6.5简谐振动的合成
简谐振动的合成
x
A1
2
o
A A1 A2
o
相互削弱
A
A2
3)一般情况 A1 A2 A A1 A2
21
2.n个同方向同频率简谐运动的合成
x1 A1 cos(t 1) x2 A2 cos(t 2 )
xn
An
cos(t
n
)
x x1 x2 xn
19
讨论 A A12 A22 2A1A2 cos(2 1) 1)相位差 2 1 2kπ (k 0,1, 2,)
x
o
A1
A2
A
A A1 A2
相互加强
20
A A12 A22 2A1A2 cos(2 1) 2)相位差 2 1 (2k 1)π (k 0,1, )
dt 2
J ml 2
d 2
g
2 g
l 2
dt 2 l
cos(t ) m
g
l
T 2π l g
转
A
动
l
正 向
FT m
O
P
10
复摆
M l F
转动正向
O
M mgl sin J J d2
dt 2
l
*C
24
频率较大而频率之差很小的两个同方 向简谐运动的合成,其合振动的振幅时而 加强时而减弱的现象叫拍.
x1 A1 cos1t A1 cos2π1t x2 A2 cos2t A2 cos2π2t
mgl J d2
dt 2
P
令 2 mgl
简谐运动的合成
2
1 2 (
拍频(振幅变化的频率)
2 1
2 t)
的频率的两倍。
2 1
2
) 2 1
8.2
四
简谐运动的合成
第八章 机械振动
两个相互垂直的同频率简谐运动的合成 x A1 cos( t 1 )
y A 2 cos( t 2 )
( k 0 , 1 , 2, )
1)相位差 2 1 2 k π
x
o A
A2
x
o
T
1
t
x ( A1 A 2 ) cos( t )
A
A A1 A 2
2 1 2k π
8.2
简谐运动的合成
A
2 1 2 2
x n A n cos( t n )
A
1 A1
x x1 x 2 x n
x A cos( t )
2
A2
A3 3
o
x
多个同方
简谐运动的合成
第八章 机械振动
x 1 A 0 cos t x 2 A 0 cos( t )
2
T π
T
1
2 1
2 1
拍频(振幅变化的频率)
8.2
简谐运动的合成
第八章 机械振动
由于振幅是周期性变化的,所以合振动不再是 简谐振动。
当 与 都很大,且相差甚微时,可将 1 2 2 视为振幅部分,合成振动是以 为角频率的 ( 2 1 ) / 2 近似谐振动。 2 1 1 2
振动的合成
相空间
简谐振动
由位置和动量构成,如(p,x)
x A cos(t )
p
p 1 2 kx E 2m 2
2
x
o
本章结束
作者:李雪春
2
2
李萨如图形
T1/T2 = 1/3, 1/2 = 3/1
2
1
1
1
y( t )
0
y( t )
0
y( t )
0
1
1
1
2
2
4
2
0 x( t )
2
4
4
2
0 x( t )
2
4
2
4
2
0 x( t )2 Nhomakorabea4
0< < /2
= /2
=
§ 8相空间中振动的轨道
位形空间
由位置坐标构成,如(x,y,z)
x2 A2 cos( t 2 )
x x1 x2
A1 cos( t 1 ) A2 cos( t 2 )
x A cos( t )
振幅矢量图合成法
x1 A1 cos( t 1 )
A1
A
x
x
x2 A2 cos( t 2 )
多个同方向同频率
的简谐振动合成?
振幅:
A A12 A22 2 A1 A2 cos( 2 1 )
(1)同相
A1
(2)反相
A2
x
A
A2
A
x
A1
2 1 2k
k 0, 1,
2 1 (2k 1) , k 0, 1,
简谐运动的合成
x
A A12 A22 2 A1 A2 cos( 2 1 )
A1 sin 1 A2 sin 2 tan A1 cos1 A2 cos 2
11
x
A1
x
反相
2
o
o
T
减弱
t
A
A2
A A1 A2
2 2
x ( A2 A1 ) cos( t )
A A1 A2 2 A1 A2 cos( 2 1 )
7
*三
多个同方向同频率简谐运动的合成
x1 A1 cos( t 1 )
x2 A2 cos( t 2 )
A2
2
x1 A1 cos( t 1 )
x2 A2 cos( t 2 )
0
x2
x
1
x1
A1
x
合振动:x x1 x2
o
?
t
3
x1 A1 cos( t 1 ) x2 A2 cos( t 2 )
2
x x1 x2
x A cos( t )
A4 A3 A5 A2 O A6 A x 1
10
小结:
x1 A1 cos( t 1 )
x2 A2 cos( t 2 )
2
A2
1
A
x x1 x2
x A cos( t )
0
A1
xn An cos( t n )
A3 A
1 A1
x x1 x2 xn
x A cos(t )
振动的合成——精选推荐
二、振动的合成实际生活中,一个系统往往会同时参与两个或更多的振动。
例如悬挂在颠簸船舱中的钟摆,两列声波同时传入人耳等。
一般的振动合成显然是比较复杂,下面仅讨论几种间单情况的简谐振动合成。
一、同方向同频率简谐振动的合成若两个同方向的简谐振动,频率都是,它们的运动方程分别为因振动是同方向的,所以这两个谐振动在任意时刻的和位移应在同一直线上,且等于这两个振动位移的代数和,即合位移仍为简谐振动二、两个同方向不同频率简谐振动的合成拍如果两个简谐振动的振动方向相同而频率不同,那么合成后的振动仍与原振动方向相同但不再是简谐振动。
现设两简谐振动的振幅都为A,初相位为零,它们的振动方程分别为合成振动方程为若两个分振动的频率都较大且其差很小时,即,合振动可看作为振幅随时间缓慢变化的近似谐振动,振幅随时间变化且具有周期性,表现出振动或强或弱的现象,称拍,变化的频率称拍频,变化的振幅为变化的频率为三、相互垂直的简谐振动的合成李萨如图如果两个简谐振动分别在x轴和y轴上进行,他们的振动方程分别为合成后,可得质点的轨迹为椭圆方程若两分振动有不同的频率,且两频率之比为有理数时,则合成后的质点运动具有稳定、封闭的轨迹。
称其为李萨如图形。
程序编写我们已经在第一讲中体验了matlab的编程,可是你一定会生出这样的问号,辛辛苦苦在命令窗口写的一大堆代码怎么不保留?不用担心,matlab程序和其他编程工具一样,也有专门的文件格式,称m文件,文件名形式为“文件名.m”。
你可以用matlab自带的编辑器来输入你的程序代码,当然你也可以用其它编辑器或最经济的文本编辑器,不过别忘记添加文件名的后缀“.m”。
下面,请跟我一起用m文件编辑器来编写matlab程序。
例题:两个振动方向相同而频率不同的简谐振动方程分别为合成后的方程是请用matlab程序描述合成波和拍频现象。
编程:第一步:点击matlab图标,打开程序窗口。
第二步:选file—new—m-file,打开编辑器。
振动合成(1)
x1 = A cos(ωt +ϕ1) 1 x2 = A cos(ωt +ϕ2 ) 2
vv AA 2 2
v Av A
ω
X
x = x1 + x2 r A: 大小不变
ϕ2 ϕ
O
v A v 1 A 1
ϕ1
以角速度ω绕 点旋转 以角速度 绕O点旋转
O
A 1
X
(2) ϕ2 −ϕ1 = (2k +1)π k = 0,1 ± 2L(反相) ±, 反相) r ω A2 A = A − A2 1
合振幅最小 振动减弱! 振动减弱!
O
r 若A1=A2 ,则A=0,质点静止。 A ,质点静止。 1
X
例1、两个同方向、同频率的简谐振动合成后, 、两个同方向、同频率的简谐振动合成后, 合振动的振幅为20cm,相位与第一振动的相位 合振动的振幅为 相位与第一振动的相位 之差为π , 之差为π/6,若第一振动的振幅为 10 3cm , 试求第二振动的振幅及第一第二振动的相位差。 试求第二振动的振幅及第一第二振动的相位差。 解:
离开原点位移: 离开原点位移:
2 1 2 2
A 1
S = A + A cos(ωt + ϕ )
A1
X
ϕ = ϕ1 = ϕ2 合振动是谐振动
(2) ϕ2 −ϕ1 = π
A2 y =− x A 1
2 2
A2 Y A1 X
类似,合振动是谐振动 与(1)类似 合振动是谐振动 类似
(3) ϕ2 −ϕ1 =
π
A2 = A + A − 2A Acosϕ 1
简谐运动的合成与分解
两振动的频率只有很小的差异
则可以近似地看做同频率的合成,不过相差在 缓慢地变化,因此合成运动轨迹将要不断地按上 图所示的次序,在图示的矩形范围内自直线变成 椭圆再变成直线等等。
如果两振动的频率相差较 大,但有简单的整数比
则合成运动又具有稳定的 封闭的运动轨迹。这种图 称为李萨如图。
如果已知一个振动的周期,就 可以根据李萨如图形求出另一 个振动的周期,这是一种比较 方便也是比较常用的测定频率 的方法。
阻尼振动(摩擦阻尼,辐射阻尼)
对于摩擦阻尼, 当 不太大时 ( 称为阻尼系数) 由牛顿第二定律
k 2 0 ; 令 m
略讲自学
dx Ft dt
2 m
d2 x dx m 2 kx dt dt
代入上式( 称为阻尼因子)
在阻尼较小时, < 0,
三、两个互相垂直同频率简谐振动的合成
x1 A1 cos(t 10 )
y2 A2 cos(t 20 )
消去 t 得到轨道方程 (椭圆方程)
x2 y2 xy 2 2 cos( ) sin (20 10 ) 20 10 2 2 A1 A2 A1 A2 20 10 20 10 0
如果两振动的频率相差较大但有简单的整数比在自然界和工程技术中我们所遇到的振动大多不是简谐振动而是复杂的振动处理这类问题往往把复杂振动看成由一系列不同频率的间谐振动组合而成也就是把复杂振动分解为一系列不同频率的间谐振动这样分解在数学上的依据是傅立叶级数和傅立叶积分的理论因此这种方法称为傅立叶分析
本讲主要内容:
着重研究1 , 2相近情况
即 1- 2 << 1 or 2
——拍现象(Beat)
大学物理-12第十二讲简谐振动的合成、阻尼、受迫振动(001)
解得 ω = ωr = ω02 − 2β 2
则
A=
2mβ
F0
ω02 − β 2
= Amax
A
β2 β3
β1
ω
β1 > βω2 0> β3
23
2.速度共振—使速度振幅达最大值的状态
v = dx = − Aω sin(ωt − δ )
dt
速度振幅 vm = Aω
而 Aω =
F0ω
m (ω02 − ω2 ) + 4β 2ω2
●合振幅A的大小由两个分振动的初相差决定。
当 Δϕ = ϕ2 − ϕ1 = ±2kπ
(k = 0,1,2") 同相
Y ωK
A2
ωK
A ωK
A = A1 + A2 = Amax
θ2
Δθ θ1
A1
合振动加强
x2 θ x1 x x
4
当 Δϕ = ϕ2 −ϕ1 = ±(2k +1)π 反相
(k = 0,1,2")
ϕ =0
t
19
2. β =ω0(临界阻尼) x = e −βt (C1 + C 2t)
●在临界阻尼时,质点到达平衡位置时速度即减为 零,振动不可能发生。
◆原理常用于阻尼天平等,以减少摆动时间.
3. β >ω0(过阻尼)
x = e − βt (C 1e ω1t + C 2 e −ω1t )
●过阻尼时,质点的速度 x
F强 = F0 cosωt
v = dx = Aω cos ωt v与强迫力同位相。
dt
●在整个周期内外力的方向和物体运动方向一致, 不断对物体作正功,使振动最强。 ◆外力的周期性变化与物体的固有振动“合拍”。
简谐振动的合成
(A1 sin1 A2 sin2 )sint
合振幅
令: A1 cos1 A2 cos2 Acos 代入上式:
A1 sin1 A2 sin2 Asin
2
x ( A1 cos1 A2 cos2)cost (A1 sin1 A2 sin2 )sint
Acos cost Asin sint Acos(t ) x Acos(t )
x1(t) a cost
M aN
x2 (t) a cos(t ) x3(t) a cos(t 2 )
C
R N
A
a3
xN (t) a cos[t (N 1) ]O a1 P
在COM中:A 2R sin(N / 2)
上两式相除得:
在OCP中: a 2Rsin( / 2)
7
A a sin(N / 2) sin / 2
若 A1 A2, A 2A1
2.当 2 1 (2k 1) (k 0,1,2, ) 时,
A
A12
A
2 2
2 A1
A2
cos(
2
1
)
| A1 A2 | 合振动振幅最小。
若 A1 A2, A 0
A2
3.一般情况 | A1 A2 | A | A1 A2 |
5
A A2 A1
A2 A A1 A A1
第二节
简谐振动的合成
1
一、同方向同频率简谐振动的合成
在同一直线上同频率的两个简谐振
动分别为:
x1 A1 cos(t 1),
x2 A2 cos( t 2 )
• 代数方法: 振动合成
x x1 x2 A1 cos(t 1) A2 cos(t 2 )
(A1 cos1 A2 cos2) cost
相互垂直的简谐振动的合成
相互垂直的简谐振动的合成简谐振动是一种重要的物理现象,在许多领域都有广泛的应用,如机械、光学、电磁等领域。
在某些情况下,需要对两个或更多相互垂直的简谐振动进行合成,以产生一个新的复合振动。
本文将介绍相互垂直的简谐振动的合成,并阐述其原理和应用。
简谐振动的定义简谐振动是指一个对象以一个周期性的方式在其平衡位置周围运动的物理现象。
这种振动是由于弹性力的作用而产生的,例如弹簧、摆线、声波等。
一个简谐振动的特点是在相同的时间内,运动具有相同的加速度和速度。
简谐振动的运动方程可以用以下公式表示:x = A sin(ωt)其中,x代表位移,A代表振幅,ω代表角速度,t代表时间。
由于简谐振动的周期(T)与角速度有关系,因此可以用以下公式表示:T = 2π/ω当存在两个或更多个以不同的频率振动的物体时,它们的振动将会互相影响。
考虑一个垂直向上运动的弹簧振子和一个水平运动的弹簧振子。
如果它们同时振动,将会出现一个垂直方向上的复合振动。
其中,y1代表第一个弹簧振子的位移,y2代表第二个弹簧振子的位移。
为了合成垂直方向的复合振动,需要执行以下步骤:1. 确定两个振动的振幅和角频率。
2. 计算两个振动的周期。
3. 将两个振幅和周期代入以下公式中:y = A1 sin(ω1t) + A2 sin(ω2t)其中,y代表合成振动的位移。
4. 对于每个时刻t,计算出合成振动的振幅y。
合成垂直方向振动的物理意义当两个垂直方向上的简谐振动相互作用时,它们的复合振动将形成一个网格图形,每个节点表示一个特定的振幅和相位差。
相位差表示两个振动之间的时间差,其中一个振动的周期相对于另一个振动周期的时间差。
合成振动的频率与原始简谐振动的差异通常很小,因此可以将它们看作共振现象。
在许多现实情况下,相互垂直的简谐振动产生的复合振动是非常有用的,例如在音乐和声学领域。
应用和例子1. 双摆双摆是指两个以不同长度的摆绳悬挂并以不同频率振动的摆。
当它们相互作用时,将产生一个复合振动,其中一个摆的振动会影响另一个摆的振动,并且它们最终会形成一个规律的图案。
大学物理简谐运动的合成
目录
• 简谐运动的定义与特性 • 简谐运动的合成原理 • 简谐运动的合成方法 • 简谐运动的合成应用 • 总结与展望
简谐运动的定义与特
01
性
简谐运动的定义
简谐运动
物体在平衡位置附近做往复运动,其位移、速度和加速度随时间按正弦或余弦 规律变化的运动。
简谐运动的数学描述
简谐运动可以用正弦或余弦函数表示,其数学表达式为 $x = Asin(omega t + varphi)$,其中 $A$ 是振幅,$omega$ 是角频率,$varphi$ 是初相。
简谐运动的特性
周期性
简谐运动具有周期性,即物体在每个周期内重复 相同的运动轨迹。
往复性
简谐运动是往复运动,即物体在平衡位置附近来 回振动。
能量守恒
简谐运动过程中,系统的动能和势能相互转化, 总能量保持不变。
简谐运动的分类
自由振动
不受外力作用的简谐运动。
受迫振动
受到周期性外力作用的振动,其振动频率与外力频率 相同或相近。
简谐运动的合成方法
03
旋转矢量法
总结词
旋转矢量法是一种直观且易于理解的方法,用于合成简谐运动。
详细描述
旋转矢量法是通过引入一个旋转矢量来表示简谐运动,该矢量在复平面内以角速 度旋转。通过旋转矢量的长度和角度变化,可以直观地理解简谐运动的合成过程 。
复数法
总结词
复数法是一种基于复数运算的方法,用于合成简谐运动。
自激振动
由系统内部激励产生的振动,不需要外部激励作用。
02
简谐运动的合成原理
线性合成原理
线性合成原理是指两个简谐运动的合成结果仍为简谐运动,其振幅和角频率分别为两个简谐运动振幅 和角频率的线性组合。
简谐运动的合成与分解
m
(
2 0
2
)2
4
2
2
共振
A
(1)位移共振(图1)
在一定条件下,振幅出现极大值,振动 剧烈的现象。
共振
2 0
2
2
(2)速度共振(图2)
0
一定条件下,速度幅A极大的现象。
vm
共振 0
即速度共振时,速度与策动力同相,一周期内策动力
总作正功,此时向系统输入的能量最大。
0
总结:
两个同方向频率相同的简谐振动的合成仍为简谐振动。 合振幅与两振动的相位差有关,可用旋转矢量图求得。
如果两振动的频率相差较大但有简单的整数比五谐振分析和频谱在自然界和工程技术中我们所遇到的振动大多不是简谐振动而是复杂的振动处理这类问题往往把复杂振动看成由一系列不同频率的间谐振动组合而成也就是把复杂振动分解为一系列不同频率的间谐振动这样分解在数学上的依据是傅立叶
本讲主要内容: 一、同方向同频率两个简谐振动的合成 二、同方向不同频率两个简谐振动的合成 三、两个互相垂直同频率简谐振动的合成 四、两个互相垂直不同频率简谐振动的合成 五、谐振分析和频谱
A1 sin10 A2 sin20 A1 cos10 A2 cos20
2010
x20
0
x10
AM
A1
x0
t o .P x
同方向同频率两个简谐振动的合成仍为简谐振动。
讨论两个特例 x
(1)两个振动同相
20 10 2k , k 0,1,2,...
合成振动
由 A A12 A22 2A1 A2 cos(20 10 ) o
解:
A A1 A2
A2
A1 A2 A
O
2
简谐振动的合成
动振幅周期变化的现象叫拍。
解:③拍现象
A (t) 不论 调 达到正的最大或负的最大,对加强振幅来说,都是等效的,
因此拍的圆频率为:
因此:
拍 20 10
调(拍)
20 10
2 20 10
2 拍
2
拍频为: 调(拍) 2 1
合成图像如下图:
x1 t
x2
t
x
t
程序演示:
MATLAB 程序:
t=[0:0.001:10]; %给出时间轴上 10s,分 10000 个点
%输入两组信号的振幅、频率以及初相
A1=input('振幅 1=');W1=input('频率 1=');a1=input('初相 1=');
A2=input('振幅 2=');W2=input('频率 2=');a2=input('初相 2=');
y1=A1*cos(W1*t+a1);
y2=A2*cos(W2*t+a2); %生成两个正弦波
此时 A A12 A22 2A1A2 cos(2 1) A1 A2 Amin 振动减弱
两个同方向、同频率简谐运动反相合成时,其合振动振幅最小,振幅为两个
分振动振幅之差的绝对值,初相位与振幅大的分振动的初相位相同,合成图像如
下图。
x
x2
o
x
t
x1
分析:同方向不同频率简谐振动的合成 x1 Acos10t , x2 Acos20t
A2 A1
A
x
此时 A A12 A22 2A1A2 cos(2 1) A1 A2 Amax 振动加强
简谐振动合成与分解
通过将复杂振动分解为简单的简谐振动,可以更好地理解和分析振动的本质。
实际应用中的振动分解
信号处理
在信号处理领域,傅里叶变换被 广泛应用于将时域信号转换为频 域信号,从而分析信号的频率成 分。
机械振动分析
在机械工程中,通过对机械振动 的分析,可以了解机械系统的动 态特性和振动规律,为优化设计 提供依据。
实验验证与实际应用
未来可以通过实验验证和实际应用来 检验简谐振动合成与分解的理论,推 动其在解决实际问题中的应用。
THANKS
感谢观看
ERA
两个同频率简谐振动的合成
合成结果仍为同频率简谐振动,振幅 和相位由两个简谐振动的振幅和相位 决定。
当两个简谐振动的相位差为0或π时,合 成振动的振幅为两者之和;相位差为 π/2或3π/2时,合成振动的振幅为两者 之差。
两个不同频率简谐振动的合成
合成结果为非简谐振动,其频率为两个简谐振动频率的线性 组合。
地震学
在地震学中,通过分析地震波的 频谱,可以研究地球内部的结构 和性质。
04
合成与分解的应用
BIG DATA EMPOWERS TO CREATE A NEW
ERA
在物理学中的应用
01
波动合成
简谐振动合成与分解是研究波动 的重要基础,如声波、光波等的 合成与分解。
电磁波
02
03
原子振动
电磁波的合成与分解是研究电磁 波性质的关键,如无线电波、可 见光等。
能量守恒
简谐振动的能量是守恒的, 即振幅不变。
简谐振动的表示方法
三角函数表示法
简谐振动的位移、速度和加速度可以用三角函数来表示,如正弦函数或余弦函 数。
相图表示法
大学物理实验6 简谐振动的合成
云南大学软件学院 实验报告课程: 大学物理实验 学期: 任课教师: 班级: = 学号: == 序号: = 姓名: = 成绩:实验6 简谐振动的合成内容一 同方向同频率简谐振动的合成两个简谐振动的方程为使用matlab 编写程序,求x1,x2,合振动的波形,讨论相位差对合成振动的影响。
相位差至少讨论4中情况(1.为0°;2.为180°;3.小于180°;4.大于180°),要求所有波形画在同一个figure 中。
()()⎩⎨⎧+=+=222111cos cos ϕωϕωt A x t A x内容二 相互垂直方向同频率简谐振动的合成两个简谐振动的方程为使用matlab 编写程序,求x,y,合振动的波形,讨论相位差对合成振动的影响。
相位差至少讨论4中情况(1.为0°;2.为180°;3.小于180°;4.大于180°),要求所有波形画在同一个figure 中。
()()⎩⎨⎧+=+=y y x x t A y t A x ϕωϕωcos cos内容三相互垂直方向不同频率简谐振动的合成(李萨如图形) 使用matlab编写程序,画李萨如图形,要求:1.至少4种频率比2.至少8种相位差3.所有图形画在同一个figure中,添加标注。
如:cleart = 0:0.01:4;Ax = 1;Ay = 3;w1 = 1; w2 = 1./2;w3 = 2./3;w4 = 3./4;w5 = 2./5;m0 = 0;m1 = 0;m2 = pi./4;m3 = pi./2;m4 = 3.*pi./4;m5 = pi;m6 = 5.*pi./4; m7 =3.*pi./2;m8 = 7.*pi./4; x0 = Ax.*cos(2.*pi*t+m0);y11 = Ay.*cos(2.*w1.*pi*t+m1);y12 = Ay.*cos(2.*w1.*pi*t+m2);y13 = Ay.*cos(2.*w1.*pi*t+m3);y14 = Ay.*cos(2.*w1.*pi*t+m4);y15 = Ay.*cos(2.*w1.*pi*t+m5);y16 = Ay.*cos(2.*w1.*pi*t+m6);y17 = Ay.*cos(2.*w1.*pi*t+m7);y18 = Ay.*cos(2.*w1.*pi*t+m8);y21 = Ay.*cos(2.*w2.*pi*t+m1);y22 = Ay.*cos(2.*w2.*pi*t+m2);y23 = Ay.*cos(2.*w2.*pi*t+m3);y24 = Ay.*cos(2.*w2.*pi*t+m4);y25 = Ay.*cos(2.*w2.*pi*t+m5);y26 = Ay.*cos(2.*w2.*pi*t+m6);y27 = Ay.*cos(2.*w2.*pi*t+m7);y28 = Ay.*cos(2.*w2.*pi*t+m8);y31 = Ay.*cos(2.*w3.*pi*t+m1);y32 = Ay.*cos(2.*w3.*pi*t+m2);y33 = Ay.*cos(2.*w3.*pi*t+m3);y34 = Ay.*cos(2.*w3.*pi*t+m4);y35 = Ay.*cos(2.*w3.*pi*t+m5);y36 = Ay.*cos(2.*w3.*pi*t+m6);y37 = Ay.*cos(2.*w3.*pi*t+m7);y38 = Ay.*cos(2.*w3.*pi*t+m8);y41 = Ay.*cos(2.*w4.*pi*t+m1);y42 = Ay.*cos(2.*w4.*pi*t+m2);y43 = Ay.*cos(2.*w4.*pi*t+m3);y44 = Ay.*cos(2.*w4.*pi*t+m4);y45 = Ay.*cos(2.*w4.*pi*t+m5);y46 = Ay.*cos(2.*w4.*pi*t+m6);y47 = Ay.*cos(2.*w4.*pi*t+m7);y48 = Ay.*cos(2.*w4.*pi*t+m8);y51 = Ay.*cos(2.*w5.*pi*t+m1);y52 = Ay.*cos(2.*w5.*pi*t+m2);y53 = Ay.*cos(2.*w5.*pi*t+m3);y54 = Ay.*cos(2.*w5.*pi*t+m4);y55 = Ay.*cos(2.*w5.*pi*t+m5);y56 = Ay.*cos(2.*w5.*pi*t+m6);y57 = Ay.*cos(2.*w5.*pi*t+m7);y58 = Ay.*cos(2.*w5.*pi*t+m8);subplot(5,8,1);plot(x0,y11);Axis([-4 4 -4 4]);text(-16,0,'ω =1');text(-2,7,'0');text(-16,7,'相位差');subplot(5,8,2);plot(x0,y12);Axis([-4 4 -4 4]);text(-2,7,'π/4'); subplot(5,8,3);plot(x0,y13);Axis([-4 4 -4 4]);text(-2,7,'π/2'); subplot(5,8,4);plot(x0,y14);Axis([-4 4 -4 4]);text(-2,7,'3π/4'); subplot(5,8,5);plot(x0,y15);Axis([-4 4 -4 4]);text(-2,7,'π');subplot(5,8,6);plot(x0,y16);Axis([-4 4 -4 4]);text(-2,7,'5π/4'); subplot(5,8,7);plot(x0,y17);Axis([-4 4 -4 4]);text(-2,7,'3π/2'); subplot(5,8,8);plot(x0,y18);Axis([-4 4 -4 4]);text(-2,7,'7π/4'); subplot(5,8,9);plot(x0,y21);Axis([-4 4 -4 4]);text(-16,0,'ω = 1/2'); subplot(5,8,10);plot(x0,y22);Axis([-4 4 -4 4]);subplot(5,8,11);plot(x0,y23);Axis([-4 4 -4 4]);subplot(5,8,12);plot(x0,y24);Axis([-4 4 -4 4]);subplot(5,8,13);plot(x0,y25);Axis([-4 4 -4 4]);subplot(5,8,14);plot(x0,y26);Axis([-4 4 -4 4]);subplot(5,8,15);plot(x0,y27);Axis([-4 4 -4 4]);subplot(5,8,16);plot(x0,y28);Axis([-4 4 -4 4]);subplot(5,8,17);plot(x0,y31);Axis([-4 4 -4 4]);text(-16,0,'ω = 2/3'); subplot(5,8,18);plot(x0,y32);Axis([-4 4 -4 4]);subplot(5,8,19);plot(x0,y33);Axis([-4 4 -4 4]);subplot(5,8,20);plot(x0,y34);Axis([-4 4 -4 4]);subplot(5,8,21);plot(x0,y35);Axis([-4 4 -4 4]);subplot(5,8,22);plot(x0,y36);Axis([-4 4 -4 4]);subplot(5,8,23);plot(x0,y37);Axis([-4 4 -4 4]);subplot(5,8,24);plot(x0,y38);Axis([-4 4 -4 4]);subplot(5,8,25);plot(x0,y41);Axis([-4 4 -4 4]);text(-16,0,'ω = 3/4'); subplot(5,8,26);plot(x0,y42);Axis([-4 4 -4 4]);subplot(5,8,27);plot(x0,y43);Axis([-4 4 -4 4]);subplot(5,8,28);plot(x0,y44);Axis([-4 4 -4 4]);subplot(5,8,29);plot(x0,y45);Axis([-4 4 -4 4]);subplot(5,8,30);plot(x0,y46);Axis([-4 4 -4 4]);subplot(5,8,31);plot(x0,y47);Axis([-4 4 -4 4]);subplot(5,8,32);plot(x0,y48);Axis([-4 4 -4 4]);subplot(5,8,33);plot(x0,y51);Axis([-4 4 -4 4]);text(-16,0,'ω = 2/5'); subplot(5,8,34);plot(x0,y52);Axis([-4 4 -4 4]);subplot(5,8,35);plot(x0,y53);Axis([-4 4 -4 4]);subplot(5,8,36);plot(x0,y54);Axis([-4 4 -4 4]);subplot(5,8,37);plot(x0,y55);Axis([-4 4 -4 4]);subplot(5,8,38);plot(x0,y56);Axis([-4 4 -4 4]);subplot(5,8,39);plot(x0,y57);Axis([-4 4 -4 4]);subplot(5,8,40);plot(x0,y58);Axis([-4 4 -4 4]);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
2
)
6.5简谐振动的合成
用旋转矢量描绘振动合成图
6.5简谐振动的合成
两相 互垂直同 频率不同 相位差简 谐运动的 合成图
6.5简谐振动的合成
三 两个相互垂直不同频率简谐振动的合成(略)
6.5简谐振动的合成
(2) 相差
x
A1
2 1 (2k 1) π (k 0 , 1, )
x
2
o
o
T
t
A
A2
x A2 A1 cos(t ) A A1 A2 2 1 (2k 1)π
6.5简谐振动的合成
小节
(1) 相位差 2 1 2k π (k 0 , 1, 2,)
A1
x2
x1
x
x
两个同方向同频率简谐运动合成后仍 为同频率的简谐运动
讨论 (1) 相差
x
6.5简谐振动的合成
2 1 2k π (k 0 , 1, 2,)
x
A1
o
T
A2
t
A
x ( A1 A2 ) cos( t ) A A1 A2 2 1 2k π
ห้องสมุดไป่ตู้
y A2 cos(t 2 )
质点运动轨迹 (椭圆方程)
x y 2 xy 2 2 cos( 2 1 ) sin ( 2 1 ) 2 A1 A2 A1 A2
2
2
6.5简谐振动的合成
讨论
x 2 y 2 2 xy 2 cos( 2 1 ) sin 2 ( 2 1 ) A12 A2 A1 A2
2 A A12 A2 2 A1 A2 cos[ ( 2 1 )] 2 A12 A2 2 A1 A2 cos( 2 1 )
6.5简谐振动的合成
2
A2
1
2 1
A
A1 sin 1 A2 sin 2 tan A1 cos1 A2 cos 2
(1)
2 1 0
A2 y x A1
y
A2
A1
o
x
(2)
2 1
A2 y x A1
y
A
2
o
A1
x
6.5简谐振动的合成
(3)
2 1 2
x y 2 1 2 A1 A2
2 2
y
A2
A1
x A1 cost
y A2 cos( t
o
6.5 简谐振动的合成
一 两个同方向同频率简谐振动的合成 设一质点同时参与 两独立的同方向、同频 率的简谐振动:
x1 A1 cos( t 1 )
x2 A2 cos( t 2 )
O
A2
2
x2
1
A1
x1
x
两振动的位相差 2 1 =常数
x x1 x2 x A cos(t )
A A1 A2
A A1 A2
加强
记住
(2) 相位差 2 1 (2k 1) π (k 0 , 1, )
减弱
记住
(3) 一般情况
A1 A2 A A1 A2
6.5简谐振动的合成
二 两个相互垂直的同频率简谐振动的合成
x A1 cos(t 1 )