高一数学教案:集合的表示方法

合集下载

高中数学必修一:1.1集合及其表示 教案

高中数学必修一:1.1集合及其表示 教案
其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等。大家能不能再举一些生活中的实际例子呢?
集合的概念:
一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).
思考:
(1)世界上(3)由实数1、2、3、1组成的集合有几个元素?
引出集合与元素的关系,并通过实例的呈现来讲解,加深学生的理解
通过整理,让学生对数集有一个有一个更深的认识,并能区分各个数集之间的关系。另外,通过自学与讲解让学生掌握集合的两种表示方法。
当堂检测
有效练习

现有:①不大于3的正有理数.②我校高一年级所有高个子的同学.③全部长方形.④全体无实根的一元二次方程.四个条件中所指对象不能组成集合的___.
江南中学数学学科教学设计
课题
§1.1集合及其表示
授课人
课时安排
1
课型
新授
授课时间
第1周
课标依据
1、通过实例了解集合的含义,理解元素与集合的属于关系;
2、针对具体问题能在自然语言和图形语言的基础上,用符号语言刻画集合;
3、在具体情境中,了解全集与空集的含义。
教材分析
在高中数学课程中,集合是刻画一类事物的语言和工具。本单元的学习,可以帮助学生使用集合的语言简洁、准确的表述数学的研究对象,学会用数学的语言表达和交流,积累数学的抽象经验。
备注
实数集R
列举法:把集合中的元素一一列举出来,并用大括号{}括起来表示.
描述法:把集合中元素的公共属性用文字,符号或式子描述出来并用大括号{}括起来表示.
教学反思
本节是集合一章的第一节课,教学中,首先列举了学生在实际生活中所熟悉的、生动的、鲜活的实例,让学生初步感受集合的概念,并理解集合中元素的三大特征,然后,通过复习,引导学生对数集进行归纳整理,最后通过练习与小组讨论,让学生掌握集合的两个表示方法。本节课,没有纠缠在概念上,时间把握也刚刚好,只是课堂气氛不够活跃,在以后的教学中也要注意。

高中数学人教版集合教案

高中数学人教版集合教案

高中数学人教版集合教案
教学目标:
1. 熟练掌握集合的概念和表示方法;
2. 能够进行集合的基本运算;
3. 能够解决与集合相关的问题。

教学重点和难点:
重点:集合的定义和表示方法,集合的基本运算
难点:集合的应用题目解答
教学准备:教材《人教版高中数学》,课件,黑板,彩色粉笔
教学过程:
一、导入(5分钟)
通过举例的方式引出问题:在日常生活中,我们经常听到“集合”的说法,你们知道集合是什么吗?集合有哪些表示方法?
二、讲解与示范(15分钟)
1. 集合的概念:集合是由一些对象组成的总体,这些对象称为集合的元素,用大括号{}表示。

2. 集合的表示方法:列举几个例子,让学生理解集合的表示方法。

3. 集合的基本运算:并集、交集、差集的概念及表示方法。

三、练习与讨论(20分钟)
1. 让学生做一些与集合相关的练习题,巩固集合的概念和基本运算。

2. 引导学生讨论集合的应用题目,如排列组合等。

四、小结与展示(10分钟)
总结本节课的学习内容,强调集合的重要性和应用价值。

五、作业布置(5分钟)
布置相关的练习题,巩固学生的学习成果。

教学反思:
本节课主要是介绍集合的概念和表示方法,以及集合的基本运算。

通过示范和练习,学生能够更好地理解集合的相关知识,并能够在实际问题中灵活运用。

在教学过程中,可以引导学生进行讨论和合作,提高他们的思维能力和解决问题的能力。

高一数学教案范文

高一数学教案范文

高一数学教案范文人教版高一数学教案篇一教学目标:(1)了解集合的表示方法;(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:掌握集合的表示方法;教学难点:选择恰当的表示方法;教学过程:一、复习回顾:1、集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

2、集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系二、新课教学(一)。

集合的表示方法我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,并用花括号“”括起来表示集合的方法叫列举法。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

2、各个元素之间要用逗号隔开;3、元素不能重复;4、集合中的元素可以数,点,代数式等;5、对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为例1.(课本例1)用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1到20以内的所有质数组成的集合;(4)方程组的解组成的集合。

思考2:(课本P4的思考题)得出描述法的定义:(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{}内。

具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

一般格式:如:{x,x-3>2},{(x,y),y=x2+1},{x,直角三角形},…;说明:1、课本P5最后一段话;2、描述法表示集合应注意集合的代表元素,如{(x,y),y=x2+3x+2}与{y,y=x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x,整数},即代表整数集Z。

《高中数学集合》教案模板

《高中数学集合》教案模板

《高中数学集合》教案模板一、教学目标1.知识与技能:●理解集合的概念及其表示方法(列举法、描述法)。

●掌握集合的基本性质:确定性、无序性、互异性。

●能够运用集合的基本运算:并集、交集、补集。

2.过程与方法:●通过实例引入,让学生感受集合概念在现实生活中的应用。

●通过讨论与探索,培养学生的逻辑推理能力和抽象思维能力。

3.情感态度与价值观:●激发学生对数学学习的兴趣和好奇心。

●培养学生的团队合作精神和数学表达的自信心。

二、教学重点与难点1.教学重点:●集合的定义与表示方法。

●集合的基本运算。

2.教学难点:●对集合概念的理解及其在实际问题中的应用。

●集合运算的灵活运用。

三、教学准备•多媒体课件,包括集合的基本概念、表示方法、运算的演示。

•黑板及粉笔,用于板书重点概念和例题。

•练习题册或教学软件,用于学生课堂练习和巩固。

四、教学过程1.导入新课●通过生活中的实例(如班级学生的集合、水果种类的集合等)引出集合的概念。

●提问学生:“你们认为什么是集合?”引导学生初步思考。

2.讲授新课●讲解集合的定义和表示方法(列举法、描述法),并举例说明。

●介绍集合的基本性质,并通过实例让学生理解这些性质。

●讲解集合的基本运算(并集、交集、补集),通过图示和实例帮助学生理解运算过程。

3.互动探究●分组讨论:让学生分组讨论集合概念在实际生活中的应用,并分享讨论结果。

●教师引导:针对学生的讨论结果,教师进行点评和总结,并引导学生深入思考。

4.巩固练习●学生独立完成练习题册中的题目,教师巡视指导。

●针对学生练习中出现的问题,教师进行解答和讲解。

5.课堂小结●总结本节课的学习内容,强调集合概念和运算的重要性。

●布置课后作业,包括复习本节课知识点和完成相关练习题。

五、板书设计●集合的定义与表示方法•列举法•描述法●集合的基本性质•确定性•无序性•互异性●集合的基本运算•并集•交集•补集六、教学反思●在课后对本节课的教学效果进行反思,总结教学中的成功之处和不足。

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

2024年高一数学教案高一数学教案必修一

2024年高一数学教案高一数学教案必修一

2024年高一数学教案必修一第一章集合与函数概念第一课时集合的含义与表示方法一、教学目标1.理解集合的含义,掌握集合的表示方法。

2.能够运用集合的语言描述生活中的现象。

3.培养学生的抽象思维能力和语言表达能力。

二、教学重难点1.重点:集合的含义与表示方法。

2.难点:集合语言的应用。

三、教学过程(一)导入新课同学们,你们听说过集合吗?其实,在我们的生活中,集合无处不在。

今天我们就来学习一下集合的含义与表示方法。

(二)新课讲解1.集合的含义(1)集合的定义:集合是一些明确且不同的对象的全体。

(2)集合的元素:构成集合的对象叫做集合的元素。

(3)集合的性质:确定性、互异性、无序性。

2.集合的表示方法(1)列举法:将集合中的元素一一列举出来,用大括号表示。

(2)描述法:用文字或符号描述集合中元素的特征。

(3)图示法:用Venn图或树状图表示集合。

(三)案例分析1.例题1:下列各式中,哪些是集合?A.{1,2,3,4,5}B.{x|x是小于10的正整数}C.{a,b,c,a}D.{x|x是方程x²3x+2=0的解}解析:A、B是集合,C不是集合(元素不互异),D不是集合(方程解不明确)。

2.例题2:用列举法表示下列集合。

A.所有小于5的正整数B.所有大于0且小于10的偶数解析:A.{1,2,3,4}B.{2,4,6,8}(四)课堂练习1.判断下列各式是否为集合,并说明理由。

A.{1,2,3,4,5}B.{x|x是大于5的正整数}C.{a,b,c,a}D.{x|x是方程x²4x+3=0的解}2.用列举法表示下列集合。

A.所有大于3且小于10的奇数B.所有小于0的整数1.本节课我们学习了集合的含义与表示方法,掌握了集合的性质。

2.能够运用集合语言描述生活中的现象,提高抽象思维能力和语言表达能力。

四、作业布置1.抄写并背诵集合的定义、性质及表示方法。

2.完成课后练习题。

第二章函数及其性质第一课时函数的概念一、教学目标1.理解函数的概念,掌握函数的表示方法。

高中数学 1.1.2集合的表示方法教学设计 新人教B版必修1-新人教B版高一必修1数学教案

高中数学 1.1.2集合的表示方法教学设计 新人教B版必修1-新人教B版高一必修1数学教案

1.1.2 集合的表示方法整体设计教学分析教材借助实例给出了集合的表示方法——列举法和描述法,这是用集合语言表达数学对象所必需的基本知识.教学中要注意引导学生,通过实例,从观察分析集合的元素入手,选择合适的方法表示集合.注意引导学生区分两种表示集合的方法.学习集合语言最好的方法是运用.在教学中,要创造机会让学生运用集合的特征性质描述一些集合,如数集、解集和一些基本图形的集合等.三维目标1.掌握集合的表示法——列举法和描述法,使学生正确把握集合的元素构成与集合的特征性质的关系,从而可以更准确地认识集合.2.能选择适当的方法表示给定的集合,提高学生分析问题和解决问题的能力.重点难点教学重点:集合的表示法.教学难点:集合的特征性质的概念以及运用特征性质描述法正确地表示一些简单的集合.课时安排1课时教学过程推进新课新知探究提出问题①上节所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.②教师可以举例帮助引导:例如,24的所有正约数构成的集合,把24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a与{a}:{a}表示一个集合,该集合只有一个元素,a表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序,相同的元素不能出现两次.又例如,不等式x-3>2的解集,这个集合中的元素有无数个,不适合用列举法表示.可以表示为{x∈R|x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.③让学生思考总结已经学习了的集合表示法.讨论结果:①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法.描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只需去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.应用示例思路1例1用列举法表示下列集合:(1)A={x∈N|0<x≤5};(2)B={x|x2-5x+6=0}.解:(1)A={1,2,3,4,5};(2)B={2,3}.点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常明显地表示出了集合中的元素,是常用的表示法.列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所(1){-1,1};(2)大于3的全体偶数构成的集合;(3)在平面α内,线段AB的垂直平分线.解:(1)这个集合的一个特征性质可以描述为绝对值等于1的实数,即|x|=1.于是这个集合可以表示为{x||x|=1}.(2)这个集合的一个特征性质可以描述为x>3,且x=2n,n∈N.于是这个集合可以表示为{x|x>3,且x=2n,n∈N}.(3)设点P为线段AB的垂直平分线上任一点,点P和线段AB都在平面α内,则这个集合的特征性质可以描述为PA=PB.于是这个集合可以表示为{点P∈平面α|PA=PB}.点评:描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.例1用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x2-9=0的解组成的集合;(4){15以内的质数};(5){x|63-x∈Z,x∈Z}.活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.提示学生注意:(2)中满足条件的数通常按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3-x是6的约数,6的约数有±1,±2,±3,±6.解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};(3)方程x2-9=0的解为-3、3,故用列举法表示为{-3,3};(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};(5)满足63-x∈Z的x有3-x=±1、±2、±3、±6,解之,得x=2、4、1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.点评:本题主要考查集合的列举法表示.列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.(1)二次函数y=x2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.活动:让学生思考用描述法的形式如何表示平面直角坐标系中的点,如何表示数轴上的点,如何表示不等式的解.学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x2;(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;(3)集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x<a的形式,则这些实数的特征是满足x<a.解:(1)二次函数y=x2上的点(x,y)的坐标满足y=x2,则二次函数y=x2图象上的点组成的集合表示为{(x,y)|y=x2};(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};(3)不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学1.(口答)说出下面集合中的元素:(1){大于3小于11的偶数};(2){平方等于1的数};(3){15的正约数}.答案:(1)其元素为4,6,8,10;(2)其元素为-1,1;(3)其元素为1,3,5,15.2.方程ax 2+5x +c =0的解集是{12,13},则a =________,c =________. 解析:方程ax 2+5x +c =0的解集是{12,13},那么12、13是方程的两根, 即有⎩⎪⎨⎪⎧ 12+13=-5a ,12·13=c a ,得⎩⎪⎨⎪⎧ a =-6,c =-1,那么a =-6,c =-1.答案:-6 -13.用列举法表示下列集合:(1)所有绝对值等于8的数的集合A ;(2)所有绝对值小于8的整数的集合B.答案:(1)A ={-8,8};(2)B ={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.4.定义集合运算A⊙B={z|z =xy(x +y),x∈A,y∈B},设集合A ={0,1},B ={2,3},则集合A⊙B 的所有元素之和为( )A .0B .6C .12D .18解析:∵x∈A,∴x=0或x =1.当x =0,y∈B 时,总有z =0.当x =1时,若x =1,y =2时,有z =6;当x =1,y =3时,有z =12.综上所得,集合A⊙B 的所有元素之和为0+6+12=18.答案:D5.分别用列举法、描述法表示方程组⎩⎪⎨⎪⎧ 3x +y =2,2x -3y =27的解集. 解:因⎩⎪⎨⎪⎧ 3x +y =2,2x -3y =27的解为⎩⎪⎨⎪⎧ x =3,y =-7,用描述法表示该集合为{(x ,y)|⎩⎪⎨⎪⎧ 3x +y =22x -3y =27};用列举法表示该集合为{(3,-7)}.拓展提升问题:集合A ={x|x =a +2b ,a∈Z ,b∈Z },判断下列元素x =0、12-1、13-2与集合A 之间的关系.活动:学生先思考元素与集合之间有什么关系,书写过程,将元素x 化为a +2b 的形式,再判断a 、b 是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.解:由于x =a +b 2,a∈Z ,b∈Z , ∴当a =b =0时,x =0.∴0∈A.又12-1=2+1=1+2, 当a =b =1时,a +b 2=1+2,∴12-1∈A. 又13-2=3+2, 当a =3,b =1时,a +b 2=3+2,而 3 Z ,∴13-2A. ∴0∈A,12-1∈A,13-2 A. 点评:本题考查集合的描述法表示以及元素与集合间的关系.课堂小结本节学习了:(1)集合的表示法;(2)利用列举法和描述法表示集合的步骤.作业课本习题1—1A 2、3、4.设计感想集合的列举法和描述法的形式比较容易接受,在设计时注重让学生自己学习,重点引导学生学习这两种方法的应用.同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法.在练习过程中熟练掌握集合语言与自然语言的转换.教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱.对学生解题过程中遇到的困难给予适当点拨.引导学生养成良好的学习习惯,最大限度地挖掘学生的学习潜力是我们教师的奋斗目标.备课资料[备选例题]例1 判断下列集合是有限集还是无限集,并用适当的方法表示.(1)被3除余1的自然数组成的集合;(2)由所有小于20的既是奇数又是质数的正整数组成的集合;(3)二次函数y =x 2+2x -10的图象上的所有点组成的集合;(4)设a 、b 是非零实数,求y =a |a|+b |b|+ab |ab|的所有值组成的集合. 思路分析:本题主要考查集合的表示法和集合的分类.用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.解:(1)被3除余1的自然数有无数个,这些自然数可以表示为3n +1(n∈N ).用描述法表示为{x|x =3n +1,n∈N }.(2)由题意得满足条件的正整数有:3,5,7,11,13,17,19,则此集合中的元素有7个,用列举法表示为{3,5,7,11,13,17,19}.(3)满足条件的点有无数个,则此集合中有无数个元素,可用描述法来表示.通常用有序数对(x ,y)表示点,那么满足条件的点组成的集合表示为{(x ,y)|y =x 2+2x -10}.(4)当ab <0时,y =a |a|+b |b|+ab |ab|=-1;当ab >0时,则a >0,b >0或a <0,b <0.若a >0,b >0,则有y =a |a|+b |b|+ab |ab|=3;若a <0,b <0,则有y =a |a|+b |b|+ab |ab|=-1.∴y=a |a|+b |b|+ab |ab|的所有值组成的集合共有两个元素-1和3.则用列举法表示为{-1,3}.例2 定义A -B ={x|x∈A,x B},若M ={1,2,3,4,5},N ={2,3,6},试用列举法表示集合N -M.解析:应用集合A -B ={x|x∈A,x B}与集合A 、B 的关系来解决.依据定义知N -M 就是集合N 中除去集合M 和集合N 的公共元素组成的集合.观察集合M 、N ,它们的公共元素是2、3,集合N 中除去元素2、3还剩下元素6,则N -M ={6}.答案:{6}.。

高中数学教案-高一-集合及其表示法教案

高中数学教案-高一-集合及其表示法教案

集合及其表示法【教学目标】1.使学生理解集合的含义,知道常用集合及其记法;2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。

【教学重点】集合的含义及表示方法。

【教学难点】集合表示法的恰当选择。

【教学过程】一、问题情境1.情境:新生自我介绍:介绍家庭、原毕业学校、班级。

2.问题。

在介绍的过程中,常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念,这些概念与“学生×××”相比,它们有什么共同的特征?答:都是反映个体和群体的关系,群体是有个体组成的。

二、学生活动1.介绍自己;2.列举生活中的集合实例;3.分析、概括各集合实例的共同特征。

三、数学建构集合论的创始者康托尔(G。

Cantor。

1845-1918,德国数学家、集合论创始人,他于1895年谈到“集合”一词)曾说过:“集合是我们直觉或思维的并且是确定的彼此可以识别的对象的一个群体。

”显然这仅是给出一个描述性的说明。

集合的概念是数学中不定义的原始概念。

1.集合的含义:一般地,一定范围内确定的...对象的全体组成一个集合(set)。

...、不同的构成集合的每一个个体都叫做集合的一个元素(element)。

“element中的字母”构成一个集合,该集合的元素是__________________。

为了书写方便,我们通常用大写拉丁字母表示集合,例如“集合A 、集合B ”。

2.元素与集合的关系及符号表示:属于∈,不属于∉。

集合的元素一般具有下列特点和性质:(1)确定性:对于一个已知集合,它的元素是确定的。

所谓确定性就是:任何一个事物a 或者是A 的元素,或者不是A 的元素,二者必居其一,即A a ∈或A a ∉有且只有一个成立。

这是证明集合之间关系特别是相等关系时,经常使用的重要依据。

(2)互异性:一个集合中的所含元素不允许重复,确切的说,集合中的相同元素不能算作不同元素,而必须作为同一个元素看待。

高一数学集合教案

高一数学集合教案

1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学过程】环节 教学内容 师生互动 设计意图导 入 师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”. 师:“物以类聚”;“人以群分”;这些都给我们以集合的印象. .新 课 新 课引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体.1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母 A,B,C,…表示,它的元素通常用小写英文字母 a,b,c,…表示.2. 元素与集合的关系.(1) 如果 a 是集合 A 的元素,就说a属于A,记作a A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作 N;或 N*;(2) 正整数集:非负整数集内排除0的集合,记作 N+(3) 整数集:整数全体构成的集合,记作 Z;(4) 有理数集:有理数全体构成的集合,记作 Q;(5) 实数集:实数全体构成的集合,记作 R.注意:(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用. 例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于 10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的 26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a Q,b Q,则 a+b Q.2.选择题⑴以下四种说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可例2 用符号“ ”或“ ”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;(4) 1 R,0 R,-4 R,0.3 R.练习2 用符号“ ”或“ ”填空:(1) -3 N;(2) 3.14 Q;(3) 13 Z ; (4) -12 R ;(5) 2 R ; (6) 0 Z .1.1.2 集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.. 【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合. 【教学难点】集合特征性质的概念,以及运用描述法表示集合. 【教学过程】 环节 教学内容师生互动设计意图导 入1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“ ”与“ ”填空白:(1) 0 N ; (2) -2 Q ; (3)-2 R .这节课我们一起研究如何将集合表示出来.新 课 新 课 新 课1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为: {指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示. 如:小于100的自然数的全体构成的集合,可表示为 {0,1,2,3,…,99}. 例1 用列举法表示下列集合:(1) 所有大于3且小于10的奇数构成的集合; (2) 方程 x 2-5 x +6=0的解集. 解 (1) {5,7,9};(2) {2,3}.练习1 用列举法表示下列集合:(1) 大于3小于9的自然数全体; (2) 绝对值等于1的实数全体; (3) 一年中不满31天的月份全体;(4) 大于3.5且小于12.8的整数的全体.2. 性质描述法.给定 x 的取值集合 I,如果属于集合 A 的任意元素 x 都具有性质 p(x),而不属于集合 A 的元素都不具有性质p(x),则性质 p(x)叫做集合A的一个特征性质,于是集合 A 可以用它的特征性质描述为 {x I |p(x)} ,它表示集合 A是由集合 I 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为 R,“x R”可以省略不写.例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面 内到两定点 A,B 距离相等的点的全体构成的集合.解 (1){ x |x >3};(2){ x |x 是两组对边分别平行的四边形};(3) l={ P ,|PA|=|PB|,A,B 为 内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.2、用描述法表示下列集合①{1,4,7,10,13}②{-2,-4,-6,-8,-10}3、用列举法表示下列集合①{x∈N|x是15的约数}②{(x,y)|x∈{1,2},y∈{1,2}}?③④⑤ ?⑥①注意区别 a 与 {a}.a 是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;②用列举法表示集合时,不必考虑元素的前后顺序.集合{1,2}与{2,1}表示同一个集合吗?注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

2024-2025学年高一数学必修第一册(配湘教版)教学课件1.1.1第2课时表示集合的方法

2024-2025学年高一数学必修第一册(配湘教版)教学课件1.1.1第2课时表示集合的方法
2-
(2)使 y=

有意义的实数 x 组成的集合;
2-

0,
解 要使该式有意义,需有
解得 x≤2,且 x≠0.
≠ 0,
故此集合可表示为{x|x≤2,且 x≠0}.
(3)200以内的正奇数组成的集合;
解 {x|x=2k+1,x<200,k∈N}.
(4)方程x2-5x-6=0的解组成的集合.
解 {x|x2-5x-6=0}.
x∈R可省略不写,如集合D={x∈R|x<20}也可表示为D={x|x<20}.
(5)多层描述时,应当准确使用“且”“或”等表示元素之间关系的词语,如
{x|x<-1或x>1}.
(6)“{
}”有“所有”“全体”的含义,如所有实数组成的集合可以用描述法表
示为{x|x是实数},但如果写成{x|x是所有实数}、{x|x是全体实数}、{x|x是
(3)一次函数 y=x-1 与
解 方程 y=x-1 与
2
4
y=- x+ 的图象的交点构成的集合.
3
3
2
4
y=-3x+3可分别化为
=
- = 1,
则方程组
的解是
2 + 3 = 4
=
x-y=1 与 2x+3y=4,
7
,
5
2 所求集合可表示为
,
5
7 2
,
5 5
.
规律方法
列举法应用的解题策略
(1)一般地,当集合中元素的个数较少时,可采用列举法;当集合中元素较多
(1)写清该集合中元素的代表符号,如{x|x>1}不能写成{x>1}.

1.1.2 集合的表示方法(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)

1.1.2 集合的表示方法(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)

1.1.2 集合的表示方法(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)一、教学目标:1. 了解集合的基本概念,并掌握集合的表示方法;2. 掌握使用花括号、描述法、区间法等表示集合的方法;3. 能够正确地判断集合相等、子集、包含关系的情况。

二、教学内容:1. 集合的基本概念;2. 集合的表示方法:花括号、描述法、区间法等。

三、教学重点:1. 集合的表示方法;2. 判断集合相等、子集、包含关系的情况。

四、教学难点:1. 如何使用花括号、描述法、区间法等表示集合;2. 如何正确地判断集合相等、子集、包含关系的情况。

五、教学方法:1. 讲解结合概念和表示方法,示范操作;2. 讲解并比较每种表示方法的优缺点;3. 常见集合运算的例题演示。

六、教学过程:1. 集合的基本概念:首先,介绍集合的基本概念。

讲解什么是集合,什么是元素,什么是空集,什么是全集等基本概念。

2. 集合的表示方法:(1)花括号法:讲解使用花括号法表示集合的方法,例如A={1,2,3,4,5}表示一个含有五个元素的集合A。

(2)描述法:讲解使用描述法表示集合的方法,例如B={x|x是大于零的自然数}表示一个由大于零的自然数组成的集合B。

(3)区间法:讲解使用区间法表示集合的方法,例如C=[1,5]表示一个由1到5的整数组成的集合C。

3. 集合的运算:讲解常见的集合的运算,如并集、交集、差集、补集等,并演示对应的例题。

4. 判断集合相等、子集、包含关系的情况:讲解判断集合相等、子集、包含关系的方法,并通过例题进行演示。

七、教学注意事项:1. 教师应根据学生的实际情况,合理安排教学内容和方式;2. 教师应主动引导学生,使他们积极思考和参与其中;3. 教师应注意时间控制,保证教学进度的顺利。

八、教学反思:本节课主要讲解集合的表示方法和运算,相比于其他数学知识点,难度较小。

因此,教师应着重于让学生掌握基本概念和表示方法,并注意例题的演示和讲解,使学生对各种情况能够正确判断。

集合数学教案范例高中

集合数学教案范例高中

集合数学教案范例高中
年级:高中
课时:1课时
教学目标:
1.了解集合的基本概念及符号表示。

2.掌握集合的运算规则。

3.能够应用集合理论解决实际问题。

教学重点:
1.集合的基本概念及符号表示。

2.集合的运算规则。

教学难点:
1.集合的运算规则的灵活运用。

教学准备:
教师准备:黑板、彩色粉笔、教案、实例题。

学生准备:笔记本、铅笔、橡皮。

教学过程:
Step 1:引入
教师向学生解释集合的概念,并举一些日常生活中的例子,如小明的朋友集合、各班级的
集合等,引入集合概念。

Step 2:集合符号表示
教师向学生介绍集合的符号表示,如用大写字母表示集合,用大括号{}表示集合的元素,
用“∈”表示元素属于集合。

Step 3:集合的运算规则
教师向学生讲解集合的并集、交集、差集、补集等运算规则,并通过例题让学生熟练掌握。

Step 4:应用实例
教师给学生提供一些实际问题,让学生运用集合理论解决问题,培养学生的思维能力和应用能力。

Step 5:归纳总结
教师对本堂课的内容进行归纳总结,让学生对集合的概念和运算规则有一个清晰的认识。

Step 6:作业布置
布置一些练习题,让学生巩固所学内容,并预习下节课的内容。

教学反思:
本节课采用了案例教学的方式,通过引入、讲解、实例运用等环节,使学生对集合的概念和运算规则有了更深入的认识。

在以后的教学中,可以充分利用生活实例,引发学生的兴趣,提高学生的学习积极性。

高一必修一集合教案完整版(精心整理)

高一必修一集合教案完整版(精心整理)

必修一第一章预习教案(第1次)1.1集合 1.1.1 集合的含义及其表示教学目标:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程:一、问题引入:我家有爸爸、妈妈和我; 我来泉州市第九中学; 五中高一(1)班; 我国的直辖市。

分析、归纳上述各个实例的共同特征,归纳出集合的含义。

二、建构数学:1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。

集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市; (2)五中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于100的数; (6)小于0的正数。

2.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3.集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (“∈”的开口方向,不能把a ∈A 颠倒过来写)4.有限集、无限集和空集的概念:5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合Q ,{}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集N *或N +。

高中数学集合教案

高中数学集合教案

高中数学集合教案【篇一:高一数学集合教学案(4课时)】高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。

情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。

(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

难点:能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本p3(3)元素:集合中每个叫做这个集合的元素,元素通常用表示 2、元素与集合的关系(1)属于:记作:a___a;(2)不属于:记作:a___a;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为2(3) 方程方程x=1的解的全体构成的集合; 其中元素为(4) 不等式x+12x+2的解的全体构成的集合. 其中元素为你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1);(2);(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点o的距离等于定长r的点的全体;(3) 方程x+1=x+2的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有个元素的集合叫做有限集(2)含有个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集:的集合.记作;(2)正整数集:的集合.记作;(3)整数集:的集合.记作;(4)有理数集:的集合.记作;(5)实数集:的集合.记作。

《集合与集合的表示方法》参考教案

《集合与集合的表示方法》参考教案

1.1 集合与集合的表示方法(一)教学目标1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义.理解集合相等的含义.(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识.例1(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集.(2)用描述法表示下列集合:①正偶数集;②{1,–3,5,–7,…,–39,41}.【分析】考查集合的两种表示方法的概念及其应用.【解析】(1)①{1,3,5,15}②{0,2,4,6,8,10}(2)①{x | x = 2n,n∈N*}②{x | x = (–1) n–1·(2n–1),n∈N*且n≤21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.例2 用列举法把下列集合表示出来:∈N};(1)A = {x∈N |9-9x∈N | x∈N };(2)B = {99x-(3)C = { y = y = –x2 + 6,x∈N,y∈N };(4)D = {(x,y) | y = –x2 +6,x∈N };(5)E = {x |pq= x ,p + q = 5,p ∈N ,q ∈N *}. 【分析】先看五个集合各自的特点:集合A 的元素是自然数x ,它必须满足条件99x -也是自然数;集合B 中的元素是自然数99x-,它必须满足条件x 也是自然数;集合C 中的元素是自然数y ,它实际上是二次函数y = – x 2 + 6 (x ∈N )的函数值;集合D 中的元素是点,这些点必须在二次函数y = – x 2 + 6 (x ∈N )的图象上;集合E 中的元素是x ,它必须满足的条件是x =pq,其中p + q = 5,且p ∈N ,q ∈N *.【解析】(1)当x = 0,6,8这三个自然数时,99x-=1,3,9也是自然数. ∴ A = {0,6,9}(2)由(1)知,B = {1,3,9}. (3)由y = – x 2 + 6,x ∈N ,y ∈N 知y ≤6. ∴ x = 0,1,2时,y = 6,5,2 符合题意. ∴ C = {2,5,6}.(4)点 {x ,y }满足条件y = – x 2 + 6,x ∈N ,y ∈N ,则有:0,1,2,6,5,2.x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩∴ D = {(0,6) (1,5) (2,2) }(5)依题意知p + q = 5,p ∈N ,q ∈N *,则0,1,2,3,4,5,4,3,2, 1.p p p p p q q q q q =====⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨=====⎩⎩⎩⎩⎩ x 要满足条件x =P q, ∴E = {0,14,23,32,4}.【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3 已知–3∈A = {a –3,2a – 1,a 2 + 1},求a 的值及对应的集合A . –3∈A ,可知–3是集合的一个元素,则可能a –3 = –3,或2a – 1 = –3,求出a ,再代入A ,求出集合A .【解析】由–3∈A,可知,a –3 = –3或2a–1 = –3,当a–3 = –3,即a = 0时,A = {–3,–1,1}当2a– 1 = –3,即a = –1时,A = {– 4,–3,2}.【评析】元素与集合的关系是确定的,–3∈A,则必有一个式子的值为–3,以此展开讨论,便可求得a.11/ 11。

高中数学集合图示教案

高中数学集合图示教案

高中数学集合图示教案
教学内容:集合的图示表示
教学目标:学生能够理解集合的概念,并能用图示的方式表示集合。

教学重点和难点:集合的基本概念和图示表示的方法。

教学准备:教师准备课件,黑板、彩色粉笔,教材《高中数学》。

教学过程:
一、引入(5分钟)
教师向学生介绍集合的概念,并通过日常生活中的例子引导学生理解集合的概念。

二、讲解(15分钟)
1. 介绍集合的符号表示和元素的概念。

2. 讲解如何用图示的方式表示集合,包括绘制Venn图和数轴。

三、示范(10分钟)
教师通过几个例题示范如何用图示的方式表示集合,让学生理解图示表示的方法。

四、练习(15分钟)
学生分组进行练习,练习绘制Venn图和数轴,加深对集合图示表示方法的理解。

五、总结(5分钟)
教师对本节课的内容进行总结,提醒学生注意集合的图示表示方法。

六、作业(5分钟)
布置作业:要求学生自行练习使用图示方式表示集合,加深对集合概念的理解。

教学反思:通过本节课的教学,学生能够初步理解集合的概念,并能用图示的方式表示集合,但需要继续加强练习,提高对集合的理解和运用能力。

高一数学集合第一课时教案

高一数学集合第一课时教案

第一课时集合的概念及其表示方法教学目标:I.知识与技能:(1)通过实例,了解集合的含义。

(2)理解集合的确定性,互异性和无序性。

(3)体会元素与集合的“属于”关系。

II.过程与方法:通过讲练结合让学生在实践中突破重点和难点,让学生从现实意义上理解集合的作用。

III.情感态度与价值观:让学生重新审视数学的意义,进入高中阶段的数学思维中,并初步理解集合论的概念。

重点与难点:I.重点:(1)理解集合的性质与分类。

(2)辨别集合与元素之间的关系。

(3)了解特殊集合(4)列举法表示集合。

(5)描述法表示集合。

(6)图示法思维方式。

II.难点:(1)集合与不等式知识点的混合题型。

(2)∅与{}∅不同,∅∈{}∅(3)无限集的描述。

(4)Venn图读图。

教学过程:I.复习引入:(1)回顾数学学习的历程:从数域拓展到算法拓展。

(2)自行定义范围——引入集合概念。

II.集合元素的性质:(1)集合的定义。

一般地,研究对象统称为元素(element),我们通常用小写的拉丁字母a,b,c,d,……表示,这些元素组成的总体叫集合(set),也简称集,通常用大些的拉丁字母A,B,C,D,……表示。

(2)确定性。

对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(3)互异性。

任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(4)无序性。

集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

例1、判断下列一组对象是否属于一个集合(1)小于10的质数是(2)中国的小河流否(3)“maths”中的字母是(4)所有的偶数是 (5)满足3x-2>x+3的全体实数是 (6)方程210x x ++=的实数解 是III . 集合的分类:(1)按元素类型分——数集,点集,直线集……(2)按元素个数分——有限集,无限集,空集。

高一数学必修1《集合的含义与表示》教案

高一数学必修1《集合的含义与表示》教案

高一数学必修1《集合的含义与表示》教案【教学目标】1. 理解集合的概念,能够用通俗易懂的语言描述集合的含义。

2. 熟悉常见集合符号的表示及其含义。

3. 能够运用集合的相关性质解决实际问题。

4. 能够分别用文字描述和图形表示集合。

【教学重点】1. 集合的概念与基本符号的熟练掌握。

2. 集合运算的理解和运用。

【教学难点】1. 集合的基本概念,包括空集、全集、子集等。

2. 集合运算的细节及其运用。

【教学方法】1. 演讲法:介绍集合的基本概念和相关性质。

2. 互动式教学:让学生根据实际问题思考集合的处理方法,提高学生的思维能力。

3. 提问式教学:通过提出问题,引导学生自己思考和总结。

【教学资源】1. 高一数学必修1教材。

2. PPT。

3. 多媒体教学设备。

【教学过程】一、导入(15分钟)1. 引入集合概念。

通过图片或文字向学生展示几个集合,引导学生了解集合的概念。

2. 创建集合。

让学生自己尝试创建几个集合,并用文字或图形表示出来。

二、集合的概念(30分钟)1. 什么是集合?集合是由一些互不相同的元素所组成的整体。

例如,由0、1、2、3、4这5个元素组成的集合可以用花括号表示:{0,1,2,3,4}。

2. 集合的符号表示。

集合用大写字母表示,元素用小写字母表示。

例如,集合A={a1,a2,…,an}。

3. 集合的基本概念。

有限集合、无限集合、空集、全集、真子集、超集。

4. 练习。

通过几个例题,让学生巩固集合的基本概念。

三、集合的运算(45分钟)1. 集合的运算符号。

并集、交集、差集、补集、对称差集等。

2. 集合的运算法则。

交换律、结合律、分配律、消去律、德摩根定律等。

3. 练习。

通过较易的例题,让学生理解集合运算的概念和运算法则。

四、作业布置(10分钟)1. 课后练习。

布置一定量的集合练习题,让学生掌握集合概念和运算法则,并合理运用集合来解决实际问题。

2. 知识巩固。

要求学生按照课上所学知识,撰写一篇500字的集合概念详解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2集合的表示方法
教学目标:掌握集合的表示方法,能选择自然语言、图形语言、集合语言描述不同的问题. 教学重点、难点:用列举法、描述法表示一个集合.
教学过程:
一、复习引入:
1.回忆集合的概念
2.集合中元素有那些性质?
3.空集、有限集和无限集的概念
二、讲述新课:
集合的表示方法
1、大写的字母表示集合
2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.
例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}
注:(1)大括号不能缺失.
(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)
自然数集N :{1,2,3,4,…,n ,…}
(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素.
(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.
3、特征性质描述法:
在集合I 中,属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A 可以表示如下:
{x ∈I | p (x ) }
例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2
>-x x x ,
所有直角三角形的集合可以表示为:}|{是直角三角形x x
注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}
(2)注意区别:实数集,{实数集}.
4、文氏图:用一条封闭的曲线的内部来表示一个集合.
例1:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?
答:不是.
集合}1|),{(2+=x y y x 是点集,集合}1|{2+=x y y =}1|{≥y y 是数集。

例2:(教材第7页例1)
例3:(教材第7页例2)
课堂练习:
(1)教材第8页练习A、B
(2)习题1-1A:1,
小结:
本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种)P1,2
课后作业:
10。

相关文档
最新文档