17 第一章 特殊四边形单元检测题
第一章 特殊平行四边形 单元测试(含答案解析)
初中数学北师大版九年级上学期第一章单元测试一、单选题1.已知四边形是平行四边形,,相交于点O,下列结论错误的是()A. ,B. 当时,四边形是菱形C. 当时,四边形是矩形D. 当且时,四边形是正方形2.如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A. 2B.C. 3D. 43.如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC单位中点,过点E作EF⊥BD于F,EG⊥AC与G,则四边形EFOG的面积为()A. B. C. D.4.如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为()A. 3B. 4C. 5D. 65.如图,正方形的面积为1,是的中点,则图中阴影部分的面积是()A. B. C. D.6.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则2EF+ED的最小值为( )A. 12B. 12C. 12D. 10二、填空题7.如图,在菱形中,,点E在上,若,则________.8.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.9.如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C 的对应点是R点,则∠CQP=________.10.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是________度.三、作图题11.在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F.(1)尺规作图:在图中求作点E,使得EF=EC;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接FC,求∠BCF的度数.四、综合题12.如图,的对角线AC,BD相交于点O,过点O作,分别交AB,DC于点E、F,连接AF、CE.(1)若,求EF的长;(2)判断四边形AECF的形状,并说明理由.13.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.14.如图,的对角线,交于点O,过点D作于E,延长到点F,使,连接,.(1)求证:四边形是矩形;(2)若,,,试求的长.15.如图,点是正方形外一点,点是线段上一点,且是等腰直角三角形,其中,连接、.(1)求证:;(2)判断与的位置关系,并说明理由.16.如图,菱形的三个顶点、、分别在正方形的边、、上,连接.(1)求证:;(2)当时,求证:菱形为正方形.答案解析部分一、单选题1. B解析:四边形是平行四边形,,故A正确,四边形是平行四边形,,不能推出四边形是菱形,故错误,四边形是平行四边形,,四边形是矩形,故C正确,四边形是平行四边形,,,四边形是正方形.故D正确.故答案为:B.【分析】(1)根据平行四边形的对角线互相平分可得OA=OC,OB=OD;(2)根据菱形的判定“一组邻边相等的平行四边形是菱形”可知当AB=CD时,四边形ABCD是菱形错误;(3)根据一个角是直角的平行四边形是矩形可知当∠ABC=90°时,四边形是矩形;(4)根据对角线相等且互相垂直的平行四边形是正方形可知,当且时,四边形是正方形.2. B解析:∵四边形ABCD是菱形,AC=8,BD=6,∴CO=AC=4,OD=BD=3,AC⊥BD,∴DC==5,∠EOC+∠DOE=90°,∠DCO+∠ODC=90°,∵OE=CE,∴∠EOC=∠ECO,∴∠DOE=∠ODC,∴DE=OE,∴OE=CD=.故答案为:B.【分析】根据菱形的性质,可得CO=AC=4,OD=BD=3,AC⊥BD,利用勾股定理及等角的余角相等,可得DC=5,∠DOE=∠ODC,可得DE=OE,从而可得DE=OE=CE,继而得出OE=CD,据此即可求出结论.3. B解析:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF∥OC,EG∥OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=OC=AC,EG=OB=BD,∴矩形EFOG的面积=EF×EG=AC×BD== S;故答案为:B.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,S=AC×BD,证出四边形EFOG 是矩形,EF∥OC,EG∥OB,得出EF、EG都是△OBC的中位线,则EF=OC=AC,EG=OB=BD,由矩形面积即可得出答案.4. B解析:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∴∠AOB=90°,又∵AB+BC+CD+AD=32.∴AB=8,在Rt△AOB中,OE是斜边上的中线,∴OE= AB=4.故答案为:B.【分析】利用菱形的对边相等以及对角线互相垂直,进而利用直角三角形斜边上的中线等于斜边的一半得出答案.5. B解析:如图,过点E作HF⊥AB,∵AM//CD,∴∠DCE=∠EAM,∠CDE=∠EMA,∴△AME∽△CDE,∴AM:DC=EH:EF=1:2,FH=AD=1,∴EH= ,EF= .∴阴影部分的面积=S正方形ABCD-S△AME-S△CDE-S△MBC=1- - - = .故答案为:B.【分析】根据正方形的性质可得到△AME∽△CDE,根据相似三角形的边对应边成比例,求得EH,EF的长,从而即可求得阴影部分的面积.6. B解析:如图,在AD上取点k,使AK=2,连接EK,在△AEK和△ADE中,∠EAK=∠DAE,∴△AEK∽△ADE,∴,即EK= ED,∴EF+ ED=EF+EK,当F、E、K三点共线时,EF+ ED=FK=6 ,∴(2EF+ED)最小=2(EF+ ED)=12 ,故答案为:B。
第一章《特殊平行四边形》单元测试卷(含答案解析)
第一章《特殊平行四边形》单元测试卷班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.矩形具有而菱形不一定具有的性质是()A.内角和等于3600B.对角互补C.对边平行且相等D.对角线互相平分3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形4.如图所示,四边形ABCD的对角线互相平分,要使四边形ABCD成为矩形,需要添加的条件是()A.AB=CD B.AD=BD C.AB=BC D.AC=BD(第4题) (第5题) (第6题)5.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm6.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形;B.当AB=BC时,四边形ABCD是菱形;C.当AC⊥BD时,四边形ABCD是菱形;D.当∠DAB=90°时,四边形ABCD是正方形7.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等N分别是边AB、BC的中点,则PM+PN的最小值是()A.5 B.10 C.14 D.不确定(第8题) (第9题) (第10题)9.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=4,则菱形ABCD的周长是()A.8 B.16 C.24 D.3210.如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个11.如图,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.67°B.57°C.60°D.87°(第11题) (第12题)12.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A2B 2 C 2 D cm2二.填空题:(每小题3分,共12分13.如图,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,请你(第13题) (第14题) (第15题)14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α= 度.15.如图,E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BD于点R,则PQ+PR的值为。
第一章 特殊平行四边形单元评价检测(含答案解析)
第一章特殊平行四边形评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角;B.对角线相等;C.对角线互相平分;D.对角线互相垂直【解析】选C.∵矩形、菱形、正方形都是特殊的平行四边形,∴平行四边形具有的性质就是矩形,菱形,正方形都具有的性质,∴矩形、菱形、正方形都具有的性质是对角线互相平分.【知识归纳】矩形、菱形、正方形对角线性质的区别(1)矩形的对角线相等但不垂直.(2)菱形的对角线垂直但不相等.(3)正方形的对角线相等而且垂直.2.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4C.5D.7【解题指南】解答本题的三个关键(1)由矩形的性质和EF⊥EC,EF=EC,得出△AEF≌△DCE.(2)由全等得AE=CD,再结合矩形的周长,求出A D.(3)用AD减DE得出AE的长.【解析】选A.∵矩形ABCD中,EF⊥EC,∴∠DEC+∠DCE=90°,∠DEC+∠AEF=90°,∴∠AEF=∠DCE,又∵EF=EC,∴△AEF≌△DCE,∴AE=CD,∵矩形的周长为16,即2CD+2AD=16,∴CD+AD=8,∴AD-2+AD=8,AD=5,∴AE=AD-DE=5-2=3.3.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【解析】选D.∵对角线相互平分且互相垂直的四边形是菱形,∴A,B选项错误;∵对角线互相垂直的四边形不一定是平行四边形,∴C选项错误;D选项正确,故选D.4.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.2B.C.D.【解析】选C.如图,过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°,∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.∴△ABE≌△CDF.∴AE=CF.∵∠ADE=∠BAE=30°,∴AE=AD=1,∴DE==,∴S△ECD=ED·CF=ED·AE=.【变式训练】如图,在矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则矩形ABCD的面积为.【解析】在Rt△ABE中,AE=2,∠BAE=30°,∴BE=AE=1,∴AB===.∵E是BC的中点,∴BC=2BE=2,∴矩形ABCD的面积=AB×BC=2.答案:25.如图,已知菱形ABCD与△ABE,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为()A.8B.9C.11D.12【解析】选D.连接AC,设AC交BD于O点,∵四边形ABCD为菱形,∴AC⊥BD,且BO=DO==8,在△AOD中,∵∠AOD=90°,∴AO===15,在△AOE中,∵∠AOE=90°,∴OE===20,又OD=8,∴DE=OE-OD=20-8=12.6.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为()A.15B.20C.25D.30【解析】选 D.根据折叠的性质,A1E=AE,A1D1=AD,D1F=DF;所以阴影部分的周长=矩形的周长=2(10+5)=30.7.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC的中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③【解析】选B.①正确.理由:∵正方形ABCD中,AB=3,CD=3DE,∴ED=CD=1.∴EC=2.由对折得△AFE≌△ADE.进而得,AF=AD,EF=ED =1,∠AFE=∠D=90°.∴可证△ABG≌△AFG.设BG=x,则FG=x,GC=3-x.在Rt△EGC中,由勾股定理得GC2+ EC2=EG2,即(3-x)2+22=(1+x)2.解得x=,即BG=B C.②不正确.理由:∵GF=,EF=1,∴点F不是GE的中点.假设FG=FC,则∠FGC=∠FCG.由等角的余角相等,得∠FEC=∠FCE.∴EF=F C.∴FG=EF.这与前面的结论:点F不是GE的中点相矛盾.所以假设不成立.③正确.理由:△GFC中,设GC边上的高为h,则h=·EC=.S△GFC=GC·h=××=.二、填空题(每小题5分,共25分)8.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是.【解析】等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;矩形、正方形是轴对称图形,也是中心对称图形.答案:矩形和正方形【易错提醒】平行四边形是中心对称图形,但不是轴对称图形,本题易误认为平行四边形既是轴对称图形又是中心对称图形.【知识归纳】特殊平行四边形的对称性(1)矩形、菱形、正方形既是轴对称图形又是中心对称图形.(2)矩形与菱形有两条对称轴,正方形有四条对称轴.(3)对角线的交点是它们的对称中心,过对称中心的任一条直线均把原图形分成面积相等的两部分.9.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,试添加一个条件:,使得平行四边形ABCD是菱形.【解析】添加AC⊥BD,则对角线互相垂直的平行四边形是菱形;添加AD=DC,则一组邻边相等的平行四边形是菱形.答案:AC⊥BD(或AD=DC,答案不唯一)10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=.【解析】在Rt△ABC中,AC==10(cm),∵点E,F分别是AO,AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=2.5(cm),AF=AD=BC=4(cm),AE=AO=AC=2.5(cm),∴△AEF的周长=AE+AF+EF=9cm.答案:9cm【变式训练】如图,顺次连接菱形ABCD的各边中点E,F,G,H.若AC=a,BD=b,则四边形EFGH的面积是.【解析】∵点E,F分别是菱形边AB,BC的中点,∴EF是△ABC的中位线,∴EF=AC,且EF∥A C.同理,HG=AC,且HG∥AC,∴EF=HG,且EF∥HG.∴四边形EFGH是平行四边形,且EH∥FG,EH=FG=B D.又∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EH,∴四边形EFGH的面积=EF·EH=a·b=a b.答案:ab11.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,连接GH,当AD,AB满足时,四边形EFGH为矩形.【解析】∵四边形ABCD是矩形,∴∠A=90°.∵AE=AF,∴∠AFE=∠AEF=45°.又∵EH⊥EF,FG⊥EF∴∠GFB=∠HED=45°,∴△DHE和△BGF都是等腰直角三角形.如果四边形EFGH是矩形,则EH=FG,∴ED=FB,又∵AE=AF,∴AD=A B.答案:AD=AB12.如图,四边形ABCD与AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=.【解析】作EH⊥AB于H,由对称性知,两菱形分别关于AF对称,∴∠BAE=∠DAG=(∠BAD-∠EAG)=30°,∠B=180°-∠BAD=45°.在Rt△BHE中,∠B=∠BEH=45°,设BH=x,则EH=BH=x,在Rt△EHA中,∠BAE=30°,AE=2HE=2x,AH===x.∴AB=BH+AH=x+x,故==.答案:三、解答题(共47分)13.(10分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形.(2)若四边形BECF为正方形,求∠A的度数.【解析】(1)∵BC的垂直平分线EF交BC于点D,∴BF=FC,BE=E C.又∵∠ACB=90°,∴EF∥A C.∴=.∵D为BC中点,∴==,∴E为AB中点,即BE=AE,∵CF=AE,∴CF=BE,∴CF=FB=BE=CE,∴四边形BECF是菱形.(2)∵四边形BECF为正方形,∴∠BEC=90°.又AE=CE,∴∠A=45°.【互动探究】四边形BECF的面积与△ABC的面积有什么关系?为什么?提示:四边形BECF的面积与△ABC的面积相等,理由如下:∵四边形BECF是菱形,∴CF∥A B.∵CF=AE,∴S△CFB=S△AEC,∴S△CFB+S△CEB=S△AEC+S△CEB,即:四边形BECF的面积=△ABC的面积.14.(12分)如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)证明:四边形AECF是矩形.(2)若AB=8,求菱形的面积.【解析】(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E,F分别是BC,AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形.(2)在Rt△ABE中,AE==4,所以,S菱形=8×4=32.15.(12分)(2014·新民市一模)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF.(2)若点O为CD的中点,求证:四边形DECF是矩形.【解析】(1)∵CE平分∠BCD,CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF.(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∴四边形DECF是平行四边形,∵CE平分∠BCD,CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG,∴∠DCE+∠DCF==90°,即∠ECF=90°,∴四边形DECF是矩形.16.(13分)(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM 的中点.(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.(3)当AD∶AB=时,四边形MENF是正方形(只写结论,不需证明) 【解析】(1)在矩形ABCD中,∵AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM,∴△ABM≌△DCM(SAS).(2)四边形MENF是菱形.证明:∵E,F,N分别是BM,CM,CB的中点,∴NF∥ME,NF=ME,∴四边形MENF是平行四边形,由(1)得BM=CM,∴ME=MF,∴□MENF是菱形.(3)2∶1.。
北师大版九年级数学上册第一章特殊平行四边形单元综合测试题及答案
第一章:特殊的平行四边形单元测试卷(典型题汇总)一、选择题(本大题共6小题,共24分)1.下列关于▱ABCD的叙述中,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形123.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC =130°,则∠AOE的度数为( )A.75° B.65° C.55° D.50°4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A.125B.65C.245 D.不确定345.如图4,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5 B.5 C.322 D.26.如图5,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B落在平面内的点B′处,则点B′的坐标为( )图5A.(2,2 3) B.(32,2-3)C.(2,4-2 3) D.(32,4-2 3)二、填空题(本大题共6小题,共30分)7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________.8.如图6所示,在矩形纸片ABCD中,AB=2 cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=________ cm.679.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.8911.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.图1012.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.三、解答题(共46分)13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.图1114.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?图1215.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.图1316.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3)在(2)的条件下,求∠EAG的度数.图141.C 2.D 3.B 4.A5.B .6.C7.6 .8.49.(2+2,2)10.45°.11.12 12.75813.解:(1)证明:连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC.∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形.(2)∵正方形ABCD的边长为4,∴BD=AC=4 2.∵AE=CF=2,∴EF=AC-2 2=2 2,∴S菱形BEDF=12BD·EF=12×4 2×2 2=8.14.解:(1)证明:连接DE,EB,BF,FD.∵两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,∴AE=CF.∵平行四边形ABCD的对角线AC,BD相交于点O,∴OD=OB,OA=OC(平行四边形的对角线互相平分),∴OA-AE=OC-CF或AE-OA=CF-OC,即OE=OF,∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),即以点B,E,D,F为顶点的四边形是平行四边形.(2)当点E在OA上,点F在OC上,EF=BD=12 cm时,四边形BEDF为矩形.∵运动时间为t,∴AE=CF=2t,∴EF=20-4t=12,∴t=2;当点E在OC上,点F在OA上时,EF=BD=12 cm,EF=4t-20=12,∴t=8.因此,当点E,F的运动时间t为2 s或8 s时,四边形BEDF为矩形.15.解:(1)证明:∵AD⊥BC,E,F分别是AB,AC的中点,∴在Rt△ABD中,DE=12AB=AE,在Rt△ACD中,DF=12AC=AF.又∵AB=AC,∴AE=AF=DE=DF,∴四边形AEDF是菱形.(2)如图,∵菱形AEDF的周长为12,∴AE=3.设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49.①由四边形AEDF是菱形得AD⊥EF,∴在Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36.②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF的面积S=12xy=134.16.解:(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠B=∠D=90°.∵将△ADE沿AE对折得到△AFE,∴AF=AD=AB,∠AFE=∠D=90°.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,)∴Rt△ABG≌Rt△AFG(HL).(2)如图所示:(3)∵△AFE≌△ADE,△ABG≌△AFG,∴∠EAF=∠EAD,∠GAF=∠GAB.∵在正方形ABCD中,∠BAD=90°,∴∠EAG=∠EAF+∠GAF=12×90°=45°.第一章:特殊的平行四边形单元测试卷(典型题汇总)(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
第一章 特殊平行四边形 单元测试卷(含答案) 北师大版九年级上册数学
共有( )
A.1 对
B.2 对
C.3 对
D.4 对
3.如图,AC、BD 是四边形 ABCD 的两条对角线,顺次连接四边形 ABCD 各边中点得到四边形 EFGH,要使四边
形 EFGH 为矩形,应添加的条件是( )
A.AC⊥BD
B.AB=CD
C.AB∥CD
D.AC=BD
4.如图,在正方形 ABCD 中, CE MN , MCE 36 ,那么 ANM 等于( )
的最小值为
.
三、解答题(共 6 小题,每题 8 分,满分 48 分) 19.如图,小亮将升旗的绳子拉到杆底端,绳子末刚好接触地面,然后将绳子末端拉到距离旗杆 8m 处,发现此时 绳子末端距离地面 2m .请你求出杆的高度(滑轮上方的高度忽略不计,解题时请在图中标注字母)
20.如图,将一张长方形纸片 ABCD 沿 CE 折叠,使点 B 与 AD 边上的点 B′重合.过点 B′作 B′F//EB 交 CE 于点 F, 连接 EB′与 BF.
24.(1)
y1
2t 0
16 2t
t 4 4 t
8
;
y2
t
0
t
8
(2)①当 0 t 4 时, y1 随时间 t 的增大而增大,当 4 t 8 时, y1 随时间 t 的增大而减小;② 0 t 16
3
周长多 4,则 AC 的长是(
A.2 3
B.4 3
C.2 7
D. 4 7
8.如图,边长为 4 和 10 的两个正方形 ABCD 与 CEFG 并排在一起,连接 BD 并延长交 EF 于 H,交 EG 于 I,则 GI 的长为( )
A.3
B.7
C.3 2
初中数学北师大版九年级上册 第一章 特殊平行四边形 单元测试(含答案)
第一章特殊平行四边形一、单选题1.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是( )A.AB=BC B.AC=BD C.∠ABC=90°D.AC与BD互相平分2.如图,矩形ABCD中,对角线AC,BD交于O点.若∠BOC=120°,AC=8,则AB的长为()A.6B.4C.43D.423.如图在Rt△ABC中,∠ACB=90°,AB=10cm,点D是AB的中点,则CD的长度是()A.7cm B.6cm C.5cm D.4cmCD的长为半径4.如图,矩形ABCD中,AB=10,BC=6,分别以C,D为圆心,以大于12作弧,两弧分别交于G,H两点,作直线GH交CD于点E,连接AE,点D关于AE的对称点为点M,作射线AM交BC于点N,则CN的长为()A .253B .4C .256D .55.如图,在长方形ABCD 中,AB=3,BC=4,若沿折痕EF 折叠,使点C 与点A 重合,则折痕EF 的长为( )A .158B .154C .152D .156.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,对角线AC 与BD 交于点O ,点E 是AD 的中点,连接OE ,△ABD 的周长为12cm ,则下列结论错误的是( )A .OE ∥ABB .四边形ABCD 是中心对称图形C .△EOD 的周长等于3cmD .若∠ABC =90°,则四边形ABCD 是轴对称图形7.如图,在△ABC 中,AB =5,AC =12,BC =13,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A.6013B.3013C.2413D.12138.如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE+PD 的最小值为()A.35B.32C.6D.5二、填空题9.菱形的周长为12cm,它的一个内角为60°,则菱形的面积为.10.如图,在菱形ABCD中,对角线AC,BD相交于点O,H为BC中点,AC=3,BD=4,则线段OH的长为.11.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:;②如果要得到菱形AEDF,那么△ABC应具备条件:.12.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.13.如图,矩形ABCD内有一点P,连接AP,DP,CP,延长CP交AB于点E,若∠APD=90°,AD=8,CP=CD=6,则AE的长是.OA,把矩形OABC沿OB折叠,14.如图,四边形OABC是矩形,点A的坐标为(8,0),AB=12点C落在点D处,BD交OA于点E,则点E的坐标为.15.如图,已知点E在菱形ABCD的边AB上,以BE为边向菱形ABCD外部作菱形BEFG,连接DF,M,N分别是DC,DF的中点,连接MN.若AB=5,BE=2,∠ABC=120°,则MN=.16.如图,在边长为10的正方形ABCD中,E是BC的中点,连接AE,过点B作AE的垂线,交AE于点G,交CD于点H,F是BH上一点,连接EF,若BE=FE,则FH的长为.17.如图,矩形ABCD 中,AB =10,BC =24,点P 在BC 边上,PE ⊥BD ,PF ⊥AC ,则PE +PF = .18.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,BP =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③S △APD +S △APB =12+62;④S 正方形ABCD =4+6.其中正确结论的序号是 .三、解答题19.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC=90°.(1)求证:四边形ABCD 是矩形.(2)若∠ACB=30°,AB=1,求①∠AOB 的度数;②四边形ABCD 的面积.20.如图,在菱形ABCD中,∠A=60∘,AB=4,O是对角线BD的中点,过O点作OE丄AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长;(3)求菱形ABCD的面积.21.如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=2,且∠ADC=60°,求菱形AECF的面积.22.十一国庆节,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.武玥同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②如图,将纸片沿着直线AE折叠,点D恰好落在BC边上的F处.请你根据①②步骤计算EC,FC的长.23.综合与实践:【问题情境】某数学兴趣小组在学完《平行四边形》之后,研究了新人教版数学教材第64页的数学活动1.其内容如下:如果我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用下面的方法(如图1);(1)对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平.(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM.同时,得到了线段BN.【知识运用】请根据上述过程完成下列问题:(1)已知矩形纸片ABCD,AB=43,AM=4,求线段BM的长;(2)通过观察猜测∠NBC的度数是多少?并进行证明;【综合提升】(3)乐乐在探究活动的第(2)步基础上再次动手操作(如图2),将MN延长交BC于点G.将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,把纸片再次展平.请判断四边形BGHM的形状,并说明理由.参考答案:1.A2.B3.C4.C5.B6.C7.B8.Acm29.93210.5411.∠BAC=90∘AD平分∠BAC 12.22.513.8314.(5,0)15.67216.517.1201318.①③④19.解:(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC=90°,∴四边形ABCD是矩形;(2)∵∠ABC=90°,∠ACB=300,AB=1∴∠BAC=60°,AC=2,BC=3又∵矩形ABCD中,OA=OB∴∠AOB=180°-2∠BAC=60°S□ABCD=1×3=320.解:(1)在菱形ABCD中,∵AB=AD,∠A=60∘,∴△ABD为等边三角形,∴∠ABD=60∘;(2)∵O是对角线BD的中点,BD=2,∴OB=12∵∠ABD=60∘,=1;∴BE=OBcos60∘=2×12(3)过D作DF⊥AB于点F,由(2)可得:OE=OBsin60∘=3,∵OE⊥AB,点O为BD中点,∴DF=2OE=23,则S菱形ABCD=AB⋅DF=4×23=83.21.(1)证明:∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,∴∠FAC=∠ACE,∠AFE=∠CEF,∴△AOF≌△COE,∴AF=CE,∴四边形AECF为平行四边形,∵EF经过O且垂直于AC,∴EF是对角线AC的垂直平分线,∴AF=CF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠ADC=60°,∴∠HCD=30°,∴HD=12CD=1,∴CH=CD2−HD2=3,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2−x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2−x)2+(3)2,解得:x=74,∴AF=CF=74,∴菱形AECF的面积为:AF×CH=74×3=734.22.解:∵△ADE由△AFE关于AE对称,∴△ADE≌△AFE,∴DE=FE,AD=AF,∵四边形ABCD是矩形,∴BC=AD=AF=20cm,AB=CD=16cm,在Rt△ABF中,由勾股定理:BF=AF2−AB2=202−162=12cm,∴CF=BC-BF=20-12=8cm.∵四边形ABCD是矩形,∴∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理:EF2=CE2+CF2,代入数据:(16-x)2=x2+64,解得:x=6.∴EC=6cm.综上所述,线段EC=6cm,CF=8cm.23.解:(1)∵四边形ABCD为矩形,∴∠A=90°,∵AB=43,AM=4,∴BM=AB2+AM2=8;(2)猜测:∠NBC=30°,证明:连接AN:∵EF为折痕,∴EF垂直平分AB,∴AN=BN,∵△BMN由△BMA折叠所得,∴AB=BN,∴AN=BN=AB,∴△ABN为等边三角形,∴∠ABN=60°,∴∠NBC=90°−60°=30°;(3)四边形BGHM为菱形,理由:∵△BMN由△BMA折叠所得,∴∠ABM=∠NBM,∠BAM=∠MNB=90°,∵∠ABN=∠ABM+∠NBM=60°,∴∠ABM=∠NBM=30°,∵∠NBC=30°,∴∠NBM=∠NBC=30°,∴∠MBG=60°,∴△BMG是等边三角形,∴BM=BG,∵将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,∴△BMG≌△HGM,BH⊥MG,∴MH=BM,∴MH=BM=BG,∵MH∥BG,∴四边形BGHM是平行四边形,∵BM=BG,∴四边形BGHM是菱形.。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
第一章 特殊的平行四边形 单元检测 2022-2023学年北师大版数学 九年级上册(含答案)
2022-2023北师大版数学九年级上册第一章特殊的平行四边形单元检测一.选择题(共12小题)1.如图,在菱形ABCD中,AC与BD相交于点O,BC的垂直平分线EF分别交BC,AC于点E、F,连接DF,若∠BCD=70°,则∠ADF的度数是()A.60°B.75°C.80°D.110°2.已知四边形ABCD是平行四边形,下列条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.从中选择两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选③④3.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线互相垂直且相等的四边形是正方形D.四条边都相等的四边形是菱形4.如图,在平面直角坐标系中,四边形OABC是矩形,OA=6,将△ABC沿直线AC翻折,使点B落在点D处,AD交x轴于点E,若∠BAC=30°,则点D的坐标为()A.B.C.D.5.菱形具有而矩形不一定有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.对边平行6.如图,正方形ABCD中,AC与BD相交于点O,F是AB上的任意一点,过点F分别作FE∥BD、FG∥AC,FE交AD于E点,FG交BC于G点.则下列结论错误的是()A.BD垂直平分FFG∥ACG B.EF+FG=ACC.△AFE是等腰直角三角形D.GC+FG=AC7.如图,已知正方形ABCD的边长为2,点O为正方形的中心,点G为AB边上一动点,直线GO交CD于点H,过点D作DE⊥GO,垂足为点E,连接CE,则CE的最小值为()A.2 B.4﹣C.D.﹣18.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=6,则菱形ABCD的周长为()A.48 B.36 C.24 D.189.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④,其中正确结论有()个.A.1 B.2 C.3 D.410.如图,Rt△ABC≌Rt△DCB,其中∠ABC=90°,AB=3,BC=4,O为BC中点,EF过点交AC、BD于点E、F,连接BE、CF,则下列结论错误的是()A.四边形BECF为平行四边形B.当BF=3.5时,四边形BECF为矩形C.当BF=2.5时,四边形BECF为菱形D.四边形BECF不可能为正方形11.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)12.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE 的度数为()A.60°B.75°C.72°D.90°二.填空题(共6小题)13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=18°,则∠AED等于度.。
北师版九上数学第一章 特殊平行四边形单元测试卷(含答案)
北师版九上数学第一章特殊平行四边形单元测试卷(难)一、选择题(每小题3分,共30分)1.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形2.如图,点O是矩形ABCD的中心,E是AB上的点,折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()第2题图A.2B.C.D.63.从菱形的钝角顶点向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°4.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cmB.5cm和10cmC.4cm和11cmD.7cm和8cm5.如图,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为()A.3B.4C.6D.86.如图,在菱形中,,∠,则对角线等于()A.20B.15C.10D.57.若正方形的对角线长为2cm,则这个正方形的面积为()A.4B.2C.D.8.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直9.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A. B. C. D.第5题图第6题图(1)(2)10.如图是一张矩形纸片,,若将纸片沿折叠,使落在上,点的对应点为点,若,则()A. B. C. D.二、填空题(每小题3分,共24分)11.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是_________.12.如图,在菱形ABCD中,∠B=60°,点E,F分别从点B,D同时以同样的速度沿边BC,DC向点C 运动.给出以下四个结论:①;②∠∠;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述正确结论的序号有.13.如图,四边形ABCD是正方形,延长AB 到点E ,使,则∠BCE 的度数是.14.如图,矩形的两条对角线交于点,过点作的垂线,分别交,于点,,连接,已知△的周长为24cm,则矩形的周长是cm.15.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.CDAB第17题图第15题图第18题图16.已知菱形的周长为,一条对角线长为,则这个菱形的面积为_________.17.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.第9题图第10题图18.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(共66分)19.(8分)如图,在△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.20.(8分)如图,在□ABCD中,E为BC边上的一点,连接AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.21.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF.(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.第21题图22.(8分)如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°.将△DAE 绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)如图,在矩形中,相交于点,平分,交于点.若,求∠的度数.24.(8分)如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=,求AB的长.25.(8分)已知:如图,在四边形中,∥,平分∠,,为的中点.试说明:互相垂直平分.26.(10分)如图,在△中,∠,的垂直平分线交于点,交于点,点在上,且.(1)求证:四边形是平行四边形.(2)当∠满足什么条件时,四边形是菱形?并说明理由.第26题图第一章特殊平行四边形--单元检测题1(难)参考答案一、1.B 2.A解析:根据图形折叠的性质可得:∠BCE =∠ACE=21∠ACB ,∠B =∠COE =90°,BC =CO =21AC ,所以∠BAC =30°,所以∠BCE =∠ACE =21∠ACB =30°.因为BC =3,所以CE =23.3.C解析:如图,连接AC .在菱形ABCD 中,AD=DC ,AE ⊥CD ,AF ⊥BC ,因为,所以AE 是CD 的中垂线,所以,所以△ADC 是等边三角形,所以∠60°,从而∠120°.4.B 解析:如图,在矩形ABCD 中,10cm,15cm,是∠的平分线,则∠∠C .由AE ∥BC 得∠∠AEB ,所以∠∠AEB ,即,所以10cm,ED =AD -AE =15-10=5(cm),故选B.5.B解析:因为矩形ABCD 的面积为,所以阴影部分的面积为,故选B.6.D 解析:在菱形中,由∠=,得∠.又∵,∴△是等边三角形,∴.7.B 解析:如图,在正方形中,,则,即,所以,所以正方形的面积为2,故选B.8.C 9.A解析:由题意知AC ⊥BD ,且4,5,所以2114510cm )22S AC BD =⋅=⨯⨯=菱形(.10.A 解析:由折叠知,四边形为正方形,∴.二、11.6解析:较短的对角线将菱形分成两个全等的等边三角形,所以较短对角线的长为6.12.①②③解析:因为四边形ABCD 为菱形,所以ABCD ,∠B =∠D ,BE =DF ,所以△≌△,所以AE AF ,①正确.由CB =CD ,BE=DF ,得CE=CF ,所以∠CEF=∠CFE ,②正确.当E ,F 分别为BC ,CD 的中点时,BE=DF =21BC =21DC .连接AC ,BD ,知△为等边三角形,所以⊥.因为AC ⊥BD ,所以∠ACE =60°,∠CEF =30°,⊥,所以∠AEF =.由①知AE AF ,故△为ABCD第7题答图等边三角形,③正确.设菱形的边长为1,当点E ,F 分别为边BC ,DC 的中点时,的面积为,而当点E ,F 分别与点B ,D 重合时,=,故④错.13.22.5°解析:由四边形是正方形,得∠∠又,所以.5°,所以∠.14.48解析:由矩形可知,又⊥,所以垂直平分,所以.已知△的周长为24cm ,即所以矩形ABCD 的周长为15.解析:如图,作E 关于直线AC 的对称点E ′,则BE =DE ′,连接E ′F ,则E ′F 即为所求,过F 作FG ⊥CD 于G ,在Rt△E ′FG 中,GE ′=CD -DE ′-CG =CD -BE -BF =4-1-2=1,GF =4,所以E ′F ===.16.96解析:因为菱形的周长是40,所以边长是10.如图,,.根据菱形的性质,有⊥,,所以,.所以.17.28解析:由勾股定理,得.又,,所以所以五个小矩形的周长之和为18.22.5解析:由四边形ABCD 是正方形,可知∠BAD =∠D =90°,∠CAD =12∠BAD =45°.由FE ⊥AC ,可知∠AEF =90°.在Rt△ABC 与Rt△ADC 中,AE =AD ,AF =AF ,∴Rt△AEF ≌Rt△ADF (HL),∴∠FAD =∠FAE =12∠CAD =12×45°=22.5°.三、19.证明:(1)∵AB =AC ,∴∠B =∠ACB ,∴∠FAC =∠B +∠ACB =2∠BCA .∵AD 平分∠FAC ,∴∠FAC =2∠CAD ,∴∠CAD =∠ACB .在△ABC 和△CDA 中,∠BAC =∠DCA ,AC =AC ,∠DAC =∠ACB ,∴△ABC ≌△CDA .(2)∵∠FAC =2∠ACB ,∠FAC =2∠DAC ,∴∠DAC =∠ACB ,∴AD ∥BC .∵∠BAC =∠ACD ,∴AB ∥CD ,∴四边形ABCD 是平行四边形.∵∠B =60°,AB =AC ,∴△ABC 是等边三角形,∴AB =BC ,∴平行四边形ABCD 是菱形.20.证明:(1)在□ABCD 中,AD ∥BC ,∴∠AEB =∠EAD .∵AE =AB ,∴∠ABE =∠AEB ,∴∠ABE =∠EAD .(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.21.解:(1)证明:因为DE∥AC,DF∥AB,所以四边形AEDF是平行四边形,所以AE=DF.(2)解:若AD平分∠BAC,则四边形AEDF是菱形,理由如下:因为DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,且∠BAD=∠FDA.又AD平分∠BAC,∴∠BAD=∠DAF,∴∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形. 22.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F,C,M三点共线,DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=45°,∴∠FDM=∠EDF=45°.在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,∴△DEF≌△DMF(SAS),∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM-MF=BM-EF=4-x.∵EB=AB-AE=3-1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=,即EF=.23.解:因为平分,所以.又知,所以因为,所以△为等边三角形,所以因为,所以△为等腰直角三角形,所以.所以,,所以=75°.24.(1)证明:∵四边形ABCD是矩形,∴AB∥CD.∴∠OAE=∠OCF.又∵OA=OC,∠AOE=∠COF,∴△AEO≌△CFO(ASA).∴OE=OF.(2)解:连接BO.∵BE=BF,∴△BEF是等腰三角形.又∵OE=OF,∴BO⊥EF,且∠EBO=∠FBO.∴∠BOF=90°.∵四边形ABCD是矩形,∴∠BCF=90°.又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA,∴∠BAC=∠EOA.∴AE=OE.∵AE=CF,OE=OF,∴OF=CF.又∵BF=BF,∴Rt△BOF≌Rt△BCF(HL).∴∠OBF=∠CBF.∴∠CBF=∠FBO=∠OBE.∵∠ABC=90°,∴∠OBE=30°.∴∠BEO=60°.∴∠BAC=30°.在Rt△BAC中,∵BC AC=2BC=4.AB=25.解:如图,连接∵AB⊥AC,∴∠BAC=90°.因为在Rt△中,是的中点,所以是Rt△的斜边BC 上的中线,所以,所以.因为平分,所以,所以所以∥.又AD ∥BC ,所以四边形是平行四边形.又,所以平行四边形是菱形,所以互相垂直平分.26.(1)证明:由题意知∠∠,∴∥,∴∠∠.∵,∴∠∠AEF =∠EAC =∠ECA .又∵,∴△≌△,∴,∴四边形是平行四边形.(2)解:当∠时,四边形是菱形.理由如下:∵∠,∠,∴AB 21.∵垂直平分,∴.又∵,∴AB 21,∴,∴平行四边形是菱形.。
第一章 特殊的平行四边形 单元测试卷
- 1 -茂名市直属学校学校2014—2015学年度第一学期 九年级数学(上册)第一章特殊的平行四边形测试卷(总分100分,考试时间100分钟)班别 姓名 总分一、选择题(每小题3分,共10小题30分)1. 下列说法正确的是( )A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形2.菱形的周长等于40㎝,两对角线的比为3∶4,则两对角线的长分别是( ) A.12㎝,16㎝ B.6㎝,8㎝ C.3㎝,4㎝D.24㎝,32㎝ 3.正方形具有而菱形不具有的性质是( ) A.对角线平分一组对角B.对角线相等 C .对角线互相垂直平分 D.四条边相等4.如图1,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .B .C .D . 3图1 图2 图3 图 45.(广东茂名)图2杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是( ) A .平行四边形 B .矩形 C .正方形 D .菱形6.如图3,下列条件之一能使ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD = A .①③ B .②③C .③④D .①②③7. 如图4,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的关系是() A .12S S >B .12S S =C .12S S <D .不能确定8. 将矩形纸片ABCD 按如图5所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2C D图5 图6 图79. 如图6,点E 是正方形ABCD 对角线AC 上一点,AF ⊥BE 于点F ,交BD 于点G ,则下述结论中不成立的是( )A.AG =BEB.△ABG ≌△BCEC.AE =DGD.∠AGD =∠DAG 10.(黑龙江大兴安岭)如图7在矩形ABCD 中,1,AB AD ==AF 平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①AF FH =;②BF BO =;③CH CA =;④ED BE 3=,正确的是( ) A .②③B .③④C .①②④D .②③④二、填空题。
第一章特殊平行四边形(单元测试)(解析版)
第一章 特殊平行四边形单元测试参考答案与试题解析一、单选题1.(2022·全国·九年级课时练习)如图,在菱形ABCD 中,40ABC ∠=︒,点E 为对角线BD 上一点,F 为AD 边上一点,连接AE 、CE 、FE ,若AE FE =,56BEC ∠=︒,则DEF ∠的度数为( )A .16︒B .15︒C .14︒D .13︒ 【答案】A【解析】【分析】先求出∠BAD =140°,∠ADB =∠ABD =20°,然后证明△ABE ≌△CBE 得到∠BEA =∠BEC =56°,则∠BAE =104°,∠DAE =36°,证明∠EF A =∠EAF =36°,则由三角形外角的性质可得∠DEF =∠EF A -∠EDF =16°.【详解】解:∵四边形ABCD 是菱形,∠=40°,∴AB =CB =AD ,∠ABE =∠CBE =20°,AD BC ∥,∴∠BAD =140°,∠ADB =∠ABD =20°,又∵BE =BE ,∴△ABE ≌△CBE (SAS ),∴∠BEA =∠BEC =56°,∴∠BAE =104°,∴∠DAE =36°,∵AE =FE ,∴∠EF A =∠EAF =36°,∴∠DEF =∠EF A -∠EDF =16°,故选A .【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,三角形内角和定理,等腰三角形的性质,三角形外角的性质,证明△ABE ≌△CBE 是解题的关键.2.(2022·全国·九年级课时练习)如图,在Rt ABC △中,D 、E 分别是直角边BC 、AC 的中点,若10DE =,则AB 边上的中线CP 的长为( )A .5B .6C .D .10【答案】D【解析】【分析】 根据三角形中位线定理求出AB 的长度,再根据直角三角形斜边上的中线是斜边的一半求解即可.【详解】解:∵D 、E 分别是边BC 、AC 的中点,∴DE 是△ABC 的中位线. ∴12DE AB =. ∵DE =10,∴AB =2DE =20.∵CP 是Rt ABC △中斜边AB 上的中线,, ∴1102CP AB == 故选:D .【点睛】本题考查三角形中位线定理,直角三角形斜边上的中线是斜边的一半,熟练掌握这些知识点是解题关键.3.(2022·全国·九年级课时练习)如图,在菱形ABCD 中,直线MN 分别交AB 、CD 、AC 于点M 、N 和O .且AM CN =,连接BO .若65OBC ∠=︒,则DAC ∠为( )A .65︒B .30C .25︒D .20︒【答案】C【解析】【分析】根据菱形的性质,平行线的性质,全等三角形的判定定理和性质确定BA BC =,OA =OC ,根据等腰三角形三线合一的性质确定∠BOC =90°,根据三角形内角和定理和平行线的性质即可求出∠DAC .【详解】解:∵四边形ABCD 是菱形,∴AB CD ,BC AD ∥,BA BC =.∴∠OMA =∠ONC ,∠OAM =∠OCN ,∠DAC =∠OCB .∵AM =CN ,∴()ASA OAM OCN △≌△.∴OA =OC .∴BO ⊥AC .∴∠BOC =90°.∵∠OBC =65°,∴∠OCB =180°-∠BOC -∠OBC =25°.∴∠DAC =∠OCB =25°.故选:C .【点睛】本题考查菱形的性质,平行线的性质,全等三角形的判定定理和性质确,等腰三角形三线合一的性质,三角形内角和定理,综合引用这些知识点是解题关键.4.(2022·全国·九年级课时练习)如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中5AE =,13BE =,则2EF 的值是( )A .128B .64C .32D .144【答案】A【解析】【分析】13和5为两条直角边长时,求出小正方形的边长8,即可利用勾股定理得出EF 2的长.【详解】解:根据题题得:小正方形的边长等于BE -AE ,∵5AE =,13BE =,∴小正方形的边长=13-5=8,∴22288128EF =+=.故选:A【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.5.(2022·全国·九年级课时练习)如图,在△ABC 中,AC =BC ,D 、E 分别是边AB 、AC 的中点,△ADE ≌△CFE ,则四边形ADCF 一定是( )A .菱形B .矩形C .正方形D .无法确定【答案】B【解析】【分析】根据全等三角形的性质可得AE =CE ,DE =EF ,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF 是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC =90°,再利用有一个角是直角的平行四边形是矩形解答.【详解】解:△ADE ≌△CFE ,∴AE =CE ,DE =EF ,∴四边形ADCF 是平行四边形,∵AC =BC ,点D 是边AB 的中点,∴∠ADC =90°,∴四边形ADCF 是矩形.故选:B .【点睛】本题考查了矩形、菱形、正方形的判定,全等三角形的性质,等腰三角形的性质,熟练掌握矩形的判定定理是解题的关键.6.(2022·广西南宁·八年级期末)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形B .当AC BD ⊥时,它是菱形 C .当90ABC ∠=︒时,它是矩形D .当AC BD =时,它是正方形【答案】D【解析】【分析】 根据菱形的判定,矩形的判定,正方形的性质判断即可;【详解】解:A .当AB BC =时,它是菱形,选项正确,不符合题意;B .当AC BD ⊥时,它是菱形,选项正确,不符合题意;C .当90ABC ∠=︒时,它是矩形,选项正确,不符合题意;D .当AC BD =且AC ⊥BD 时,它是正方形,选项错误,符合题意;故选: D .【点睛】本题考查了菱形的判定:一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形;矩形判定:有一个角是直角的平行四边形是矩形;正方形的性质:对角线相等、互相垂直平分.7.(2022·广东云浮·八年级期末)如图,点E ,F ,G ,H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点.下列三种说法:① .四边形EFGH 一定是平行四边形;②.若AC =BD ,则四边形EFGH 是菱形;③.若AC ⊥BD ,则四边形EFGH 是矩形.其中正确的是( )A .①B .①②C .①③D .①②③ 【答案】D【解析】【分析】根据三角形中位线定理得到,,EH BD GF BD EF AC ∥∥∥,EH =12BD ,1,2GF BD EF =12AC ,根据平行四边形、菱形、矩形的判定定理判断即可.【详解】解:∵点E ,F ,G ,H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点,∴,,EH BD GF BD EF AC ∥∥∥,EH =12BD ,1,2GF BD EF =12AC , ,,EH GF EH GF ∥∴四边形EHGF 是平行四边形,故①符合题意;若AC =BD ,则EF =EH ,∴平行四边形EHGF 是菱形,故②符合题意;若AC ⊥BD ,则EF ⊥EH ,∴平行四边形EHGF 是矩形,故③符合题意;故选:D .【点睛】本题考查的是中点四边形,掌握三角形中位线定理、平行四边形、菱形、矩形的判定定理是解题的关键. 8.(2022·全国·九年级课时练习)如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE AD =,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( ).A .AB BE =B .CE DE ⊥C .90ADB ∠=︒D .BE AB ⊥【答案】D【解析】【分析】 由条件:四边形ABCD 为平行四边形及DE =AD ,可得四边形DBCE 为平行四边形,根据所给的四个选项及矩形的判定即可作出判断.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,BC =AD ,BC //AD ,AB //CD∵DE =AD∴BC =DE∵BC //AD∴BC //DE∴四边形DBCE 是平行四边形当AB =BE 时,则由AB =CD 得BE =CD ,即四边形DBCE 的两条对角线相等,根据矩形的判定知,四边形DBCE 是矩形,故A 不符合题意;当CE ⊥DE 时或90ADB ∠=︒时,根据矩形的定义即知,四边形DBCE 是矩形,故B 、C 不符合题意;当BE AB ⊥时,则由AB //CD ,可知BE ⊥CD ,即DBCE 的对角线相互垂直,则四边形是菱形,但不能判定它是矩形,故D 符合题意.故选:D .【点睛】本题考查了平行四边形的判定与性质、矩形的判定等知识,熟练掌握矩形的判定方法是本题的关键. 9.(2022·全国·九年级课时练习)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,BC =2AB =8,点P 是BC 上一点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,若m =PE +PF ,则m 的值为( ).A B C D 【答案】D【解析】【分析】连接PO ,由矩形的性质和勾股定理得求得OB =OC =再由BOC BOP COP S S S =+△△△ 求得PE +PF 的值即可.【详解】如图,连接PO ,∵BC =2AB =8,∴AB =4,∵四边形ABCD 是矩形,∴∠ABC =90°,ABCD S 矩形=AB ·BC =4×8=32,OA =OC ,OB =OD ,AC =BD ,∴AC =BD 184AOD ABCD S S ==△矩形,OB =0C =12AC = ∵PE ⊥AC ,PF ⊥BD ,∴()()1111··82222BOC BOR COP S S S OB PF OC PE OB PE PF PE PF =+=+=+=⨯+=△△△,∴PB +PF,即m , 故选:D .【点睛】本题考查矩形的性质,熟记矩形的性质及三角形的面积公式是解题的关键.10.(2022·全国·九年级课时练习)如图,菱形ABCD 的对角线,AC BD 相交于点O ,点P 为AB 边上一动点(不与点A ,B 重合),PE OA ⊥于点E ,PF OB ⊥于点F .若20AC =,10BD =,则EF 的最小值为( )A .B .C .4D .【答案】D【解析】【分析】连接OP ,证明四边形OEPF 是矩形,得到:EF OP =,当OP AB ⊥时,OP 的值最小,利用1122OA OB OP AB =,求出OP 的最小值即可,【详解】解:连接OP ,∵ABCD 是菱形,∴AC BD ⊥,即90AOB ∠=︒,∵PE OA ⊥,PF OB ⊥,∴四边形OEPF 是矩形,∴EF OP =,当OP AB ⊥时,OP 的值最小,∵20AC =,10BD =,∴10AO =,5OB =,AB = ∵1122OA OB OP AB =,∴OP =EF 的最小值为:故选:D .【点睛】本题考查菱形的性质,矩形的判定及性质,勾股定理,等面积法,解题的关键是证明EF OP =,当OP AB ⊥时,OP 的值最小,利用等面积法求出OP 的长.二、填空题11.(2022·全国·九年级课时练习)如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD ,已知AB =6cm ,BC =8cm ,则四边形ODEC 的周长为______cm .【答案】20【解析】【分析】根据矩形的性质得出∠ABC =90°,AD =BC =8cm ,CD =AB =6cm ,OA =OC =12AC ,OB =OD =12BD ,AC =BD ,求出OC =OD ,根据菱形的判定得出四边形OCED 是菱形,根据菱形的性质得出OD =OC =DE =CE ,根据勾股定理求出AC ,再求出OC 即可.【详解】解:∵四边形ABCD 是矩形,AB =6cm ,BC =8cm ,∴∠ABC =90°,AD =BC =8cm ,CD =AB =6cm ,OA =OC =12 AC ,OB =OD =12BD ,AC =BD , ∴OC =OD ,∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,又∵OC =OD ,∴四边形OCED 是菱形,∴OD =OC =DE =CE ,由勾股定理得:AC =(cm ),∴AO =OC =5cm ,∴OC =CE =DE =OD =5cm ,即四边形ODEC 的周长(cm ),故答案为:20.【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理等知识点,能熟记矩形的性质和菱形的判定定理是解此题的关键.12.(2022·全国·九年级课时练习)如图,菱形ABCD 的对角线,AC BD 相交于点O ,过点D 作DH BC ⊥于点H ,连接OH ,若4OA =,24ABCD S =菱形,则OH 的长为___________.【答案】3【解析】【分析】由菱形面积计算公式可求得BD 的长,再由直角三角形斜边上中线的性质即可求得OH 的长.【详解】∵四边形ABCD 是菱形,∴AC =2OA =8, ∵1=242ABCD S AC BD ⨯=菱形, ∴18=242BD ⨯, ∴BD =6,∵DH ⊥BC ,O 为BD 的中点,∴OH 为直角△DHB 斜边上的中线, ∴132OH BD ==. 故答案为:3.【点睛】本题考查了菱形的性质,直角三角形斜边上中线的性质,菱形面积等于两对角线乘积的一半等知识,掌握这些知识是解题的关键.13.(2022·全国·九年级课时练习)如图,在四边形ABCD 中,AC BD ⊥,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若6AC =,8BD =,则四边形EFGH 的面积是______.【答案】12【解析】【分析】根据三角形中位线定理、矩形的判定定理得到四边形EFGH 为矩形,根据矩形的面积公式计算,得到答案.【详解】解:∵点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, ∴132EF AC ==, EF AC ∥,132GH AC ==,GH AC ∥,142EH BD ==, EH BD ∥, ∴EF GH =,EF GH ∥,∴四边形EFGH 为平行四边形,AC BD ,∴EF EH ⊥,∴平行四边形EFGH 为矩形,∴3412EFGH S =⨯=四边形,故答案为:12.【点睛】此题考查了中点四边形,解题的关键是掌握三角形中位线定理、矩形的判定定理.14.(2022·全国·九年级课时练习)如图,直线L 经过正方形ABCD 的顶点A ,分别过点B 、D 作DE l ⊥于点E ,BF l ⊥于点F ,若4DE =,5BF =,则EF 的长为________.【答案】9【解析】【分析】利用同角的余角相等,证得BAF ADE ∠=∠,根据垂直定义,得90AFB AED ∠=∠=︒,结合已知,证得DAE ABF ≌,进而证得4AF DE ==,5AE BF ==,据此可求出459EF AF AE =+=+=,问题得解.【详解】∵四边形ABCD 是正方形,∴AD AB =,90DAB ∠=︒,∴90BAF DAE ∠+∠=︒∵DE l ⊥∴90DAE ADE ∠+∠=︒∴BAF ADE ∠=∠∵DE l ⊥,BF l ⊥∴90AFB AED ∠=∠=︒在DAE △和ABF 中∵AED AFB BAF ADE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAE ABF ≌∴4AF DE ==,5AE BF ==∴459EF AF AE =+=+=故答案为:9【点睛】本题考查了全等三角形的判定与性质,正方形的性质等知识,正确寻找全等三角形,学会利用同角的余角相等是解本题的关键.15.(2022·全国·九年级课时练习)如图,矩形ABCD 中,AB =2,AD =4,E 为BC 的中点,F 为DE 上一动点,P 为AF 中点,连接PC ,则PC 的最小值是______.【答案】【解析】【分析】取AD 中点H ,连接BH ,CH ,设BH 与AE 的交点为O ,连接CO ,可证四边形DEBH 是平行四边形,可得BH DE ∥,由三角形中位线定理可得PH ED ∥,可得点P 在BH 上,当CP ⊥BH 时,PC 有最小值,即可求解.【详解】解:如图,取AD 中点H ,连接BH ,CH ,设BH 与AE 的交点为O ,连接CO ,如图所示:∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC =4,AD BC ∥,90BAH CDH ∠=∠=︒,∵点E 是BC 中点,点H 是AD 中点,∴AH =CE =DH =BE =AB =CD =2,∴四边形BEDH 是平行四边形,190452AHB ABH ∠=∠=⨯︒=︒, 190452DHC DCH ∠=∠=⨯︒=︒, ∴BH DE ∥,∵点P 是AF 的中点,点H 是AD 的中点,∴PH ED ∥,∴点P 在BH 上,∵45AHB DHC ∠=∠=,∴180454590BHC ∠=︒-︒-︒=︒,∴BH CH ⊥,∵点P 在BH 上,∴当CP ⊥BH 时,此时点P 与H 重合,PC 有最小值,在Rt △CDH 中,CH ==∴PC 的最小值为故答案为:【点睛】本题考查了矩形的性质,三角形中位线定理,等腰直角三角形的性质,平行四边形的性质,垂线段最短等知识,确定点P 的运动轨迹是本题的关键.16.(2022·全国·九年级课时练习)如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,△ECF 的周长为8,则正方形ABCD 的边长为_____.【答案】4【解析】【分析】将△DAF 绕点A 顺时针旋转90度到△BAF ′位置,根据旋转的性质得出∠EAF ′=45°,进而得出△F AE ≌△EAF ′,即可得出EF +EC +FC =FC +CE +EF ′=FC +BC +BF ′=DF +FC +BC =2BC =8,求出BC 即可.【详解】解:将△DAF 绕点A 顺时针旋转90度到△BAF ′位置,由题意可得出:△DAF ≌△BAF ′,∴DF =BF ′,∠DAF =∠BAF ′,∴∠EAF ′=45°,在△F AE 和△EAF ′中,AF AF FAE EAF AE AE ''=⎧⎪∠=∠⎨⎪=⎩, ∴△F AE ≌△EAF ′(SAS ),∴EF =EF ′,∵△ECF 的周长为8,∴EF +EC +FC =FC +CE +EF ′=FC +BC +BF ′=DF +FC +BC =2BC =8,∴BC =4,即正方形的边长为4.故答案为:4.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△F AE ≌△EAF ′是解题关键.三、解答题17.(2022·全国·九年级课时练习)如图,将矩形纸片ABCD 折叠,使顶点B 落在边AD 上的点E 处,折痕的一端点G 在边BC 上,另一端F 在AD 上,8AB =,10BG =.(1)求证:四边形BGEF为菱形;(2)求FG的长.【答案】(1)见解析;(2)FG【解析】【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得EF=BG,又由EF∥BG,即可得四边形BGEF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)过点F作FK⊥BG于K,可得四边形ABKF是矩形,然后根据勾股定理,即可求得AF的长,继而求得FG的长.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EFG=∠BGF,∵图形翻折后点B与点E重合,GF为折线,∴∠BGF=∠EGF,∴∠EFG=∠EGF,∴EF=GE,∵图形翻折后BG与GE完全重合,∴BG=GE,∴EF=BG,∴四边形BGEF为平行四边形,∴四边形BGEF为菱形;(2)解:过点F作FK⊥BG于K,则∠FKB=90°,∵∠A=∠ABK=∠FKB=90°,∴四边形ABKF是矩形,∴FK=AB=8,BK=AF,在Rt△ABF中,AB=8,∠A=90°,BF=BG=10,∴AF6=,∴BK=AF=6,∴GK=BG﹣BK=10﹣6=4,∴FG=【点睛】此题考查了折叠的性质,平行四边形的判定与性质,菱形的判定与性质,矩形的性质,以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.18.(2022·全国·九年级课时练习)如图,将长方形ABCD沿对角线AC折叠,使点B落在E处,若3AB=,9BC=,则:(1)试判断折叠后重叠部分三角形ACF的形状,并证明;(2)求重叠部分三角形ACF的面积.【答案】(1)△AFC是等腰三角形(2)15 2【解析】【分析】(1)先根据平行线的性质得到∠DAC=∠ACB,再由图形折叠的性质可得到∠ACB=∠ACE,继而可得出∠DAC=∠ACE,这即可判断出后重叠部分三角形的形状;(2)设AF长为x,则CF=x,FD=9-x,在直角三角形CDF中,利用勾股定理可求出x,继而利用三角形面积公式进行计算求解.(1)解:△AFC是等腰三角形.理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB,由图形折叠的性质可知:∠ACB=∠ACE,∴∠DAC=∠ACE.∴△AFC是等腰三角形;(2)设AF=CF=x,则FD=9-x,在Rt△CDF中,(9-x)2+32=x2,解得:x=5,∴AF=5,∴S△AFC=12AF×CD=12×5×3=152.故重叠部分面积为152.【点睛】此题考查了图形的折叠变换,能够根据折叠的性质和勾股定理求出AF的长是解答此题的关键.19.(2022·全国·九年级课时练习)如图,在四边形ABCD中,AB∥CD,AB=AD,CB=CD,点E是CD 上一点,连接BE交AC于点F,连接DF(1)求证:四边形ABCD是菱形;(2)试探究BE满足什么条件时,∠EFD=∠BCD,并说明理由.【答案】(1)见解析(2)当BE⊥CD时,∠EFD=∠BCD,理由见解析【解析】【分析】(1)首先利用SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,由平行线的性质可得∠CAD=∠ACD,再根据等角对等边可得AD=CD,再由条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD是姜形;(2)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD(1)证明:在△ABC和△ADC中,AB AD CB CD AC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS).∴∠BAC=∠DAC.∵AB∥CD,∴∠BAC=∠ACD.∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(2)解:当BE⊥CD时,∠EFD=∠BCD.理由:由(1)知四边形ABCD为菱形,∴∠BCF=∠DCF.在△BCF和△DCF中,BC DCBCF DCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△BCF≌△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠BCD+∠CBF=∠EFD+∠CDF=90 °∴∠EFD=∠BCD.【点睛】本题主要考查了菱形的性质和判定,全等三角形的性质和判定,同角或等角的余角相等,灵活运用三角形全等的判定及性质是解本题的关键.20.(2022·全国·九年级课时练习)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,AE 是折痕.(1)如图1,若AB=4,AD=5,求折痕AE的长;(2)如图2,若AEEC:FC=3:4,求矩形ABCD的周长.【答案】(2)36 5【解析】【分析】(1)由勾股定理求出BF,CF的长,设EF=DE=x,则CE=4-x,得出22+(4-x)2=x2,解方程即可得解;(2)设EC=3x,则FC=4x,得出EF=DE=5x,设AF=AD=y,则BF=y-4x,在Rt△ABF中,得出(8x)2+(y-4x)2=y2,则y=10x,得出(10x)2+(5x)2=2,解出x的值,求出AD和AB的长,则答案可求出.(1)解:∵四边形ABCD是矩形,∴∠ABC=90°,AB=CD=4,AD=BC=5,由折叠可知,AD=AF=5,DE=EF,∴BF=3,∴FC=BC-BF=5-3=2,设EF=DE=x,则CE=4-x,∵CF2+CE2=EF2,∴22+(4-x)2=x2,解得:x=52,∴DE=52,∴AE=;(2)解:∵EC:FC=3:4,∴设EC=3x,则FC=4x,∴EF= =5x,∴DE=5x,∴AB=CD=8x,设AF=AD=y,则BF=y-4x,在Rt△ABF中,AB2+BF2=AF2,∴(8x)2+(y-4x)2=y2,解得y=10x,在Rt△ADE中,AD2+DE2=AE2,∴(10x)2+(5x)2=2,解得x=15或x=-15(舍去),∴AD=10x=2,AB=8x=85,∴矩形ABCD的周长为(2+85)×2=365.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理等知识,熟练掌握折叠的性质及方程思想是解题的关键.21.(2022·全国·九年级课时练习)如图,已知以△ABC的三边为边,在BC的同侧分别作等边三角形ABD、BCE和ACF.(1)求证:四边形ADEF是平行四边形;(2)△ABC满足什么条件时,四边形ADEF是菱形?是矩形?并说明理由;(3)这样的平行四边形ADEF是否总是存在?请说明理由.【答案】(1)证明见解析;(2)当AB=AC时,四边形ADEF是菱形,当∠BAC=150°时,四边形ADEF是矩形.理由见解析;(3)不总是存在,理由见解析【解析】【分析】(1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;(2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF 是矩形,求出∠DAF=90°,根据矩形的判定推出即可;(3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.(1)证明:∵△ABD、△BCE和△ACF是等边三角形,∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,∴∠DBE=∠ABC=60°﹣∠EBA,在△DBE 和△ABC 中BD BADBE ABC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ABC (SAS ),∴DE =AC ,∵AC =AF ,∴DE =AF ,同理AD =EF ,∴四边形ADEF 是平行四边形;(2)解:当AB =AC 时,四边形ADEF 是菱形,理由是:∵△ABD 和△AFC 是等边三角形,∴AB =AD ,AC =AF ,∵AB =AC ,∴AD =AF ,∵四边形ADEF 是平行四边形,∴四边形ADEF 是菱形;当∠BAC =150°时,四边形ADEF 是矩形,理由是:∵△ABD 和△ACF 是等边三角形,∴∠DAB =∠F AC =60°,∵∠BAC =150°,∴∠DAF =90°,∵四边形ADEF 是平行四边形,∴四边形ADEF 是矩形;(3)解:这样的平行四边形ADEF 不总是存在,理由是:当∠BAC =60°时,∠DAF =180°,此时点D 、A 、F 在同一条直线上,此时四边形ADEF 就不存在.【点睛】本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键.。
北师大版九年级数学上册第一章 特殊平行四边形单元测试题
A.3
B.4
C.5
D.6
图5
7.直角三角形斜边上的高与中线的长分别为 5cm 和 6cm,则它的面积为 ( )
A.30cm2
B.60cm2
C.45cm2
D.15cm2
8.如图 6 是由 8 个全等的小矩形组成的大正方形,线段 AB 的两个端点都在小矩形的顶点
上,如果点 P 是某个小矩形的顶点,连接 PA,PB,那么使△ABP 为等腰直角三角形的点 P 的个数
OB 折叠,点 C 落在点 D 处,则点 D 的坐标为
.
图 13
图 14
16.如图 14 是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:把
A0 纸对折后变为 A1 纸;把 A1 纸对折后变为 A2 纸;把 A2 纸对折后变为 A3 纸;把 A3 纸对折
后变为 A4 纸……A4 规格的纸是我们日常生活中最常见的,那么一张 A4 纸可以裁
(1)求证:AD=AF; (2)试判断四边形 ABNE 的形状,并说明理由.
图 20
6/8
23.(12 分)如图 21,在正方形 ABCD 中,E 是边 CD 上一点(点 E 不与点 C,D 重合),连接 BE.
【感知】如图①,过点 A 作 AF⊥BE 交 BC 于点 F,易证△ABF≌△BCE.(不需要证明)
图 17
20.(8 分)如图 18,将矩形 ABCD 沿对角线 AC 翻折,点 B 落在点 F 处,FC 交 AD 于点 E. (1)求证:△AFE≌△CDE; (2)若 AB=4,BC=8,求图中阴影部分的面积.
图 18
5/8
21.(10 分) 已知:如图 9,在平行四边形 ABCD 中,对角线 AC 与 BD 相交于点 E,G 为 AD 的 中点,连接 CG,CG 的延长线交 BA 的延长线于点 F,连接 FD.
北师大版九年级数学上册第一章特殊平行四边形单元测试题(含答案) (4)
第一章:特殊的平行四边形单元测试卷(典型题汇总)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列命题中,真命题是()A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线互相垂直且相等的四边形是正方形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线相等的四边形是矩形2、下列四个命题中,真命题是().A. 四边都相等的四边形是正方形B. 对角线相等且互相平分的四边形是矩形C. 对角线互相垂直且相等的四边形是菱形D. 对角线互相垂直平分的四边形是正方形3、在平行四边形中,下列条件不能判断平行四边形是菱形的是().A.B.C.D.4、过矩形的四个顶点作对角线、的平行线分別交于、、、四点,则四边形是( ).A. 平行四边形B. 矩形C. 菱形D. 正方形5、如图,在矩形中,,,将矩形沿折叠,则重叠部分的面积为()A.B.C.D.6、如图,正方形的边长为,在各边上顺次截取,则四边形的面积是()A.B.C.D.7、如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为()A.B.C.D.8、如图,四边形为平行四边形,延长到,使,连接,,,添加一个条件,不能使四边形成为矩形的是()A.B.C.D.9、如图,已知四边形的四边都相等,等边的顶点、分别在、上,且,则()A.B.C.D.10、如图,在平行四边形中,用直尺和圆规作的平分线交于点,若,,则的长为()A.B.C.D.11、如图,分别以直角的斜边,直角边为边向外作等边和等边,为的中点,与交于点,与交于点,,.给出如下结论:①;②四边形为菱形;③;④;其中正确结论的是()A. ①②③B. ①②④C. ①③④D. ②③④12、如图,在四边形中,、、、分别是、、、的中点,要使四边形是菱形,则四边形只需要满足一个条件,是()A. 四边形是梯形B. 四边形是菱形C. 对角线D.13、如图,在菱形中,,分别在,上,且,与交于点,连接.若,则的度数为()A.B.C.D.14、如图所示,设表示平行四边形,表示矩形,表示菱形,表示正方形,则下列四个图形中,能表示它们之间关系的是()A.B.C.D.15、如图,已知号、号两个正方形的面积和为,号、号两个正方形的面积和为,则这个正方形的面积和为()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在菱形中,对角线、交于点,为边的中点,若菱形的周长为,则的长为.17、在正方形内取一点,使是等边三角形,那么的度数是.18、1.正方形的定义有一组邻边且一个角是的平行四边形叫做正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章特殊四边形单元检测题(满分 100分)
班级姓名学号等级
一、选择题(每小题3分,共36分)
1、在四边形ABCD中,AD∥BC。
要判定ABCD是平行四边形,还需要满足的条件是()
A、∠A+∠C=1800
B、∠B+∠D=1800
C、∠A+∠B=1800
D、∠A+∠C=1800
2、观察下列四个平面图形,其中中心对称图形有()
(A)2个(B)1个(C)4个(D)3个
3、顺次连接矩形四边中点所得四边形是()
A.菱形B.正方形C.矩形D.等腰梯形
4、(09日照中考)如下图,在口ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
A、2cm
B、4cm
C、6cm
D、8cm
5、如下图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O,如果AB=4,BC=5, OE=1.5,那么四边形EFCD的周长是()
A、16
B、14
C、12
D、
10
6、以三角形的三个顶点及三边中点为顶点的平行四边形共有( )
A、1个
B、2个
C、3个
D、4个7、(09河北中考)如图,在菱形ABCD中,AB=5, ∠BCD=1200,则对角线AC等于()
A、20
B、15
C、10
D、
5
8、(09威海中考)在梯形ABCD中,AB∥CD, ∠A=600, ∠B=300,AD=CD=6,则AB的长度为()
A、9
B、12
C、18
D、6+3
9、(2009广东茂名) 如图杨伯家小院子的四棵小树E F G H
、、、刚好在其梯形院子
A B C D各边的中点上,若在四边形E F G H种上小草,则这块草地的形状是()
A、平行四边形
B、矩形
C、正方形
D、菱形
10、(2009黑龙江大兴安岭)如图在矩形ABCD中,1
=
AB,3
=
AD,AF平分DAB
∠,过C点作BD
CE⊥于E,延长AF、EC交于点H,下列结论中:①FH
AF=;②BF
BO=;③CH
CA=;④ED
BE3
=,正确的()
A、②③
B、③④
C、①②④
D、②③④
9题图 10题图
M G
H
A
B C D
11、如图,E 是正方形ABCD 的边BC 延长线上一点,且BC=CE ,若CE=5cm ,则CF 的长为( )
A .2.5cm
B . 3cm
C .4.5cm
D .5cm
12、(2008山东潍坊)如图,梯形ABCD 中,AD ∥BC,AD=AB,BC=BD,∠A =100°,则 ∠C=( )
A.80°
B.70°
C.75°
D.60°
B C D
二、填空题(每小题3分,共30分)
1、下面的图形是中心对称图形的是______________。
①线段;②角;③三角形;④等边三角形;⑤平行四边形
2、(2006•佛山)如下图,在平行四边形ABCD 中,AC 、BD 相交于点O ,下列结论:①OA=OC ;②∠BAD=∠BCD ;③AC ⊥BD ;④∠BAD+∠ABC=180°中,正确的个数有______个。
3、如下图所示,平行四边形ABCD 中,E 、F 是对角线BD 上两点,连接AE 、AF 、CE 、
CF ,添加______条件,可以判定四边形AECF 是平行四边形。
(填一个符合要求的条件即可)
2题图 3题图 4、菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,面积为______。
5、如下图,矩形ABCD 中,O 是两对角线的交点AE ⊥BD ,垂足为E .若OD =2 OE , AE =3,则DE 的长为______。
6、如下图所示,在正方形ABCD 中,M 是BC 上一点,连结AM ,作AM 的垂直平分线GH 交AB 于G ,交CD 于H ,若AM =10cm ,则GH =______。
5题图 6题图 7、在矩形ABCD 中,E 为边AB 的中点,且DE ⊥CE,则AD:AB=______。
8、(2004•四川)如下图,等腰梯形ABCD 中,AD ∥BC ,AD=5,AB=6,BC=8,AE ∥DC ,则△ABE 的周长是______。
9、(2009•江苏)如下图,已知EF 是梯形ABCD 的中位线,△DEF 的面积为4cm 2,则梯形ABCD 的面积为______ cm 2。
8题图 9题图
10、如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,□ABCD 的周长为40,则S □ABCD 为______。
10题图
三、解答题:(34 分)
1、(2010浙江嘉兴)如图,在□ABCD中,已知点E在AB上,点F在CD上,且CF
AE=。
(8分)
(1)求证:BF
DE=;
(2)连结BD,并写出图中所有的全等三角形。
(不要求证明)
2、如图,D,E,F分别是△ABC各边的中点,A G⊥BC,垂足为G。
求证:四边形DGEF
是等腰梯形。
(6分)
3、(2008 山东聊城)如图,矩形A B C D中,O是A C与B D的交点,过O点的直线E F 与A B C D
,的延长线分别交于E F
,。
(10分)
(1)求证:BO E D O F
△≌△;
(2)当E F与A C满足什么关系时,以A E C F
,,,为顶点的四边形是菱形?证明你的结论。
4、(2008 河南实验区)如图,已知:在四边形ABFC中,ACB
∠=90BC
,︒的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。
(10分)
(1)试探究,四边形BECF是什么特殊的四边形;
(2)当A
∠的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论。
F
D
O
C
B
E
A
A B
E。