2017-2018学年高中数学专题空间几何体与三视图课堂同步试题新人教A版
高考数学一轮复习第7章立体几何初步第1节空间几何体的结构及其三视图和直观图教师用书文新人教A版

第七章立体几何初步[深研高考·备考导航]为教师授课、学生学习提供丰富备考资源[五年考情]综合近5年全国卷高考试题,我们发现高考命题在本章呈现以下规律:1.从考查题型、题量两个方面来看:一般是1~2个客观题,一个解答题;从考查分值看,该部分大约占17~22分.2.从考查知识点看:主要考查简单几何体的三视图及其表面积、体积、空间中线线、线面、面面的平行和垂直的关系,突出对空间想象能力、逻辑推理能力和正确迅速运算的能力,以及转化与化归思想的考查.3.从命题思路上看:(1)空间几何体的三视图及其表面积、体积的计算,主要以小题的形式考查.(2)空间点、线、面之间位置关系的判断与证明,特别是线线、线面、面面的平行与垂直,主要以解答题的形式考查.(3)根据近5年的高考试题,我们发现两大热点:①空间几何体的三视图及其表面积、体积的计算,空间位置关系有关命题的辨别.②空间平行、垂直关系的证明.[导学心语]根据近5年全国卷高考命题特点和规律,复习本章时,要注意以下几个方面:1.深刻理解以下概念、性质、定理及公式.简单几何体的结构特征;三视图及其表面积、体积公式;三个公理及线面、面面平行和垂直的八个判定定理与性质定理.2.抓住空间位置关系中平行、垂直这一核心内容强化训练,不仅要注意平行与平行、垂直与垂直间的转化,而且要重视平行与垂直间的化归转化.在推理证明中加强规范严谨性训练,避免因条件缺失、步骤混乱导致失分.3.把握命题的新动向,在保持命题连续性的同时,力求创新,空间的折叠与探索开放性问题的命题趋向值得重视.第一节空间几何体的结构及其三视图和直观图————————————————————————————————[考纲传真] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.1.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共点的三角形;(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的形成3.(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度变为原来的一半.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=90°.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )[答案](1)×(2)×(3)×(4)×2.(教材改编)如图711,长方体ABCDA′B′C′D′中被截去一部分,其中EH∥A′D′,则剩下的几何体是( )图711A.棱台B.四棱柱C.五棱柱D.简单组合体C[由几何体的结构特征,剩下的几何体为五棱柱.]3.(2014·全国卷Ⅰ)如图712,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )图712A.三棱锥B.三棱柱C.四棱锥D.四棱柱B[由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为如图所示的三棱柱.]4.(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图713所示,则该几何体的侧(左)视图为( )图713B[由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.]5.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于________.2π[由题意得圆柱的底面半径r=1,母线l=1,所以圆柱的侧面积S=2πrl=2π.]【导学号:31222239】A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点(2)以下命题:①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1C.2 D.3(1)B(2)B[(1)如图①所示,可知A错.如图②,当PD⊥底面ABCD,且四边形ABCD 为矩形时,则四个侧面均为直角三角形,B正确.①②根据棱台的定义,可知C,D不正确.(2)由圆锥、圆台、圆柱的定义可知①②错误,③正确.对于命题④,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,④不正确.][规律方法] 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.因为棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.[变式训练1] 下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线D[如图①知,A不正确.如图②,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.①②C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.由母线的概念知,选项D正确.]☞一几何体的直观图如图714,下列给出的四个俯视图中正确的是( )A B C D图714B[该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合.]☞角度2 已知三视图,判断几何体(1)某四棱锥的三视图如图715所示,该四棱锥最长棱棱长为( )图715A.1 B. 2C. 3 D.2(2)(2016·全国卷Ⅱ)如图716是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )图716A.20πB.24πC.28πD.32π(1)C(2)C[(1)由三视图知,该四棱锥的直观图如图所示,其中PA⊥平面ABCD.又PA=AD=AB=1,且底面ABCD是正方形,所以PC为最长棱.连接AC,则PC=AC2+PA2=22+1= 3.(2)由三视图可知圆柱的底面直径为4,母线长(高)为4,所以圆柱的侧面积为2π×2×4=16π,底面积为π·22=4π;圆锥的底面直径为4,高为23,所以圆锥的母线长为32+22=4,所以圆锥的侧面积为π×2×4=8π.所以该几何体的表面积为S=16π+4π+8π=28π.][规律方法] 1.由实物图画三视图或判断选择三视图,按照“正侧一样高,正俯一样长,俯侧一样宽”的特点确认.2.根据三视图还原几何体.(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.易错警示:对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.A ′B ′C ′的面积为( )【导学号:31222240】A.34a 2B.38a 2C.68a 2D.616a 2 D [如图①②所示的实际图形和直观图,由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′, 则C ′D ′=22O ′C ′=68a , 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.][规律方法] 1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y 轴的线段长度减半,平行于x 轴和z 轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S 直观图=24S 原图形. [变式训练2] 已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.22[如图所示:因为OE =22-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.][思想与方法]1.画三视图的三个原则:(1)画法规则:“长对正,宽相等,高平齐”.(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出. 2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.[易错与防范]1.确定正视、侧视、俯视的方向,观察同一物体方向不同,所画的三视图也不同. 2.对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图,易忽视交线的位置,实线与虚线的不同致误.课时分层训练(三十八)空间几何体的结构及其三视图和直观图A 组 基础达标 (建议用时:30分钟)一、选择题1.关于空间几何体的结构特征,下列说法不正确的是( )A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等B[根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.]2.某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱A[由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.]3.(2017·云南玉溪一中月考)将长方体截去一个四棱锥后得到的几何体如图717所示,则该几何体的侧视图为( )图717A B C DD[易知侧视图的投影面为矩形.又AF的投影线为虚线,∴该几何体的侧视图为选项D.]4.一个几何体的三视图如图718所示,则该几何体的表面积为( )【导学号:31222241】图718A.3πB.4πC.2π+4 D.3π+4D[由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为2×2+2×12×π×12+π×1×2=4+3π.]5.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图719,则截去部分体积与剩余部分体积的比值为()图719A.18B.17C.16D.15D [由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.]二、填空题6.(2017·福建龙岩联考)一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图7110所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.【导学号:31222242】图71102 2 [因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.]7.如图7111所示,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的正视图与侧视图的面积的比值为________.【导学号:31222243】图71111 [三棱锥PABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.]8.某三棱锥的三视图如图7112所示,则该三棱锥最长棱的棱长为________.图71122 2 [由题中三视图可知,三棱锥的直观图如图所示,其中PA⊥平面ABC,M为AC的中点,且BM⊥AC,故该三棱锥的最长棱为PC.在Rt△PAC中,PC=PA2+AC2=22+22=2 2.]三、解答题9.某几何体的三视图如图7113所示.图7113(1)判断该几何体是什么几何体? (2)画出该几何体的直观图.[解] (1)该几何体是一个正方体切掉两个14圆柱后的几何体.5分(2)直观图如图所示.12分10.如图7114,在四棱锥P ABCD 中,底面为正方形,PC 与底面ABCD 垂直,如图7115为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.图7114图7115(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求PA .[解] (1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36 cm 2.5分(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2.8分由正视图可知AD =6,且AD ⊥PD ,所以在Rt △APD 中,PA =PD 2+AD 2=22+62=6 3 cm.12分B组能力提升(建议用时:15分钟)1.在如图7116所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为( )图7116A.①和②B.③和①C.④和③D.④和②D[如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②.]2.(2017·长郡中学质检)如图7117是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是( ) 【导学号:31222244】图7117A.4 B.5C.3 2 D.3 3D[由三视图作出几何体的直观图(如图所示),计算可知AF最长,且AF =BF 2+AB 2=3 3.]3.(2016·北京高考)某四棱柱的三视图如图7118所示,则该四棱柱的体积为________.图711832[由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD A ′B ′C ′D ′.故该四棱柱的体积V =Sh =12×(1+2)×1×1=32.]。
2017-2018学年高中人教A版数学二习题:第1章空间几何体学业分层测评5含答案

学业分层测评(五)(建议用时:45分钟)一、选择题1.圆台OO′的母线长为6,两底面半径分别为2,7,则圆台OO′的侧面积是()A.54πB.8πC.4πD.16π【解析】S圆台侧=π(r+r′)l=π(7+2)×6=54π.【答案】A2.一个几何体的三视图及其尺寸如图1。
3。
8(单位:cm),则该几何体的表面积为( )图13。
8A.12πB.18πC.24πD.36π【答案】C3.如图13。
9,在棱长为1的正方体ABCD.A1B1C1D1中,E是棱BC上的一点,则三棱锥D1B1C1E的体积等于( )图1。
39A.错误!B.错误!C.错误!D.错误!【答案】D4.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图1。
3。
10所示,该四棱锥的侧面积和体积分别是( )图1。
3。
10A.4错误!,8B.4错误!,错误!C.4(错误!+1),错误!D.8,8【解析】由题图知,此棱锥高为2,底面正方形的边长为2,V=错误!×2×2×2=错误!,侧面三角形的高h =22+12=错误!,S侧=4×错误!=4错误!.【答案】B5.一个多面体的三视图如图1。
3。
11所示.则该多面体的体积为( )图1.3。
11A。
错误!B。
错误!C.6 D.7A二、填空题6.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________cm 2。
【解析】 棱柱的侧面积S 侧=3×6×4=72(cm 2).【答案】 727.一个几何体的三视图如图1。
3。
12所示(单位:m ),则该几何体的体积为________m 3。
图1。
3.12【解析】 由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=错误!π. 【答案】 错误!π三、解答题8.一个三棱柱的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图13。
2018-2019高一数学人教版必修二1.2 空间几何体的三视图和直观图 1.2.1、2

4.若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别 2 4 是_____和_____.
• [解析] 三棱柱的高同侧视图的高为2,侧视图的宽恰为底 面正三角形的高,故底边长为4.
互动探究学案
命题方向1 ⇨对投影的理解
典例 1 如图 1 所示,在正方体 ABCD-A1B1C1D1 中,E、F 分别是 AA1、
新课标导学
数 学
必修② ·人教A版
第一章
空间几何体 1.2 空间几何体的三视图和直观图
1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图
1 2
自主预习学案
互动探究学案
3
课时作业学案
自主预习学案
• 从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高 低各不同;不识庐山真面目,只缘身在此山中.”对于我 们所学几何体,从不同方向看到的形状也各有不同,我们 通常用三视图把几何体画在纸上.
C1D1 的中点,G 是正方形 BCC1B1 的中心,则四边形 AGFE 在该正方体的各个而 上的投影可能是图 2 中的__________. ①②③
• [思路分析] 抓住已知图形的端点,确定端点在投影面的 位置.进而确定投影的图形. • [解析] 要画出四边形AGFE在该正方体的各个面上的投影, 只需画出四个顶点A、G、F、E在每个面上的投影,再顺次 连接即得到在该面上的投影,并且在两个平行平面上的投 影是相同的. • 在面ABCD和面A1B1C1D1上的投影是图2①;在面ADD1A1和 面BCC1B1上的投影是图2②;在面ABB1A1和面DCC1D1上的投 影是图2③.
• 『规律方法』 画出一个图形在一个平面上的投影的关键 是确定该图形的关键点,如顶点等,画出这些关键点的正 投影,再依次连接即可得此图形在该平面上的投影.
高中数学第一章空间几何体2.1中心投影与平行投影2.2空间几何体的三视图课件新人教A版必修

中心投影与平行投影
投影
中心 投影
平行 投影
定义
特征
光由① 一点 向外 散射形成的投影
投影线交 于一点
在一束② 平行光线 照射下形成的投影
投影线平行
分类 ————
③ 正投影 和④ 斜投影
空间几何体的三视图 几何体的正视图、侧视图和俯视图统称为几何体的三视图.
与三视图有关的计算问题
这类问题常常是给出几何体的三视图,由三视图中的数据还பைடு நூலகம்出几何体,并得出 相关的数据,再求出相关的量,如体积、面积等.
如图①所示,将一边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,其 正视图与俯视图如图②所示,则侧视图的面积为 ( )
A. 1 B. 2
4
4
C. 1 D. 2
三视图与几何体的转化
(1)排列规则:一般地,侧视图在正视图的右边,俯视图在正视图的下边. (2)画法规则: “长对正”“高平齐”“宽相等”. (3)线条的规则:①能看见的轮廓线用实线表示;②不能看见的轮廓线用虚线表示.
由三视图还原几何体,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综 合起来,定整体.
判断正误,正确的画“√”,错误的画“✕”.
1.平行投影的投影线都互相平行,中心投影的投影线是由同一点发出的. ( √ )
2.如果一个几何体的三视图都相同,则该几何体一定是球.( ✕ ) 正方体的三视图也可以都相同,都是正方形. 3.圆台的正视图和侧视图是两个全等的等腰梯形.( ✕ ) 几何体的三视图和几何体的摆放有关. 4.正视图、俯视图的长度相同. ( √ ) 正视图、俯视图都反映物体的长度,所以它们的长度相同. 5.俯视图、侧视图的高度相同. ( ✕ ) 俯视图、侧视图都反映物体的宽度,宽度相同.正视图、侧视图都反映物体的高 度,高度相同.
高中数学 专题 球的体积和表面积课堂同步试题 新人教A版

球的体积和表面积
高考频度:★★★★☆ 难易程度:★★★☆☆
典例在线
(2016新课标全国Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是
28π
3
,则它的表面积是
A .17π
B .18π
C .20π
D .28π
【参考答案】A
【解题必备】1.设球的半径为R ,则球的体积公式为3
π3
V=R ,表面积公式为24πS=R .求解的关键是确定球的半径.
2.(1)球与几何体的外接和内切问题一直是立体几何中的重点和难点问题,也是各类考试的重要题型之一.求解时一定要先搞清楚几何体是怎样与球内切和外接的,这是解答这类问题的关键,也是解好这类问题的突破口.
(2)有关球的截面问题,常画出过球心的截面圆,将空间几何问题转化为平面中圆的有关问题解决.球心
到截面的距离d与球的半径R及截面圆的半径r之间满足关系式:d=.
学霸推荐
AH HB=,AB⊥平面α,H为垂足,α截球O所得截面1.如图,已知H是球O的直径AB上一点,:1:3
的面积为π,则球O的体积为
A B
C D
2.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.
2.【答案】12π
【解析】由题意知该几何体是一个正方体内接于球构成的组合体,设球的直径为2R ,
则2R =
=,所以R =24π4π312πS =R ==⨯球.。
2017-2018学年高中数学 专题 面面垂直的判定定理的应用课堂同步试题 新人教A版

面面垂直的判定定理的应用高考频度:★★★★☆ 难易程度:★★★☆☆典例在线(2017山东)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【参考答案】(1)见试题解析;(2)见试题解析.(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点,所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD ,所以1,A E BD ⊥ 因为11//,B D BD 所以11111,,EM B D A E B D ⊥⊥又1,A E EM ⊂平面1A EM ,1A E EM E =,所以11B D ⊥平面1,A EM又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .【解题必备】用判定定理证明面面垂直的一般方法:先从现有的直线中寻找平面的垂线,若这样的垂线存在,则可通过线面垂直来证明面面垂直;若这样的垂线不存在,则需通过作辅助线来解决.学霸推荐1.如图,过点S 引三条不共面的直线,,,SA SB SC 其中90,60BSC ASC ASB ∠=︒∠=∠=︒,且SA SB SC ==a =.求证:平面ABC ⊥平面BSC .2.如图,在四棱锥中,底面是正方形,侧棱底面,,点是中点,作,交于点.(1)求证:平面; (2)求证:平面平面 (3)求证:平面.3在SHA △中,22212AH SH a ==, 22SA a =, ∴222SA SH AH =+,∴AH SH ⊥.又SH BC H =,∴AH BSC ⊥平面.又AH ABC ⊂平面,∴平面ABC ⊥平面BSC.(2)∵,且底面, ∴△PDC 为等腰直角三角形, 又是中点,∴, ∵底面为正方形,∴,又,,平面,而平面,,又,平面,而平面,故平面平面.(3)由(2)知,平面,平面,, 又,,平面.。
2017_2018学年高中数学培优课堂同步试题2新人教A版

培优课堂同步试题2
高考频度:★★★☆☆难易程度:★★☆☆☆
典例在线
如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.
【参考答案】60°
【解题必备】求异面直线所成的角可以通过平移的方法,将异面直线所成的角转化为同一平面内的直线所成的角,再利用三角形的知识求解.平移直线得到的角有可能是两条异面直线所成角的补角,注意识别.
学霸推荐
1.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.
2.在正方体1111ABCD A BC D 中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、B 1C 1的中点,分别求异面直线EF 与GH 、EF 与CC 1所成的角.
∵M ∈α,N ∈α,∴直线MN ⊂α.
∵A ∈MN ,B ∈MN ,∴A ∈α,B ∈α.
即A ,B ,C ,P 四点均在平面α内,这与点P 在平面ABC 外相矛盾.
∴假设不成立,即直线PN与MC是异面直线.。
高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
空间几何体与三视图
高考频度:★★★★☆ 难易程度:★★★☆☆
典例在线
(2017北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为
A.32 B.23
C.22 D.2
【参考答案】B
【试题解析】几何体是四棱锥PABCD,如图.
最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l,故选B.
2
【解题必备】1.在画三视图时,要做到正俯长对正,正侧高平齐,俯侧宽相等,并注意能够看到的线画成
实线,不能看到的线画成虚线.若是简单组合体,要先分清组合体由哪些简单几何体构成,并确定正视的
方向,最后按照三视图的画法规则画出三视图.
由三视图还原几何体的方法:
2.对于由几何体的个别视图确定其他视图的问题,若已知空间图形的大致结构,则第三个视图的形状是唯
一的,否则空间图形无法确定,则第三个视图的形状不唯一.
学霸推荐
1.已知一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为
A B
C D
2.如图是一个空间几何体的正视图和俯视图,则它的侧视图为
3
A B C D