最新五年级奥数-图形问题练习及答案

合集下载

五年级奥数平面图形面积(附答案)

五年级奥数平面图形面积(附答案)

平面图形的面积计算例1:已知平行四边形的的面积是28平方厘米,求阴影图形的面积。

模仿练习如果用铁丝围成如下图一样的平行四边形,需要用多少厘米铁丝?(单位:厘米)例2:已知大正方形的边长是5厘米,小正方形的边长是4厘米,求阴影部分的面积。

模仿练习正方形的边长分别是10厘米、6厘米,阴影部分的面积是 平方厘米。

ABC EFD GA B CED G例3:如图,ABCD 是边长为4分米的正方形,长方形DEFG 的长是5分米,求长方形DEFG 的宽。

模仿练习如图,ABCD 是正方形,EDGF 是长方形,CD=6厘米,DG=8厘米,求宽ED=?FA B GCD E 86例4:如图,已知四边形ABCD 被它的两条对角线分成四个三角形,其中甲的面积是1,乙的面积是2,丙的面积是3,求丁的面积。

模仿练习两条对角线把梯形ABCD 分割成四个三角形,已知两个三角形的面积,求另两个三角形的面积。

FA EDCBABC DE 甲丁乙丙A BCDO4812 108铜牌练习(1)右面图形的面积是多少平方厘米。

(单位:厘米)(2)如右图,长方形ABCD 中,BE=4厘米,CE=3厘米,长方形的面积是多少平方厘米。

(3) 一个等腰直角三角形,最长的边是20厘米,这个三角形的面积是多少平方厘米。

(4)一个正方形的对角线长5厘米,这个正方形的面积是 平方厘米C D银牌练习(1)已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。

(2)如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大(3)如图,求四边形的面积是是 平方厘米。

(单位:厘米)(4)如图所示,梯形中的两个小三角形的面积为3、9平方厘米,梯形ABCD 的面积是 平方厘米。

金牌练习如右图,在直角三角形ABC 内画一个最大的正方形BEFD , AB=4厘米,BC=6厘米,正方形的面积最大是 平方厘米。

五年级奥数题图形及面积含详细答案

五年级奥数题图形及面积含详细答案

五年级奥数题:图形与面积一、填空题〔共10小题,每题3分,总分值30分〕1.〔3分〕如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,则它的周长是_________ 厘米.2.〔3分〕第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.则7,2,1三个数字所占的面积之和是_________ .3.〔3分〕如图中每一小方格的面积都是1平方厘米,则用粗线围成的图形面积是_________ 平方厘米.4.〔3分〕〔2014•模拟〕如图的两个正方形,边长分别为8厘米和4厘米,则阴影局部的面积是_________ 平方厘米.5.〔3分〕在△ABC中,BD=2DC,AE=BE,△ABC的面积是18平方厘米,则四边形AEDC的面积等于_________ 平方厘米.6.〔3分〕如图是边长为4厘米的正方形,AE=5厘米、OB是_________ 厘米.7.〔3分〕如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,则它的宽DE 是_________ 厘米.8.〔3分〕如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如下图,则这个大矩形的面积是_________ .9.〔3分〕如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影局部的面积是_________ .10.〔3分〕图中的长方形的长和宽分别是6厘米和4厘米,阴影局部的总面积是10平方厘米,四边形ABCD 的面积是_________ 平方厘米.二、解答题〔共4小题,总分值0分〕11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.12.如图,涂阴影局部的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按图中〔1〕与〔2〕所示意那样,划分为四个小长方形.在〔1〕中小长方形面积的比是:A:B=1:2,B:C=1:2.而在〔2〕中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.14.〔2012•模拟〕如图,CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两局部,左边局部面积是38,右边局部面积是65,则三角形ADG的面积是_________ .2010年五年级奥数题:图形与面积〔B〕参考答案与试题解析一、填空题〔共10小题,每题3分,总分值30分〕1.〔3分〕如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,则它的周长是170 厘米.考点:巧算周长.分析:要求该图形的周长,先求出每个小正方形的面积,根据正方形的面积公式,得出小正方形的边长,然后先算出该图形的外周的长,因为、外的长相等,再乘2即可得出结论.解答:解:400÷16=25〔平方厘米〕,因为5×5=25〔平方厘米〕,所以每个小正方形的边长为5厘米,周长为:〔5×4+5×4+5×3+5×2+5×3+5〕×2,=85×2,=170〔厘米〕;答:它的周长是170厘米.点评:此类题解答的关键是先求出每个小正方形的面积,根据正方形的面积公式,得出小正方形的边长,进而算出该图形的外周的长,因为、外的长相等,再乘2即可得出结论.2.〔3分〕第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.则7,2,1三个数字所占的面积之和是25 .考点:组合图形的面积.分析:此题需要进展图形分解:"7〞分成一个长方形、一个等腰直角三角形、一个平行四边形;"2〞分成一个梯形、一个平行四边形、一个长方形;"1〞分成一个梯形和两个长方形.然后进展图形转换,依据题目条件即可求出结果.解答:解:"7〞所占的面积和=+3+4=,"2〞所占的面积和=3+4+3=10,"1〞所占的面积和=+7=,则7,2,1三个数字所占的面积之和=++10=25.故答案为:25.点评:此题关键是进展图形分解和转换.3.〔3分〕如图中每一小方格的面积都是1平方厘米,则用粗线围成的图形面积是 6.5 平方厘米.考点:组合图形的面积.分析:由图可以观察出:大正方形的面积减粗线以外的图形面积即为粗线围成的图形面积.解答:解:大正方形的面积为4×4=16〔平方厘米〕;粗线以外的图形面积为:整格有3个,左上,右上,右中,右下,左中,右中,共有3++5×=9.5〔平方厘米〕;所以粗线围成的图形面积为16﹣9.5=6.5〔平方厘米〕;答:粗线围成的图形面积是6.5平方厘米.故此题答案为:6.5.点评:此题关键是对图形进展合理地割补.4.〔3分〕〔2014•模拟〕如图的两个正方形,边长分别为8厘米和4厘米,则阴影局部的面积是24 平方厘米.考点:组合图形的面积.分析:两个正方形的面积减去两个空白三角形的面积.解答:解:4×4+8×8﹣×4×〔4+8〕﹣×8×8,=16+64﹣24﹣32,=24〔cm2〕;答:阴影的面积是24cm2.故答案为:24.点评:求组合图形面积的化为求常用图形面积的和与差求解.5.〔3分〕在△ABC中,BD=2DC,AE=BE,△ABC的面积是18平方厘米,则四边形AEDC的面积等于12 平方厘米.考点:相似三角形的性质〔份数、比例〕;三角形的周长和面积.分析:根据题意,连接AD,即可知道△ABD和△ADC的关系,△ADE和△BDE的关系,由此即可求出四边形AEDC的面积.解答:解:连接AD,因为BD=2DC,所以,S△ABD=2S△ADC,即,S△ABD=18×=12〔平方厘米〕,又因为,AE=BE,所以,S△ADE=S△BDE,即,S△BDE=12×=6〔平方厘米〕,所以AEDC的面积是:18﹣6=12〔平方厘米〕;故答案为:12.点评:解答此题的关键是,根据题意,添加辅助线,帮助我们找到三角形之间的关系,由此即可解答.6.〔3分〕如图是边长为4厘米的正方形,AE=5厘米、OB是 3.2 厘米.考点:组合图形的面积.分析:连接BE、AF可以看出,三角形ABE的面积是正方形面积的一半,再依据三角形面积公式就可以求出OB 的长度.解答:解:如图连接BE、AF,则BE与AF相交于D点S△ADE=S△BDF则S△ABE=S正方形=×〔4×4〕=8〔平方厘米〕;OB=8×2÷5=3.2〔厘米〕;答:OB是3.2厘米.故答案为:3.2.点评:此题主要考察三角形和正方形的面积公式,将数据代入公式即可.7.〔3分〕如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,则它的宽DE 是 3.2 厘米.考点:组合图形的面积.分析:连接AG,则可以依据题目条件求出三角形AGD的面积,因为DG,进而可以求三角形AGD的高,也就是长方形的宽,问题得解.解答:解:如图连接AGS△AGD=S正方形ABCD﹣S△CDG﹣S△ABG,=4×4﹣3×4÷2﹣1×4÷2=16﹣6﹣2=8〔平方厘米〕;8×2÷5=3.2〔厘米〕;答:长方形的宽是3.2厘米.故答案为:3.2.点评:依据题目条件做出适宜的辅助线,问题得解.8.〔3分〕如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如下图,则这个大矩形的面积是243 .考点:组合图形的面积.分析:从图中可以看出每上、下两个小矩形的一个边是相邻的,也就是说长是相等的,则根据矩形的面积公式知,如果长一样,面积之比也就是宽之比,反之宽之比也就是面积之比;由中间面积20和16的矩形,可以算出空着的小矩形面积,最后把所有小矩形面积加起来就是大矩形的面积.解答:解:由图和题意知,中间上、下小矩形的面积比是:20:16=5:4,所以宽之比是5:4,则,A:36=5:4得A=45;25:B=5:4得B=20;30:C=5:4得C=24;D:12=5:4得D=15;所以大矩形的面积=45+36+25+20+20+16+30+24+15+12=243;故答案为:243.点评:此题考察了如果长方形的长一样,宽之比等于面积之比,还考察了比例的有关知识.9.〔3分〕如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影局部的面积是60 .考点:组合图形的面积.分析:根据题意:正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,可连接DP,然后再利用三角形的面积公式进展计算即可得到答案.解答:解:阴影局部的面积=×DH×AP+×DG×AD+×EF×AD+×MN×BP=×4×AP+×3×12+×3×12+×4×BP=2AP+18+18+2BP=36+2×〔AP+BP〕=36+2×12=36+24=60.答:这个图形阴影局部的面积是60.点评:此题主要考察的是三角形的面积公式.10.〔3分〕图中的长方形的长和宽分别是6厘米和4厘米,阴影局部的总面积是10平方厘米,四边形ABCD 的面积是 4 平方厘米.考点:重叠问题;三角形的周长和面积.分析:因为S△EFC+S△GHC=四边形EFGH面积÷2=12,S△AEF+S△AGH=四边形EFGH面积÷2=12,所以S△ABE+S△ADH=S△BFC+S△DGC=四边形EFGH面积÷2﹣阴影局部的总面积是10平方厘米=2平方厘米.所以:四边形ABCD面积=S△ECH﹣〔S△ABE+S△ADH〕=四边形ABCD面积÷4﹣2=6﹣2=4平方厘米.解答:解:由题意推出:S△ABE+S△ADH=S△BFC+S△DGC=四边形EFGH面积÷2﹣阴影面积10平方厘米=2平方厘米.所以:四边形ABCD面积=S△ECH﹣〔S△ABE+S△ADH〕=四边形ABCD面积÷4﹣2=6﹣2=4平方厘米.故答案为:4.点评:此题在重叠问题中考察了三角形的周长和面积公式,此题设计的非常精彩.二、解答题〔共4小题,总分值0分〕11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.考点:等积变形〔位移、割补〕.分析:如图,将正六边形ABCDEF等分为54个小正三角形,根据平行四边形对角线平分平行四边形面积,采用数小三角形的方法来计算面积.解答:解:如图,S△PEF=3,S△CDE=9,S四边形ABQP=11.上述三块面积之和为3+9+11=23.因此,阴影四边形CEPQ面积为54﹣23=31.点评:此题主要利用面积分割,用数根本小三角形面积来解决问题.12.如图,涂阴影局部的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.考点:等积变形〔位移、割补〕.分析:由图及题意知,可把涂阴影局部小正六角星形等分成12个小三角形,且都与外围的6个空白小三角形面积相等,涂阴影局部的小正六角星形面积是16平方厘米,可求出大正六角星形中心正六边形的面积,而这个正六边形又可等分成6个小正三角形,且它们与外围六个大角的面积相等,进而可求出大正六角星形面积解答:解:如下列图所示,涂阴影局部小正六角星形可等分成12个小三角形,且都与外围的6个空白小三角形面积相等,所以正六边形ABCDEF的面积:16÷12×〔12+6〕=24〔平方厘米〕;又由于正六边形ABCDEF又可等分成6个小正三角形,且它们与外围六个大角的面积相等,所以大正六角星形面积:24×2=48〔平方厘米〕;答:大正六角星形面积是48平方厘米.点评:此题要借助求正六边形的面积来解答,它既可看作是18个小正三角形,又可看作是6个大点的正三角形组成.13.一个周长是56厘米的大长方形,按图中〔1〕与〔2〕所示意那样,划分为四个小长方形.在〔1〕中小长方形面积的比是:A:B=1:2,B:C=1:2.而在〔2〕中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.考点:比的应用;图形划分.分析:要求大长方形的面积,需求出它的长和宽,由条件"在〔1〕中小长方形面积的比是:A:B=1:2,B:C=1:2.而在〔2〕中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3〞可知:D的宽是大长方形宽的,D′的宽是大长方形宽的,D的长是×〔28﹣大长方形的宽〕,D′的长是×〔28﹣大长方形的宽〕,由此便可以列式计算.解答:解:设大长方形的宽为*,则长为28﹣*因为D的宽=*,D′的宽=*,所以,D′的宽﹣D的宽=.D长=×〔28﹣*〕,D′长=×〔28﹣*〕,D′长﹣D长=×〔28﹣*〕,由题设可知:=即=,于是=,*=8.于是,大长方形的长=28﹣8=20,从而大长方形的面积为8×20=160平方厘米.答:大长方形的面积是160平方米.点评:此题比拟复杂,主要考察比的关系,应利用比的意义,找清数量见的比,再利用题目条件,就可以进展计算求得结果.14.〔2012•模拟〕如图,CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两局部,左边局部面积是38,右边局部面积是65,则三角形ADG的面积是40 .考点:三角形的周长和面积.分析:可以把S△ADE看成是一个整体,根据各线段的关系和左右两局部面积的关系,可以列出一个方程,求出S△ADE的面积,然后再根据所求三角形与S△ADE的关系求出答案.解答:解:由题意知,S=3S△ADE,S△BFE=S△BEC,△AEG设S△ADE=*,则S△AEG=3*,S△BFE=〔38﹣*〕,可列出方程:〔38﹣*〕+3*=65,解方程,得:*=10,所以S△ADG=10×〔1+3〕=40.故答案为:40.点评:此题考察了如何利用边的关系求三角形的面积.。

五年级上册数学试题-奥数:图形定稿全国通用

五年级上册数学试题-奥数:图形定稿全国通用

(2)
3
例 6.如图,从甲地到乙地有 2 条路可走,从乙地到丙地有 3 条路可走;从甲地到丁地有 4 条路可走, 从丁地到丙地有 2 条路可去。从甲地到丙地共有多少种不同的走法?
【试一试】 1、如果线段 AB 上共有 8 个点(包括 A、B 两点),那么,共有多少条线段?
2、联结 A、B、C、D 四个城市的道路如图所示: (1)从 A 城经 B 城到 C 城的不同走共有多少种? (2)从 A 城到 C 城的不同走法共有多少种?
厘米?
AE
FB
D H
【试一试】
GC
1、求出阴影部分的周长。
2、如右图,阴影部分是正方形,求出最大的长方形的周长。
5 厘米
A
B
E
H
7 厘米
C
D
E
G
当堂测试
1、下图是一个锯齿状的零件,每一个锯齿的两条线段都长 2 厘米,求这个零件的周长.
2、求图 12、图 13 的周长。
3、图 14 是一座楼房的平面图,这座楼房平面图的周长是多少米?
例 1.一个等腰三角形中,有一个内角的度数是另一个内角的 4 倍,则这个等腰三角形的顶角是 _________度。
【试一试】
1、17 点整,钟面上的分针和时针所组成的角是( )。
A、锐角
B、直角
C、钝角
D、平角
2、在直角、锐角、平角、钝角中,度数最小的角是( )。
A、 直角
B、锐角
C、平角
D、钝角
3、在一个直角三角形中,已知一个锐角是 68°,则另一个锐角是( )。
能力测试(一)…………………………………………………………………25
第六讲
割补 …………………………………………………………28

五年级奥数——立体图形问题

五年级奥数——立体图形问题

年 级 五年级授课日期授课主题第6讲——立体图形问题教学内容i.检测定位通过解决立体图形问题可以培养我们的空间想象能力.许多时候拿出或自己做一个实物,亲自观察或动手操作一下,问题的解决会变得相当容易.【例1】如图6-1,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得的多面体的表面积是___________平方厘米.分析与解 先求棱长分别是1厘米、2厘米、3厘米、5厘米这四个正方体的表面积之和,然后减去图中粘贴在一起部分的面积之和.)()(611422233-611223355⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯+⨯+⨯.19440-234(平方厘米)== 说明 解答本题的关键是要能正确分析出粘贴部分有哪几个面,以及这几个面的面积分别是多少. 随堂练习1如图6-2,将一个长方形木条平均截成6段,每段长2米,表面积增加了120平方厘米.问这根木条原来体积是多少立方厘米?【例2】在一个长24分米,宽9分米,高8分米的水槽中注入高4分米的水,然后放入一个棱长为6分米的正方体铁块,问水位上升了多少分米?分析与解 首先应判断放入铁块后,水位是否能将铁块淹没.1. 假设上升水位能将铁块淹没,那么水位至少上升了6分米.由于放入的棱长为6分米的正方形铁块体积为(立方分米),216666=⨯⨯它放入水槽后水位将上升.1924216(分米)=÷÷加上原来已注入的水位高4分米.因此放入铁块后水槽中的水位高为(分米),514=+小于铁块的高6分米,因此上升的水位不能将整个铁块淹没.2. 假设水位上升了x 分米,列方程得 )4(66924+⨯⨯=⨯⨯x x , 46+=x x ,).(8.0分米=x 答:水位上升了0.8分米. 随堂练习2一个长方体的水箱,从里面量长8分米、宽6分米.先倒入102升水,再放入一块棱长2分米的正方形铁块,这时水面离箱口2分米.问这个水箱的容积是多少立方分米(升)?【例3】正方体木块被砍掉一个角(这里的角,指三条线相交处),剩余部分最多有_____个角,最少有_____个角.分析与解 画图考虑几种情况,分别数出剩余部分有多少个角,再进行比较.截面如图6-3①,剩余部分最多有10个角;截面如图6-3②,剩余部分最少有7个角. 随堂练习3如图6-4由一个正五边形、五个长方形、五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有______条棱.【例4】如图6-5,把2、4、6、8、10、12这6个数依次写在一个立方体的正面、背面、两个侧面以及两个底面上,然后把立方体展开,最左边的正方形上的数时12,问最右边有“?”的正方形上的数是什么?分析与解我们将展开图重新组合成立方体,令写2的面为正面得到下图6-6,可见到2与“?”相对,因此.4?随堂练习4沿图6-7的虚线折叠可以围成一个长方体.它的体积是多少?【例5】把正方体的6个面涂上六种不同的颜色,并画上朵数不同的花,各面的颜色和对应的花朵数目的情况如下表所示:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个如图6-8所示的长方体,那么这个长方体的下底面共有多少朵花?分析与解如图6-8所示,黄与蓝、紫、红、绿相邻,所以黄与白相对;又紫与黄、蓝、白(它是黄的对面)、红相邻,所以紫与绿相对;从而红与蓝相对.据此可知4个下底面的颜色依次为紫、蓝、白、红色,它们对应的花朵数分别为5、3、4、1,其和为13.随堂练习5如例5,小立方体中各面的颜色与所对应的花朵数不变,四个立方体拼成的长方体如图6-9.那么这个长方体下底面共有多少朵花?颜色红黄蓝白紫绿花朵数目 1 2 3 4 5 6【例6】在一个正方形纸板的四角剪去一个大小相同的小正方形,便可以做成一个没有盖的纸盒,按图6-10中)(A 、)(B 、)(C 、)(D 四种方法做出来的纸盒中,容积最小的是_________,容积最大的是_________.分析与解)(A 的容积为(立方厘米)64444=⨯⨯ )(B 的容积为(立方厘米)108663=⨯⨯ )(C 的容积为(立方厘米)128882=⨯⨯ )(D 的容积为(立方厘米)10010101=⨯⨯ 比较后可知,容积最小的是)(A ;容积最大的是)(C . 随堂练习6下面)(A 、)(B 、)(C 是三块形状不同的铁片,将每块铁片沿虚线弯折后焊接成一个无盖的开口为正方形的长方形铁箱,装水最多的水箱是由_______铁皮焊接的.想一想如图1,将1、2、3、4、5、6、7、8分别放置于正方体的8个顶点a 、b 、c 、d 、e 、f 、g 、h 处,使每一个面上的4个数的和相等.答案如图②,每个面上的4个数的和为18.ii.针对培养1.如图是用棱长1厘米的立方体搭成的一个空间图形.问其体积是多少?表面积是多少?2.从一个长方体上截下一个体积是32立方厘米的长方体后,剩下的部分正好是棱长为4厘米的正方体.问原来这个长方体的表面积是多少平方厘米?3.一下图中可以拼成正方体的是()4.一根铁丝围成的长方体,长15分米,宽8分米,高7分米.如果还用这根铁丝改围成一个正方体,那么这个正方体的棱长是多少分米?5.有三个完全一样的长方体,用三种不同的方法,分别切成了两个完全一样的长方体,结果它们的表面积分别增加了40、48、60平方厘米.想一想,原来的长方体的表面积是多少平方厘米,体积是多少立方厘米?6.一个长方体水箱,长5分米、宽4分米、深3分米,水面离箱口3厘米,如果把一块棱长2分米的正方体水泥块放入水中,这时箱内会溢出多少升水?7.有一个空的长方体容器A(如图①)和一个水深24厘米的长方体容器B(如图②).现将容器B中的水倒一部分到容器A中,使两容器水的高度相同,这时两容器的水深为几厘米?8.如图,有一个“空心”大长方体,空心部分相对的两个面是通的,问这个“空心”大长方体是由多少个小木块组成的?(这些小木块是完全相同的正方体)9.从一个长方体上截下一个体积是100立方厘米的小长方体后,剩下部分正好是一个棱长为5厘米的正方体.原来长方体的表面积是多少平方厘米?10.用三个同样的长、宽、高分别是4厘米、3厘米和2厘米的小长方体,拼成一个表面积最大的长方体.这个大长方体的表面积是多少平方厘米?11.一个长方体木块,长5分米,宽3分米,高4分米,在它六个面上都涂满油漆,然后锯成棱长都是1分米的正方体木块.问锯成的木块中几个三面有油漆?两个面、一个面有油漆的各有多少个?有没有各个面都没有油漆的?12.一个长方体,如果长增加5厘米,则体积增加150立方厘米;如果宽增加4厘米,则体积增加160平方厘米;如果高增加3厘米,则体积增加144立方厘米.问长方体的表面积是多少平方厘米?。

五年级奥数图形问题练习及答案

五年级奥数图形问题练习及答案

五年级奥数图形问题练习及答案1、如图,在三角形ABC中,D是AB的中点,E是DB的中点,F是BC的中点,如果三角形ABC的面积是96cm2,那么三角形AEF的面积是多少平方厘米?CFA D E B解:三角形ABF与三角形ABC有公用的顶点A并且它们的底BC和BF在同一条直线上,所以它们的高相等,而三角形ABF的底BF只有三角形ABC的底BC 的一半,所以三角形ABF的面积等于三角形ABC的一半,是96- 2 = 48(cm2)。

同理,三角形AFD的面积是48十2 = 24(cm2),三角形DEF的面积是24-2= 12(cm2), 因此,三角形AEF的面积是24 + 12= 36(cm2)。

答:三角形AEF的面积是36 cm2。

2、如图所示,大正方形的边长为12 cm,小正方形的边长为10 cm,求阴影部分的面积。

解:阴影三角形的面积无法直接求出,可以用两个正方形面积的和,减去阴影部分周围三个三角形的面积。

所以,阴影部分的面积是122+ 102- 12 X (12+ 10)-2- 102- 2- 12X (12- 10)-2=144+100-132-50-12= 50(cm2)。

答:阴影部分的面积是50 cm2。

3、把三角形ABC的边AB三等分,AC四等分,如图。

已知三角形ADE的面积是1 cm2,求三角形ABC的面积是多少平方厘米?AE DB C解:三角形AEC的面积是三角形AED的4倍,三角形ABC的面积是三角形AEC的3倍,所以三角形ABC的面积是三角形AED的4 X 3= 12倍,是12(cm2)。

答:三角形ABC的面积是12 cm2。

4、如图所示,在直角梯形ABCD中,AD= 8 cm,CD= 10 cm,BC= 12 cm,CG= GD。

阴影部分的面积是多少平方厘米?A DGB C解:(8+ 12) X 10十2- 8X (10十2)十2- 12X (10十2)十2 = 50(平方厘米)。

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。

(word完整版)五年级奥数图形问题练习及答案

(word完整版)五年级奥数图形问题练习及答案

图形问题练习及答案1、如图,在三角形ABC中,D是AB的中点,E是DB的中点,F是BC的中点,如果三角形ABC的面积是96cm2,那么三角形AEF的面积是多少平方厘米?CFA D E B解:三角形ABF与三角形ABC有公用的顶点A,并且它们的底BC和BF在同一条直线上,所以它们的高相等,而三角形ABF的底BF只有三角形ABC的底BC的一半,所以三角形ABF的面积等于三角形ABC的一半,是96÷2=48(cm2)。

同理,三角形AFD的面积是48÷2=24(cm2),三角形DEF的面积是24÷2=12(cm2),因此,三角形AEF的面积是24+12=36(cm2)。

答:三角形AEF的面积是36 cm2。

2、如图所示,大正方形的边长为12 cm,小正方形的边长为10 cm,求阴影部分的面积。

解:阴影三角形的面积无法直接求出,可以用两个正方形面积的和,减去阴影部分周围三个三角形的面积。

所以,阴影部分的面积是122+102-12×(12+10)÷2-102÷2-12×(12-10)÷2=144+100-132-50-12=50(cm2)。

答:阴影部分的面积是50 cm2。

3、把三角形ABC的边AB三等分,AC四等分,如图。

已知三角形ADE的面积是1 cm2,求三角形ABC的面积是多少平方厘米?AE DB C解:三角形AEC的面积是三角形AED的4倍,三角形ABC的面积是三角形AEC的3倍,所以三角形ABC的面积是三角形AED的4×3=12倍,是12(cm2)。

答:三角形ABC的面积是12 cm2。

4、如图所示,在直角梯形ABCD中,AD=8 cm,CD=10 cm,BC=12 cm,CG=GD。

阴影部分的面积是多少平方厘米?DGB C解:(8+12)×10÷2-8×(10÷2)÷2-12×(10÷2)÷2=50(平方厘米)。

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

五年级奥数 图形问题练习及答案

五年级奥数 图形问题练习及答案

五年级奥数图形问题练习及答案1、如图,在三角形ABC中,D是AB的中点,E是DB的中点,F是BC的中点,如果三角形ABC的面积是96cm2,那么三角形AEF的面积是多少平方厘米?CFA D E B解:三角形ABF与三角形ABC有公用的顶点A,并且它们的底BC和BF在同一条直线上,所以它们的高相等,而三角形ABF的底BF只有三角形ABC的底BC 的一半,所以三角形ABF的面积等于三角形ABC的一半,是96÷2=48(cm2)。

同理,三角形AFD的面积是48÷2=24(cm2),三角形DEF的面积是24÷2=12(cm2),因此,三角形AEF的面积是24+12=36(cm2)。

答:三角形AEF的面积是36 cm2。

2、如图所示,大正方形的边长为12 cm,小正方形的边长为10 cm,求阴影部分的面积。

解:阴影三角形的面积无法直接求出,可以用两个正方形面积的和,减去阴影部分周围三个三角形的面积。

所以,阴影部分的面积是122+102-12×(12+10)÷2-102÷2-12×(12-10)÷2=144+100-132-50-12=50(cm2)。

答:阴影部分的面积是50 cm2。

3、把三角形ABC的边AB三等分,AC四等分,如图。

已知三角形ADE的面积是1 cm2,求三角形ABC的面积是多少平方厘米?AE DB C解:三角形AEC的面积是三角形AED的4倍,三角形ABC的面积是三角形AEC的3倍,所以三角形ABC的面积是三角形AED的4×3=12倍,是12(cm2)。

答:三角形ABC的面积是12 cm2。

4、如图所示,在直角梯形ABCD中,AD=8 cm,CD=10 cm,BC=12 cm,CG=GD。

阴影部分的面积是多少平方厘米?A DGB C解:(8+12)×10÷2-8×(10÷2)÷2-12×(10÷2)÷2=50(平方厘米)。

(完整版)五年级奥数-立体图形问题

(完整版)五年级奥数-立体图形问题

课程五立体图形问题1。

长方体、正方体表面积的计算2.长方体、正方体的切割问题3.长方体、正方体的体积4.不规则物体的体积计算长方体和正方体的表面积应注意的问题(1)找出必备条件(长、宽、高或棱长),如题中没有直接给出,则先求出必备条件,再求表面积(有盖还是无盖)。

(2)统一计量单位,单位不统一的,一般要通过化、聚,使单位统一后再计算。

(3)求所需用的面积材料时,一般用“进一法“取近似值。

(4)用同样多的立体拼图,由于拼法不同,重叠的次数不同,表面积就会发生变化,每重叠一次,就减少两个面;每切一刀,就增加两个面。

1.长方体和正方体的体积概念及其计算公式(1)长方体体积=长×宽×高V 长方体=abc(2) 正方体体积=棱长×棱长×棱长V 正方体=a 32.求不规则物体的体积水中物体的体积=容器的底面积×水上升或下降的高度。

水上升或下降的高度=水中物体的体积÷容器的底面积容器的底面积=水中物体的体积÷水上升或下降的高度例1有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?(1) (2) (3)分析与解法根据长方体的特征我们可以知道,挖去小正方体的位置有3种情况,可能是在面上,如图(1),可能在顶点上,如图(2),可能在棱上,如图(3)。

在面上时,可以用长方体的表面积+小正方体4个面的面积;在角上时,正好等于长方体的表面积;在棱上时,要用长方体的表面积+小正方体2个面的面积。

学习目标 重 点 总 结解:原长方体表面积为:(15×10+15×8+10×8) ×2=700(平方厘米)在角上时,剩下部分的表面积是700(平方厘米);在面上时,剩下部分的表面积是:700+5×5×4=800(平方厘米)在棱上时,剩下部分的表面积是:700+5×5×2=750(平方厘米)所以剩下部分的表面积是700平方厘米,或800平方厘米,或750平方厘米.说明:本题也是要考虑可能出现的各种情况,要做到不重不漏。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案40圆与扇形(二)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案40圆与扇形(二)

年级五年级学科奥数版本通用版课程标题圆与扇形(二)有时竞赛题中会考查一些关于无滑滚动、杠杆原理等物理知识,其中要用到关于圆的计算。

这类题要求我们知道一些简单的物理常识,因此平时就要注意积累。

最后我们举两个关于圆的、设而不求的例子,以提高同学们的思维水平。

无滑滚动硬币在支撑面上滚动,硬币边缘上各点与支撑面接触的瞬时,与支撑面无相对滑动,称硬币做无滑滚动。

这时,硬币边缘在与支撑面接触时,相对于支撑面的速度为0。

一个硬币沿一条直线滚动,并且没有滑动。

此时圆心运动的距离与硬币周长的比值就是硬币滚动的圈数。

硬币沿着曲线型边缘滚动,比如沿着另一个硬币边缘滚动,这种情况下若直接计算硬币自转多少圈容易算错,这时我们可以假定硬币边缘上有一红点,利用这个红点的指向间接判断硬币自转多少圈。

例1直径l厘米的圆沿边长为4.14 厘米的正方形内侧无滑动地滚动l圈(见图),则圆绕自己的圆心转了______圈。

分析与解:把整个过程分为4段,根据对称性知道,只要计算一段的情况就行了。

在一条边上滚动,是直线上的无滑动滚动。

用滚动距离除以圆周长就是滚动的圈数。

.4(=14÷-,故在一条边上旋转一周。

所以整个过程中圆绕自己的圆心转了4圈。

.3114)1例2半径为1的圆片绕着边长为6、7、8的三角板滚动一周,回到原位置。

圆片扫过的面积多大?分析与解:把扫过的区域分成六块,其中三块是长方形,总面积为42)876(2=++⨯;另外三块是扇形,能拼成半径是2的圆,面积是56.1214.34=⨯,所以圆片扫过的总面积是54.56。

例3 三个相同的硬币,将其中两个紧挨着固定在桌面上。

另外一个紧贴着这两个硬币滚动一周,没有滑动。

问,这个硬币自身转动几圈?分析与解:利用对称性知,只要计算滚动半周,硬币自转的圈数就可以知道了。

假设固定的两个硬币是左右相邻的,在右半周,滚动半周,硬币旋转34圈。

滚动一周,则硬币旋转38圈。

例4 试说明图中阴影部分面积与图中直角三角形面积相同。

(完整)五年级奥数图形问题练习及答案

(完整)五年级奥数图形问题练习及答案

图形问题练习及答案1、如图,在三角形ABC中,D是AB的中点,E是DB的中点,F是BC的中点,如果三角形ABC的面积是96cm2,那么三角形AEF的面积是多少平方厘米?CFA D E B解:三角形ABF与三角形ABC有公用的顶点A,并且它们的底BC和BF在同一条直线上,所以它们的高相等,而三角形ABF的底BF只有三角形ABC的底BC的一半,所以三角形ABF的面积等于三角形ABC的一半,是96÷2=48(cm2)。

同理,三角形AFD的面积是48÷2=24(cm2),三角形DEF的面积是24÷2=12(cm2),因此,三角形AEF的面积是24+12=36(cm2)。

答:三角形AEF的面积是36 cm2。

2、如图所示,大正方形的边长为12 cm,小正方形的边长为10 cm,求阴影部分的面积。

解:阴影三角形的面积无法直接求出,可以用两个正方形面积的和,减去阴影部分周围三个三角形的面积。

所以,阴影部分的面积是122+102-12×(12+10)÷2-102÷2-12×(12-10)÷2=144+100-132-50-12=50(cm2)。

答:阴影部分的面积是50 cm2。

3、把三角形ABC的边AB三等分,AC四等分,如图。

已知三角形ADE的面积是1 cm2,求三角形ABC的面积是多少平方厘米?AE DB C解:三角形AEC的面积是三角形AED的4倍,三角形ABC的面积是三角形AEC的3倍,所以三角形ABC的面积是三角形AED的4×3=12倍,是12(cm2)。

答:三角形ABC的面积是12 cm2。

4、如图所示,在直角梯形ABCD中,AD=8 cm,CD=10 cm,BC=12 cm,CG=GD。

阴影部分的面积是多少平方厘米?DGB C解:(8+12)×10÷2-8×(10÷2)÷2-12×(10÷2)÷2=50(平方厘米)。

五年级奥数-图形周长及多边形面积计算(附答案)

五年级奥数-图形周长及多边形面积计算(附答案)

数学学科教师辅导教案学员编号: 年 级:小五 课 时 数:学员姓名: 辅导科目:数 学 学科教师: 课程主题:图形的周长及多边形面积计算 授课时间:学习目标教学内容知识点一(图形的周长) 【知识梳理】【典型例题】例1. 求下列图形的周长。

(单位:厘米) (10+15)*2=50例2. 如图,在长方形ABCD 中,EFGH 是正方形,AH=12厘米,FC=10厘米。

求长方形ABCD 的周长。

C=(AD+CD)*2=(AH+HD+CD)*2=(AH+GC+FG)*2=(AH+FC)*2=(12+10)*2=44AB CDEF G H1015知识精讲例3. 如右图,把5个同样的小长方形拼成一个大长方形,已知小长方形的长是9cm ,拼成的大长方形的周长是多少厘米? ( 66 )例3. 如右图,七个相同的小长方形拼成了一个大长方形,已知大长方形的周长是68cm ,小长 方形的周长是多少厘米?( 28 )【同步练习】1、求下图的周长。

( 82 )2、如下图所示,长方形ABCD 中,AB=18cm ,截去正方形EBCF 后,求剩下的长方形AEFD 的周长。

( 36 )用四个一样的长方形和一个小正方形(如下图)拼成一个大正方形,大、小正方形的面积分别是64平分厘米和4平分厘米,长方形的长和宽各是多少厘米?( 5厘米,3厘米 )DA BCE F19 1304、如图是由两个相同的正方形和三个相同的长方形组成的,它的周长为104厘米,其中每个长方形的长都是宽的1.5倍,小长方形的周长是多少厘米?设小正方形的边长为a,得a为8(8+1.5*8)*2=405、求下图的周长。

(单位:分米)(64)6、如下图,一个正方形是由4个同样的长方形和一个小正方形拼成的,已知长方形的长是8厘米,小正方形的边长是3cm,求大正方形的周长。

( 52 )38210 20②①③知识点二(多边形面积计算) 【知识梳理】【典型例题】例题精讲例1. 已知正方形的对角线长10厘米,求正方形的面积。

五年级数学几何图形练习题及答案

五年级数学几何图形练习题及答案

五年级数学几何图形练习题及答案1. 问题:下图是一个矩形,请计算其周长和面积。

![image](image1.png)答案:周长 = 2 × (AB + BC) = 2 × (3 + 5) = 16面积 = AB × BC = 3 × 5 = 152. 问题:下图是一个圆,请计算其周长和面积。

(取π=3.14) ![image](image2.png)答案:周长= 2πr = 2 × 3.14 × 4 = 25.12面积= πr² = 3.14 × 4² = 50.243. 问题:下图是一个三角形,请判断其形状并计算其周长。

![image](image3.png)答案:根据角度判断,该三角形是锐角三角形。

周长 = AB + BC + AC = 3 + 4 + 5 = 124. 问题:下图是一个长方体,请计算其体积和表面积。

![image](image4.png)答案:体积 = 长 ×宽 ×高 = 6 × 3 × 4 = 72表面积 = 2 × (长×宽 + 长×高 + 宽×高) = 2 × (6×3 + 6×4 + 3×4) = 1085. 问题:下图是一个正方形,请计算其周长和面积。

![image](image5.png)答案:周长 = 4 ×边长 = 4 × 6 = 24面积 = 边长² = 6² = 366. 问题:下图是一个平行四边形,请计算其周长。

![image](image6.png)答案:周长 = AB + BC + CD + DA = 8 + 6 + 8 + 6 = 287. 问题:下图是一个正三角形,请计算其周长和面积。

![image](image7.png)答案:周长 = 3 ×边长 = 3 × 7 = 21面积 = (边长² × √3) / 4 = (7² × √3) / 4 ≈ 9.588. 问题:下图是一个梯形,请计算其面积。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案37不规则图形的面积(一)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案37不规则图形的面积(一)

年 级 五年级学 科 奥数版 本通用版课程标题 不规则图形的面积(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,它们的面积及周长都可由相应的公式直接计算。

实际问题中,有些图形是由一些基本图形组合、拼凑成的,它们的面积及周长可能无法应用公式直接计算。

我们一般称这样的图形为不规则图形。

组合的形式分为两种:一是拼接组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

那么,怎样去计算不规则图形的面积及周长呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,这样问题就能解决了。

本节课主要用公式法、求和差法、分割法、等量代换法解答不规则图形的面积问题。

1. 常见图形的面积公式:名称 图形面积公式长方形ab正方形 2a三角形 ah 21 平行四边形ah梯形h b a ⋅+)(212. 几个重要结论:(1)如果两个三角形的底和高分别相等,那么这两个三角形的面积相等。

(2)如果两个三角形的底(或高)相等,那么它们的面积之比等于它们的高(或底)之比。

例1 如图所示,大正方形和小正方形的边长分别为4和2,求阴影部分的面积。

分析与解:如题图,欲求阴影部分的面积,通过分析发现它是一个底是2、高是4的三角形,可以直接利用三角形的面积公式求得阴影部分的面积为2×4÷2=4。

本题是利用公式直接求解,这种方法是根据已知条件,从整体出发观察组合图形的特征,并与熟悉的基本图形产生联想。

例2正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少?分析与解:两个正方形的面积和:+=41(平方厘米);三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4)÷2=33(平方厘米);阴影部分的面积:41-33=8(平方厘米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形问题练习及答案
1、如图,在三角形ABC中,D是AB的中点,E是DB的中点,F是BC的中点,如果三角形ABC的面积是96cm2,那么三角形AEF的面积是多少平方厘米?
C
F
A D E B
解:三角形ABF与三角形ABC有公用的顶点A,并且它们的底BC和BF在同一条直线上,所以它们的高相等,而三角形ABF的底BF只有三角形ABC的底BC的一半,所以三角形ABF的面积等于三角形ABC的一半,是96÷2=48(cm2)。

同理,三角形AFD的面积是48÷2=24(cm2),三角形DEF的面积是24÷2=12(cm2),因此,三角形AEF的面积是24+12=36(cm2)。

答:三角形AEF的面积是36 cm2。

2、如图所示,大正方形的边长为12 cm,小正方形的边长为10 cm,求阴影部分的面积。

解:阴影三角形的面积无法直接求出,可以用两个正方形面积的和,减去阴影部分周围三个三角形的面积。

所以,阴影部分的面积是
122+102-12×(12+10)÷2-102÷2-12×(12-10)÷2
=144+100-132-50-12
=50(cm2)。

答:阴影部分的面积是50 cm2。

3、把三角形ABC的边AB三等分,AC四等分,如图。

已知三角形ADE的面积是1 cm2,求三角形ABC的面积是多少平方厘米?
A
E D
B C
解:三角形AEC的面积是三角形AED的4倍,三角形ABC的面积是三角形AEC的3倍,所以三角形ABC的面积是三角形AED的4×3=12倍,是12(cm2)。

答:三角形ABC的面积是12 cm2。

4、如图所示,在直角梯形ABCD中,AD=8 cm,CD=10 cm,BC=12 cm,CG=GD。

阴影部分的面积是多少平方厘米?
D
G
B C
解:(8+12)×10÷2-8×(10÷2)÷2-12×(10÷2)÷2=50(平方厘米)。

答:阴影部分的面积是50平方厘米。

5、如图所示,将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,
AC边延长3倍到F。

如果三角形ABC的面积是1 cm2,求三角形DEF的面积。

E
解:连接AE、CD、BF,△AEB的面积是2,△AED的面积是2,△BCF的面积是3,△AFD的面积是4,△BEF的面积是6,所以△DEF的面积是1+2+2+3+4+6=18(cm2)。

6、如图,已知AB=3,AE=4,DC=5,CF=6,AE⊥ED,CF⊥BF。

求阴影部分
的面积。

E D 5 C
解:连接AC,三角形ADC的面积是5×4÷2=10,三角形ABC的面积是3×6÷2=9,所以阴影部分的面积是10+9=19
7、图中ABCD是长方形,AD=7.2 cm, CD=5 A B E F
cm, CDEF是平行四边形。

如果BH=3 cm,求阴影
部分的面积。

D C
解:平行四边形的面积与长方形的面积相等, 都是7.2×5=36(cm2)。

HC=7.2-3=4.2(cm), 三角形HCD的面积是5×4.2÷2=10.5(cm2),
阴影部分的面积是36-10.5=25.5(cm2)。

8、平行四边形ABCD的周长为75cm,以BC为底时高为14cm,以CD为底时高为16cm。

求平行四边形ABCD的面积是多少平方厘米?
A D
14 16
F
B E C
解:因为平行四边形的面积=底×高,所以BC×AE=CD×AF,即BC×14=CD×16,而BC+CD=75÷2=37.5(cm),所以,CD=BC×14÷16=BC×0.875。

于是BC+BC×0.875=37.5,BC=37.5÷1.875=20(cm)。

因此平行四边形ABCD 的面积是20×14=280(cm2)
9、如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.
解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF 的面积与△ABE、△ADF的面积都等于正方形ABCD
在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,
∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

10、如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.
解:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.
所以△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。

又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米
11、左下图,四边形ABCD被AC和BD分成甲、乙、丙、丁四个三角形。

已知BE=80 cm,DE=40 cm,CE=60 cm,AE=30 cm。

问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?
A D A D
丁丁
甲乙甲乙
E E
丙N M

B C B C
解:连接BE的中点N和CE的中点M如右上图,三角形丁的面积与三角形ENM的面积相等,因此,三角形丙的面积是三角形丁的4倍。

因为BE=2ED,CE=2EA,可知三角形甲和三角形乙的面积都是三角形丁的2倍。

由此可以推知,丙、丁两个三角形面积之和是三角形丁的5倍,甲、乙两个三角形面积之和是三角形丁的4倍,所以丙、丁两个三角形和是甲、乙两个三角形面积之和的5÷4=1.25倍。

12、如图,BD、CF将长方形ABCD分成四块,红色三角形的面积是4 cm2,黄色三角形的面积是6 cm2,问绿色四边形的面积是多少平方厘米?
A F D

绿黄
E
B C
解:连接BF,因为三角形BDF和三角形CDF同底等高,所以它们的面积相等,由此得知三角形BEF和三角形CED的面积相等,也是6 cm2。

而三角形BEF 与三角形DEF同高,所以BE是ED的6÷4=1.5倍。

同理,三角形BEC的面积也是三角形DEC的1.5倍,是6×1.5=9(cm2)。

因为三角形ABD与三角形CBD的面积相等,都是9+6=15(cm2),而绿色四边形的面积等于三角形ABD的面积减去红色三角形的面积,所以绿色四边形的面积是15-4=11(cm2)。

相关文档
最新文档