第二章 第5课 函数的定义域与值域
函数的定义域与值域
函数的定义域与值域一、函数的定义域自变量x 的取值范围叫做函数的定义域(即使得函数的解析式有意义的x 的取值范围)。
二、常见函数的定义域的求法:1、如果f(x)为二次根式,那么函数的定义域是使根号内的式子大于等于零的实数x 的集合;2、如果f(x)是分式,那么函数的定义域是使分母不等于零的实数x 的集合;3、当函数y=f(x)中含有x 的式子在对数真数位置时,需使真数大于零,进而求出x 的取值范围;当含有x 的式子在对数的底数位置时,要通过底数大于零且不等于1的x 的取值范围;4、如果f(x)是由几个函数组合而成的,那么函数的定义域是使各个函数同时有意义的实数x 的集合(即各个函数定义域的公共部分构成f(x)的定义域)。
注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。
典例分析:23x 4x f=x--+1、函数的定义域为()A 、[-4,1] B[-4,0] C 、(0,1] D 、[]4- ,0)(0,12f(x)=x x x +、函数(-1)的定义域()A 、(][)01-∞+∞ ,, B 、[)∞1,+ C 、{0} D 、{}[)01+∞ ,3、若函数y=f (x )的定义域[0,2],则函数()(2)g x 1f x x =-的定义域是()A 、[0,1]B 、[0,1)C 、[0,1)U(1,4]D 、(0,1) 4、若函数f (2x-1)的定义域为[0,1) ,则f (1-3x )的定义域是() A 、(-2,4] B 、12,2⎛⎫-- ⎪⎝⎭ C 、10,6⎛⎤ ⎥⎝⎦ D 、20,3⎛⎤ ⎥⎝⎦三、函数的值域:1、函数值域的概念:所有函数值的集合叫做函数的值域。
2、求函数值域的常用方法(1)配方法:若函数类型为一元二次函数,则采用此法求其值域。
总复习《第05讲 函数的定义域与值域》
幂 函 数
y x2
Hale Waihona Puke y x 3 yx1 y x
函数的定义域与值域
x4 例1求函数 f ( x) 的定义域. 2 x 2 3x 3
3
x4 变1.若函数 f ( x) 2 的定义域 x 2ax 3
3
为R,求实数a的取值范围.
函数的定义域与值域
x4 例1求函数 f ( x) 的定义域. 2 x 2 3x 3
2
函数的定义域与值域
例题3 求函数
1 x y 2 1 x
2
的值域.(P15例2)
函数的定义域与值域
例题2 求函数 变1.求 变2.求 变3.求 . y x 2 x的值域 , xR
2 2
的值域 . y x 2x, x [0,3] . y x 2ax,的值域 x [0,3]
2
的值域 . y ax 2ax, x [0,3]
2
变4.求
的值域 y x 2x, x [0, .a]
函数的定义域与值域
x4 例1求函数 f ( x) 的定义域. 2 x 2 3x 3
3
变4.若函数 f ( x) lg( x 2ax 3)
2
的定义域为R,求实数a的取值范围. 变5.若函数 f ( x) lg( x2 2ax 3) 的值域为R,求实数a的取值范围.
3
x4 变2.若函数 f ( x) 2 的定义域 ax 2ax 3
3
为R,求实数a的取值范围.
函数的定义域与值域
x4 例1求函数 f ( x) 的定义域. 2 x 2 3x 3
3
变3.若函数 f ( x) x 2 2ax 3 的定义域
函数定义域与值域_课件
综合(2019江苏)
设函数 f(x)
x
(xR)
,区间
1 x
M=[a,b](a<b),集合N={ yyf(x),xM}
则使M=N成立的实数对(a,b)有 ( ) (A)0个 (B)1个 (C)2个 (D)无数多个
练习:求下列函数的值域
1、y= 2x +1 1-2x
综合2
y 1 x2 x 在[m,n]的值域 2
为[2m,2n],求m,n=?
求y
x 的值域
适用于一 次分式
x1
二、反函法:适用于便于解出x(用y表示)
化代分式回归基础
分 母 除以 分子
y
1
x
1 1
图象法: y1 如 何 平 y 移 11
2 a log a 2 log a a 2
例5、求函数f(x)=lg(ax-k•2x)(a>0且a≠1,
a≠2)的定义域。 例6、已知函数f(x)的定义域是(0,1],
?把2改写成 以a为底的指
数和对数
求g(x)=f(x+a)+f(x-a)(其中-1/2<a≤0) 的定义域。
综合2: 设函数 f(x ) lo 2x x g 1 1 lo 2 (x g 1 ) lo 2 (p g x ) ⑴求f(x)的定义域;
3、y= 1 x2 -4
2、y= sinx+1 1-sinx
y x 4,求满足下列条件的 值函 域数 x
①x≠0
三、Δ法(适用于二次分式) 其它:图象法
重要不等式
分类讨论
单调性
②x∈(0,+∞) ③x∈[1,5]
引申:
2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)
答案:B
2019/4/12
5.函数y=f(x)的值域是[-2,2],定义域是R,则函数y=f(x-2)的值域是( )
A.[-2,2]
C.[0,4]
B.[-4,0]
D.[-1,1]
答案:A
2019/4/12
类型一
函数的定义域
解题准备:(1)已知解析式求定义域的问题,应根据解析式中各部分
的要求,首先列出自变量应满足的不等式或不等式组,然后解这
2019/4/12
③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其
对应关系唯一确定; ④当函数由实际问题给出时,函数的值域由问题的实际意义确定.
2019/4/12
考点陪练
2019/4/12
2019/4/12
考点陪练
1.(2010 湖北)函数 3 A. ,1 4 C.(1, )
2019/4/12
⑨抽象函数f(2x+1)的定义域为(0,1),是指x∈(0,1)而非0<2x+1<1;已
知函数f(x)的定义域为(0,1),求f(2x+1)的定义域时,应由0<2x+1<1 得出x的范围即为所求.
2019/4/12
【典例 1】求函数f x
lg ( x 2 2 x) 9 x
∴要使f(x2)有意义,则必有0≤x2≤1,
解得-1≤x≤1.
∴f(x2)的定义域为[-1,1].
2019/4/12
②由0≤ x 1≤1得1≤ x≤2.1≤x≤4(x≥0时, x才有意义) 函数f ( x 1)的定义域为1, 4 2 f lg x 1 的定义域为 0,9 , 0≤x≤9,1≤x 1≤10, 0≤lg x 1 ≤1 f x 的定义域为 0,1.由0≤2 x ≤1, 解得x≤0. f 2 x 的定义域为 , 0 .
函数的定义域及其值域
课程名称:函数的定义域及其值域 教学内容和地位: 内容: 1.求函数的定义域 2.求函数的值域 1、教材分 地位: 在函数的三要素中, 定义域和值域起决定作用, 而值域是由定义域和对应法则共同 析 确定。
教学重点:求函数的定义域和值域 教学难点:求函数的定义域和值域 2、课时规 课时:3课时 划 3、教学目 通过本节课的学习,掌握求解函数定义域和值域的一般方法,会求简 标分析 单函数的定义域和值域。
1.导入 2.集合部分知识点串讲 4、教学思 3.例题精讲 路 4.易错点,考点,综合应用,典型图形 5.小结必讲知识点 一、复习引入 二、知识串讲: 5、教学过 程设计 (一)求函数的定义域 1.显函数的定义域 求此类函数定义域的方法是: 函数解析式 1、整式 2、分式 3、偶次根式 R 分母≠0 被开方数≥0 定义域4、奇次根式 5、指数式 6、对数式 7、y = x0R R 真数>0 底数 x≠0 另行讨论 2、 y x 2 x 12 4、 y lg 6、y=x 1 x 18、三角函数 求下列函数的定义域 1、 y log2 (3x 1) 3、 y 5、y=1 2 1x2 x 10 x31 ( x 2) 0 + 1 | x |2.抽象函数 (1) 、已知 解法是: 若 的定义域为 ,则 的定义域。
中 ,从中解 的定义域,求 的定义域,得 的取值范围即为例 1. 已知 f(x)的定义域为[1,3],求 f(x-1)的定义域. 练习:1、已知函数 f ( x ) 的定义域为(0,1) ,则函数 f ( x 1) 的定义 域是________。
2. (江西卷 3) 若函数 y f ( x) 的定义域是 [0, 2] , 则函数 g ( x ) 的定义域是 A . [0,1] D. (0,1) B . [0,1) C . [0,1) (1,4]f (2 x) x 11 2(2) 、已知 解法是: 若 即为的定义域,求的定义域。
第5讲 函数的定义域和值域
纽威教育6T 教材系列函数专题 第五讲 函数的定义域和值域时间:年 月 日 陈老师 电话:66006266一、兴趣导入清朝名士纪晓岚,有一天和朋友一起上街.走在街上,看见前面有一家小店,店里的老板娘正忙着. 纪晓岚就和他的朋友打赌,"我会一句话,让老板娘笑,再一句话,让老板娘闹." 朋友们不相信,决定以一桌酒席为赌.只见纪晓岚走向小店,向店门前的看门狗鞠了一躬,叫 道"爹!", 老板娘"噗"地一声乐了.纪晓岚转过身又冲老板娘叫了一声"娘!".顿时,老板娘勃然大怒,直骂纪晓岚. 于是,纪晓岚赢得了一桌酒席........ 思考:由此你得到什么启示?二、知识梳理(一)求函数定义域的一般原则:(1)如果f (x )是整式,那么函数的定义域是实数集R .(2)如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如果f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合. (4)如果f (x )是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义. (二):抽象函数的定义域求法:①函数f (x )的定义域是指x 的取值范围所组成的集合。
②函数[])(x f ϕ的定义域还是指x 的取值范围,而不是)(x ϕ的取值范围。
③已知f(x)的定义域为A ,求[])(x f ϕ的定义域:其实质是(求法):已知)(x ϕ的取值范围为A ,求出x 的取值范围;解得的x 的取值范围即是[])(x f ϕ的定义域。
④已知[])(x f ϕ的定义域为B ,求f(x)的定义域:其实质是(求法):已知[])(x f ϕ中x 的取值范围为B ,求出)(x ϕ的取值范围;解得的)(x ϕ的取值范围即是f(x)的定义域。
⑤同在对应法则f 下的范围相同:即[][])(,)(),(x h f x f t f ϕ三个函数中)(),(,x h x t ϕ的范围相同。
数学必修一第二章函数知识点总结
数学必修一第二章函数知识点总结函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
下面是整理的数学必修一第二章函数知识点,仅供参考希望能够帮助到大家。
数学必修一第二章函数知识点1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
)构成函数的三要素:定义域、对应关系和值域注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2)2值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
函数的定义域与值域(一、二)
5-6.函数的定义域与值域【知识要点归纳】一.不等式的解法复习总结:二.定义域1.定义:是指在一个函数关系中,能使函数有意义(包括 和 )的所有自变量的集合2.代数式意义需要关注的限制条件是 、 、 、3. 定义域是函数的灵魂,在解决 函数问题时都要考虑函数的定义域,要形成" "的函数观念.三.值域1. 定义:y 的取值范围叫做这个函数的值域2.方法四.分段函数1.定义:在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数叫分段函数。
2.说明:(1)分段函数是一个函数,而不是几个函数(2)分段函数的“段”可以是等长的,也可以是不等长的(3)画图象时,一定要考虑区间端点是否包含在内,若端点包含在内,则用实心点,否则用空心点。
(4)写分段函数定义域时,区间端点补充不漏(5)处理分段函数问题时,要首先确定自变量的取值属于哪一个范围,然后选取相应的对应关系(6)分段函数的定义域是各段定义域的并集,分段函数的值域是求出各段上的值域后取并集,分段函数的最大、小值则是分别在每段上求出最大、小值,然后取各段中的最大小值【经典例题】例1:解不等式:(1)x 2+2x -3≤0; (2)x -x 2+6<0;(3)4x 2+4x +1≥0; (4)x 2-6x +9≤0; (5)-4+x -x 2<0.(6)0)3)(1)(53(>-+-x x x (7)0153>+-x x例2:求下列函数的定义域: (1)14)(2--=x x f(2)3)(2-=x x f(3)f (x )2例3:(1)已知函数f (x )的定义域为(0,1),求y=f (2x )+f(x+32)的定义域. (2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域. (3)已知函数f (x +1)的定义域为[-2,3],求f (2x 2-2)的定义域.例4:△ABC 中,|AB|=4,|AC|=2,P 、Q 分别是AB 、AC 上的动点,且满足S △APQ =21S △ABC ,若|AP|=x ,|AQ|=y , (1)写出x 的取值范围;(2)求f(x)的解析式.例5:求下列函数的值域 (1)[]4,1,12)(∈+=x x x f (2)[]4,1,12)(∈+-=x x x f例6:求下列函数的值域(1)[]4,1,1)(∈=x x x f (2)041,1)(≠≤≤-=x x xx f 且例7:求下列函数的值域(1)1(4)2x y x x -=≥-+(2)541x y x +=-例8:求下列函数的值域 (1)32)(2++=x x x f(2)[]2,1,32143)(2-∈-+-=x x x x f例9:求下列函数的值域(1) R x x x x f ∈++-=,5321)(24(答案:⎥⎦⎤⎢⎣⎡-∞-219,) (2)12++=x x y(3)y x =+例10.如下图,在三角形ABC 中,∠C=90°,AC=BC=22,一个边长为2的正方形由位置I 沿AB 平行移动到位置Ⅱ,若移动的距离为x ,正方形和三角形ABC 的公共部分的面积为f(x),试求f(x)的解析式.【课堂练习】1.求下列函数的定义域:(1)y ={x |0£x ≤1})(2)y =,(答案:{x |x ≥1或x =0})2.已知函数1()1xf x x+=-的定义域为A ,函数()y f f x =⎡⎤⎣⎦的定义域为B ,则( )()A A B B = ()B A B ≠⊂ ()C A B = ()D A ÇB =B答案:D3.若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是( ) A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1) 答案:B4.函数]2,1[,362-∈-+=x x x y 的值域是 答案:]13,8[- 5. 函数1+=x xy 的值域是 答案:1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y 即函数1+=x xy 的值域是 { y | y ∈R 且y ≠1}6. 函数x x f -+=15)(的值域是答案:x x f -+=15)( ∵),0[1+∞∈-x ∴),5[)(+∞∈x f 即函数y =x x f -+=15)(的值域是 { y | y ≥5} 7. 函数x x y -+=142的值域是答案:设 x t -=1 则 t ≥0 x =1-t 2代入得 y =f (t )=2×(1-t 2)+4t =-2t 2+4t +2=-2(t -1)2+4 ∵t ≥0 ∴y ≤48.设10()2,0xx f x x ⎧-≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32【答案】C9.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域. 解:作BH ⊥AD ,H 为垂足,CG ⊥AD ,G 为垂足,依题意,则有AH =a 2,AG =32a .(1)当M 位于点H 的左侧时,N 在AB 上,由于AM =x ,∠BAD =45°.∴MN =x .∴y =S △AMN =12x 2 ⎝⎛⎭⎪⎫0≤x ≤a 2.(2)当M 位于H 、G 之间时,由于AM =x ,∴MN =a 2,BN =x -a2.∴y =S 直角梯形AMNB =12 · a 2⎣⎢⎡⎦⎥⎤x +⎝ ⎛⎭⎪⎫x -a 2=12ax -a28⎝ ⎛⎭⎪⎫a 2<x ≤32a .(3)当M 位于点G 的右侧时,由于AM =x ,MN =MD =2a -x .∴y =S 梯形ABCD -S △MDN =12 · a 2(2a +a )-12(2a -x )2=3a 24-12(4a 2-4ax +x 2)=-12x 2+2ax -5a 24⎝ ⎛⎭⎪⎫32a <x ≤2a .10.在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为 。
函数的定义域和值域
)
基 础 知 识 梳 理 聚 焦 考 向 透 析 感 悟 经 典 考 题 课 时 规 范 训 练
1 D. y 0<y≤2
1 1 解析:∵x2+2≥2,∴0< 2 ≤ . x +2 2 答案:D
1 3 . (2011· 高考广东卷 ) 函数 f(x) = + lg(1 + x) 的定义域是 1-x ( ) A.(-∞,-1) C.(-1,1)∪(1,+∞) B.(1,+∞) D.(-∞,+∞) 解得 x>-1 且 x≠1.
基 础 知 识 梳 理 聚 焦 考 向 透 析 感 悟 经 典 考 题 课 时 规 范 训 练
2.函数的值域 (1)函数的值域的定义:在函数 y=f(x)中与自变量 x 的值对应的 y 的值叫作函数值,所有函数值的集合,叫作函数的值域. (2)确定函数值域的原则:a.当函数 y=f(x)用表格给出时,函数 的值域是指表格中所有 y 值组成的集合.b.当函数 y=f(x)用图像给 出时,函数的值域是指图像上每一个点的纵坐标组成的集合.c.当函 数 y=f(x)用解析式给出时,函数的值域由定义域和解析式确定. (3)求函数值域的方法有:直接法、换元法、配方法、判别式法、 几何法、不等式法、单调性法等.
方法求解,(1)用分离常数法;(2)用配方法;(3)用换元法或单调性法.
【解】
x-3 x+1-4 4 (1)(分离常数法)f(x)= = =1- . x+1 x+1 x+1
4 4 因为 ≠0,所以 1- ≠1, x+1 x+1 即函数的值域是{y|y∈R,y≠1}. (2)(配方法)由于 2+x-x
基 础 知 识 梳 理 聚 焦 考 向 透 析 感 悟 经 典 考 题 课 时 规 范 训 练
函数定义域、值域求法总结(精彩)
函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
这些解题思想与方法贯穿了高中数学的始终。
常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:①21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为[1,1],求函数)41(+=x f y )41(-⋅x f 的定义域第一页解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数的定义域与值域知识点与题型归纳
●高考明方向了解构成函数的要素,会求一些简单函数的定义域和值域.★备考知考情定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.一、知识梳理《名师一号》P13知识点一常见基本初等函数的定义域注意:1、研究函数问题必须遵循“定义域优先”的原则!!!2、定义域必须写成集合或区间的形式!!!(1)分式函数中分母不等于零(2)偶次根式函数被开方式大于或等于0(3)一次函数、二次函数的定义域均为R(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R(5)y=log a x(a>0且a≠1)的定义域为(0,+∞)(6)函数f(x)=x0的定义域为{x|x≠0}12 (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)三角函数中的正切函数y =tan x 定义域为{|,,}2∈≠+∈x x R x k k Z ππ 如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.知识点二 基本初等函数的值域注意:值域必须写成集合或区间的形式!!!(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a}; 当a <0时,值域为{y |y ≤4ac -b 24a} (3)y =k x (k ≠0)的值域是{y |y ≠0}(4)y =a x (a >0且a ≠1)的值域是{y |y >0}(5)y =log a x (a >0且a ≠1)的值域是R .(补充)三角函数中正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R3 《名师一号》P15知识点二 函数的最值注意:《名师一号》P16 问题探究 问题3函数最值与函数值域有何关系?函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.1、温故知新P11 知识辨析1(2)函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭( )答案:正确2、温故知新P11 第4题4 函数(]()1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝⎭C (].2,0-D答案:D注意:牢记基本函数的值域3、温故知新P11 第6题函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )[].5,1--A [].2,0-B [].6,2--C [].1,3D答案:A注意:图像左右平移没有改变函数的值域二、例题分析:(一)函数的定义域1.据解析式求定义域例1. (1)《名师一号》P13 对点自测15(2014·山东) 函数()=f x 为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞)解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,解得x >2或0<x <12. 所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]6 解析:由题意得⎩⎨⎧1-2x ≥0,x +3>0,解得-3<x ≤0.注意:《名师一号》P14 高频考点 例1 规律方法(1) 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集. 函数的定义域一定要用集合或区间表示例2. (补充)若函数2()lg(21)f x ax x =++的定义域为R 则实数a 的取值范围是 ;答案:()1,+∞变式:2()lg(21)=++f x ax ax练习:(补充) 若函数27()43kx f x kx kx +=++的定义域为R7则实数k 的取值范围是 ;答案:30,4⎡⎫⎪⎢⎣⎭2.求复合函数的定义域例3.(1)《名师一号》P14 高频考点 例1(2)(2015·北京模拟)已知函数y =f (x )的定义域为[0,4],则函数y =f (2x )-ln(x -1)的定义域为( )A .[1,2]B .(1,2]C .[1,8]D .(1,8]解析:由已知函数y =f (x )的定义域为[0,4].则使函数y =f (2x )-ln(x -1)有意义,需⎩⎨⎧ 0≤2x ≤4,x -1>0,解得1<x ≤2,所以定义域为(1,2].例3. (2)《名师一号》P13 对点自测2已知函数f (x )=1x +1,则函数f (f (x ))的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2}8解析 ⎩⎪⎨⎪⎧ x ≠-1,1x +1+1≠0,解得x ≠-1且x ≠-2.注意:《名师一号》P14 高频考点 例1 规律方法(2) (P13 问题探究 问题1 类型二)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域, 是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].例4.(补充)已知2(1)f x +的定义域是[]0,1,求()f x 的定义域。
第2章 第5课 函数的定义域与值域
第5页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章 函数与基本初等函数Ⅰ
5. (必修 1P36 习题 13 改编)已知函数 f (x)=x2 的值域为{1,4},那么这样的函数有 ____9____个.
第二章 函数与基本初等函数Ⅰ
2. 求函数值域的主要方法 (1) 函数的__定__义__域__与__对__应__法__则____直接制约着函数的值域,对于一些比较简单的 函数可直接通过__观__察__法____求得值域. (2) 二次函数或可转化为二次函数形式的问题,常用__配__方__法___求值域. (3) 分子、分母是一次函数或二次齐次式的有理函数常用_分__离__常__数__法___求值域; 分子、分母中含有二次项的有理函数,常用___判__别__式__法____求值域(主要适用于定义域
链教材 ·夯基固本
第二章 函数与基本初等函数Ⅰ
第3页
栏目导航
高考总复习 一轮复习导学案 ·数学理科
第二章 函数与基本初等函数Ⅰ
激活思维 1. (必修 1P25 例 2 改编)函数 f (x)= x-2+x-1 3的定义域是_[_2_,3_)_∪__(_3_,__+__∞_)_.
【解析】要使函数有意义,x 需满足xx- -23≥ ≠00, , 解得 x≥2 且 x≠3.
第19页
栏目导航
高考总复习 一轮复习导学案 ·数学理科
求函数的值域
第二章 函数与基本初等函数Ⅰ
问题提出:求函数值域比求函数定义域要复杂得多,求函数值域常与求函数最值 问题紧密相联,要适当注意.
函数的值域取决于定义域和对应法则,无论采取什么方法求函数的值域,都应先 考虑其定义域,同时要注意结合函数图象来解决问题.
高三数学一轮复习 第2章 函数、导数及其应用第5课时 指数与指数函数精品课件 理 北师大
• 3.指数函数的图象和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图象
图象特征
在x轴 上方,过定点 (0,1)
当x逐渐增大时, 图象逐渐下降
当x逐渐增大时, 图象逐渐上升
函数
定义域
值域
性 单调性 质
函数 值变 化规律
y=ax(a>0,且a≠1)
D.f(-2)>f(2)
解析: 由a-2=4,a>0,得a=12, ∴f(x)=21-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|,即f(-2)>f(-1). 答案: A
4.方程3x-1=19的解是________. • 答案: -1
5.函数y=121-x的值域是________. 解析: 函数的定义域为R,令u=1-x∈R, ∴y=21u>0. 答案: (0,+∞)
• (2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函 数.
• 1.与指数函数有关的复合函数的定义域、值域的求法
• (1)函数y=af(x)的定义域与y=f(x)的定义域相同; • (2)先确定f(x)的值域,再根据指数函数的值域、单调性,可确定y=
af(x)的值域. • 2.与指数函数有关的复合函数的单调性的求解步骤 • (1)求复合函数的定义域; • (2)弄清函数是由哪些基本函数复合而成的; • (3)分层逐一求解函数的单调性; • (4)求出复合函数的单调区间(注意“同增异减”).
【变式训练】 1.计算下列各式:
• 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的 图象,通过平移、对称变换得到其图象.
函数的定义域和值域
第五讲 函数的定义域和值域一、 本周教学主要内容及重点难点说明本周教学主要内容是函数的定义域和函数的值域。
定义域是指原象的集合,通俗地说即自变量的取值范围,值域是象的集合,通俗地说 是所有函数值组成的集合,因初中与高中在函数定义上的差异,以及目前高一同学对函数的学习甚少(仅限于一次函数,反比例函数,二次函数的一部分),所以使得求函数的定义域与值域既是重点也是难点。
定义域和值域都是实数集的子集,定义域不同的函数一定是不同函数,定义域既是函数性质重要内容又是研究函数其它性质优先考虑的因素和赖以存在的前提。
值域中元素数目不多于定义域中元素数目,函数的值域取决于其定义域和对应法则,求函数值域的问题。
灵活性较大,就高一同学目前知识范围而言,还缺乏较完整、规范的办法。
下面将要介绍的几种方法,有的适用范围有限,有的也不介绍理论根据,所以目前还不能求出任意给定的函数的值域,请同学们不必苦钻难题。
二、 典型解析【例1】求下列函数的定义域⑴ x x y ---+=331 ⑵ )3)(3(++=x x y ⑶ 831522-+-=x x x y 分析:对于⑴因偶次根式的根号内的值非负,所以⎩⎨⎧≥-≥-0303x x 解得3=x 故定义域为{}3对于⑵因幂指数为零时,底数不可以为零,所以03≠+x 故函数定义域为),3()3,(+∞---∞对于⑶因分式函数分母不可以为零,,并且偶次根式的根号内的值非负,所以⎩⎨⎧≠-+≥--08301522x x x 解得 ⎩⎨⎧-≠≠≥-≤11553x x x x 或或 故其定义域 (]),5(3,11)11,(+∞----∞ 说明:对于给定解析式的函数的定义域的求法,通常考虑偶次根式的根号内的值应当非负,分式函数的分母不能为零,幂指数为零时,底数不为零等。
在有限个实数上定义的函数,其定义域就是这有限个实数的集合;有限个基本初算函数的四则运算而合成的新函数的定义域,是各个基本初算函数的定义域的交集,并考虑新出现的分母不能为零。
函数的定义域与值域(含解析)
函数的定义域和值域1.知函数解析式求定义域的基本依据: (1)分式的分母 ;(2)偶次根式的被开方数 ; (3)对数函数的真数必须 ;(4)指数函数和对数函数的底 ; (5)正切函数的角的终边 ; (6)零次幂的底数 。
2.求复合函数定义域方法:(1)已知()y f x =的定义域是A ,求[]()yf x ϕ=的定义域的方法:解不等式 ,求出x 的范围,再将所得范围写成集合或区间形式,即得所求[]()y f x ϕ=的定义域。
(2)已知[]()yf x ϕ=的定义域是A ,求()y f x =的定义域的方法:求出 时,()x ϕ的范围,再将所得范围写成集合或区间形式,即得所求()y f x =的定义域。
3.反函数的定义域是原函数的 。
4.函数的值域:(1)值域是函数值组成的集合,它是由 和 确定的,因此求值域时一定要看 。
(2)函数的最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (I )对任意的x I ∈,都有 ;(II )存在0x I ∈使得 ,那么,我们称M 是函数()y f x =的最大值。
5.函数的最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数N 满足: (1)对任意的x I ∈,都有 ;(2)存在0x I ∈使得 ,那么,我们称N 是函数()y f x =的最小值。
6.常见基本初等函数的值域: (1)一次函数(0)ykx b k =+≠的值域是R 。
(2)二次函数2(0)y axbx c a =++≠,当0a >时,值域是 , 当0a <时,值域是 。
(3)反比例函数(0)ky k x=≠的值域是 。
(4)指数函数(0,1)xy a a a =>≠的值域是 。
(5)对数函数log (0,1)a yx a a =>≠的值域是 。
7.求函数值域及最值的基本类型及方法: (1)形如2(0)y ax bx c a =++≠的函数,用 求值域,要特别注意定义域。
函数的定义域、值域--高考数学【解析版】
专题06 函数的定义域、值域函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f (x )=|x |,x ∈[0,2]与函数f (x )=|x |,x ∈[-2,0]. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 3.常见函数定义域的求法类型x 满足的条件2()nf x (n ∈N *) f (x )≥0 21()n f x (n ∈N *)f (x )有意义 1()f x 与[f (x )]0 f (x )≠0 log a f (x )(a >0且a ≠1) f (x )>0 a f (x )(a >0且a ≠1)f (x )有意义 tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一 已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可. 【详解】因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤.即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B 【解析】 【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313x f x =-+,()30,x∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈2⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<, 所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。
函数的定义域与值域
第五节 函数的定义域与值域[归纳·知识整合]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . (7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ; 当a <0时,值域为⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . (3)y =k x(k ≠0)的值域是{y |y ≠0}. (4)y =a x(a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是 [-1,1]. (7)y =tan x 的值域是R .[探究] 1.若函数y =f (x )的定义域和值域相同,则称函数y =f (x )是圆满函数,则函数①y =1x;②y =2x ;③y = x ;④y =x 2中是圆满函数的有哪几个2.分段函数的定义域、值域与各段上的定义域、值域之间有什么关系[自测·牛刀小试]1.(教材习题改编)函数f (x )=4-xx -1的定义域为( ) A .[-∞,4] B .[4,+∞) C .(-∞,4) D .(-∞,1)∪(1,4] 2.下表表示y 是x 的函数,则函数的值域是( )x0<x <55≤x<1010≤x<1515≤x≤20y2345 A.[2,5] B.N C.(0,20] D.{2,3,4,5}3.若f(x)=1log122x+1,则f(x)的定义域为( )D.(0,+∞)4.(教材改编题)函数y=f(x)的图象如图所示,则函数y=f(x)的定义域为________,值域为________.5.(教材改编题)若x-4有意义,则函数y=x2-6x+7的值域是________.求函数的定义域[例1] (1)(2012·山东高考)函数f(x)=ln x+1+4-x2的定义域为( ) A.[-2,0)∪(0,2] B.(-1,0)∪(0,2] C.[-2,2] D.(-1,2](2)已知函数f(x2-1)的定义域为[0,3],则函数y=f(x)的定义域为________.本例(2)改为f(x)的定义域为[0,3],求y=f(x2-1)的定义域.———————————————————简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)对抽象函数:①若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出.②若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.1.(1)(2012·江苏高考)函数f(x)=1-2log6x的定义域为________.(2)已知f(x)的定义域是[-2,4],求f(x2-3x)的定义域.[例2] (1)y =x -3x +1;(2)y =x -1-2x ;(3)y =x +4x.若将本例(3)改为“y =x -4x”,如何求解———————————————————求函数值域的基本方法(1)观察法:一些简单函数,通过观察法求值域.(2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y=ax+b±cx+d(a,b,c,d均为常数,且a≠0)的函数常用换元法求值域,形如y=ax+a-bx2的函数用三角函数代换求值域.4分离常数法:形如y=cx+dax+ba≠0的函数可用此法求值域.5单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.6数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.2.求下列函数的值域.(1)y=x2+2x,x∈[0,3]; (2)y=x2-xx2-x+1; (3)y=log3x+log x3-1.[例3] 已知函数f(x)=ax2+bx.若至少存在一个正实数b,使得函数f(x)的定义域与值域相同,求实数a的值.———————————————————由函数的定义域或值域求参数的方法已知函数的值域求参数的值或取值范围问题,通常按求函数值域的方法求出其值域,然后依据已知信息确定其中参数的值或取值范围.3.(2013·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a +b =________.1种意识——定义域优先意识函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先的意识.4个注意——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合. (2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.4个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:①分式中的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0;④对数式中的真数大于0,底数大于0且不等于1.6种技巧——妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法; (2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法; (4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解; (5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.易误警示——与定义域有关的易错问题[典例] (2013·福州模拟)函数f (x )=x +12x +1-1-x 的定义域为________________.[易误辨析]1.本题若将函数f (x )的解析式化简为f (x )=(x +1)-1-x 后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x 的取值范围.2.在求函数的值域时,要特别注意函数的定义域.求函数的值域时,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.[变式训练] 1.若函数f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f x 的值域是( )2.已知函数f (x +2)=x +2x ,则函数f (x )的值域为________.一、选择题(本大题共6小题,每小题5分,共30分)1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1 D .f (x )=x 2+ax +1 2.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )4.(2013·南昌模拟)函数y = xx -1-lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1,或x <0}D .{x |0<x ≤1}5.函数y =2--x 2+4x 的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2, 2 ]6.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x ,则f (x )的值域是( )∪(1,+∞) ∪(2,+∞)二、填空题(本大题共3小题,每小题5分,共15分) 7.函数y =16-x -x2的定义域是________.8.设x ≥2,则函数y =x +5x +2x +1的最小值是______.9.(2013·厦门模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.三、解答题(本大题共3小题,每小题12分,共36分)10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ] (b >1),求a ,b 的值.11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域.12.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域.1.下列函数中,与函数y =1x有相同定义域的是( )A .f (x )=ln xB .f (x )=1xC .f (x )=|x |D .f (x )=e x2.函数y =ln x +1-x 2-3x +4的定义域为( ) A .[-4,-1) B .(-4,1) C .(-1,1) D .(-1,1] 3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f 2xx -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)4.已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a )的解析式;(2)是否存在实数m ,n 同时满足下列两个条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]若存在,求出m ,n 的值;若不存在,请说明理由.[探究] 1. 提示:①y =1x 的定义域和值域都是(-∞,0)∪(0,+∞),故函数y =1x是圆满函数;②y =2x 的定义域和值域都是R ,故函数y =2x 是圆满函数;③y = x 的定义域和值域都是[0,+∞),故y = x 是圆满函数;④y =x 2的定义域为R ,值域为[0,+∞),故函数y =x 2不是圆满函数.2.提示:分段函数的定义域、值域为各段上的定义域、值域的并集.[自测·牛刀小试]1.解析:选D 要使函数f (x )=4-xx -1有意义,只需⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,即⎩⎪⎨⎪⎧x ≤4,x ≠1.所以函数的定义域为(-∞,1)∪(1,4].2.解析:选D 函数值只有四个数2,3,4,5,故值域为{2,3,4,5}.3.解析:选A 根据题意得log 12(2x +1)>0,即0<2x +1<1,解得-12<x <0,即x ∈⎝ ⎛⎭⎪⎫-12,0. 4.解析:由图象可知,函数y =f (x )的定义域为[-6,0]∪[3,7), 值域为[0,+∞).答案:[-6,0]∪[3,7) [0,+∞)5.解析:∵x -4有意义,∴x -4≥0,即x ≥4.又∵y =x 2-6x +7=(x -3)2-2,∴y min =(4-3)2-2=1-2=-1.∴其值域为[-1,+∞). 答案:[-1,+∞)[例1] [自主解答] (1)x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.(2)∵0≤x ≤3,∴0≤x 2≤9,-1≤x 2-1≤8. ∴函数y =f (x )的定义域为[-1,8]. [答案] (1)B (2)[-1,8]解:∵y =f (x )的定义域为[0,3],∴0≤x 2-1≤3,解得-2≤x ≤-1或1≤x ≤2,所以函数定义域为[-2,-1]∪[1,2].1.解析:(1)由1-2log 6x ≥0解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].答案:(0, 6 ](2)∵f (x )的定义域是[-2,4],∴-2≤x 2-3x ≤4,由二次函数的图象可得,-1≤x ≤1或2≤x ≤4. ∴定义域为[-1,1]∪[2,4].[例2] [自主解答] (1)法一:(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}. 法二:由y =x -3x +1得yx +y =x -3. 解得x =y +31-y,所以y ≠1,即函数值域是{y |y ∈R ,y ≠1}. (2)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.法二:(单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12.所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(3)法一:(基本不等式法)当x >0时,x +4x≥2x ×4x=4, 当且仅当x =2时“=”成立;当x <0时,x +4x=-(-x -4x)≤-4,当且仅当x =-2时“=”成立. 即函数的值域为(-∞,-4]∪[4,+∞).法二:(导数法)f ′(x )=1-4x 2=x 2-4x2. x ∈(-∞,-2)或x ∈(2,+∞)时,f (x )单调递增,当x ∈(-2,0)或x ∈(0,2)时,f (x )单调递减.故x =-2时,f (x )极大值=f (-2)=-4;x =2时,f (x )极小值=f (2)=4. 即函数的值域为(-∞,-4]∪[4,+∞).解:易知函数y =x -4x 在(-∞,0)和(0,+∞)上都是增函数,故函数y =x -4x的值域为R .2.解:(1)(配方法)y =x 2+2x =(x +1)2-1,∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16. ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎢⎡⎭⎪⎫-13,1. (3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t -1(t ≠0),当x >1时,t >0,y ≥2t ·1t-1=1,当且仅当t =1t即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎢⎡⎦⎥⎤-t +⎝ ⎛⎭⎪⎫-1t -1≤-2-1=-3.当且仅当-t =-1t 即log 3x =-1,x =13时,等号成立.综上所述,函数的值域是(-∞,-3]∪[1,+∞).[例3] [自主解答] ①若a =0,则对于每个正数b ,f (x )=bx 的定义域和值域都是[0,+∞),故a =0满足条件;②若a >0,则对于正数b ,f (x )=ax 2+bx 的定义域为D ={x |ax 2+bx ≥0}=⎝⎛⎦⎥⎤-∞,-b a∪[0,+∞),但f (x )的值域A ⊆[0,+∞),故D ≠A ,即a >0不符合条件;③若a <0,则对于正数b ,f (x )=ax 2+bx 的定义域D =⎣⎢⎡⎦⎥⎤0,-b a,由于此时f (x )max =f ⎝ ⎛⎭⎪⎫-b 2a =b2-a ,故f (x )的值域为⎣⎢⎡⎦⎥⎤0,b2-a ,则-b a =b2-a ⇒⎩⎨⎧a <0,2-a =-a⇒a =-4. 综上所述,a 的值为0或-4.3.解析:∵由题意知x -1>0,又x ∈[a ,b ],∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13,∴a =2,b =4,a +b =6. 答案:6 易误警示——与定义域有关的易错问题[典例] [解析] ∵要使函数f (x )=x +12x +1-1-x 有意义,则⎩⎪⎨⎪⎧1-x ≥0,x +1≠0,∴⎩⎪⎨⎪⎧x ≤1,x ≠-1,∴函数f (x )的定义域为{x |x ≤1,且x ≠-1}.[答案] (-∞,-1)∪(-1,1] [变式训练]1.解析:选C 令t =f (x ),则12≤t ≤3. 易知函数g (t )=t +1t 在区间⎣⎢⎡⎦⎥⎤12,1上是减函数,在[1,3]上是增函数.又因为g ⎝ ⎛⎭⎪⎫12=52,g (1)=2,g (3)=103. 可知函数F (x )=f (x )+1f x 的值域为⎣⎢⎡⎦⎥⎤2,103.2.解析:令2+x =t ,则x =(t -2)2(t ≥2).∴f (t )=(t -2)2+2(t -2)=t 2-2t (t ≥2). ∴f (x )=x 2-2x (x ≥2).∴f (x )=(x -1)2-1≥(2-1)2-1=0,即f (x )的值域为[0,+∞). 答案:[0,+∞)一、选择题(本大题共6小题,每小题5分,共30分)1.解析:选C 当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R .2.解析:选D 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,2x >10-2x ,即52<x <5. 3.解析:选A A 中定义域是[-2,2],值域为[0,2];B 中定义域为[-2,0],值域为[0,2];C 不表示函数;D 中的值域不是[0,2].4.解析:选B 由⎩⎪⎨⎪⎧x x -1≥0,1x>0,得x ≥1.5.解析:选C ∵-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0, 0≤2--x 2+4x ≤2,∴0≤y ≤2.6.解析:选D 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题(本大题共3小题,每小题5分,共15分)7.解析:由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 答案:(-3,2) 8.解析:y =[x +1+4][x +1+1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t =t +4t+5,在区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 答案:2839.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈1,2]. 当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6]三、解答题(本大题共3小题,每小题12分,共36分)10.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1,① f (x )max =f (b )=12b 2-b +a =b .② 由①②解得⎩⎪⎨⎪⎧a =32,b =3.11.解:依题意有x >0,l (x )=x -42+32=x 2-8x +25,所以y =x l x =xx 2-8x +25=11-8x +25x2. 由于1-8x +25x 2=25⎝ ⎛⎭⎪⎫1x -4252+925,所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l x 的值域是⎝ ⎛⎦⎥⎤0,53. 12.解:(1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =32. (2)∵对一切x ∈R 函数值均为非负,∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32. ∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32.∵二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减,∴g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.∴g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.1.解析:选A 当x >0时,1x有意义,因此函数y =1x的定义域为{x |x >0}.对于A ,函数f (x )=ln x 的定义域为{x |x >0};对于B ,函数f (x )=1x的定义域为{x |x ≠0,x ∈R };对于C ,函数f (x )=|x |的定义域为R ;对于D ,函数f (x )=e x的定义域为R . 所以与函数y =1x有相同定义域的是f (x )=ln x .2.解析:选C 由⎩⎪⎨⎪⎧-x 2-3x +4>0x +1>0得-1<x <1,因此该函数的定义域是(-1,1).3.解析:选B 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.故定义域为[0,1).4.解:(1)由f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈[-1,1],知f (x )∈⎣⎢⎡⎦⎥⎤13,3,令t =f (x )∈⎣⎢⎡⎦⎥⎤13,3记g (x )=y =t 2-2at +3,则g (x )的对称轴为t =a ,故有:①当a ≤13时,g (x )的最小值h (a )=289-2a3,②当a ≥3时,g (x )的最小值h (a )=12-6a ,③当13<a <3时,g (x )的最小值h (a )=3-a2综上所述,h (a )=⎩⎪⎨⎪⎧289-2a 3,a ≤13,3-a 2,13<a <3,12-6a ,a ≥3,(2)当a ≥3时,h (a )=-6a +12,故m >n >3时,h (a )在[n ,m ]上为减函数, 所以h (a )在[n ,m ]上的值域为[h (m ),h (n )].由题意,则有⎩⎪⎨⎪⎧h m =n 2,hn =m 2,⇒⎩⎪⎨⎪⎧-6m +12=n 2,-6n +12=m 2,,两式相减得6n -6m =n 2-m 2,又m ≠n ,所以m +n =6,这与m >n >3矛盾,故不存在满足题中条件的m ,n 的值.。
函数的概念(定义域,值域,解析式)
讲解新课:一.函数定义及函数三要素1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。
3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。
当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
函数的定义域值域
第二章
函数
数学
【解析】
x 2 -2≥0, (1)由 x-4≠0,
则 x≥1 且 x≠4.故选 D.
(2)∵f(x-1)的定义域为[0,2],∴0≤x≤2. 即-1≤x-1≤1.∴所求定义域为[-1,1].
【答案】
(1)D
(2)[-1,1]
第二章
函数
数学
1.若f(x)的定义域为(0,1),求f(2x+1)的定义域.
第二章
函数
数学
函数定义域和值域的综合应用
1.对既给出定义域又给出解析式的函数,可直接在定
义域上用相应方法求函数值域.
2.若函数解析式中含有参数,要注意参数对函数值域 的影响,即要考虑分类讨论.
第二章
函数
数学
(12 分 ) 设函数
1 f(x) = x-1
1≤x≤2, g(x) = f(x) - 2<x≤3,
当且仅当 x=2 时,等号成立,∴当 x<0 时,y≤-4. 综上,函数的值域为(-∞,-4]∪[4,+∞).
第二章
函数
数学
2.如何求 y= x2+1+ 2-x2+4的值域?
解析 ∵ x2+1表示点(x,0)到点(0,-1)的距离;
2-x2+4 = x-22+0-22 表 示点 (x,0) 到 点 (2,2) 的 距离, 故 y= x2+1+ 2-x2+4≥ 0-22+-1-22= 13. 故值域为[ 13,+∞).
B.[0,1) D.(0,1)
1 ∵1+x ≥1,∴0< ≤1. 1+x2
答案
C
第二章
函数
数学
4. 若 x为实数, 则函数 y=x2+3x-5 的值域是________.
解析 ∵y=x ∵ x为实数,∴x≥0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等于0 中被开方数为一切实数;零指数幂中底数______________. 大于0 大于0且不等于1 (3) 对数式中,真数必须_________ ,底数必须_____________________ ,含有三
角函数的角要使该三角函数有意义等.
实际意义 (4) 实际问题中还需考虑自变量的______________ ,若解析式由几个部分组成,
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
第二章
函数与基本初等函数Ⅰ
第1页栏目导航来自高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
第 5课
函数的定义域与值域
第2页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
栏 目 导 航
第3页
链教材 ·夯基固本 研题型 ·技法通关
第10页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
研题型 ·技法通关
第11页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
课堂导学 目标 1 求函数的定义域 1 2 (1) 函数 y= x -1的定义域为 + 2-x
(-∞,-2)∪(-2,-1]∪[1,2)∪(2,+∞) . _______________________________________ 3 1 1 4 4 2 - ,- ∪- , ∪ ,+∞ x 0 2 2 5 5 4 . (2) 函数 y= +(5x-4) 的定义域为_____________________________ lg4x+3
x-1≥0, 【解析】由 x+4≠0,
解得x≥1.
2.
(必修1P93习题5改编)已知函数y=x2-x的定义域为{0,1,2,3},那么其值域为
{0,2,6} . ________
【解析】当x=0时,y=0;当x=1时,y=0;当x=2时,y=2;当x=3时,y=6. 所以值域为{0,2,6}.
3 (2,+∞) (3) 函数 y=lg(x-1)+(2 -4)-4的定义域为______________________ . 1 5 , (4) 已知函数 f(x-1)的定义域为[3,7],那么函数 f(2x+1)的定义域为________ 2 2 .
x
第12页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
【解析】1-x(1-x)=x 4 以f(x)的最大值为3.
2
1 2 3 3 1 4 -x+1= x-2 + ≥ .因此,有0< ≤ ,所 4 4 1-x1-x 3
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
5.
(必修1P36习题13改编)已知函数f(x)=x2的值域为{1,4},那么这样的函数有
则定义域为各个部分相应集合的交集.
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
2.求函数值域的主要方法
定义域与对应法则 (1) 函数的_______________________ 直接制约着函数的值域,对于一些比较简
观察法 求得值域. 单的函数可直接通过_________
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
单调性 求值域. (4) 单调函数常根据函数的___________ 基本不等式 求值域. (5) 很多函数可拆配成基本不等式的形式,可利用______________ 几何意义 的方法求值域. (6) 有些函数具有明显的几何意义,可根据____________ 导数 的方法求值域. (7) 只要是能求导数的函数常采用________
9 ________ 个.
【解析】定义域为两个元素有{-2,-1},{-2,1},{-1,2},{1,2};定义域为 三个元素有{-2,-1,1},{-2,-1,2},{-1,1,2},{-2,1,2};定义域为四个元 素有{-2,-1,1,2}.故这样的函数一共有9个.
第7页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第5页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
0 3. (必修1P27练习7改编)函数f(x)=x2-2x-3,x∈[-1,2]的最大值为________ .
【解析】因为f(x)=(x-1)2-4,所以当x=-1时,函数f(x)取得最大值0.
4 1 3 4. (必修1P32例2改编)函数f(x)= 的最大值是________ . 1-x1-x
配方法 求值域. (2) 二次函数或可转化为二次函数形式的问题,常用_________
(3)
分离常数法 求值 分子、分母是一次函数或二次齐次式的有理函数常用______________
判别式法 求值域(主要适用于定义 域;分子、分母中含有二次项的有理函数,常用__________
域为R的函数).
第9页
第二章
函数与基本初等函数Ⅰ
知识梳理 1. 函数的定义域 (1) 函数的定义域是构成函数的非常重要的部分,若没有标明定义域,则认为定 有意义 的x的取值范围. 义域是使得函数解析式___________ (2)
非负数 ,奇次根式 不等于0 ;偶次根式中被开方数应为_________ 分式中分母应__________
2-|x|≠0, 由 2 x -1≥0, 2, x≠± 得 x≤-1或x≥1,
第二章
函数与基本初等函数Ⅰ
【解析】(1)
故所求函数的定义域为(-∞,-2)∪(-2,-1]∪[1,2)∪(2,+∞).
4x+3>0, (2) 由4x+3≠1, 5x-4≠0, x>-3, 4 1 得x≠-2, 4 x≠5,
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
链教材 ·夯基固本
第4页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
激活思维 1. 1 [1,+∞) (必修1P93习题1改编)函数f(x)= x-1+ 的定义域为______________. x+4