,3,4,5,用列举法表示为{1,2,3,4,5}.(2)由x 2-1=8得x 2=9,即x =±3,故其解集用列举法表示为{-3,3}. 答案 (1)D (2){-3,3}题型一 用列举法表示集合 【例1】 用列举法表示下列集合: (1)15的正约数组成的集合; (2)不大于10的正偶数集;(3)方程组⎩⎪⎨⎪⎧2x +y +6=0,x -y +3=0的解集.解 (1)因为15的正约数为1,3,5,15, 所以所求集合可表示为{1,3,5,15}.(2)因为不大于10的正偶数有2,4,6,8,10, 所以所求集合可表示为{2,4,6,8,10}.(3)解方程组⎩⎪⎨⎪⎧2x +y +6=0,x -y +3=0,得⎩⎪⎨⎪⎧x =-3,y =0.所以所求集合可表示为{(-3,0)}. 规律方法 用列举法表示集合的三个注意点(1)用列举法表示集合时,首先要注意元素是数、点,还是其他的类型,即先定性. (2)当集合中元素个数较少时,用列举法表示集合比较方便.(3)搞清集合中元素是有限个还是无限个是选择恰当的表示方法的关键. 【训练1】 用列举法表示下列集合: (1)绝对值小于5的偶数组成的集合; (2)24与36的公约数组成的集合;(3)方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1的解集.解 (1)绝对值小于5的偶数集为{-2,-4,0,2,4}. (2){1,2,3,4,6,12}.(3)由⎩⎪⎨⎪⎧x +y =2,2x -y =1,得⎩⎪⎨⎪⎧x =1,y =1.∴所求集合可表示为{(1,1)}.(1)正偶数集;(2)被3除余2的正整数组成的集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解 (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点组成的集合可表示为{(x ,y )|xy =0}.【迁移1】 (变换条件)例2(3)改为“用描述法表示平面直角坐标系中位于第二象限的点组成的集合.”解 位于第二象限的点(x ,y )的横坐标为负,纵坐标为正,即x <0,y >0,故第二象限的点组成的集合为{(x ,y )|x <0,y >0}.【迁移2】 (变换条件)例2(3)改为“用描述法表示图中阴影部分的点(含边界)组成的集合.”解 本题是用图形语言给出的问题,要求把图形语言转换为符号语言.用描述法表示(即用符号语言表示)为{(x ,y )|-1≤x ≤32,-12≤y ≤1,且xy ≥0}.规律方法 用描述法表示集合的注意点 (1)“竖线”前面的x ∈R 可简记为x ; (2)“竖线”不可省略;(3)p (x )可以是文字语言,也可以是数学符号语言,能用数学符号表示的尽量用数学符号表示;(4)同一集合用描述法表示可以不唯一. 题型三 集合表示方法的综合应用【例3】 (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z ,且86-x ∈N =________. (2)集合A ={x ∈R |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x =0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x =4时,4∈N ;当x =5时,8∈N . 综上可知A ={-2,2,4,5}. 答案 {-2,2,4,5} (2)解 ①当k =0时, 原方程为16-8x =0. ∴x =2,此时A ={2}; ②当k ≠0时,∵集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根. ∴Δ=64-64k =0,即k =1. 从而x 1=x 2=4, ∴A ={4}.综上可知,实数k 的值为0或1. 当k =0时,A ={2}; 当k =1时,A ={4}.规律方法 1.识别集合的两个步骤:一看代表元素:例如{x |p (x )}表示数集,{(x ,y )|y =p (x )}表示点集; 二看条件:即看代表元素满足什么条件(公共特性). 2.方程ax 2+bx +c =0的根的个数在涉及ax 2+bx +c =0的根的集合中,要讨论二次项的系数a 是否为0,当a =0时,方程为bx +c =0,再分b 是否为0两种情况讨论其根的个数;当a ≠0时,方程ax 2+bx +c =0为二次方程,结合判别式的符号判定其根的个数. 【训练2】 用列举法表示下列集合. (1)A ={y |y =-x 2+6,x ∈N ,y ∈N }; (2)B ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N }. 解 (1)因为y =-x 2+6≤6,且x ∈N ,y ∈N , 所以x =0,1,2时,y =6,5,2,符合题意, 所以A ={2,5,6}.(2)(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则应有⎩⎪⎨⎪⎧x =0,y =6,⎩⎪⎨⎪⎧x =1,y =5,⎩⎪⎨⎪⎧x =2,y =2,所以B ={(0,6),(1,5),(2,2)}.课堂达标1.用列举法表示集合{x |x 2-2x +1=0}为( ) A.{1,1} B.{1}C.{x =1}D.{x 2-2x +1=0}解析 集合{x |x 2-2x +1=0}实质是方程x 2-2x +1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B. 答案 B2.下列各组集合中,表示同一集合的是( ) A.M ={(3,2)},N ={(2,3)} B.M ={3,2},N ={2,3}C.M ={(x ,y )|x +y =1},N ={y |x +y =1}D.M ={3,2},N ={(3,2)}解析 由于集合中的元素具有无序性,故{3,2}={2,3}. 答案 B3.设集合A ={1,2,3},B ={1,3,9},x ∈A ,且x ∉B ,则x =( ) A.1 B.2 C.3D.9解析 比较A 和B 中的元素可知x =2. 答案 B4.大于3并且小于10的整数组成的集合用描述法表示为________.解析 设该数为x ,由题意得3<x <10,且x ∈Z ,故集合是:{x |3<x <10,x ∈Z }. 答案 {x |3<x <10,x ∈Z } 5.选择适当的方法表示下列集合: (1)绝对值不大于3的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.解 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,则用列举法表示为{-3,-2,-1,0,1,2,3}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2.(3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课堂小结1.集合表示的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则; (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.基础过关1.下列集合中,不同于另外三个集合的是( ) A.{0} B.{y |y 2=0} C.{x |x =0}D.{x =0}解析 A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即方程“x =0”.故选D. 答案 D2.方程组⎩⎪⎨⎪⎧x -y =3,2x +y =6的解集是( )A.{x =3,y =0}B.{3}C.{(3,0)}D.{(x ,y )|(3,0)}解析 方程组解的形式是有序实数对,故可排除A ,B ,而D 不是集合表示的描述法的正确形式,排除D. 答案 C3.下列集合中恰有2个元素的集合是( ) A.{x 2-x =0}B.{y |y 2-y =0}C.{x |y =x 2-x }D.{y |y =x 2-x }解析 选项A 中的集合只有一个元素为:x 2-x =0;集合{y |y 2-y =0}的代表元素是y ,则集合{y |y 2-y =0}是方程y 2-y =0根的集合,即{y |y 2-y =0}={0,1},故选B ;选项C ,D 中的集合中都有无数多个元素. 答案 B4.-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析 由题意可知(-5)2-a ×(-5)-5=0,得a =-4,故方程x 2-4x +4=0的解为x 1=x 2=2,即{x |x 2-4x -a =0}={2},则其所有元素和为2. 答案 25.已知集合A ={(x ,y )|y =2x +1},B ={(x ,y )|y =x +3},若a ∈A ,a ∈B ,则a 为________.解析 由题知,a ∈A ,a ∈B ,所以a 是方程组⎩⎪⎨⎪⎧y =2x +1,y =x +3的解,解得⎩⎪⎨⎪⎧x =2,y =5,即a 为(2,5). 答案 (2,5)6.用适当的方法表示下列集合: (1)16与24的公约数组成的集合; (2)不等式3x -5>0的解构成的集合.解 (1)16与24的公约数组成的集合为{1,2,4,8}.(2)不等式3x -5>0的解集为{x |3x -5>0}或⎩⎨⎧⎭⎬⎫x |x >53.7.设y =x 2-ax +b ,A ={x |y -x =0},B ={x |y -ax =0},若A ={-3,1},试用列举法表示集合B .解 将y =x 2-ax +b 代入集合A 中的方程并整理得x 2-(a +1)x +b =0.因为A ={-3,1},所以方程x 2-(a +1)x +b =0的两根为-3,1.由根与系数的关系得⎩⎪⎨⎪⎧-3+1=a +1,-3×1=b ,解得⎩⎪⎨⎪⎧a =-3,b =-3.所以y =x 2+3x -3.将y =x 2+3x -3,a =-3代入集合B 中的方程并整理得x 2+6x -3=0, 解得x =-3±23,所以B ={-3-23,-3+23}.能力提升8.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…可表示为( )A.⎩⎨⎧⎭⎬⎫x |x =2n +12n ,n ∈N *B.⎩⎨⎧⎭⎬⎫x |x =2n +3n ,n ∈N * C.⎩⎨⎧⎭⎬⎫x |x =2n -1n,n ∈N * D.⎩⎨⎧⎭⎬⎫x |x =2n +1n,n ∈N * 解析 ∵3=31,观察集合中的元素,不难发现,若令分母为n ,则分子为2n +1,且n ∈N *,∴集合为⎩⎨⎧⎭⎬⎫x |x =2n +1n,n ∈N *. 答案 D9.用描述法表示图中所示阴影部分的点(包括边界上的点)组成的集合是( )A.{-2≤x ≤0且-2≤y ≤0}B.{(x ,y )|-2≤x ≤0且-2≤y ≤0}C.{(x ,y )|-2≤x ≤0且-2≤y <0}D.{(x ,y )|-2≤x <0或-2≤y ≤0}解析 由阴影知,-2≤x ≤0且-2≤y ≤0,∴集合{(x ,y )|-2≤x ≤0,且-2≤y ≤0}表示阴影部分的点组成的集合. 答案 B10.若集合A ={-2,2,3,4},集合B ={x |x =t 2,t ∈A },用列举法表示集合B =________.解析 当t =-2,2,3,4时,x =4,4,9,16,故集合B ={4,9,16}. 答案 {4,9,16}11.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B =⎩⎨⎧⎭⎬⎫x |x -23<0,则集合A -B =________.解析 易知A ={x |x >-12},B ={x |x <2},故A -B ={x |x ≥2}.答案 {x |x ≥2}12.用列举法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合; (2)式子|a |a +|b |b(a ≠0,b ≠0)的所有值组成的集合.解 (1)满足条件的数有3,5,7,所以所求集合为:{3,5,7}. (2)∵a ≠0,b ≠0,∴a 与b 可能同号也可能异号,故 ①当a >0,b >0时,|a |a +|b |b =2;②当a <0,b <0时,|a |a+|b |b=-2; ③当a >0,b <0或a <0,b >0时,|a |a +|b |b=0.故所有的值组成的集合为{-2,0,2}.13.(选做题)已知集合S 满足若a ∈S ,则11-a ∈S .请解答下列问题:(1)求证:若a ∈S ,则1-1a∈S ;(2)在集合S 中,元素能否只有一个?若能,把它求出来,若不能,请说明理由. (1)证明 由题意可知a ≠1且a ≠0,由11-a ∈S ,得11-11-a∈S , 即11-11-a =1-a 1-a -1=1-1a ∈S . ∴若a ∈S ,则1-1a∈S .(2)解 集合S 中的元素不能只有一个.理由如下: 令a =11-a,即a 2-a +1=0. ∵Δ=(-1)2-4<0,∴此方程无实数解,∴a ≠11-a.因此集合S中不可能只有一个元素.。

1.1.1集合的含义与表示

1.1.1集合的含义与表示

观察下列对象能否构成集合? (1)满足X-3>2的全体实数 (2)本班的全体男生 (3)我国的四大发明 (4)2008年北京奥运会中的球类项目 (5)不等式2X+3 < 9的自然数解; (6)所有的直角三角形;
那么这些集合有没有其它的表示方式?
四、集合的表示法
1. 列举法:将集合的元素一一列举出 来,并置于花括号“{ }”内。 用这种方法表示集合,元素要用逗 号隔开,但与元素的次序无关。
三、集合与元素的关系
如果元素a是集合A的元素,就记作a∈A,读作a属于A;
如果元素a不是集合A的元素,就记作a
Ï
A,读作a不属于A。
例2 用符号“∈”或“Ï ”填空: (1) 3.14_Q; (3)0 _ N+ ; (2) π_Q; (4)0 _ N ;
(5)(-2)0 _ N+ ; (6) 2 5 _ Z; (7) 2 5 _ Q.
C
C
Q
§1.1集合
蓝蓝的天空中,一群鸟在欢快的飞翔
茫茫的草原上,一群羊在悠闲的走动 清清的湖水里,一群鱼在自由地游动; -----
“集合”在现代汉语解释为许多的人或物聚在一起
C
1.根据下面的例子向同学介绍你家原来就读的学校、现在班级 同学的情况。
例:“我原来就读于第二中学” “我现在的班级是高一(2)班,全班共40人,其中男生23人,女 生17人。”
(2)设大于10小于20的整数为x, 它满足条件x Î Z 且10 < x < 20, 因此, 用描述法表示为 B = {x ? Z |10 x < 20}. 大于10小于20的整数有11,12,13,14,15,16,17,18, 19, 因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.

1.1.1集合的含义及表示(二)

1.1.1集合的含义及表示(二)

• • • • •
例2:用描述法表示下列集合. (1)正奇数集; (2)大于3且小于10的整数组成的集合; (3)方程x2+ax+b=0的解集; (4)平面直角坐标系中第一象限的点集.
分析:首先搞清楚集合的元素是什么,然后用描述法表示集合.
• • • • •
解:(1){正奇数}={x|x=2k+1,k∈N}; (2){大于3且小于10的整数} ={x∈Z|3<x<10}; (3){x|x2+ax+b=0}; (4){(x,y)|x>0且y>0}.
三、集合的分类
• 有限集——含有有限个元素的集合。 • 无限集——含有无限个元素的集合。 空集:不含任何元素的集合。记作 , 2 { 如: x R | x 1 0} 下列选项中正确的个数有( ) ① 0 ; ② ; ④ a 。 A.1 B.2 C.3 D.4 ③0
0 ;
补充练习
x y 2 1.方程组 的解集用列举法表示 x y 5 为________;用描述法表示为 .
2. 用列举法表示为
{( x, y) | x y 6, x N , y N}
.
二、集合的表示方法
1.列举法
在用列举法表示集合时应注意以下四点:
(1)元素间用分隔号“,”;
(2)元素不重复; (3)不考虑元素顺序; (4)对于含有较多元素的集合,如果构成该集合的元 素有明 显规律,可用列举法,但是必须把元素间的 规律显示清楚后 方能用省略号.
如“中国的直辖市”构成了一个
集合,用列举法表示为{北
所具有的属性描述出来,如﹛自然数﹜ (2)符号描述法——用符号把元素所具有 的属性描述出来,即{x| P(x)}或{x∈A| P (x)}等。 含义:在集合A中满足条件P(x)的x的集合。

高中数学:第1章 1.1.1 集合的概念

高中数学:第1章 1.1.1 集合的概念

1.1 集合与集合的表示方法1.1.1 集合的概念1.通过实例了解集合的含义.(难点)2.掌握集合中元素的三个特性.(重点)3.体会元素与集合的“从属关系”,记住常用数集的表示符号并会应用.(重点、易混点)基础·初探]教材整理1元素与集合的相关概念阅读教材P3~P4“第7行”的部分,完成下列问题.1.集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用英语大写字母A,B,C,…来表示.2.元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记作∅.判断(正确的打“√”,错误的打“×”)(1)本班的“帅哥”组成集合.()(2)漂亮的花组成集合.()(3)联合国常任理事国组成集合.( )【解析】 (1)不正确.因为“帅哥”没有统一标准,即元素不确定,不能组成集合.(2)不正确.因为什么样的花是漂亮的花不确定,不能组成集合.(3)正确.因为联合国常任理事国是确定的,所以能组成集合.【答案】 (1)× (2)× (3)√教材整理2 元素与集合的关系阅读教材P 3“最后一行”~P 4“第6行”以上的内容,完成下列问题.1.属于:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A .2.不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A .用符号“∈”或“∉”填空:0__________∅,-12________Z ,π __________Q ,4________Q ,|-4|________N *.【解析】 根据常见数集及其记法进行判断.【答案】 ∉ ∉ ∉ ∈ ∈教材整理3 集合的特性及分类 阅读教材P 4“思考与讨论”以下~P 4“练习A ”以上的内容,完成下列问题.1.集合元素的特性:确定性、互异性、无序性.2.集合的分类(1)有限集:含有有限个元素的集合.(2)无限集:含有无限个元素的集合.3.常用数集及符号表示名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R已知集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为() A.0B.1C.-1 D.1或-1【解析】当x=0,1,-1时,都有x2∈A,但考虑到集合元素的互异性,x≠0,x≠1,故x=-1.【答案】 C小组合作型]集合的概念.①所有的正三角形;②比较接近1的数的全体;③某校高一年级所有16岁以下的学生;④平面直角坐标系内到原点距离等于1的点的集合;⑤所有参加2016年里约热内卢奥运会的年轻运动员;⑥2的近似值的全体.【导学号:60210000】【精彩点拨】判断一组对象能否组成集合的关键是看该组对象是否具有明确的标准,即给定的对象是“模棱两可”还是“确定无疑”.【自主解答】①能构成集合,其中的元素满足三条边相等;②不能构成集合,因为“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;③能构成集合,其中的元素是“某校高一年级16岁以下的学生”;④能构成集合,其中的元素是“平面直角坐标系内到原点的距离等于1的点”;⑤不能构成集合,因为“年轻”的标准是模糊的、不确定的,故不能构成集合;⑥不能构成集合,因为“2的近似值”未明确精确到什么程度,因此很难断定一个数是不是它的近似值,所以不能构成集合.【答案】①③④判断每个对象是否具有确定性是判断其能否构成集合的关键,而判断一个对象是不是确定的,关键就是要找到一个明确的衡量标准,同时还要注意集合中的元素的互异性、无序性.再练一题]1.下列各组对象中不能构成集合的是()A.佛冈中学高一班的全体男生B.佛冈中学全校学生家长的全体C.李明的所有家人D.王明的所有好朋友【解析】A中,佛冈中学高一班的全体男生,满足集合元素的确定性和互异性,故可以构成集合;B中,佛冈中学全校学生家长的全体,满足集合元素的确定性和互异性,故可以构成集合;C中,李明的所有家人,满足集合元素的确定性和互异性,故可以构成集合;D中,王明的所有好朋友,不满足集合元素的确定性,故不可以构成集合.故选D.【答案】 D元素与集合的关系给出下列6个关系:①22∈R,②3∈Q,③0∉N,④4∈N,⑤π∈Q,⑥|-2|∉Z.其中正确命题的个数为()A.4B.3C.2D.1【精彩点拨】首先明确字母R、Q、N、Z的意义,再判断所给的数与集合的关系是否正确.【自主解答】R、Q、N、Z分别表示实数集、有理数集、自然数集、整数集,所以①④正确,因为0是自然数,3,π都是无理数,所以②③⑤⑥不正确.【答案】 C1.判断一个元素是不是某个集合中的元素,关键是判断这个元素是否具有这个集合的元素的共同特性.2.解决本例及类似问题要准确记忆数集Q,N,R及Z的含义,防止因混淆其含义而出现失误.再练一题]2.用符号“∈”或“∉”填空.若A表示第一、三象限的角平分线上的点的集合,则点(0,0)________A,(1,1)________A,(-1,1)________A.【解析】第一、三象限的角平分线上的点的集合可以用直线y=x 表示,显然(0,0)、(1,1)都在直线y=x上,(-1,1)不在直线上.∴(0,0)∈A,(1,1)∈A,(-1,1) ∉A.【答案】∈∈∉探究共研型]集合中元素的特性探究1100米的楼能否组成一个集合?集合的定义中“某些确定的”含义是什么?【提示】“北京市的高楼”不能组成一个集合,因为“高楼”没有明确的标准,而“北京市高于100米的楼能组成一个集合,因为标准是确定的.集合的定义中“某些确定的”含义是集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.探究2“小于4的自然数”构成的集合中有哪些元素?甲同学的答案是0,1,2,3;乙同学的答案是3,2,1,0,他们的回答都正确吗?由此说明什么?【提示】两个同学的回答都是正确的.由此说明集合中的元素是没有先后顺序的,这就是集合中元素的无序性.探究3若a和a2都是集合A中的元素,则实数a的取值范围是什么?【提示】因为a和a2都是集合A中的元素,所以a≠a2,即a≠0且a≠1.若集合A中的三个元素分别是a-3,2a-1,a2-4,a∈Z且-3∈A,求实数a的值.【精彩点拨】按-3=a-3或-3=2a-1或-3=a2-4分三类分别求解实数a的值,注意验证集合A中元素是否满足互异性.【自主解答】(1)若-3=a-3,则a=0,此时集合A中的三个元素分别是-3,-1,-4,满足题意;(2)若-3=2a-1,则a=-1,此时集合A中的三个元素分别是-4,-3,-3,不满足题意;(3)若-3=a2-4,则a=±1.当a=1时,集合A中的三个元素分别是-2,1,-3,满足题意;当a=-1时,由(2)知,不满足题意.综上可知,a=0或a=1.1.本题按-3=a-3或-3=2a-1或-3=a2-4为标准分类,从而做到“不重不漏”;在解含字母的问题中,常常采用分类讨论的思想,注意分类标准的统一和明确.2.本题在求解的过程中,常因忽视检验集合中元素的互异性,导致产生增解-1.再练一题]3.若将本例中的条件“-3∈A”换成“a∈A”,求相应问题.【解】∵a∈A且a∈Z,∴a=a-3或a=2a-1或a=a2-4,解得a=1,此时集合A中有三个元素-2,1,-3,符合题意.故所求a的值为1.1.下列对象不能构成集合的是()①我国近代著名的数学家;②所有的欧盟成员国;③空气中密度大的气体.A.①②B.②③C.①②③D.①③【解析】 研究一组对象能否构成集合的问题,首先要考查集合中元素的确定性.①中的“著名”没有明确的界限;②中的研究对象显然符合确定性;③中“密度大”没有明确的界限.故选D.【答案】 D2.下列三个关系式:①5∈R ;②14∉Q ;③0∈Z .其中正确的个数是( )A .1B .2C .3D .0【解析】 ①正确;②因为14∈Q ,错误;③0∈Z ,正确.【答案】 B3.已知集合A 中只有一个元素1,若|b |∈A ,则b 等于( )【导学号:60210001】A .1B .-1C .±1D .0【解析】 由题意可知|b |=1,∴b =±1.【答案】 C4.a ,b ,c ,d 为集合A 的四个元素,那么以a ,b ,c ,d 为边长构成的四边形可能是( )A .矩形B .平行四边形C .菱形D .梯形【解析】 由于集合中的元素具有“互异性”,故a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等.【答案】 D5.关于x 的方程x 2+ax +b =0的解集,当a ,b 满足什么条件时,方程的解集含有一个元素?含有两个元素?【解】 当a 2-4b =0时,方程的解集含一个元素;当a2-4b>0时,方程的解集含两个元素.。

高中数学 第一章 集合与常用逻辑用语 1.1 集合 1.1.1 集合及其表示方法 第2课时 集合的表

高中数学 第一章 集合与常用逻辑用语 1.1 集合 1.1.1 集合及其表示方法 第2课时 集合的表

第2课时集合的表示方法必备知识·探新知基础知识1.列举法把集合中的元素__一一列举__出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法.思考1:用列举法可以表示无限集吗?提示:可以.但构成集合的元素必须具有明显的规律,并且表示时要把元素间的规律呈现清楚,如正整数集N+可表示为{1,2,3,4,5,6,…}.2.描述法(1)特征性质:属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.(2)特征性质描述法(简称为描述法):集合A可以用它的特征性质p(x)表示为__{x|p(x)}__.(3)集合__{x|p(x)}__中所有在另一个集合I中的元素组成的集合,可以表示为{x∈I|p(x)}.思考2:用列举法与描述法表示集合的区别是什么?提示:列举法描述法一般形式{a1,a2,a3,…,a n}{x∈I|p(x)}适用范围有限集或规律性较强的无限集有限集、无限集均可特点直观、明了抽象、概括3.区间及其表示(1)一般__区间__的表示.设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b)半开半{x|a≤x<b}[a,b)闭区间半开半(a,b]{x|a<x≤b}闭区间(2)特殊区间的表示.定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)思考3:区间与数集有何关系?提示:(1)联系:区间实际上是一类特殊的数集(连续的)的符号表示,是集合的另一种表达形式;(2)区别:不连续的数集不能用区间表示,如整数集、自然数集等;(3)区间与区间之间可以用集合的运算符号连接起来,表示两个集合之间的运算.基础自测1.用列举法表示集合{x∈N*|x-3≤2}为( D )A.{0,1,2,3,4} B.{0,1,2,3,4,5}C.{1,2,3,4} D.{1,2,3,4,5}解析:集合{x∈N*|x-3≤2}={x∈N*|x≤5}的元素为小于等于5的全部正整数,则{x∈N*|x-3≤2}={x∈N*|x≤5}={1,2,3,4,5}.2.第一象限的点组成的集合可以表示为( C )A.{(x,y)|xy>0} B.{(x,y)|xy≥0}C.{(x,y)|x>0且y>0} D.{(x,y)|x>0或y>0}解析:第一象限的点的横坐标和纵坐标都大于0,所以第一象限的点组成的集合可以表示为{(x,y)|x>0且y>0}.3.能被2整除的正整数组成的集合,用描述法可表示为__{x|x=2n,n∈N*}__.4.下列集合:①{1,2,2};②R={全体实数};③{3,5};④不等式x-5>0的解集为{x-5>0}.其中,集合表示方法正确的是__③__(填序号).5.(1){x |-1≤x ≤2)}可用区间表示为__[-1,2]__; (2){x |1<x ≤3}可用区间表示为__(1,3]__; (3){x |x >2}可用区间表示为__(2,+∞)__; (4){x |x ≤-2}可用区间表示为__(-∞,-2]__.关键能力·攻重难类型 用列举法表示集合 ┃┃典例剖析__■典例1 用列举法表示下列集合:(1)36与60的公约数构成的集合;(2)方程(x -4)2(x -2)=0的根构成的集合;(3)一次函数y =x -1与y =-23x +43的图像的交点构成的集合.思路探究:(1)要明确公约数的含义;(2)注意4是重根;(3)要写成点集形式. 解析:(1)36与60的公约数有1,2,3,4,6,12,所求集合可表示为{1,2,3,4,6,12}. (2)方程(x -4)2(x -2)=0的根是4,2,所求集合可表示为{2,4}.(3)方程y =x -1与y =-23x +43可分别化为x -y =1与2x +3y =4,则方程组⎩⎪⎨⎪⎧x -y =1,2x +3y =4的解是⎩⎪⎨⎪⎧x =75,y =25,所求集合可表示为{(75,25)}.归纳提升:1.用列举法表示集合的三个步骤 (1)求出集合的元素.(2)把元素一一列举出来,且相同元素只能列举一次. (3)用花括号括起来.2.在用列举法表示集合时的关注点(1)用列举法书写集合时,先应明确集合中的元素是什么.如本题(4)是点集,而非数集.集合的所有元素用有序数对表示,并用“{}”括起来,元素间用分隔号“,”.(2)元素不重复,元素无顺序,所以本题(1)中,{1,1,2}为错误表示.又如集合{1,2,3,4}与{2,1,4,3}表示同一集合.┃┃对点训练__■1.用列举法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合. (2)式子|a |a +|b |b(a ≠0,b ≠0)的所有值组成的集合.解析:(1)满足条件的数有3,5,7,所以所求集合为{3,5,7}. (2)因为a ≠0,b ≠0,所以a 与b 可能同号也可能异号, 所以①当a >0,b >0时,|a |a +|b |b=2;②当a <0,b <0时,|a |a +|b |b=-2;③当a >0,b <0或a <0,b >0时,|a |a +|b |b=0.故所有的值组成的集合为{-2,0,2}. 类型 用描述法表示集合 ┃┃典例剖析__■典例2 用描述法表示以下集合:(1)所有不小于2,且不大于20的实数组成的集合; (2)平面直角坐标系内第二象限内的点组成的集合; (3)使y =2-xx有意义的实数x 组成的集合;(4)200以内的正奇数组成的集合; (5)方程x 2-5x -6=0的解组成的集合.思路探究:用描述法表示集合时,关键要先弄清元素的属性是什么,再给出其满足的性质,注意不要漏掉类似“x ∈N ”等条件.解析:(1)集合可表示为{x ∈R |2≤x ≤20}.(2)第二象限内的点(x ,y )满足x <0,且y >0,故集合可表示为{(x ,y )|x <0且y >0}.(3)要使该式有意义,需有⎩⎪⎨⎪⎧2-x ≥0,x ≠0,解得x ≤2,且x ≠0.故此集合可表示为{x |x ≤2,且x ≠0}. (4){x |x =2k +1,x <200,k ∈N }. (5){x |x 2-5x -6=0}.归纳提升:用描述法表示集合应注意的问题1.写清楚该集合中的代表元素,即弄清代表元素是数、点还是其他形式. 2.准确说明集合中元素所满足的特征.3.所有描述的内容都要写在集合符号内,并且不能出现未被说明的符号.4.用于描述的语句力求简明、准确,多层描述时,应准确使用“且”“或”等表示描述语句之间的关系.┃┃对点训练__■ 2.给出下列说法:①在直角坐标平面内,第一、三象限内的点组成的集合为{(x ,y )|xy >0}; ②所有奇数组成的集合为{x |x =2n +1};③集合{(x ,y )|y =1-x }与{x |y =1-x }是同一集合. 其中正确的有( A ) A .1个 B .2个 C .3个D .4个解析:①正确;②不正确,应为{x |x =2n +1,n ∈Z };③不正确,{(x ,y )|y =1-x }表示的是点集,而{x |y =1-x }表示的为数集.类型 集合与方程的综合问题 ┃┃典例剖析__■典例3 (1)若集合A ={x ∈R |ax 2+2x +1=0,a ∈R }中只有一个元素,则a =( D )A .1B .2C .0D .0或1(2)设12∈{x |x 2-ax -52=0},则集合{x }x 2-192x -a =0}中所有元素之积为__92__.思路探究:(1)集合只有一个元素,即方程ax 2+2x +1=0只有一根;(2)先求出a 的值,再求元素之积.解析:(1)当a =0时,原方程变为2x +1=0, 此时x =-12,符合题意;当a ≠0时,方程ax 2+2x +1=0为一元二次方程,Δ=4-4a =0,即a =1,原方程的解为x =-1,符合题意.故当a =0或a =1时,原方程只有一个解, 此时A 中只有一个元素. (2)因为12∈{x |x 2-ax -52=0}.所以(12)2-12a -52=0,解得a =-92,当a =-92时,方程x 2-192x +92=0的判别式Δ=(-192)2-4×92=2894>0,由x 2-192x +92=0,解得x 1=12,x 2=9,所以{x |x 2-192x +92=0}={12,9},故集合{x |x 2-192x +92=0}的所有元素的积为12×9=92.归纳提升:集合与方程综合问题的解题策略(1)对于一些已知某个集合(此集合中涉及方程)中的元素个数,求参数的问题,常把集合的问题转化为方程的解的问题.如对于方程ax 2+bx +c =0,当a =0,b ≠0时,方程有一个解;当a ≠0时,若Δ=0,则方程有两个相等的实数根;若Δ<0,则方程无解;若Δ>0,则方程有两个不等的实数根.(2)集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程实数根的情况,进而求得结果.需特别注意判别式在一元二次方程的实数根个数的讨论中的作用.┃┃对点训练__■3.(1)已知集合A ={x |x 2-ax +b =0},若A ={2,3},求a ,b 的值.(2)若本例(1)中“只有一个元素”变为“至少有一个元素”,求a 的取值范围.解析:(1)由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,∴⎩⎪⎨⎪⎧4-2a +b =0,9-3a +b =0,解得⎩⎪⎨⎪⎧a =5,b =6.因此a =5,b =6.(2)A 中至少有一个元素,即A 中有一个或两个元素.由例题解析可知,当a =0或a =1时,A 中有一个元素;当A 中有两个元素时,Δ=4-4a >0,即a <1且a ≠0.所以A 中至少有一个元素时,a 的取值范围为(-∞,1].易混易错警示 对集合中的代表元素认识不到位┃┃典例剖析__■典例4 用列举法表示下列集合:(1)A ={y |y =-x 2+6,x ∈N ,y ∈N }; (2)B ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N };(3)C ={方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1,的解}.错因探究:(1)本题容易忽略集合的代表元素是y ,习惯认为是x ,误认为A ={0,1,2}.(2)本题容易忽略代表元素,把点集误认为数集,导致错误答案B ={0,6,1,5,2}.(3)本题容易对“方程组的解为有序实数对”认识不到位,导致错误答案C ={1,2}.解析:(1)因为y =-x 2+6≤6,且x ∈N ,y ∈N , 所以当x =0,1,2时,y =6,5,2,符合题意, 所以用列举法表示为A ={2,5,6}.(2)(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则有⎩⎪⎨⎪⎧x =0,y =6,⎩⎪⎨⎪⎧x =1,y =5,⎩⎪⎨⎪⎧x =2,y =2,满足条件,所以用列举法表示为B ={(0,6),(1,5),(2,2)}.(3)方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是有序实数对,其解的集合可以表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x =1,y =2,用列举法表示为{(1,2)}. 误区警示:当用描述法表示集合时,要注意其表达符号(花括号、竖线),竖线前表示代表元素,竖线后为元素的特征性质.看一个集合要先弄清其代表元素是什么,再弄清元素具有的特征性质是什么.学科核心素养 集合中的“新定义”问题 ┃┃典例剖析__■“新定义”型集合问题就是在已有的运算法则和运算律的基础上,结合已学的集合知识来求解的一种新型集合问题.由于“新定义”题目形式新颖,强调能力立意,突出对学生数学素养的考查,特别能够考查学生“后继学习”的能力,因此在近年来成为各类考试的热点.新定义可能以文字形式出现,也可能以数学符号或数学式子的形式出现,求解此类问题时,应充分利用题目中所给的信息,准确将其转化为已掌握的知识进行求解.典例5 定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B中所有元素之和为( D )A.0 B.2C.3 D.6分析:欲求A*B中所有元素之和,需先确定A*B中的元素,而要求A*B中的元素,需弄清A*B的含义.解析:∵A*B中的元素是A,B中各任取一元素相乘所得结果,∴只需把A中任意元素与B中任意元素相乘即可.∵1×0=0,1×2=2,2×0=0,2×2=4,∴A*B={0,2,4},∴所有元素之和为0+2+4=6.规律方法:(1)理解新定义.例如,本例中A*B中的元素是由A、B中任意两个元素相乘得来的.(2)运用新定义.例如,本例给出具体的A、B,求A*B.(3)不要被新符号迷惑.例如,本例中的新符号“*”,把它看成新定义的运算,就像“+”“-”“×”“÷”一样,用符号表示运算法则.课堂检测·固双基1.下列集合中,不同于另外三个集合的是( C )A.{x|x=2 019} B.{y|(y-2 019)2=0}C.{x=2 019} D.{2 019}解析:选项A,B,D中都只有一个元素“2019”,故它们都是相同的集合;而选项C中虽然只有一个元素,但元素是等式x=2 019,而不是实数 2 019,故此集合与其他三个集合不同.2.由大于-3且小于11的偶数所组成的集合是( D )A.{x|-3<x<11,x∈Q}B.{x|-3<x<11}C.{x|-3<x<11,x=2k,k∈N}D.{x|-3<x<11,x=2k,k∈Z}解析:选项A 表示的是所有大于-3且小于11的有理数;选项B 表示的是所有大于-3且小于11的实数;选项C 表示的集合中不含有-2这个偶数.3.用列举法表示集合⎩⎨⎧x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x 2y =-x 正确的是( B )A .(-1,1),(0,0)B .{(-1,1),(0,0)}C .{x =-1或0,y =1或0}D .{-1,0,1}解析:解方程组⎩⎪⎨⎪⎧y =x 2,y =-x ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =-1,y =1,所以已知集合可用列举法表示为{(-1,1),(0,0)}.4.若A ={2,3,4},B ={x |x =n -m ,m ,n ∈A ,m ≠n },则集合B 中的元素个数为__4__. 解析:当n =2,m =3时,n -m =-1; 当n =2,m =4时,n -m =-2; 当n =3,m =4时,n -m =-1; 当n =3,m =2时,n -m =1; 当n =4,m =2时,n -m =2; 当n =4,m =3时,n -m =1.所以集合B 中的元素共4个:-2,-1,1,2.5.用适当的方法表示下列集合,并指出它是有限集还是无限集. (1)由方程x 2+x -2=0的根组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合; (3)不等式3x +4≥x 的解集.解析:(1)因为方程x 2+x -2=0的两根为x 1=-2,x 2=1,所以由方程x 2+x -2=0的根组成的集合为{-2,1}.有限集.(2)用描述法表示该集合为M ={(x ,y )|y =-x +4,x ∈N ,y ∈N },或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.有限集.(3)由3x +4≥x 得2x ≥-4,所以x ≥-2,所以不等式3x +4≥x 的解集是[-2,+∞).无限集.。

1.1.1集合(第2课时表示集合的方法)课件高一上学期数学

1.1.1集合(第2课时表示集合的方法)课件高一上学期数学

(2,7]
.
(2)使函数 y= -1与 y=
1
同时有意义的实数 x 的取值范围用区间表示
5-2

5
1, 2
3
2
,其长度是
.
≥ 1,
-1 ≥ 0,
5
解析 函数 y= -1与 y=
同时有意义的实数 x 满足

< 2.
5-2 > 0,
5-2
1
因此 x 同时满足 x≥1 且
5
x< ,即
值范围用区间表示为
1
,+∞
2
.
解析 由题意可知满足区间(a,3a-1)的实数 a 应满足 3a-1>a,即
故实数 a 的取值范围用区间表示为
1
,+
2
∞ .
1
a>2,
(2)使函数 y= 1-3有意义的实数 x 的取值范围用区间表示为
解析 函数 y= 1-3有意义的实数 x 的范围应满足 1-3x≥0,即
讨论,从而做到不重不漏.
3.解集合与含有参数的方程的综合问题时,一般要求对方程中最高次项的
系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关
注判别式在一元二次方程的实数根个数的讨论中的作用.
探究点四
区间概念的理解及应用
【例4】 (1)若集合M是一个数集,且可应用区间(a,3a-1)表示,则实数a的取
1 2 3 4 5 6 7 8 9 10
2.集合{x∈N|x-2<2}用列举法表示是( D )
A.{1,2,3}
B.{1,2,3,4}
C.{0,1,2,3,4}
D.{0,1,2,3}

1.1.1集合及其表示方法(讲义8大题型)(原卷版)

1.1.1集合及其表示方法(讲义8大题型)(原卷版)

1.1.1集合及其表示方法1、准确理解集合与元素的含义及集合与元素的属于关系.2、在具体情境中,了解空集的含义,理解有限集与无限集;3、能利用集合元素的确定性、互异性、无序性解决一些简单问题;4、熟记常用数集的表示符号,通过常用数集准确把握元素与集合之间的关系.知识点1 集合的含义1、概念把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成的一个集合(有时简称集),组成集合的每个对象都是这个集合的元素.集合通常用大写的拉丁字母A,B,C,…表示,元素常用小写的拉丁字母a,b,c,…表示.2、要点辨析(1)对象:现实生活中我们看到的、听到的、触摸到的、想到的事和物等,都可以看作“对象”,即集合的元素,它具有广泛性,组成集合的对象可以是数、图形、人、物等.(2)集合:集合是一个原式的、不加定义的概念,就如几何重点、线、面一样无法被“定义”;(3)元素:具有共同特征或共同的属性的对象;(4)总体:集合是一个整体,暗含“所有”“全部”的含义,因此,一些对象一旦组成集合,这个集合就是这些对象的全体,而非个体.知识点2 元素与集合1、元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A . 2、集合中元素的三大特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.注意:如果元素的界限不明确,即不能构成集合。

例如著名的科学家;比较高的人等(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的. 简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.知识点3 集合的表示方法与分类1、常用数集及其记法 名称 自然数集正整数集整数集有理数集实数集记法 N*N 或+NZQR2、集合的表示方法(1)列举法:把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法. 【注意】①元素与元素之间必须用“,”隔开;②集合中的元素必须是明确的;③集合中的元素不能重复;④集合中的元素可以是任何事物.(2)描述法:一般地,设A 表示一个集合,把集合A 中所有具有共同特征P (x )的元素x 所组成的集合表示为{x ∈A |P (x )},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线. 【注意】①首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.②若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围. ③多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内. (3)图示法:画一条封闭曲线,用它的内部表示集合. 3、集合的分类(1)一般地,我们把不含任何元素的集合称为空集,记作∅;(2)集合可以根据它含有的元素个数分为两类:含有有限个元素的集合称为有限集;含有无限个元素的集合称为无限集.空集可以看成含有0个元素的集合,所以空集是有限集. 4、集合相等给定两个集合A 和B ,如果组成他们的元素完全相同,就称这两个集合相等,记作A =B .知识点4 区间的概念1、一般区间的表示设a ,b 是两个实数,而且a <b ,我们规定:这里的实数叫做区间的端点.在用区间表示连续的数集时,包含端点的那一端用中括号表示,不包含端点的那一端用小括号表示.2可以用区间表示为(-∞,+∞),“∞”读作“无穷大”, “-∞”读作“负无穷大”,“+∞”读作“正无穷大”. 3、特殊区间的表示【常用方法技巧】b a ,1、判断一组对象能否组成集合的标准判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合,否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.2、元素与集合关系的判断方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.3、利用集合中元素的特异性求参数(1)集合问题的核心即研究集合中的元素,在解决这类问题时,要明确集合中的元素是什么;(2)构成集合的元素必须是确定的(确定性),且是互不相同的(互异性),书写时可以不考虑先后顺序(无序性).(3)利用集合元素的特性求参数问题时,先利用确定性解出字母所有可能值,再根据互异性对集合中元素进行检验,要注意分类讨论思想的应用.4、集合与方程的综合问题(1)弄清方程与集合的关系,往往是用集合表示方程的解集.集合中的元素就是方程的实数根.(2)当方程中含有参数时,往往要根据方程实数根的情况来确定参数的值或取值范围,有时还要进行分类讨论.求出参数的值或取值范围后还要检验是否满足集合中元素的特性.5、集合的新定义问题解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்


高教社
新知
列举法.把集合的元素一一列举出来,写在大括号 1 内,元素之间用逗号隔开 .
描述法.用集合所含元素的共同特征表示集合的方法称 2
.
为描述法,一般形式为 x A P,其中x代表元素,P是确定条件.
高教社
试试
试试:方程
x 2 的所有实数根组成的集合,用描述法表示为 30
x R x
2. 若集合 A {1,3} ,集合 B {x | x2 ax b 0} ,且 A B ,求实数 a、b.
高教社
归纳小结 强化思想
元素集合
概念特点
关系
表示方法
高教社
自我反思 目标检测
学习效果 学习行为
学习方法
高教社
阅读
教材 章节1.1

书写

高教社
学习与训练 习题1.1
x Z 10 x 20 用描述法表示为:
高教社
典型例题
例2 分别用列举法和描述法表示下列集合:
3x y 2 方程组 解集。 2 x 3 y 27 7 解:列举法表示为: 3, 描述法:
练习:用描述法表示下列集合 .
3x y 2 x , y 2 x 3 y 27
2
3 0

高教社
典型例题
例1 分别用列举法和描述法表示下列集合: ⑴ 方程
x x2 1 0 的所有实数根组成的集合 ;


(2) 由大于10小于20的所有整数组成的集合。
{-1,0,1}; (1)解:用列举法表示为: .
用描述法表示为:x R xx 2 1 0


(2)解:用列举法表示为:{11,12,13,14,15,16,17,18,19};
实践 探究生活中集合知识的应用
再 见
高教社
(1)方程的所有实数根组成的集合; x R x 3 4 x 0 (2)所有奇数组成的集合。x x 2k 1, k Z


高教社
典型例题
变式:以下三个集合有什么区别 (1) (2)
x, y y ; x 1 y y ;(3) x 1
2 2
x y x 1
高教社
学习探究
问题 不大于5的自然数所组成的集合中有哪些元素?
小于5的实数所组成的集合中有哪些元素?
只有0、1、2、3、4、5这6个元素 元素是可以一一列举的
元素有无穷多个,特征: (1) 集合的元素都是实数; (2)集合的元素都小于5.
元素无法一一列举但特征明显
高教社
学习探究
问题 你能用自然语言描述集合{2,4,6,8}吗?
2
(1)点集;(2)代表元素是 y;(3)代表元素是x. .
高教社
学习小结
1 集合的表示有哪几种方法?各自有什么特点?
2
如何选择集合的表示法?
列举法、描述法.
用列举法表示集合,元素清晰明了; 用描述法表示集合,特征性质直观明确; 表示集合时,要针对实际情况,选用合适的方法. 例如,不等式(组)的解集,一般采用描述法来表示, 方程(组)的解集,一般采用列举法来表示
.
高教社
当堂检测
D ). 1. 设 A x N 1 x 6,则下列正确的是( A 6 A . B 0 A . C 3 A . D 3.5 A. 2. 下列说法正确的是( C). A.不等式 2 x 5 3 的解集表示为 x 4 B.所有偶数的集合表示为 x x 2k C.全体自然数的集合可表示为{自然数} D. 方程 x 2 4 0 实数根的集合表示为 2,2 3. 一次函数 y x 3与 y 2 x 的图象的交点组成的集合是 ( D ). 1,2 B. {x 1, y 2} A. y x 3 } C. {(2,1)} D. {( x, y ) |
y 2 x
高教社
当堂检测
4. 用列举法表示集合 A {x Z | 5 x 10} 为
5.集合A={x|x=2n且n∈N}, B {x | x2 6x 5 0} ,用∈或 填空: 4 A,4 B,5 A,5 B.
高教社
延伸拓展
1. (1)设集合 A {( x, y ) | x y 6, x N , y N } ,试用列举 法表示集合A. (2)设A={x|x=2n,n∈N,且n<10},B={3的倍数},求 属于A且属于B的元素所组成的集合.
第一章 集 合
1.1 集合的表示方法
高教社
学习目标
(1)了解集合的含义、元素与集合的“属于”关系。 (2)能用自然语言、图形语言、集合语言(列举法或描述法) 描述不同的具体。 (3)掌握集合的表示方法、常用数集及其记法、集合元素的 三个特征。
高教社
复习
1.一般地,指定的某些对象的全体称为集合 。其中的每个对象 叫作 元素 。集合中的元素具备 确定性 、 互异性 、 无序性 特征. 集合与元素的关系有 属于 、 不属于。 2.集合 A x 2 2 x 1 的元素是 x 2 2 x 1 ,若1∈A, 则 x 0或-2 。 3.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个 集合有何关系? 1,2 2,1 1,2 与2,1 关于 y x
你能用列举法表示不等式 x 1 3 的解集吗?
{大于1小于9的偶数组成的集合}
用自然语言表示
元素有无穷多个,特征: (1) 集合的元素都是实数; (2)集合的元素都小于4.
元素无法一一列举但特征明显
高教社
探究
比较如下表示法: ① {方程 x 2 1 0 的根}; 自然语言 ② {-1,1}; 列举法 ③ x R x 2 1 0 . 描述法
相关文档
最新文档