湖南省岳阳市城区初中2020-2021学年七年级上学期期末数学试题
湖南省岳阳市2021年七年级上学期数学期末考试试卷(I)卷
湖南省岳阳市2021年七年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2020·高新模拟) 的值等于()A . 3B . -3C . ±3D .2. (1分)下列各式中,与x2y是同类项的是()A .B .C .D .3. (1分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A . 9B . 11C . 14D . 184. (1分)方程x﹣3=2x﹣4的解为()A . 1B . ﹣1C . 7D . ﹣75. (1分)(2019·广西模拟) 如果2x3yn+(m-2)x是关于x,y的五次二项式,则m,n的值为()A . m=3.N=2B . m ≠ 2,n=2C . m为任意数,n=2D . m#2,n=36. (1分) (2018七上·玉田期中) 如图,下列表示角的方法中,错误的是()A . ∠AB . ∠aC . ∠ED . ∠17. (1分) (2019七上·宝安期末) 若,则等于A .B . 1C . 5D . 68. (1分)如果∠A和∠B互为余角,∠A和∠C互为补角,∠B与∠C的和等于120°,那么这三个角分别是().A . 50°,30°,130°;B . 75°,15°,105°;C . 60°,30°,120°;D . 70°,20°,110°9. (1分) (2019七下·港南期末) 已知x=3y+5,且x2-7xy+9y2=24,则x2y-3xy2的值为()A . 0B . 1C . 5D . 1210. (1分)有这样四句话:(1)–4是相反数;(2)–4和4都是相反数;(3)–4是4的相反数,同样4也是–4的相反数;(4)–4与 4互为相反数,其中说得对的是()A . (1)与(2)B . (2)与(3)C . (1)与(4)D . (3)与(4)11. (1分) (2019七下·武汉月考) 学校在一次研学活动中,有n位师生乘坐m辆客车,若每辆客车乘50人,则还有10人不能上车;若每辆客车乘55人,则最后一辆车空了8个座位.下列四个等式:①50m+10=55m﹣8;②50m+10=55m+8;③ ;④ .其中正确的有()A . 1个B . 2个C . 3个D . 4个12. (1分) (2019七下·温州期中) 如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个长方形(既没有重叠也没有缝隙),则长方形的面积为()A .B .C .D .二、填空题 (共5题;共5分)13. (1分)计算: =________;|﹣9|﹣5=________.14. (1分) (2018七上·句容月考) 太阳的半径约为696 000 000米,这个数用科学记数法表示为________米.15. (1分) (2020七上·汽开区期末) 如图,点C为线段的中点,点E为线段上的点,点D为线段的中点.若,则线段AD的长为________.16. (1分) (2019七上·兴化月考) 幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个,则有________个苹果.17. (1分) (2017七上·鄂城期末) 一个角是70°39′,则它的余角的度数是________.三、解答题 (共7题;共14分)18. (2分) (2019七上·武威月考)(1)(2)(3)(4)(5)19. (1分)如图所示,读句画图.( 1 )连接AC和BD,交于点O.(2)延长线段AD,BC,它们交于点E.(3)延长线段CD与AB的反向延长线交于点F.20. (1分)已知a、b、c在数轴上的位置如图所示,求|a|+|a﹣c|﹣|a+b|+|b+c|的值.21. (2分)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0,求A的值.22. (2分) (2020七上·陈仓期末) 已知,是过点O的一条射线,,分别平分, .请回答下列问题:(1)如图①,如果是的平分线,求的度数是多少?(2)如图②,如果是内部的任意一条射线,的度数有变化吗?为什么?(3)如图③,如果是外部的任意一条射线,的度数能求出吗?如果能求出,请写出过程;如果不能求出,请简要说明理由.23. (3分)某地区居民生活用电,规定按以下标准收取电费:用电量(千瓦时)/月单价(元/千瓦时)基本用电量a0.50超过a超过部分基本电价的80%收费(1)某户七月份用电123千瓦时,共交电费57.2元,求a;(2)若该用户八月份的平均电费为0.45元,则八月份共用多少千瓦时?应交电费多少元?24. (3分) (2018七上·余干期末) 如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为________.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共14分)18-1、18-2、18-3、18-4、18-5、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
湖南省岳阳市城区初中2020-2021学年七年级上学期期末数学试题
2020年下学期岳阳市城区初中学业水平监测试卷七年级 数学温馨提示:1.本试卷共3道大题,24道小题,满分120分,考试时量90分钟;2.本试卷分为试题卷和题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区城内;3.考试结来后,考生不得将答是卡带出考场.二、选择题(本大题共8道小题,每小题3分,满分24分,在每道小题给出的四个选项中选出符合要求的一项).1.已知m 的绝对值是3,则m 的值是 A.0 B.3 C.-3 D.3±2.下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是A.B.C. D.3.若23a =-,()1b =--,()32c =-,则a 、b 、c 的大小关系是A.a b c <<B.a c b <<C.b c a <<D.b a c << 4.下列计算正确的是A.2222x x x -= B.532--=- C.22232a b ab a b -= D.23a b ab += 5.一个角的补角是这个角的余角的4倍,则这个角的度数是A.120°B.90°C.80°D.60° 6.要调查下列问题,适合采用全面调查(普查)的是 A.中央电视台《开学第一课》的收视率 B.即将发射的气象卫星的零部件质量 C.某城市居民12月份人均网上购物的次数 D.某品牌新能源汽车的最大续航里程 7.下列说法正确的是A.若32x y =,则 1.5x y =B.若a b =,则a b c c= C.若23351a b +=-,则234a b =- D.单项式213r h π的系数是13,次数是48.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,十进制中261610=+,用十大进制表示为1A :用十六进制表示:1D F C +=,19F A -=,则A E ⨯,用A E ⨯十六进制可表示为A.8CB.140C.32D.EO二、填空题(本大题共8小题,每小题4分,满分32分)9.如果节约20 m 3的水记作+20 m 3,那么浪费10 m 3的水记作 m 3. 10.已知423nx y和26mxy -是同类项,则m n +的值是11.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道,将36000用科学记数法表示应为 . 12.已知1m n +=-,则()222m n m n +--的值是 .13.教育部规定,初中生每天的睡眠时间应为9个小时,皓皓记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则皓皓这一周的睡眠够9个小时的有 天.14.已知2x =是关于x 的一元一次方程250x m +-=的解,则m = .15.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣,《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:“家有客津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共,四人共肉,凡用杯六十五不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 .16.下列说法:①点C 是线段AB 的中点,则2AB AC =;②平面上有4个点,其中任意3个点都不在同一条直线上,经过每两点画一条直线,一共可以画4条直线:③锐角和钝角定互补:④35322435.54'''︒=︒,其中正确结论的序号是 .三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分6分)计算 (1)()172 1.25⎛⎫+---- ⎪⎝⎭(2)()()2202012 2.5 3.5120---+-÷18.(本题满分6分)先化简,再求值;()()222232522xxy y x xy y -+--+,其中1x =,2y =-.19.(本题满分8分)解方程: (1)4321x x +=- (2)12223x x--=20.(本题满分8分)某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A 非常了解”、“B 比较了解”、“C 基本了解”、“D 不太了解”四个等级,划分等级后的数据整理成如下两幅不完整的统计图,请你根据图表信息回答下列问题:(1)学校这次调查共抽取了 名学生,并请补全条形统计图; (2)求扇形统计图中B 选项所对应的圆心角度数.(3)若该校有学生1800人,那么“不太了解”垃圾分类知识的学生大约有多少人? 21.(本题满分8分)如图,直线AB 与CD 相交于点O ,90AOE ∠=︒. (1)如果20AOC ∠=︒,求COE ∠和BOD ∠的度数. (2)如果2COE BOD ∠=∠,求BOC ∠的度数.22.(本题满分8分)列方程解应用题:双十一期间,某商店将某型号的彩电按标价的八折出售,若每台彩电的利润率是5%,已知该型号彩电的进价为每台4000元,求该型号彩电的标价.23.(本题满分10分)数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x . (1)AB = ,BC = . (2)当点P 在线段AC 上时,①用含x 的代数式表示:PA= ,PC= . ②若74PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒. ①试说明2AP PQ =②当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.24.(本题满分10分)(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为 .(3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值.2020年下学期岳阳市城区初中学业水平监测试卷七年级数学参考答案及评分标准说明:本参考答案给出了一种解法供参考,如果考生的解法与参考解法有差异,请参照标准按步骤给分。
2020-2021学年岳阳市君山区七年级上期末数学试卷
2020-2021学年岳阳市君山区七年级上期末数学试卷
一.选择题(共8小题,满分24分)
1.(3分)数学概念是一个人对数学理解的开始,下列关于一些概念理解正确的是()
①数轴上原点两侧的点表示的数互为相反数;②相反数等于本身的数是负数;③0是绝
对值最小的有理数;④两个负数比较大小,绝对值大的反而小.
A.①②B.①③C.①④D.③④
【解答】解:∵数轴上原点两侧的数不一定互为相反数,
∴选项①不正确;
∵相反数等于本身的数是负数和0,
∴选项②不正确;
∵0是绝对值最小的有理数,
∴选项③正确;
∵两个负数比较大小,绝对值大的反而小,
∴选项④正确.
∴说法正确的是:③④.
故选:D.
2.(3分)中国信息通信研究院测算,2020﹣2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()
A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108
【解答】解:10.6万亿=106000 0000 0000=1.06×1013.
故选:B.
3.(3分)关于整式的概念,下列说法正确的是()
A.−6πx2y3
5的系数是−
6
5
B.32x3y的次数是6
C.3是单项式
D.﹣x2y+xy﹣7是5次三项式
【解答】解:A、−6πx2y3
5的系数为−
6π
5,错误;
B、32x3y的次数是4,错误;
第1 页共11 页。
湖南省岳阳市2021版七年级上学期期末数学试卷A卷
湖南省岳阳市2021版七年级上学期期末数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择 (共6题;共12分)1. (2分)下列说法中不正确的是()A . ﹣a一定是负数B . 0既不是正数,也不是负数C . 任何正数都大于它们的相反数D . 绝对值小于4的所有整数的和为02. (2分)已知有一多项式与(2x2+5x-2)的和为(2x2+5x+4),求此多项式为()A . 2B . 6C . 10x+6D . 4x2+10x+23. (2分)下列解方程正确的是()A . 由4x﹣6=2x+3移项得4x+2x=3﹣6B . 由,去分母得4x=5﹣x﹣1C . 由2(x+3)﹣3(x﹣1)=7,去括号得 2x+3﹣3x+1=7D . 由得4. (2分)如图所示有一块直角三角形纸片,两直角边分别为:AC =6cm,BC = 8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A . 2 cmB . 3 cmC . 4 cmD . 5 cm5. (2分)(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x人,则根据题意列出方程正确的是()A . 8x+3=7x﹣4B . 8x﹣3=7x+4C . 8x﹣3=7x﹣4D . 8x+3=7x+46. (2分) (2019七上·南浔期中) 法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了,下面两个图框是用法国“小九九”计算8×9和6×7的两个示例,若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A . 2,4B . 3,3C . 3,4D . 2,3二、填空题 (共8题;共9分)7. (1分) (2016七上·夏津期末) 单项式的系数是 ________.8. (1分)(2018·泰州) 亚洲陆地面积约为万平方千米,将用科学记数法表示为________.9. (1分) (2017七上·彭泽期中) 若|﹣x|=2.4,则x=________.10. (1分)已知+x2+4xy+4y2=0,则x+y=________ .11. (1分) (2017七下·临沧期末) 若甲看乙的方向为南偏西25°,则乙看甲的方向是________.12. (1分) (2017七上·上城期中) m和n互为相反数,和互为倒数,是最大的负整数,则的值为________.13. (2分) (2019七上·鞍山期末) 若一个角比它的补角大36°48',则这个角为________°________'.14. (1分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.三、解答题。
湖南省岳阳市2020版七年级上学期数学期末考试试卷A卷
湖南省岳阳市2020版七年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七上·安阳月考) 下列说法正确的有()①最大的负整数是﹣1;②1.32×104是精确到百分位;③(﹣2)4与﹣24结果相等;④a+6一定比a大;⑤数轴上表示﹣3和3的点到原点的距离相等.A . 0个B . 1个C . 2个D . 3个2. (2分)在﹣4、0、2、π这四个数中,绝对值最大的数是()A . ﹣4B . 0C . 2D . π3. (2分)(2017·岳池模拟) 2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A . 3.71×107B . 0.371×107C . 3.71×106D . 37.1×1064. (2分)有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是()A .B .C .D .5. (2分)(2020·营口模拟) 下列几何体中,主视图与俯视图不相同的是()A . 正方体B . 圆柱C . 四棱锥D . 球6. (2分)甲、乙两同学从地出发,骑自行车在同一条路上行驶到地,他们离出发地的距离(千米)和行驶时间(小时)之间的函数关系的图象如图所示.根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0. 5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地.其中符合图象描述的说法有()A . 2个B . 3个C . 4个D . 5个7. (2分) (2019七下·重庆期中) 如图,直线a、b和c相交,下列说法:①∠1与∠2是对顶角;②∠1与∠3是同位角;③∠2与∠3是内错角;④∠2与∠4是同旁内角;其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)若某商品降价20%后,要恢复原价,则应提价()A . 15%B . 20%C . 22.5%D . 25%二、填空题 (共10题;共12分)9. (1分) (2018七上·秀洲月考) │-2│=________。
2020-2021学年岳阳十中七年级上学期期末数学试卷(附答案解析)
2020-2021学年岳阳十中七年级上学期期末数学试卷一、选择题(本大题共8小题,共24.0分)1.在−(−6),−|−6|,(−6)2,−(−6)2中,负数的个数为()A. 1个B. 2个C. 3个D. 4个2.用科学记数法表示0.0005为()A. 5×10−3B. 5×10−4C. 5×103D. 5×1043.下列说法正确的是()A. 单项式12xy的系数是12,次数是1B. 单项式−13πa2b3的系数是−13,次数是6C. 单项式x2的系数是1,次数是2D. 多项式2x3−3x2y2+x−1叫三次四项式4.下列变形正确的是()①由−3+2x=5,得2x=5−3;②由3y=−4,得y=−34;③由x−3=y−3,得x−y=0;④由3=x+2,得x=3−2.A. ①②B. ①④C. ②③D. ③④5.今年是中国工农红军长征胜利80周年,我校为了了解学生对“红军长征历史”的知晓情况,从全校1600名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()A. 1600名学生B. 100名学生C. 所抽取的100名学生对“红军长征历史”的知晓情况D. 每一名学生对“红军长征历史”的知晓情况6.小强同学借了一本书,共260页,要在两周借期内读完.当他读了一半时,发现平均每天要多读23页才能在借读完.他读前一半时,平均每天读多少页?如果设读前一半时平均每天读x页,则下面所列方程中,正确的是()A. 130x +130x−23=14 B. 260x+260x+23=14C. 260x +260x−23=14 D. 130x+130x+23=147. 已知一个正方体的每一表面都填有唯一一个数字,且各相对表面上所填的数互为倒数.若这个正方体的表面展开图如图所示,则A 、B 的值分别是( ) A. 13,12 B. 13,1 C. 12,13 D. 1,138.下列几种说法,其中正确的语句有( )①两点之间,线段最短;②任何数的平方都是正数;③几个角的和等于90度,我们就说这几个角互余;④34x 3是7次多项式;⑤过一点作已知直线的垂线,有且只有1条.A. 一句B. 二句C. 三句D. 四句二、填空题(本大题共8小题,共32.0分) 9.若m ,n 互为相反数,则5m +5n +3=______.10. 若两数和为−7,积为12,则这两个数是______ 和______ . 11. 若−x m y 4与112x 3y n 是同类项,则m −n =______.12. 在奥运会上,对参加运动员是否服用违禁药品的尿样检查,其调查方式采用的是______. 13. 如图,∠AOB =90°,∠AOC =23°30′,则∠COB 的度数为______度.14. ∠α与它的余角相等,∠β与它的补角相等,则∠α+∠β= ______ °. 15. 数a 、b 在数轴上的位置如图所示,化简:a +|b|−|a|= ______ .16. 向一个三角形内加入2015个点,加上原三角形的三个点共计2018个点.用剪刀最多可以剪出______个以这2018个点为顶点的三角形. 三、计算题(本大题共1小题,共6.0分)17. 某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证120元,只限本人当年使用,凭证游泳每次再付费10元;方式二:不购买会员证,每次游泳付费15元.设小聪计划今年夏季游泳次数为x(x 为正整数).(1)根据题意,填写下表:游泳次数101520 (x)方式一的总费用(元)220270______ …______方式二的总费用(元)150225______ …______(2)若小聪计划今年夏季游泳的总费用为300元,通过计算说明选择哪种付费方式,她游泳的次数比较多?(3)张老师是游泳爱好者,他计划今年夏季在这个游泳馆至少游泳40次,通过计算说明,张老师选择哪种方式合算?四、解答题(本大题共7小题,共58.0分)18. 已知a、b是任意不等于0的有理数,且|a|=|b|,试求ab +ba的值.19. 解方程:(1)2(x+3)−7=x−5(2x−1);(2)2x−13−x+14=3x+12−1.20. 计算:①(−49)−(+91)−(−5)+(−9);②(−58)×(−4)2−0.25×(−5)×(−4)3;③(−48)÷6−(−25)×4④5a2−[a2+(5a2−2a)−2(a2−3a)].21. 如图,AB=24cm,C、D点在AB上,且CD=10cm,M,N分别是AC、BD的中点,求线段MN的长.22. 为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了______人,扇形统计图中表示“C”的圆心角为______°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.23. 如图,两个形状、大小完全相同的含有30°角的直角三角板如图1放置,PA、PB与直线MN重合,且三角板PAC和三角板PBD均可以绕点P逆时针旋转.(1)如图1,则∠DPC为多少度?(2)如图2,若三角板PAC的边PA从PN处开始绕点P逆时针旋转的角度为α,PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,在两个三角板旋转过程中,当PC转到与PM重合时,两个三角板都停止转动.设两个三角板旋转时间为t秒,请问∠CPD是定值吗?若是定值,∠BPN请求出这个定值;若不是定值,请说明理由.24. 我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨,现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B仓库运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为y A元和y B元.(1)请填写下表;收地C(吨)D(吨)总计(吨)运地A x______ 200B______ ______ 300总计240260500(2)分别求出y A,y B与x之间的函数关系式;(3)试讨论A、B两村中,哪个村的运费更少?(4)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元,在这种情况下,设两村总运费为y元,请问:怎样调运才能使y最小?并求出这个最小值.。
2020-2021学年七年级上学期期末数学试卷(附答案解析)
2020-2021学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.a(a≠0)的相反数是()D. |a|A. aB. −aC. 1a2.若|a|=a,则表示a的点在数轴上的位置是()A. 原点的左边B. 原点或原点的左边C. 原点或原点右边D. 原点3.下列两个单项式中,是同类项的一组是()A. 4x2y与4y2xB. 2m与2nC. 3xy2与(3xy)2D. 3与−154.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A. 4.21×105B. 42.1×104C. 4.21×10−5D. 0.421×1065.如图,已知三点A,B,C画直线AB,画射线AC,连接BC,按照上述语句画图正确的是()A. B. C. D.6.若关于x的方程mx m−2−m+3=0是一元一次方程,则m的值为()A. m=1B. m=2C. m=3D. m=47.下列说法正确的是()A. 如果AC=CB,能说点C是线段AB的中点B. 将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C. 连接两点的直线的长度,叫做两点间的距离D. 平面内3条直线至少有一个交点8.如图,由4个相同的小正方体组成的几何体,则该几何体的俯视图是()A.B.C.D.9.如图,EF//MN,AC,BD交于点O,且分别平分∠FAB,∠ABN,图中与∠1互余的角有()A. 1个B. 2个C. 3个D. 4个10.某美术兴趣小组有x人,计划完成y个剪纸作品,若每人做5个,则可比计划多9个;若每人做4个,则将比计划少做15个,现有下列方程:①5x+9=4x−15;②y−95=y+154;③y+95=y−154;④5x−9=4x+15.其中正确的是()A. ①②B. ②④C. ②③D. ③④二、填空题(本大题共5小题,共15.0分)11.如图是一个数值转换机的示意图,若输入x的值为2,输入y的值为−2,则输出的结果为______ .12.单项式−3πxy22的系数是______ .13.由11x−9y−6=0,用x表示y,得y=______ ,y表示x,得x=______ .14.若关于x的方程是一元一次方程,则这个方程的解是____15.已知P,Q两点都在数轴上(点P在点Q的右侧),若点P所表示的数是3,并且PQ=6,则点Q所表示的数是______ .三、解答题(本大题共6小题,共55.0分)16.化简:3x2−3+x−2x2+5.17.解方程:(1)6x−2(2x−7)=−1(2)x=1+x+1.318.已知为的三边,且满足,试判断的形状。
岳阳市七年级上册数学期末试题及答案解答
岳阳市七年级上册数学期末试题及答案解答一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107 C .6.5×108 D .65×1062.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .35.下列因式分解正确的是()A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+6.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个7.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=68.估算15在下列哪两个整数之间( ) A .1,2B .2,3C .3,4D .4,59.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .310.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10 C .2.5 D .2 12.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定二、填空题13.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.已知单项式245225n m xy x y ++与是同类项,则m n =______.16.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.20.A 学校有m 个学生,其中女生占45%,则男生人数为________. 21.计算7a 2b ﹣5ba 2=_____.22.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.23.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、解答题25.(1)化简:3x 2﹣22762x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32. 26.定义新运算“@”与“⊕”:@2a b a b +=,2a ba b -⊕= (1)计算()()()3@221---⊕-的值;(2)若()()()()()3@23,@329A b a a b B a b a b =-+⊕-=-+-⊕--,比较A 和B 的大小 27.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由. 28.计算:﹣0.52+14﹣|22﹣4|29.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?30.某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间.这个学校的住宿生有多少人?四、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.32.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.33.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 详解:65 000 000=6.5×107. 故选B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.3.C解析:C 【解析】 【分析】根据余角与补角的性质进行一一判断可得答案. . 【详解】解:A,根据角的和差关系可得∠α=∠β=45o ; B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 4.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t ﹣30=12t , t =20,不符合t >30, 综上所述,当PB =12BQ 时,t =12或20,故③错误; 故选:C .【点睛】本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.5.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.6.C解析:C 【解析】①∵AD 平分△ABC 的外角∠EAC , ∴∠EAD=∠DAC ,∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB , ∴∠EAD=∠ABC , ∴AD ∥BC , 故①正确. ②由(1)可知AD ∥BC , ∴∠ADB=∠DBC , ∵BD 平分∠ABC , ∴∠ABD=∠DBC ,∴∠ABC=2∠ADB , ∵∠ABC=∠ACB , ∴∠ACB=2∠ADB , 故②正确.③在△ADC 中,∠ADC+∠CAD+∠ACD=180°, ∵CD 平分△ABC 的外角∠ACF , ∴∠ACD=∠DCF , ∵AD ∥BC ,∴∠ADC=∠DCF ,∠ADB=∠DBC ,∠CAD=∠ACB ∴∠ACD=∠ADC ,∠CAD=∠ACB=∠ABC=2∠ABD ,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°, ∴∠ADC+∠ABD=90° ∴∠ADC =90°−∠ABD , 故③正确;④∵∠BAC+∠ABC=∠ACF , ∴12∠BAC+12∠ABC=12∠ACF , ∵∠BDC+∠DBC=12∠ACF , ∴12∠BAC+12∠ABC=∠BDC+∠DBC , ∵∠DBC=12∠ABC , ∴12∠BAC=∠BDC ,即∠BDC=12∠BAC. 故④错误. 故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.8.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.12.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.二、填空题13.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.解:根据题意得:a+b =0,c =﹣,m =2或﹣2,当m =2时,原式=2(a+b )解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a +b =0,c =﹣13,m =2或﹣2, 当m =2时,原式=2(a +b )﹣3c +2m =1+4=5;当m =﹣2时,原式=2(a +b )﹣3c +2m =1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.16.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.17.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.18.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.19.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:,设,,若点C在线段AB上,则,点O为AB的中点,解析:4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.20.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m ,故答案是55%m .【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.21.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.22.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.23.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14024.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、解答题25.(1)112x2;(2)a2+2ab+2,12.【解析】【分析】(1)根据合并同类项法则计算;(2)根据去括号法则、合并同类项法则把原式化简,代入计算得到答案.【详解】解:(1)原式=(3﹣72+6)x 2=112x 2; (2)原式=2a 2﹣2ab ﹣7﹣a 2+4ab +9 =a 2+2ab +2,当a =﹣5,b =32时,原式=(﹣5)2+2×(﹣5)×32+2=12. 【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.26.(1)1;(2)A B <.【解析】【分析】(1)根据题意新运算的符号进行求解;(2)根据新运算符号分别求出A 、B 的值在进行比较大小即可.【详解】解:(1)根据题意得:()()()3@221---⊕- 322122--+=- =1; (2) ()()3323@233122b a b a A b a a b b -+-=-+⊕-=+=-, ()()()392@329=3122a b b a B a b a b b --+=-+-⊕--+=+, 3131b b +>-,A B ∴<.【点睛】本题考查新运算,解题关键在于对题意得理解.27.(1)155°;(2)OD 平分AOC ∠,理由见详解.【解析】【分析】(1)由题意先根据角平分线定义求出∠BOE ,进而求出BOD ∠的度数;(2)由题意判断OD 是否平分AOC ∠即证明AOD DOC ∠=∠,以此进行分析求证即可.【详解】解:(1)∵130BOC ∠=︒,OE 平分BOC ∠,∴∠BOE =65°,∵DO OE ⊥,∴BOD ∠=90°+65°=155°.(2)OD 平分AOC ∠,理由如下:∵由(1)知BOD ∠=155°,∴AOD ∠=180°-155°=25°,∵130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥,∴DOC ∠=90°-65°=25°,∴AOD DOC ∠=∠=25°,即有OD 平分AOC ∠.【点睛】本题考查角的运算,利用角平分线定义以及垂直定义结合题意对角进行运算即可. 28.【解析】【分析】先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】2210.5244-+-- 10.25444=-+-- 10.2504=-+- =0.【点睛】 本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.29.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级()1班出发12小时或2小时或4小时后,两队相距2千米 【解析】【分析】 (1) 设后队追上前队需要x 小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;(2)由路程=速度×时间可求联络员走的路程;(3)分三种情况讨论,列出方程求解即可.【详解】()1设后队追上前队需要x 小时,根据题意得:()64x 41-=⨯x 2∴=,答:后队追上前队需要2小时;()210220⨯=千米,答:联络员走的路程是20千米;()3设七年级()1班出发t 小时后,两队相距2千米,当七年级()2班没有出发时,21t 42==, 当七年级()2班出发,但没有追上七年级()1班时,()4t 6t 12=-+,t 2∴=,当七年级()2班追上七年级()1班后,()6t 14t 2-=+,t 4∴=,答:七年级()1班出发12小时或2小时或4小时后,两队相距2千米. 【点睛】本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.30.这个学校的住宿生有192人.【解析】【分析】设这个学校的有x 间宿舍,根据题意列出方程即可求出答案.【详解】解:设这个学校的有x 间宿舍,由题意可知:7x +10=8(x ﹣2),解得:x =26,∴这个学校的住宿生为:8×24=192,答:这个学校的住宿生有192人.【点睛】本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型. 四、压轴题31.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.【详解】解:(1)图2中∠MON =12×90°+90°=135°;图3中∠MON =12∠AOC +12∠BOD +∠COD =12(∠AOC +∠BOD )+90°=12⨯90°+90°=135°; 故答案为:135,135;(2)∵∠COD =90°,∴∠AOC +∠BOD =180°﹣∠COD =90°,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC +∠NOD =12∠AOC +12∠BOD =12(∠AOC +∠BOD )=45°, ∴∠MON =(∠MOC +∠NOD )+∠COD =45°+90°=135°;(3)同意,设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC =12∠AOC =12(180°﹣x °)=90°﹣12x °, ∠BON =12∠BOD =12(90°﹣x °)=45°﹣12x °, ∴∠MON =∠MOC +∠BOC +∠BON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【点睛】 本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.32.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.33.(1)20;(2)t =15s 或17s (3)43s. 【解析】【分析】(1)设P 、Q 速度分别为3m 、2m ,根据12秒后,动点P 到达原点O 列方程,求出P 、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P 运动到B 再到原点时,所用的时间,再算出Q 从B 到A 所需的时间,比较即可得出结论.【详解】(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022+==(s ),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.。
岳阳市七年级上册数学期末试卷及答案-百度文库
岳阳市七年级上册数学期末试卷及答案-百度文库一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 4.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .45.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 8.计算:2.5°=( )A .15′B .25′C .150′D .250′9.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对10.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a bc c< 11.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 12.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥13.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离14.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1C .±1D .a≠1二、填空题16.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.17.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
岳阳市七年级上学期期末数学试题及答案
岳阳市七年级上学期期末数学试题及答案一、选择题1.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=-2.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .2C 2D 323.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃4.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -5.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( )A .2B .8C .6D .06.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120207.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式8.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )210.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个B .2个C .3个D .4个 11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚 二、填空题13.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 14.单项式22ab -的系数是________. 15.﹣213的倒数为_____,﹣213的相反数是_____. 16.如图,若12l l //,1x ∠=︒,则2∠=______.17.若方程11222m x x --=++有增根,则m 的值为____. 18.16的算术平方根是 . 19.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.20.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.21.方程x+5=12(x+3)的解是________.22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.3.6=_____________________′24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.三、解答题25.计算:(1)31324()864-⨯--(2)43231[2(2)](3)5--⨯----26.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,当点P运动到AB中点时,它所表示的数是;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?(3)动点Q从点B出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.27.一件商品先按成本价提高50%后标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少?(2)求此件商品的利润率.28.解方程:5711232x x-+-=+.29.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.30.如图,在数轴上有A 、B 、C 、D 四个点,分别对应的数为a ,b ,c ,d ,且满足a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.(1)填空:a =、b =、c =、d =;(2)若线段AB 以3 个单位/ 秒的速度向右匀速运动,同时线段CD 以1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C ,D 两个端点重合),若BD=2AC ,求t 的值;(3)在(2)的条件下,线段AB ,线段CD 继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使BC=3AD ?若存在,求t 的值;若不存在,说明理由.四、压轴题31.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.32.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.33.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】设分配x 名工人生产螺栓,则(26-x )名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x 名工人生产螺栓,则(26-x )名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ).故选:D .【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.2.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.3.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D .【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.4.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.5.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.6.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.7.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C 、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D 、两边开方,则x =y 或x =﹣y ,故本选项符合题意.故选:D .【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.9.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.10.B解析:B【解析】①若5x=3,则x=35 , 故本选项错误;②若a=b ,则-a=-b ,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则n m=1, 故本选项错误.故选B. 11.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】 方程212134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D .【点睛】 本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用二、填空题13.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.14.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.15.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键. 16.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.17.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2此题考查分式方程的增根,掌握运算法则是解题关键18.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 19.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键.【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.21.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.22.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.23.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、解答题25.(1)13;(2)-16.【解析】【分析】(1)直接运用乘法的分配律计算;(2)按照有理数混合运算的顺序,先乘方后乘除 最后算加减,有括号的先算括号里面的.【详解】(1)原式=-9+4+18=13;(2)原式=-1-6-9=-16.【点睛】本题考查的是有理数的运算能力.(1)要正确掌握运算顺序;(2)灵活地利用简便算法准确进行有理数的混合运算.26.(1)-5,0.5;(2)点P 与Q 运动2.2秒时重合;(3)①当点P 运动11秒时,点P 追上点Q ;②当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为﹣3或﹣51.【解析】【分析】(1)由题意得出数轴上点B 表示的数是5-,由点P 运动到AB 中点得出点P 对应的数是1(56)0.52⨯-+=即可; (2)设点P 与Q 运动t 秒时重合,点P 对应的数为63t -,点Q 对应的数为52t -+,得出方程6352t t -=-+,解方程即可;(3)①运动t 秒时,点P 对应的数为63t -,点Q 对应的数为52t --,由题意得出方程6352t t -=--,解方程即可;②由题意得出|63(52)|8t t ----=,解得3t =或19t =,进而得出答案.【详解】解:(1)数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,∴数轴上点B 表示的数是6115-=-,点P 运动到AB 中点,∴点P 对应的数是:1(56)0.52⨯-+=,故答案为:5-,0.5;(2)设点P 与Q 运动t 秒时重合,点P 对应的数为:63t -,点Q 对应的数为:52t -+, 6352t t ∴-=-+,解得: 2.2t =,∴点P 与Q 运动2.2秒时重合;(3)①运动t 秒时,点P 对应的数为:63t -,点Q 对应的数为:52t --,点P 追上点Q ,6352t t ∴-=--,解得:11t =,∴当点P 运动11秒时,点P 追上点Q ; ②点P 与点Q 之间的距离为8个单位长度,|63(52)|8t t ∴----=,解得:3t =或19t =,当3t =时,点P 对应的数为:63693t -=-=-,当19t =时,点P 对应的数为:6365751t -=-=-,∴当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为3-或51-.【点睛】此题考查的知识点是一元一次方程的应用与两点间的距离及数轴,根据已知得出各线段之间的等量关系是解题关键.27.(1)这件商品的成本价是150元;(2)此件商品的利润率是20%【解析】【分析】(1)设这件商品的成本价为x 元,根据售价=标价×80%,据此列方程.(2)根据利润率=100%⨯利润成本计算. 【详解】解:(1)设这件商品的成本价为x 元,由题意得,x (1+50%)×80%=180.解得:x =150,答:这件商品的成本价是150元;(2)利润率=180150150×100%=20%.答:此件商品的利润率是20%.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.28.x=5.【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:2(5x﹣7)﹣6=12+3(x+1),去括号得:10x﹣14﹣6=12+3x+3,移项合并得:7x=35,解得:x=5.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.见解析【解析】【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.30.(1)a = -8 , b = -6,c = 12 , d = 16;(2)316t =;(3)t =274 或t = 458时, BC = 3AD【解析】【分析】 (1)根据绝对值的含义a a ±=(a 为正数) 及平方和绝对值的非负性20,0a a ≥≥ 即可求解;(2)AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,根据题意列出关于t 的等式求解即可;(3)根据题意求出t 的取值范围,用含t 的式子表示出BC 和AD ,再根据BC =3AD 即可求出t 值.【详解】(1) | x + 7 |= 1,∴ x = -8 或-6∴ a = -8 , b = -6,(c -12)2 + | d -16 |= 0 ,∴ c = 12 , d = 16(2) AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,∴ BD =|16 - t - (-6 + 3t ) |=| 22 - 4t |AC =|12 - t - (-8 + 3t ) |=| 20 - 4t |BD = 2 AC ,∴ 22 - 4t = ±2(20 - 4t )解得: 92t =或316t = 当92t =时,此时点 B 对应的数为152,点C 对应的数为152,此时不满足题意, 故316t = (3)当点 B 运动到点 D 的右侧时, 此时-6 + 3t > 16 - t 112t ∴>, BC =|12 - t - (-6 + 3t ) |=|18 - 4t | ,AD =|16 - t - (-8 + 3t ) |=| 24 - 4t | ,BC = 3AD ,∴|18 - 4t |= 3 | 24 - 4t | ,解得:t =274或t =458经验证,t =274或t =458,BC = 3AD【点睛】本题考查了有理数与数轴的综合问题,涉及字母的表示,绝对值的性质,解方程,灵活应用绝对值的性质是解题的关键.四、压轴题31.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.32.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13AB,∴13PQAB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.33.(1) 2x=-和4x= ;(2)35(4)11(43)35(3)x xx xx x--<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。
岳阳市数学七年级上学期期末数学试题
岳阳市数学七年级上学期期末数学试题一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×106 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( )A .3.84×103B .3.84×104C .3.84×105D .3.84×106 3.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°4.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 5.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab += 6.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣7 7.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 8.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式9.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y10.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个B .2个C .3个D .4个 11.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .7 12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.14.已知单项式245225n m x y x y ++与是同类项,则m n =______.15.若3750'A ∠=︒,则A ∠的补角的度数为__________.16.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.17.单项式﹣22πa b 的系数是_____,次数是_____. 18.已知23,9n m n a a -==,则m a =___________.19.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).21.4是_____的算术平方根.22.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.23.若4a +9与3a +5互为相反数,则a 的值为_____.24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、解答题25.计算:﹣6÷2+11()34-×12+(﹣3)2.26.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.27.如图,在平面内有,,A B C 三点.(1)请按要求作图:画直线AC ,射线BA ,线段BC ,取BC 的中点D ,过点D 作DE AC ⊥于点E .(2)在完成第(1)小题的作图后,图中以,,,,A B C D E 这些点为端点的线段共有 条.28.解下列方程或方程组:(1)3(2x ﹣1)=2(1﹣x )﹣1(2)111234x y x y -+⎧+=⎪⎨⎪+=⎩ 29.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.30.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足2b=,|2|(8)0++-=,1a c(1)a=_____________,c=_________________;(2)若将数轴折叠,使得A点与B点重合,则点C与数表示的点重合.(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式-+-+-取得最小值时,此时x=____________,最小值为||||||x a x b x c__________________.(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示)四、压轴题31.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?32.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C6a+(c﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 详解:65 000 000=6.5×107.故选B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】试题分析:384 000=3.84×105.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.4.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x 分钟, 由题意得6x -0.5x =180,解之得x =36011. 故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.B解析:B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x ,故该选项计算错误,不符合题意,B.2ab ab ab -=,计算正确,符合题意,C.-2a+3a=a ,故该选项计算错误,不符合题意,D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.6.A解析:A【解析】【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.7.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.10.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b ,则-a=-b ,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则n m=1, 故本选项错误.故选B. 11.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.12.A解析:A【解析】设一件的进件为x 元,另一件的进价为y 元,则x (1+25%)=200,解得,x =160,y (1-20%)=200,解得,y =250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A .二、填空题13.80°【解析】【分析】由轴对称的性质可得∠B′OG =∠BOG ,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG =∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG =解析:80°【解析】【分析】由轴对称的性质可得∠B ′OG =∠BOG ,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B ′OG =∠BOG又∠AOB ′=20°,可得∠B ′OG +∠BOG =160°∴∠BOG =12×160°=80°. 故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 14.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.15.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.16.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.17.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 18.27【解析】【分析】首先根据an =9,求出a2n =81,然后用它除以a2n −m ,即可求出am 的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n −m =81÷3=2解析:27【解析】首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值. 【详解】解:∵a n =9,∴a 2n =92=81, ∴a m =a 2n ÷a 2n−m =81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.19.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.20.(5a+10b ).【解析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.22.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.23.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.11【解析】【分析】对整式变形得,再将2a﹣b=4整体代入即可.【详解】解:∵2a﹣b=4,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.三、解答题25.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:﹣6÷2+11()34-×12+(﹣3)2=﹣3+11121234⨯-⨯+(﹣3)2 =﹣3+4﹣3+9=7.【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(1)155°;(2)OD 平分AOC ∠,理由见详解.【解析】【分析】(1)由题意先根据角平分线定义求出∠BOE ,进而求出BOD ∠的度数;(2)由题意判断OD 是否平分AOC ∠即证明AOD DOC ∠=∠,以此进行分析求证即可.【详解】解:(1)∵130BOC ∠=︒,OE 平分BOC ∠,∴∠BOE =65°,∵DO OE ⊥,∴BOD ∠=90°+65°=155°.(2)OD 平分AOC ∠,理由如下:∵由(1)知BOD ∠=155°,∴AOD ∠=180°-155°=25°,∵130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥,∴DOC ∠=90°-65°=25°,∴AOD DOC ∠=∠=25°,即有OD 平分AOC ∠.【点睛】本题考查角的运算,利用角平分线定义以及垂直定义结合题意对角进行运算即可.27.(1)见解析;(2)8.【解析】【分析】(1)根据直线是向两方无限延伸的,线段有两个端点,射线是向一方无限延伸的画出直线AC 、射线BA 、线段BC ,根据中点的定义找出BC 中点D ,利用网格的特点连接小正方形对角线并延长交AC 于E 即可得DE AC ⊥.【详解】(1)答案如图所示:(2)图中以A 、B 、C 、D 、E 为端点的线段有:AB 、AE 、AC 、EC 、BD 、BC 、DC 、DE ,共8条,故答案为:8【点睛】本题考查了基本作图,直线、射线、线段的定义,是基础题,主要训练了同学们把几何文字语言转化为几何图形语言的能力.28.(1)x=12 ;(2)15x y =-⎧⎨=⎩. 【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)3(2x ﹣1)=2(1﹣x )﹣1,6x ﹣3=2﹣2x ﹣1,x=12,(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩,整理得:3x+2y=72x+2y=8①②⎧⎨⎩,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:15xy=-⎧⎨=⎩.【点睛】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键. 29.见解析【解析】【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.30.(1)2-,8;(2)9-;(3)1;10;(4)82(2)10(0 3.5)26(2)34( 3.5)t t t tdt t t t----=-≤≤⎧=⎨----=->⎩.【解析】(1)根据两个非负数的和为零则这两个数均为零即可得出答案;(2)先求出AB =3,则折点为AB 的中点,故折点表示的数为B 点表示的数减去12AB ,即折点表示的数为:1-12×3=-0.5,再求出C 点与折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9;(3)当P 与点B 重合时,即当x =b 时,|x -a |+|x -b |+|x -c |取得最小值;(4)分小球乙碰到挡板之前和之后,即当0≤t ≤3.5,t >3.5时,表示出甲、乙两小球之间的距离d 即可.【详解】解:(1)2|2|(8)0a c ++-=,|2|0a +≥,2(8)0c -≥20a ∴+=,80c -=2a ∴=-,8c =;故答案为:2-,8;(2)因为2a =-,1b =,所以AB =1-(-2)=3,将数轴折叠,使得A 点与B 点重合,所以对折点为AB 的中点,所以对折点表示的数为:1-12×3=-0.5, C 点与对折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9,即点C 与数-9表示的点重合,故答案为:-9;(3)当x =b =1时,|x -a |+|x -b |+|x -c |=|x -(-2)|+|x -1|+|x -8|=10为最小值;故答案为:1;10;(4)t 秒后,甲的位置是2t --,乙的位置是82(0 3.5)12( 3.5)26( 3.5)t t t t t -≤≤⎧⎨+-=->⎩, 82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧∴=⎨----=->⎩. 【点睛】此题考查是列代数式,数轴上两点之间的距离,掌握数轴上两点之间的距离求法是解决问题的关键.四、压轴题31.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.32.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣3t+21(3)当t为2秒或133秒时,△OPM的面积是长方形OBCD面积的13.此时点P的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a,b,c的值,即可得到B、C两点的坐标;(2)分两种情况:①P在OB上时,直接根据三角形面积公式可得结论;②P在BC上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.33.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。
岳阳市七年级上册数学期末试卷
岳阳市七年级上册数学期末试卷一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107C .6.5×108D .65×1062.4 =( ) A .1B .2C .3D .43.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 4.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=- 5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .46.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯7.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒8.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -9.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为() mA.21.0410-⨯B.31.0410-⨯C.41.0410-⨯D.51.0410-⨯10.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.11211.有m 辆客车及n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;②2554045n n+-=;③2554045n n++=;④ 40m+25 = 45m- 5 .其中正确的是()A.①③B.①②C.②④D.③④12.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.713.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是()A.48°B.42°C.36°D.33°14.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+ 15.已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°二、填空题16.已知x=3是方程(1)21343x m x-++=的解,则m的值为_____.17.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.18.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG的度数是_____.19.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____. 20.=38A ∠︒,则A ∠的补角的度数为______.21.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
岳阳XX中学2020—2021学年七年级上期末数学试卷含答案解析
岳阳XX中学2020—2021学年七年级上期末数学试卷含答案解析一、选择题1.在﹣(﹣2.5),3,0,﹣5,﹣0.25,﹣中正整数有()A.1个B.2个C.3个D.4个2.若﹣a x b与2ab y+2是同类项,则x﹣y的值为()A.1 B.2 C.﹣1 D.03.过度包装既白费资源又污染环境,据测算,假如全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,数3120000用科学记数法表示为()A.3.12×104B.3.12×105C.3.12×106D.0.312×1074.代数式x+2与代数式2x﹣5的值互为相反数,则x的值为()A.7 B.﹣7 C.﹣1 D.15.一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博6.下列调查中,适合进行普查的是()A.《新闻联播》电视栏目的收视率B.一个班级学生的体重C.一批灯泡的使用寿命D.我国中小学生喜爱上数学课的人数7.如图所示,点O为直线AB上一点∠AOC=∠DOE=90°,那么图中互余角的对数为()A.2对B.3对C.4对D.5对8.规定一种新的运算“∮”,关于任意有理数a,b,满足a∮b=a+b﹣ab,则3∮2的运算结果是()A.6 B.﹣1 C.0 D.1二、填空题9.﹣2的相反数是;﹣的绝对值是.10.若x=2是方程3(x+a)=12的解,则a= .11.单项式5a3bc4的次数是.12.40°20′的余角是.13.线段AB=10cm,A、B、C三点在同一条直线上,BC=5cm,AC= .14.我校为了了解初一年级800名学生每天完成作业所用时刻的情形,从中对80名学生每天完成作业作用时刻进行了抽查,那个问题中的样本容量是.15.已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为.16.用同样大小的黑色棋子按如图所示的规律摆放:第5个图形有颗黑色棋子.第10个图形有颗黑色棋子.第n个图形有颗黑色棋子.三、解答题17.运算(1)﹣14﹣(1﹣0.5)×(﹣2)2(2)﹣28÷(﹣14)+(﹣4)×0.5.18.解方程:﹣6=.19.化简求值:2(x2+x)﹣(2x﹣1),其中x=﹣3.20.读句画图:如图,A,B,C,D在同一平面内,(1)过点A和点D作直线;(2)画射线CD;(3)连结AB;(4)连结BC,并反向延长BC.21.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.22.在读书月活动中,学校预备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查武汉市对城区主干道进行绿化,打算把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,同时每两棵树的间隔相等.假如每隔5米栽1棵,则树苗缺21棵;假如每隔6米栽1棵,则树苗正好用完,求原有树苗多少棵?24.(1)如图,点C在线段AB上,线段AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长?(2)依照(1)的运算过程和结果,设AC+BC=a,其他条件不变,请你猜出MN的长度.(3)关于(1),假如叙述为:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求线段MN的长?”结果会有变化吗?假如有,求出结果.2020-2021学年湖南省岳阳XX中学七年级(上)期末数学试卷参考答案与试题解析一、选择题1.在﹣(﹣2.5),3,0,﹣5,﹣0.25,﹣中正整数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】依照大于0的整数是正整数,可得答案.【解答】解:3>0,故选:A.【点评】本题考查了有理数,大于0的整数是解题关键.2.若﹣a x b与2ab y+2是同类项,则x﹣y的值为()A.1 B.2 C.﹣1 D.0【考点】同类项.【分析】依照同类项即可求出x与y的值.【解答】解:由题意可知:x=1,1=y+2,∴x=1,y=﹣1,∴x﹣y=1+1=2,故选(B)【点评】本题考查同类项,涉及代入求值与解一元一次方程.3.过度包装既白费资源又污染环境,据测算,假如全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,数3120000用科学记数法表示为()A.3.12×104B.3.12×105C.3.12×106D.0.312×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于3120000有7位,因此能够确定n=7﹣1=6.【解答】解:3 120 000=3.12×106.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.代数式x+2与代数式2x﹣5的值互为相反数,则x的值为()A.7 B.﹣7 C.﹣1 D.1【考点】解一元一次方程.【专题】运算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:依照题意得:x+2+2x﹣5=0,移项合并得:3x=3,解得:x=1,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5.一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博【考点】专题:正方体相对两个面上的文字.【分析】依照正方体相对的面的特点作答.【解答】解:相对的面的中间要相隔一个面,则“★”所在面的对面所标的字是“海”,故选B.【点评】注意正方体的空间图形,应从相对面的特点入手,分析及解答问题.如没有空间观念,动手操作可专门快得到答案.7.如图所示,点O为直线AB上一点∠AOC=∠DOE=90°,那么图中互余角的对数为()A.2对B.3对C.4对D.5对【考点】余角和补角.【分析】依照余角的和等于90°,结合图形找出构成直角的两个角,然后再运算对数.【解答】解:∵∠AOC=∠DOE=90°,∴∠AOD+∠COD=90°,∠AOD+∠BOE=90°,∠COD+∠COE=90°,∠COE+∠BOE=90°.∴互余角的对数共有4对.故选C.【点评】本题结合图形考查了余角的和等于90°的性质,找出和等于90°的两个角是解题的关键.8.规定一种新的运算“∮”,关于任意有理数a,b,满足a∮b=a+b﹣ab,则3∮2的运算结果是()A.6 B.﹣1 C.0 D.1【考点】有理数的混合运算.【专题】新定义.【分析】依照新定义得到3∮2=3+2﹣3×2,再运算乘法运算,然后进行加减运算即可.【解答】解:3∮2=3+2﹣3×2=5﹣6=﹣1.故选B.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行运算;假如有括号,要先做括号内的运算.二、填空题9.﹣2的相反数是 2 ;﹣的绝对值是.【考点】绝对值;相反数.【分析】依照相反数和绝对值的定义直截了当得出答案.【解答】解:﹣2的相反数是2,﹣的绝对值,故答案为:2,.【点评】此题考查了相反数和绝对值,把握相反数和绝对值的定义是本题的关键,是一道基础题.10.若x=2是方程3(x+a)=12的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程,解方程求得a的值.【解答】解:把x=2代入方程得3(2+a)=12,解得a=2.故答案是:2.【点评】本题考查了一元一次方程的解的定义,方程的解确实是能使方程左右两边相等的未知数的值,明白得定义是关键.11.单项式5a3bc4的次数是8 .【考点】单项式.【分析】单项式的次数确实是所有的字母指数和,依照求出即可.【解答】解:单项式5a3bc4的次数是3+1+4=8,故答案为:8.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.12.40°20′的余角是49°40′.【考点】余角和补角;度分秒的换算.【分析】依照余角的定义运算.【解答】解:40°20′角的余角是90°﹣40°20′=49°40′.故答案为:49°40′.【点评】本题考查了余角的和等于90°,需要熟练把握,本题需要专门注意度、分、秒是60进制,运算时容易出错.13.线段AB=10cm,A、B、C三点在同一条直线上,BC=5cm,AC= 15cm或5cm .【考点】两点间的距离.【分析】由于没有说明点C的位置,因此点C要分两种情形讨论.【解答】解:当C在B的右边时,现在AC=AB+BC=15cm,当C在B的左边时,现在AC=AB﹣BC=5cm,故答案为:15cm或5cm【点评】本题考查两点间的距离,涉及分类讨论的思想.14.我校为了了解初一年级800名学生每天完成作业所用时刻的情形,从中对80名学生每天完成作业作用时刻进行了抽查,那个问题中的样本容量是80 .【考点】总体、个体、样本、样本容量.【分析】依照样本容量的定义:样本容量是指样本中包含个体的数目解答.【解答】解:那个问题中的样本容量是80.故答案为:80.【点评】本题考查了总体、个体、样本、样本容量,熟记样本容量的定义是解题的关键.15.已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为 1 .【考点】代数式求值.【专题】整体思想.【分析】依照已知条件整理得到x﹣y=1,然后整体代入运算即可得解.【解答】解:∵y=x﹣1,∴x﹣y=1,∴(x﹣y)2+(y﹣x)+1=12+(﹣1)+1=1.故答案为:1.【点评】本题考查了代数式求值,注意整体思想的利用使运算更加简便.16.用同样大小的黑色棋子按如图所示的规律摆放:第5个图形有18 颗黑色棋子.第10个图形有33 颗黑色棋子.第n个图形有3n+3 颗黑色棋子.【考点】规律型:图形的变化类.【分析】依照图中所给的黑色棋子的颗数,找出其中的规律,依照规律列出式子,即可求出答案.【解答】解:第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.因此第10个图形有33颗黑色棋子.故答案为:18,33,3(n+1).【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.三、解答题17.运算(1)﹣14﹣(1﹣0.5)×(﹣2)2(2)﹣28÷(﹣14)+(﹣4)×0.5.【考点】有理数的混合运算.【专题】运算题;实数.【分析】(1)原式先运算乘方运算,再运算乘法运算,最后算加减运算即可得到结果;(2)原式先运算乘除运算,再运算加减运算即可得到结果.【解答】解:(1)原式=﹣1﹣×4=﹣1﹣2=﹣3;(2)原式=2﹣2=0.【点评】此题考查了有理数的混合运算,熟练把握运算法则是解本题的关键.18.解方程:﹣6=.【考点】解一元一次方程.【分析】去分母、去括号、移项合并同类项即可求解.【解答】解:去分母,得3(x+2)﹣36=2x,去括号,得3x+6﹣36=2x,移项,得3x﹣2x=36﹣6,合并同类项,得x=30.【点评】本题考查了一元一次方程的解法,解一元一次方程的一样步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一样步骤,针对方程的特点,灵活应用,各种步骤差不多上为使方程逐步向x=a形式转化.19.化简求值:2(x2+x)﹣(2x﹣1),其中x=﹣3.【考点】整式的加减—化简求值.【专题】运算题;整式.【分析】原式去括号合并得到最简结果,把x的值代入运算即可求出值.【解答】解:原式=2x2+2x﹣2x+1=2x2+1,当x=﹣3时,原式=18+1=19.【点评】此题考查了整式的加减﹣化简求值,熟练把握运算法则是解本题的关键.20.读句画图:如图,A,B,C,D在同一平面内,(1)过点A和点D作直线;(2)画射线CD;(3)连结AB;(4)连结BC,并反向延长BC.【考点】直线、射线、线段.【分析】依照直线:向两方无限延长;射线向一方无限延长;线段:本身不能向两方无限延长,画出图形即可.【解答】解:作图如图所示.【点评】此题要紧考查了直线、射线、线段,关键是把握三种线的特点.21.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】运算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题要紧考查邻补角的概念以及角平分线的定义.22.在读书月活动中,学校预备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2020秋•岳阳校级期末)武汉市对城区主干道进行绿化,打算把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,同时每两棵树的间隔相等.假如每隔5米栽1棵,则树苗缺21棵;假如每隔6米栽1棵,则树苗正好用完,求原有树苗多少棵?【考点】一元一次方程的应用.【专题】应用题.【分析】设原有树苗x棵,依照两种栽种方法树苗的数量相等,可得出方程,解出即可.【解答】解:设原有树苗x棵,由题意得:5(x+21﹣1)=6(x﹣1),解得:x=106.答:原有树苗106棵.【点评】本题考查了一元一次方程的应用,解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系列出方程,再求解.24.(1)如图,点C在线段AB上,线段AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长?(2)依照(1)的运算过程和结果,设AC+BC=a,其他条件不变,请你猜出MN的长度.(3)关于(1),假如叙述为:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求线段MN的长?”结果会有变化吗?假如有,求出结果.【考点】两点间的距离.【分析】(1)此题的关键是先求出CN,CM的值才能进而求出MN的值;(2)依照(1)的运算结果推测即可;(3)注意分类讨论,点C在线段AB上和点C在线段AB延长线上.【解答】解:(1)∵AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,∴CM==3(cm);CN===2(cm),∴MN=3+2=5(cm);(2)MN=a;(3)会有变化.点C在直线AB上时,MN=5cm;点C在直线AB延长线上,MN=3﹣2=1cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。
湖南省岳阳市2020年七年级上学期期末数学试卷(II)卷
湖南省岳阳市2020年七年级上学期期末数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法中正确的是()A . 最小的整数是0B . 如果两个数的绝对值相等,那么这两个数相等C . 有理数分为正数和负数D . 互为相反数的两个数的绝对值相等2. (2分)(2017·合肥模拟) 下列说法正确的是()A . 没有最小的正数B . ﹣a表示负数C . 符号相反两个数互为相反数D . 一个数的绝对值一定是正数3. (2分) (2016七上·绵阳期中) 如图所示,已知数轴上两数a和b,下列关系正确的是()A . a<﹣b<b<﹣aB . ﹣a<﹣b<a<bC . ﹣b<﹣a<a<bD . a<b<﹣b<﹣a4. (2分)下列方程中是一元一次方程的是()A . 5=abB . 2+5=7C . +1=x+3D . 3x+5y=85. (2分)下列运算正确的是()A . 7x-(-3x)=10B . 5a+6b=11abC . ab+2ba=3abD . -(a-b)=a+b6. (2分)(2016·义乌模拟) 在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A . 文B . 明C . 城D . 国7. (2分)(2017·洛阳模拟) 大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A . 1.6×105B . 1.6×106C . 1.6×107D . 1.6×1088. (2分)将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为()A . 两点确定一条直线B . 两点确定一条线段C . 两点之间,直线最短D . 两点之间,线段最短9. (2分)如图,甲乙两人同时沿着边长为30米的等边三角形,按逆时针的方向行走,甲从A以65米/分的速度,乙从B以71米/分的速度行走,当乙第一次追上甲时在等边三角形的()A . AB边上B . 点B处C . BC边上D . AC边上10. (2分)下列说法中,正确的是()A . 倒数等于它本身的数是1B . 如果两条线段不相交,那么它们一定互相平行C . 等角的余角相等D . 任何有理数的平方都是正数二、填空题 (共8题;共11分)11. (1分)实数在数轴上的位置如图所示,化简=________ .12. (1分)若x=4,则|x﹣5|=________ .13. (1分) (2019八上·兴化月考) 近似数13.7万精确到________位.14. (4分) 3.75°=________°________′________″;16°48′36″=________°.15. (1分) (2017八上·泸西期中) 一个三角形的三边长分别是5,x,7,第三边x的取值范围是________16. (1分) (2017八下·临沧期末) 已知,如图,直线AB与CD相交于点O,OE平分∠AOC,若∠EOC=25°,则∠BOD的度数为________.17. (1分)某企业今年5月份产值为a(1﹣10%)(1+15%)万元,比4月份增加了15%,4月份比3月份减少了10%,则3月份的产值是________ 万元.18. (1分) (2019九上·江汉月考) 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,...,则正方形铁片连续旋转2019次后,点P的坐标为________三、解答题 (共8题;共77分)19. (20分) (2016七上·南江期末) 计算:(1)﹣24+3×(﹣1)2016+100÷(﹣5)2(2) xy﹣ x2y2﹣ xy2+ xy﹣ xy2(3) 4y2﹣[3y﹣(3﹣2y)+2y2]﹣2(4) xy﹣ x2y2﹣ xy2+ xy﹣ xy2.20. (5分) (2011八下·建平竞赛) 已知:方程组,求:x2-y2的值。
岳阳市七年级上学期期末数学试题及答案
岳阳市七年级上学期期末数学试题及答案一、选择题1.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .52.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+3.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒4.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠ 5.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+66.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 7.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 8.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 10.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限11.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 12.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .7二、填空题13.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.14.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 17.若a 、b 是互为倒数,则2ab ﹣5=_____.18.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 19.4是_____的算术平方根.20.钟表显示10点30分时,时针与分针的夹角为________.21.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.22.若4a +9与3a +5互为相反数,则a 的值为_____. 23.已知7635a ∠=︒',则a ∠的补角为______°______′.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 26.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等. 27.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.28.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?29.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数30.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.31.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.32.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.2.D解析:D【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.3.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.4.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.5.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.6.C解析:C 【解析】 【分析】各项中方程变形得到结果,即可做出判断. 【详解】解:A 、方程x 1x 10.20.5--=化成10x 1010x25--=1,错误; B 、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误; C 、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D 、方程23t 32=,系数化为1,得:t=94,错误; 所以答案选C. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.C解析:C 【解析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.8.B解析:B 【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可. 详解:原式=2x ﹣3y ﹣12x +6y =﹣10x +3y . 故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.A解析:A【解析】A. 3x+1=4x 是一元一次方程,故本选项正确; B. x+2>1是一元一次不等式,故本选项错误; C. x 2−9=0是一元二次方程,故本选项错误; D. 2x −3y=0是二元一次方程,故本选项错误。
岳阳市七年级上学期期末数学试题及答案
21.﹣2 的倒数为_____,﹣2 的相反数是_____.
22.﹣30×( + )=_____.
(1)如图1,若点F与点G重合,求∠MEN的度数;
(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;
(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.
33.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.
(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;
A.y=2n+1B.y=2n+nC.y=2n+1+nD.y=2n+n+1
15.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x= ;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程 •a= ﹣ (x﹣6)无解,则a的值是( )
(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为 (秒),当 为多少时PQ=2cm?
32.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.
6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年下学期岳阳市城区初中学业水平监测试卷七年级 数学温馨提示:1.本试卷共3道大题,24道小题,满分120分,考试时量90分钟;2.本试卷分为试题卷和题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区城内;3.考试结来后,考生不得将答是卡带出考场.二、选择题(本大题共8道小题,每小题3分,满分24分,在每道小题给出的四个选项中选出符合要求的一项).1.已知m 的绝对值是3,则m 的值是 A.0 B.3 C.-3 D.3±2.下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是A.B.C. D.3.若23a =-,()1b =--,()32c =-,则a 、b 、c 的大小关系是A.a b c <<B.a c b <<C.b c a <<D.b a c << 4.下列计算正确的是A.2222x x x -= B.532--=- C.22232a b ab a b -= D.23a b ab += 5.一个角的补角是这个角的余角的4倍,则这个角的度数是A.120°B.90°C.80°D.60° 6.要调查下列问题,适合采用全面调查(普查)的是 A.中央电视台《开学第一课》的收视率 B.即将发射的气象卫星的零部件质量 C.某城市居民12月份人均网上购物的次数 D.某品牌新能源汽车的最大续航里程 7.下列说法正确的是A.若32x y =,则 1.5x y =B.若a b =,则a b c c= C.若23351a b +=-,则234a b =- D.单项式213r h π的系数是13,次数是48.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,十进制中261610=+,用十大进制表示为1A :用十六进制表示:1D F C +=,19F A -=,则A E ⨯,用A E ⨯十六进制可表示为A.8CB.140C.32D.EO二、填空题(本大题共8小题,每小题4分,满分32分)9.如果节约20 m 3的水记作+20 m 3,那么浪费10 m 3的水记作 m 3. 10.已知423nx y和26mxy -是同类项,则m n +的值是11.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道,将36000用科学记数法表示应为 . 12.已知1m n +=-,则()222m n m n +--的值是 .13.教育部规定,初中生每天的睡眠时间应为9个小时,皓皓记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则皓皓这一周的睡眠够9个小时的有 天.14.已知2x =是关于x 的一元一次方程250x m +-=的解,则m = .15.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣,《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:“家有客津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共,四人共肉,凡用杯六十五不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 .16.下列说法:①点C 是线段AB 的中点,则2AB AC =;②平面上有4个点,其中任意3个点都不在同一条直线上,经过每两点画一条直线,一共可以画4条直线:③锐角和钝角定互补:④35322435.54'''︒=︒,其中正确结论的序号是 .三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分6分)计算 (1)()172 1.25⎛⎫+---- ⎪⎝⎭(2)()()2202012 2.5 3.5120---+-÷18.(本题满分6分)先化简,再求值;()()222232522xxy y x xy y -+--+,其中1x =,2y =-.19.(本题满分8分)解方程: (1)4321x x +=- (2)12223x x--=20.(本题满分8分)某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A 非常了解”、“B 比较了解”、“C 基本了解”、“D 不太了解”四个等级,划分等级后的数据整理成如下两幅不完整的统计图,请你根据图表信息回答下列问题:(1)学校这次调查共抽取了 名学生,并请补全条形统计图; (2)求扇形统计图中B 选项所对应的圆心角度数.(3)若该校有学生1800人,那么“不太了解”垃圾分类知识的学生大约有多少人? 21.(本题满分8分)如图,直线AB 与CD 相交于点O ,90AOE ∠=︒. (1)如果20AOC ∠=︒,求COE ∠和BOD ∠的度数. (2)如果2COE BOD ∠=∠,求BOC ∠的度数.22.(本题满分8分)列方程解应用题:双十一期间,某商店将某型号的彩电按标价的八折出售,若每台彩电的利润率是5%,已知该型号彩电的进价为每台4000元,求该型号彩电的标价.23.(本题满分10分)数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x . (1)AB = ,BC = . (2)当点P 在线段AC 上时,①用含x 的代数式表示:PA= ,PC= . ②若74PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒. ①试说明2AP PQ =②当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.24.(本题满分10分)(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为 .(3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值.2020年下学期岳阳市城区初中学业水平监测试卷七年级数学参考答案及评分标准说明:本参考答案给出了一种解法供参考,如果考生的解法与参考解法有差异,请参照标准按步骤给分。
一、选择题(本题共8小题,每小题3分,共24分)二、填空题(本题共8小题,每小题4分,共32分) 9.-10 10.5 11.43.610⨯ 12.3 13.2 14.1 15.11165234x x x ++= 16.①④ 三、解答题(本大题共8小题,满分64分)17.①原式70.22 1.2=--+7 1.20.22=+-- 6=②原式41120=-+⨯320=+ 23=18.()()222232522x xy y x xy y -+--+2222325224x xy y x xy y =-+-+-22x y =+当1x =,2y =-时,原式()2212=+-5=19.(1)移项得:4231x x -=--,24x =-,解得:2x =-;12223x x--=(2)去分母得:()()31222x x -=-, 移项得3443x x +=+ 解得:1x =。
20.解:(1)3015%200a =÷=比较了解人数:20030902060---=人,补图略 (2)B 选项所对应的圆心角度数为60360108200︒⨯= (3)201800180200⨯=(人) 答:“不太了解”垃圾分类知识的学生大约为180人。
21.解:(1)90AOE ∠=︒902070COE AOE AOC ∴∠=∠-∠=︒-︒=︒。
180********BOC AOC ∠=∠=︒-︒=︒-︒ 180********BOD BOC ∴∠=︒-∠=︒-︒=︒(2)设BOD x ∠=,则2COE x ∠=。
180COE BOE BOD ∠+∠+∠=︒,即290180x x +︒+=︒, 解得30x =︒,260x =︒,60COE ∴∠=︒,6090150BOC COE BOE ∴∠=∠+∠=︒+︒=︒。
22.解:(1)设彩电标价为每台x 元,由题意得0.8400040005%x -=⨯解得5250x =所以该型号彩电的标价为5250元。
23.(1)4,2 (2)①5x +,1x - ②7.4PA PB PC ++=,(Ⅰ)当点P 在线段AB 上时,51157.4PA PB PC x x x x ++=+--+-=-=解得 2.4x =-;(Ⅱ)当点P 在线段BC 上时,51177.4PA PB PC x x x x ++=++++-=+=解得:0.4x =;综上所述,x 的值是-2.4或0.4. (3)①4AB =,2BC =2BP t =,3CQ t = 42AP AB BP t ∴=-=-2232PQ BP BQ BP BC CQ t t t =+=+-=+-=- 2AP PQ ∴=②由223t t += 解得:2t =,24BP t ==此时,相遇点在数轴上对应的数为-4∴当t 为2秒时,Q 点可以追上P 点,此时两者相遇的点在数轴上对应的数为-5. 24.(1)30(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠, AON AOC NOC ∠=∠+∠ BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠ 22MOC NOC NOC MOC =∠-∠+∠-∠ MOC NOC =∠-∠,AON BOM ∠≠∠,1MOC NOCAON BOM∠-∠∴=∠-∠(3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠, 又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠, MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠;。