2018秋新版高中数学北师大版必修2习题:第一章立体几何初步 1.5.1.2 含解析数学

合集下载

高一北师大版数学必修2第一章 立体几何初步单元测试题试卷含答案解析

高一北师大版数学必修2第一章 立体几何初步单元测试题试卷含答案解析

第二章测试时间120分钟 满分150分一、选择题(本大题共10小题,每小题5分,共50分.在下列四个选项中,只有一项是符合题意的)1.已知点P (-3,1),点Q 在y 轴上,且直线PQ 的倾斜角为120° ,则Q 点的坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)解析 设Q (0,y ),由k =y -13=-3,得y =-2.答案 B2.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于( )A .2B .1C .0D .-1解析 由题意,得a (a +2)=-1,得a =-1. 答案 D3.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则m 的值为( )A .0B .-8C .2D .10解析 由4-mm +2=-2,得m =-8.答案 B4.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )A .5 B.13 C .10D.10解析 A (1,-2,-3),C (-2,-2,-5)代两点间距离公式即可.答案 B5.直线y +4=0与圆x 2+y 2-4x +2y -4=0的位置关系是( ) A .相切B .相交,但直线不经过圆心C .相离D .相交且直线经过圆心 答案 A6.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )A .x 2+y 2=4(x ≠±2)B .x 2+y 2=4C .x 2+y 2=2(x ≠±2)D .x 2+y 2=2解析 由题可知,点P 的轨迹是以MN 为直径的圆(除去M 、N 两点),∴点P 的轨迹方程是x 2+y 2=4(x ≠±2).答案 A7.若直线3x +2y -2m -1=0与直线2x +4y -m =0的交点在第四象限,则实数m 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C.⎝⎛⎭⎪⎫-∞,-23D.⎝⎛⎭⎪⎫-23,+∞解析 由⎩⎪⎨⎪⎧3x +2y -2m -1=0,2x +4y -m =0,得⎩⎨⎧x =3m +24,y =-m -28.由题意,得⎩⎨⎧3m +24>0,-m +28<0,得m >-23.答案 D8.已知圆C 的方程为x 2+y 2-4x =0,若圆C 被直线l :x +y +a =0截得的弦长为23,则a =( )A .2+ 2 B.2 C .2± 2D .-2±2解析 由弦长公式,得3=4-⎝ ⎛⎭⎪⎪⎫2+a 12+122, 得a =-2± 2. 答案 D9.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11解析 将直线平移后得到y =2(x +1)+λ=2x +2+λ, 由题可知,|-2-2+2+λ|22+(-1)2=5, 得λ=-3,或λ=7,故选A. 答案 A10.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( )A .-2或2 B.12或32 C .2或0D .-2或0解析 圆的圆心(1,2),∴d =|1-2+a |2=22,得a =0,或a =2.答案 C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.当a 为任意实数时,直线ax -y +1-3a =0恒过定点________. 解析 原方程可化为a (x -3)-(y -1)=0,∴直线l 过(3,1). 答案 (3,1)12.直线x -2y +5=0与圆x 2+y 2=8相交于A ,B 两点,则|AB |=________.解析 圆心到该直线的距离d =55=5,∴弦长=2(22)2-(5)2=2 3. 答案 2313.两圆相交于两点(1,3)和(m ,-1),两圆圆心都在直线x -y +c =0上,且m 、c 均为实数,则m +c =________.解析 根据两圆相交的性质可知,两点(1,3)和(m ,-1)的中点⎝ ⎛⎭⎪⎫1+m 2,1在直线x -y +c =0上,并且过两点的直线与x -y +c =0垂直,故有⎩⎨⎧1+m2-1+c =0,3-(-1)1-m ×1=-1,∴m =5,c =-2,∴m +c =3. 答案 314.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线l 的斜率为________;圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为________.解析 ∵k PQ =3-a -b3-b -a =1,又k l ·k PQ =-1∴k l =-1,又(2,3)关于l 的对称点为(0,1), 故所求的圆的方程为x 2+(y -1)2=1. 答案 -1 x 2+(y -1)2=115.过圆x 2+y 2-x +y -2=0与x 2+y 2=5的交点,且圆心在直线3x -4y -1=0上的圆的方程为________.解析 设所求的圆的方程为x 2+y 2-x +y -2+ λ(x 2+y 2-5)=0,即(1+λ)x 2+(1+λ)y 2-x +y -2-5λ=0.∴圆心为⎝ ⎛⎭⎪⎫12(1+λ),-12(1+λ). 由32(1+λ)-42(1+λ)-1=0,得λ=-32 故所求的圆的方程为(x +1)2+(y -1)2=13. 答案 (x +1)2+(y -1)2=13三、解答题(本大题共有6小题,共75分.解答时应写出必要的文字说明,证明过程或演算步骤)16.(12分)已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m ,n 的值,使(1)l 1和l 2相交于点(m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解 (1)∵m 2-8+n =0,且2m -m -1=0, ∴m =1,n =7.(2)由m ·m -8×2=0,得m =±4, 由8×(-1)-n ·m ≠0,得n ≠±2,即m =4,n ≠-2时,或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当m ·2+8·m =0,即m =0时,l 1⊥l 2,又-n8=-1,∴n =8. 即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.17.(12分)△ABC 中,顶点A 的坐标为(1,2),高BE ,CF 所在直线的方程分别为2x -3y +1=0,x +y =0,求这个三角形三条边所在直线的方程.解 由已知,直线AC 的斜率为-32, 直线AB 的斜率为1.∴直线AC 的方程为3x +2y -7=0, 直线AB 的方程为x -y +1=0.再由⎩⎪⎨⎪⎧x +y =0,3x +2y -7=0,可解得C 点坐标为(7,-7).由⎩⎪⎨⎪⎧2x -3y +1=0,x -y +1=0,可解得B 点坐标为(-2,-1) . 于是直线BC 的方程为2x +3y +7=0.18.(12分)已知圆x 2+y 2-12x =0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同两点A ,B ,求实数k 的取值范围.解 x 2+y 2-12x =0可化为(x -6)2+y 2=36,又直线过点P (0,2),斜率为k ,故l 的方程为y =kx +2,即kx -y +2=0,由题意,得|6k +2|k 2+1<6,得k <43.∴k 的取值范围是⎝⎛⎭⎪⎫-∞,43.19.(13分)已知P (1,2)为圆x 2+y 2=9内一定点,过P 点任作直线,与圆相交,求弦的中点的轨迹方程.解 设过P 点的直线与圆相交于A ,B 两点,C 为AB 的中点,设C (x ,y ),由题意,得当P 与C 不重合时,△OPC 为直角三角形,∴C 点在以OP 为直径的圆上,又OP 的中点⎝ ⎛⎭⎪⎫12,1,|OP |=12+22=5,∴点C 的轨迹方程为⎝ ⎛⎭⎪⎫x -122+(y -1)2=54(除去P 点).又当x =1,y =2时上式仍成立,∴点C 的轨迹方程为⎝ ⎛⎭⎪⎫x -122+(y -1)2=54.20.(13分)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m ;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解 (1)原方程化为(x -1)2+(y -2)2=5-m . ∵此方程表示圆, ∴5-m >0. ∴m <5.(2)设M (x 1,y 1),N (x 2,y 2), 则x 1=4-2y 1,x 2=4-2y 2, 得x 1x 2=16-8(y 1+y 2)+4y 1y 2. ∵OM ⊥ON , ∴x 1x 2+y 1y 2=0.∴16-8(y 1+y 2)+5y 1y 2=0.①由⎩⎪⎨⎪⎧x =4-2y ,x 2+y 2-2x -4y +m =0,得 5y 2-16y +m +8=0. ∴y 1+y 2=165,y 1y 2=8+m 5. 代入①得m =85.(3)以MN 为直径的圆的方程为 (x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0, 即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.∴所求圆的方程为x 2+y 2-85x -165y =0.21.(13分)已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆外,过点P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足|PM |=|PO |的点P 的轨迹方程.解 (1)把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为(-1,2),半径为2.①当l 的斜率不存在时,l 的方程为x =1满足条件.②当l 的斜率存在时,设斜率为k ,则l :y -3=k (x -1),即kx -y +3-k =0.由题意,得|-k -2+3-k |1+k 2=2,得k =-34. ∴l 的方程为3x +4y -15=0.综上得,满足条件的切线l 的方程为x =1,或3x +4y -15=0. (2)设P (x ,y ),∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2. 整理得2x -4y +1=0.即点P 的轨迹方程为2x -4y +1=0.。

2018秋新版高中数学北师大版必修2习题第一章立体几何初步 1.7.3 Word版含解析

2018秋新版高中数学北师大版必修2习题第一章立体几何初步 1.7.3 Word版含解析


.把球的表面积扩大到原来的倍,那么它的体积扩大到原来的()
倍倍.倍.倍
解析:设球原来的半径为,则表面积π,体积π,又设扩大后球的半径为,则ππ,
∴,∴扩大后球的体积扩ππ()π,∴.
答案
.棱长为的正方体内有一个球,且与这个正方体的条棱都相切,则这个球的体积应为()
.π.π
解析:由题意可知正方体的面对角线是球的直径,设球的半径为,则,球的体积π.
答案
.一个几何体的三视图如图所示,则该几何体外接球的表面积为()
....
解析:由三视图可知该几何体是三棱柱,它的底面是边长为的等边三角形,侧棱长为.设其外接球的半径为,则,因此球的表面积ππ×.
答案
.
圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的主视图和俯视图如图所示.若该几何体的表面积为π,则()
解析:由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.
∴表××ππ××π
ππ,解得.
答案
.
如图所示,有一个水平放置的透明无盖的正方体容器,容器高 ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为 ,如果不计容器的厚度,那么球的体积为()
. .
. .
解析:设球半径为,根据已知条件知正方体的上底面与球相交所得截面圆的半径为,球心到截面的距离为().所以由(),得,所以球的体积为ππ×,故选.。

高中数学第1章立体几何初步1.2.2空间两条直线的位置关系讲义苏教版必修2

高中数学第1章立体几何初步1.2.2空间两条直线的位置关系讲义苏教版必修2

1.2.2 空间两条直线的位置关系1.空间两直线的位置关系2.公理4及等角定理(1)公理4:平行于同一条直线的两条直线互相平行. 符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c .(2)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.3.异面直线的判定及其所成的角 (1)异面直线的判定定理提示:(1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线既不相交,也不平行.(2)不能把异面直线误认为分别在不同平面内的两条直线,如图中,虽然有a α,b β,即a 、b 分别在两个不同的平面内,但是因为a ∩b =O ,所以a 与b 不是异面直线.(2)异面直线所成的角①定义:a 与b 是异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,我们把直线a ′和b ′所成的锐角(或直角)叫做异面直线a ,b 所成的角.②异面直线所成的角θ的取值范围:0°<θ≤90°.③当θ=π2时,a 与b 互相垂直,记作a ⊥b .1.思考辨析(1)如果a ⊥b ,b ⊥c ,则a ∥c .( )(2)如果a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线.( ) (3)如果a ,b 相交,b ,c 相交,则a ,c 也相交. ( ) (4)如果a ,b 共面,b ,c 共面,则a ,c 也共面. ( )[答案] (1)× (2)× (3)× (4)×2.已知棱长为a 的正方体ABCD ­A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是________.平行 [如图所示,MN 12AC ,又∵ACA ′C ′, ∴MN 12A ′C ′.]3.已知AB ∥PQ ,BC ∥QR ,∠ABC =30°,则∠PQR 等于__________.30°或150° [∠ABC 的两边与∠PQR 的两边分别平行,但方向不能确定是否相同,所以∠PQR =30°或150°.]4.已知a ,b 是异面直线,直线c ∥直线a ,则c 与b 的位置关系是________. 相交或异面 [a ,b 是异面直线,直线c ∥直线a ,因而c 不平行于b ,若c ∥b ,则a ∥b ,与已知矛盾,因而c 不平行于b .]①两条直线无公共点,则这两条直线平行;②两条不重合的直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的直线与平面内的任意一条直线均构成异面直线; ④和两条异面直线都相交的两直线必是异面直线. (2)a ,b ,c 是空间中三条直线,下列给出几个说法: ①若a ∥b ,b ∥c ,则a ∥c ;②a ∥b 是指直线a ,b 在同一平面内且没有公共点;③若a ,b 分别在两个相交平面内,则这两条直线不可能平行.其中正确的有__________.(填序号)思路探究:根据空间两直线位置关系的有关概念及公理4进行判断.(1)② (2)①② [(1)对于①,空间两直线无公共点,则可能平行,也可能异面,因此①不正确;对于②,因为空间两条不重合的直线的位置关系只有三种:平行、相交或异面,所以②正确;对于③,过平面外一点与平面内一点的直线和过平面内这点的直线是相交直线,因此③不正确;对于④,和两条异面直线都相交的两直线可能是相交直线,也可能是异面直线,因此④不正确.(2)由公理4知①正确;由平行线的定义知②正确;若α∩β=l ,a α,b β,a ∥l ,b ∥l ,则a ∥b ,③错误.]空间两直线的位置关系为相交、平行、异面,若两直线有交点则为相交,若两直线共面且无交点则为平行,若以上情况均不满足则为异面.1.如图所示,正方体ABCD ­A 1B 1C 1D 1中,判断下列直线的位置关系: ①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.①平行 ②异面 ③相交 ④异面 [直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线平行,所以①应该填“平行”;点A 1,B ,B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C 异面.同理,直线AB 与直线B 1C 异面,所以②④都应该填“异面”;直线D 1D 与直线D 1C 显然相交于D 1点,所以③应该填“相交”.]1.如图所示,在四棱锥P ­ABCD 中,底面ABCD 是平行四边形,若E ,F ,G ,H 分别为PA ,PB ,PC ,PD 的中点.那么四边形EFGH 是什么四边形?为什么?[提示] 平行四边形.因为在△PAB 中, ∵E ,F 分别是PA ,PB 的中点, ∴EF 12AB ,同理GH 12DC .∵四边形ABCD 是平行四边形,∴ABCD ,∴EFGH ,∴四边形EFGH 是平行四边形.2.如果两条相交直线和另两条相交直线分别平行,那么由等角定理能推出什么结论? [提示] 这两条直线所成的锐角(或直角)相等.【例2】 如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F ,E 1,F 1分别为棱AD ,AB ,B 1C 1,C 1D 1的中点.求证:∠EA 1F =∠E 1CF 1.思路探究:解答本题时,可先证明角的两边分别平行,即A 1E ∥CE 1,A 1F ∥CF 1,然后根据等角定理,得出结论.[证明] 如图所示,在正方体ABCD ­A 1B 1C 1D 1中,取A 1B 1的中点M ,连结BM ,MF 1, 则BF =A 1M =12AB .又BF ∥A 1M ,∴四边形A 1FBM 为平行四边形, ∴A 1F ∥BM .而F 1,M 分别为C 1D 1,A 1B 1的中点,则F 1MC 1B 1. 而C 1B 1BC ,∴F 1M ∥BC ,且F 1M =BC . ∴四边形F 1MBC 为平行四边形, ∴BM ∥F 1C .又BM ∥A 1F , ∴A 1F ∥CF 1.同理取A 1D 1的中点N ,连结DN ,E 1N ,则A 1NDE , ∴四边形A 1NDE 为平行四边形, ∴A 1E ∥DN .又E 1N ∥CD ,且E 1N =CD , ∴四边形E 1NDC 为平行四边形, ∴DN ∥CE 1,∴A 1E ∥CE 1.∴∠EA 1F 与∠E 1CF 1的两边分别对应平行. 即A 1E ∥CE 1,A 1F ∥CF 1, ∴∠EA 1F =∠E 1CF 1.运用公理4的关键是寻找“中间量”即第三条直线.证明角相等的常用方法是等角定理,另外也可以通过证明三角形相似或全等来实现.2.如图,已知棱长为a 的正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.(1)求证:四边形MNA 1C 1是梯形; (2)求证:∠DNM =∠D 1A 1C 1. [证明] (1)在△ADC 中, ∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ADC 的中位线.∴MN 12AC .由正方体性质知,ACA 1C 1, ∴MN 12A 1C 1,即MN ≠A 1C 1.∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1, 又因为ND ∥A 1D 1,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角, ∴∠DNM =∠D 1A 1C 1.11111111DB 1与EF 所成角的大小.思路探究:先根据异面直线所成角的定义找出角,再在三角形中求解.[解] 法一:如图(1),连结A 1C 1,B 1D 1,并设它们相交于点O ,取DD 1的中点G ,连结OG ,A 1G ,C 1G ,则OG ∥B 1D ,EF ∥A 1C 1,(1)∴∠GOA 1为异面直线DB 1与EF 所成的角或其补角. ∵GA 1=GC 1,O 为A 1C 1的中点. ∴GO ⊥A 1C 1.∴异面直线DB 1与EF 所成的角为90°.法二:如图(2),连结A 1D ,取A 1D 的中点H ,连结HE ,HF ,则HE ∥DB 1,且HE =12DB 1.(2)于是∠HEF 为异面直线DB 1与EF 所成的角或补角.设AA 1=1.则EF =22,HE =32, 取A 1D 1的中点I ,连结IF ,IH ,则HI ⊥IF , ∴HF 2=HI 2+IF 2=54,∴HF 2=EF 2+HE 2.∴∠HEF =90°,∴异面直线DB 1与EF 所成的角为90°.法三:如图(3),在原正方体的右侧补上一个全等的正方体,连结DQ ,B 1Q ,则B 1Q ∥EF .(3)于是∠DB 1Q 为异面直线DB 1与EF 所成的角或其补角.设AA 1=1,则DQ =22+1=5,B 1D =12+12+12=3,B 1Q =12+12=2,所以B 1D 2+B 1Q 2=DQ 2,从而异面直线DB 1与EF 所成的角为90°.求两条异面直线所成角的步骤(1)恰当选点,用平移法构造出一个相交角. (2)证明这个角就是异面直线所成的角(或补角).(3)把相交角放在平面图形中,一般是放在三角形中,通过解三角形求出所构造的角的度数.(4)给出结论:若求出的平面角是锐角或直角,则它就是两条异面直线所成的角;若求出的角是钝角,则它的补角才是两条异面直线所成的角.3.如图所示,在空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角.[解] 如图所示,取BD 的中点G ,连结EG ,FG . ∵E ,F ,G 分别为BC ,AD ,BD 的中点,AB =CD , ∴EG 12CD ,GF 12AB .∴∠GFE 就是EF 与AB 所成的角或其补角. ∵AB ⊥CD ,∴EG ⊥GF , ∴∠EGF =90°. ∵AB =CD ,∴EG =GF , ∴△EFG 为等腰直角三角形,∴∠GFE =45°,即EF 和AB 所成的角为45°.1.本节课的重点是会判断空间两直线的位置关系,理解异面直线的定义,会求两异面直线所成的角,能用公理4和等角定理解决一些简单的相关问题.难点是求异面直线所成的角.2.本节课要重点掌握的规律方法(1)判断两条直线位置关系的方法.(2)证明两条直线平行的方法.(3)求异面直线所成角的解题步骤.3.本节课的易错点是将异面直线所成的角求错.1.分别在两个相交平面内的两条直线间的位置关系是( )A.平行B.相交C.异面D.以上皆有可能[答案] D2.若空间两条直线a和b没有公共点,则a与b的位置关系是________.平行或异面[若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.]3.空间中有一个∠A的两边和另一个∠B的两边分别平行,∠A=70°,则∠B=________.70°或110°[∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,又∠A=70°,∴∠B=70°或110°.]4.如图,已知长方体ABCD­A′B′C′D′中,AB=23,AD=23,AA′=2.(1)BC和A′C′所成的角是多少度?(2)AA′和BC′所成的角是多少度?[解](1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角.在Rt△A′B′C′中,A′B′=23,B′C′=23,所以∠B′C′A′=45°.(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BC′所成的角.在Rt△BB′C′中,B′C′=AD=23,BB′=AA′=2,所以BC′=4,∠B′BC′=60°.因此,异面直线AA′与BC′所成的角为60°.。

2018秋新版高中数学北师大版必修2:第一章立体几何初步 1.6.2

2018秋新版高中数学北师大版必修2:第一章立体几何初步 1.6.2
错因分析:错因是没有理解面面垂直的定理,误认为若两个平面 垂直,则一个平面内的所有直线都垂直于另一个平面,显然不正确. 知道面面垂直,要证线线垂直,可将证线线垂直转化为线面垂直,由 已知面面垂直,则可在一个面内作两个平面的交线的垂线,由面面 垂直的性质定理可知该直线垂直于另一个平面.
M Z 目标导航 UBIAODAOHANG
求证:(1)BG⊥平面PAD; (2)AD⊥PB.
分析:由题干可获取以下主要信息:①四边形ABCD是 ∠DAB=60°的菱形;②平面PAD⊥平面ABCD.解答本题可先由面
垂直于面得线垂直于面,再进一步得出线垂直于线.
M Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
D典例透析 IANLI TOUXI
D典例透析 IANLI TOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三 题型四
解析:如图所示,在正方体ABCD- A1B1C1D1中,直线C1C⊥平面 ABCD,直线D1C1⫋平面A1B1C1D1,直线C1C⊥直线D1C1,但是平面 ABCD与平面A1B1C1D1平行,排除A选项;平面ABCD⊥平面D1DCC1, 直线C1C⊥平面ABCD,B1B∥平面D1DCC1,但是B1B∥C1C,排除B选项; 平面ABCD⊥平面A1ABB1,平面ABCD∩平面A1ABB1=AB,AB⊥BC1, 但是BC1不垂直于平面A1ABB1,排除D选项.
求证:EF∥BD1.
分析:题目条件中给出了线线垂直,通过转化可证得线面垂直,要
证EF∥BD1,只需证明EF与BD1同垂直于某一平面即可,由条件可知 这里选择平面AB1C.
M Z 目标导航 UBIAODAOHANG
知识梳理

2018秋新版高中数学北师大版必修2:第一章立体几何初步 1.1.2

2018秋新版高中数学北师大版必修2:第一章立体几何初步 1.1.2

(5)棱柱的性质有:
①侧棱互相平行且相等,侧面都是平行四边形. ②两个底面与平行于底面的截面是全等的多边形,如图①所示. ③过不相邻的两条侧棱的截面是平行四边形,如图②所示.
M Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
1.2 简单多面体
-1-
M Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
1.知道多面体、棱柱、棱锥、棱台的结构特征,并能结合这些结 构特征认识常见几何体.
2.掌握棱锥、棱台平行于底面的截面的性质. 3.知道棱柱、棱锥、棱台的分类及表示方法,认识正棱柱、正棱 锥、正棱台的结构特征及性质.
知识梳理
HISHI SHULI
D典例透析 IANLI TOUXI
HISHI SHULI
D典例透析 IANLI TOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三 题型四
【变式训练1】 下列命题中,正确的是( ) A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱 B.棱柱中互相平行的两个面叫作棱柱的底面 C.棱柱的侧面是平行四边形,而底面不是平行四边形 D.棱柱的侧棱相等,侧面是平行四边形
(4)特殊的棱台:用正棱锥截得的棱台叫作正棱台.正棱台的侧面 是全等的等腰梯形.
(5)棱台的性质:
①侧棱延长后交于一点,侧面是梯形. ②两底面与平行于底面的截面是相似多边形,如图①所示. ③过不相邻的两条侧棱的截面是梯形,如图②所示.

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版高中数学必修二全册同步习题含解析目录第1章立体几何初步 1.1.1习题第1章立体几何初步 1.1.2习题第1章立体几何初步 1.2习题第1章立体几何初步 1.3.1习题第1章立体几何初步 1.3.2习题第1章立体几何初步 1.4.1习题第1章立体几何初步 1.4.2习题第1章立体几何初步 1.5.1.1习题第1章立体几何初步 1.5.1.2习题第1章立体几何初步 1.5.2习题第1章立体几何初步 1.6.1.1习题第1章立体几何初步 1.6.1.2习题第1章立体几何初步 1.6.2习题第1章立体几何初步 1.7.1习题第1章立体几何初步 1.7.2习题第1章立体几何初步 1.7.3习题第1章立体几何初步习题课习题第1章立体几何初步检测习题第2章解析几何初步 2.1.1习题第2章解析几何初步 2.1.2.1习题第2章解析几何初步 2.1.2.2习题第2章解析几何初步 2.1.3习题第2章解析几何初步 2.1.4习题第2章解析几何初步 2.1.5.1习题第2章解析几何初步 2.1.5.2习题第2章解析几何初步 2.2.1习题第2章解析几何初步 2.2.2习题第2章解析几何初步 2.2.3.1习题第2章解析几何初步 2.2.3.2习题第2章解析几何初步 2.3.1-2.3.2习题第2章解析几何初步 2.3.3习题第2章解析几何初步检测习题模块综合检测习题北师大版2018-2019学年高中数学必修2习题01第一章立体几何初步§1简单几何体1.1简单旋转体1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心答案:D2.下面左边的几何体是由选项中的哪个图形旋转得到的()解析:选项B中的图形旋转后为两个共底面的圆锥;选项C中的图形旋转后为一个圆柱与一个圆锥的组合体;选项D中的图形旋转后为两个圆锥与一个圆柱的组合体.答案:A3.用一个平面去截一个几何体,得到的截面一定是圆面,则这个几何体是()A.圆锥B.圆柱C.球D.圆台答案:C4.AB为圆柱下底面内任一不过圆心的弦,过AB和上底面圆心作圆柱的一截面,则这个截面是()A.三角形B.矩形C.梯形D.以上都不对解析:如图所示,由于圆柱的上下底面相互平行,故过AB和上底面圆心作圆柱的一截面与上底面的交线CD 必过上底面圆心,且CD∥AB,在圆柱的侧面上,连接A,C(或B,D)两点的线是曲线,不可能是直线.故这个截面是有两条边平行、另两边是曲线的曲边四边形.故选D.答案:D5.以钝角三角形的较短边所在的直线为轴,其他两边旋转一周所得的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图所示.旋转一周后其他两边形成的几何体为在圆锥AO的底部挖去一个同底的圆锥BO.答案:D6.点O1为圆锥高上靠近顶点的一个三等分点,过O1与底面平行的截面面积是底面面积的()A.13B.23C.14D.19解析:如图所示,由题意知SO1∶SO=1∶3,∴O1B∶OA=1∶3,∴S☉O1∶S☉O=1∶9,故选D.答案:D7.下列说法中错误的是.①过圆锥顶点的截面是等腰三角形;②过圆台上底面中心的截面是等腰梯形;③圆柱的轴截面是过母线的截面中面积最大的一个.答案:②8.若过轴的截面是直角三角形的圆锥的底面半径为r,则其轴截面的面积为.解析:由圆锥的结构特征,可知若过轴的截面为直角三角形,则为等腰直角三角形,其斜边上的高为r,所以S=12×2r2=r2.答案:r29.已知圆锥的母线与旋转轴所成的角为30°,母线的长为2,则其底面面积为.解析:如图所示,过圆锥的旋转轴作截面ABC,设圆锥的底面半径为r,底面圆心为O.∵△ABC为等腰三角形,∴△ABO为直角三角形.又∠BAO=30°,∴BO=r=1AB=2.∴底面圆O的面积为S=πr2=π2.答案:π10.把一个圆锥截成圆台,已知圆台的上、下底面的半径比是1∶4,母线长是10 cm,求这个圆锥的母线长.分析:处理有关旋转体的问题时,一般要作出其过轴的截面,在这个截面图形中去寻找各元素之间的关系.解:设圆锥的母线长为y cm,圆台上、下底面的半径分别为x cm,4x cm.作圆锥过轴的截面如图所示.在Rt△SOA中,O'A'∥OA,则SA'SA =O'A'OA,即y-10y =x4x,解得y=403.故圆锥的母线长为40cm.11.圆锥的底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自点A出发在侧面上绕一周回到点A的最短路程.解:沿圆锥的母线SA将侧面展开,如图所示.则线段AA1就是所求的最短路程.∵弧A1A的长为2πr,SA=3r,设弧A1A所对的圆心角为α,∴απ·3r=2πr,∴α=120°.∴AA1=SA·cos30°×2=3r×3×2=33r,即所求最短路程是33r.1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为23的正三棱锥P−ABC中,∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos30°=2×23×3=6.答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又NCMA =P1CP1A=25,所以NC=45.§2直观图1.关于用斜二测画法所得的直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:根据斜二测画法的规则知,正方形的直观图为平行四边形.答案:B2.水平放置的△ABC,有一条边在水平线上,它的斜二测直观图是正三角形A'B'C',则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据斜二测画法的规则,可知△ABC中有一个角是钝角,所以△ABC是钝角三角形.答案:C3.如图所示为一平面图形的直观图,则此平面图形可能是()答案:C4.对于一条边在x轴上的三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.2倍B.2C.2D.1解析:由于平行于y轴的线段其平行性不变,长度变为原来的一半,又直观图中∠x'O'y'=45°,设原三角形的面积为S,其直观图的面积为S',则S'=1×2S=2S.答案:B5.一个水平放置的三角形的直观图是等腰直角三角形A'B'O',如图所示,若O'B'=1,那么原△ABO的面积是()A.12B.22C.2D.22解析:由斜二测画法,可知原三角形为直角三角形,且∠AOB=90°,OB=1,OA=2O'A'=22,∴S△AOB=12×1×22= 2.故选C.答案:C6.已知△A'B'C'为水平放置的△ABC的直观图,如图所示,则在△ABC的三边及中线AD中,最长的线段是()A.ABB.ADC.BCD.AC解析:由斜二测画法,可知原图形为直角三角形.AC为斜边,D为BC的中点,故AC>AD,故最长线段为AC.答案:D7.一个平面图形的斜二测直观图是腰长为2的等腰直角三角形,如图,则其平面图形的面积为.答案:48.已知正三角形ABC的边长为a,则水平放置的△ABC的直观图△A'B'C'的面积为.解析:图①、图②分别为实际图形和直观图.由图可知A'B'=AB=a,O'C'=1OC=3a,在图②中作C'D'⊥A'B'于点D',则C'D'=2O′C′=6a.所以S△A'B'C'=12A′B′·C'D'=12×a×68a=616a2.答案:616a29.在等腰梯形ABCD中,上底边CD=1,AD=CB=2,下底边AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为.解析:等腰梯形ABCD的高为1,且直观图A'B'C'D'仍为梯形,其高为1sin45°=2,故面积为1×(1+3)×2= 2.答案:2210.画出如图所示放置的直角三角形的直观图.解:画法:(1)画x'轴和y'轴,使∠x'O'y'=45°(如图②所示);(2)在原图中作BD⊥x轴,垂足为D(如图①所示);(3)在x'轴上截取O'A'=OA,O'D'=OD,在y'轴上截取O'C'=12OC,过D'作B'D'∥y'轴,使D'B'=1BD;(4)连线成图(擦去辅助线)(如图③所示).11.用斜二测画法得到一水平放置的Rt△ABC,AC=1,∠ABC=30°,如图所示,试求原三角形的面积.解:如图所示,作AD⊥BC于点D,令x'轴与y'轴的交点为E,则DE=AD,在Rt△ABC中,由∠ABC=30°,AC=1,可知BC=2,AB= 3.由AD⊥BC,AD=DE,可知AD=32,AE=62,由斜二测画法可知,原三角形A'B'C'中,B'C'=BC=2,A'E'=2AE=6,且A'E'⊥B'C',所以S△A'B'C'=1B′C′·A'E'=1×2×6= 6.★12.画水平放置的圆锥的直观图.分析用斜二测画法画水平放置的圆锥的直观图,由于圆锥底面可以看作是水平放置的,因此,只需先画轴,再画底面和高即可.解:(1)画轴,如图所示,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°;(2)画圆锥的底面,画出底面圆的直观图,与x轴交于A,B两点;(3)画圆锥的顶点,在Oz上截取点P,使得PO等于圆锥的高;(4)连线成图,连接P A,PB,并加以整理(擦去辅助线,将被遮挡的部分改为虚线),得圆锥的直观图.§3三视图3.1简单组合体的三视图1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:截去的平面在俯视图中看不到,故用虚线,因此选B.答案:B2.下列各几何体的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:①中正方体的三视图均相同;②中圆锥的主视图和左视图相同;③中三棱台的三视图各不相同;④中正四棱锥的主视图和左视图相同.答案:D3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()解析:D选项的主视图为,故不可能是D选项.答案:D4.如图所示,若△A'B'C'为正三角形,与底面不平行,且CC'>BB'>AA',则多面体的主视图为()解析:因为△A'B'C'为正三角形,面A'B'BA向前,所以主视图不可能是A,B,C三个选项,只能是D.答案:D5.“牟台方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其主视图和左视图完全相同时,它的俯视图可能是()答案:B6.如图所示,画出四面体AB1CD1三视图中的主视图,若以面AA1D1D为投影面,则得到的主视图为()解析:显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A★7.如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()设过点A,E,C1的截面与棱DD1相交于点F,且F是棱DD1的中点,该正方体截去上半部分后,剩余几何体如图所示,则它的左视图应选C.答案:C8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是,图②是,图③是(填写视图名称).解析:由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.如图(a)所示,在正方体ABCD-A1B1C1D1中,P为正方体的中心,则△P AC在该正方体各个面上的射影可能是图(b)中的(把可能的序号都填上).图(a)图(b)解析:要考虑△P AC在该正方体各个面上的射影,在上、下两个面上的射影是①,在前后左右四个面上的射影是④.答案:①④10.(1)画出如图①所示组合体的三视图;(2)图②所示的是一个零件的直观图,试画出这个几何体的三视图.图①图②解(1)该组合体是由一个四棱柱和一个圆锥拼接而成,其三视图如图所示.(2)作出三视图如图所示.★11.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.3.2由三视图还原成实物图1.若一个几何体的主视图和左视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆台C.圆锥D.棱台答案:B2.某几何体的三视图如图所示,则该几何体是()A.棱台B.棱柱C.棱锥D.以上均不对解析:由相似比,可知几何体的侧棱相交于一点.答案:A3.如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,则该四棱锥的直观图是下列各图中的()解析:由俯视图排除B,C选项;由主视图、左视图可排除A选项,故选D.答案:D4.某几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为主视图和左视图为三角形,可知几何体为锥体.又俯视图为四边形,所以该几何体为四棱锥,故选B.答案:B5.如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.答案:B6.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4解析:由三视图画出直观图如图所示,判断这个几何体是底面边长为6,8,10的直角三角形,高为12的躺下的直=2,这就是做成的最大球的半径.三棱柱,直角三角形的内切圆的半径为r=6+8-102答案:B7.把边长为2的正方形ABCD沿对角线BD折起,连接AC,得到三棱锥C-ABD,其主视图、俯视图均为全等的等腰直角三角形(如图所示),其左视图的面积为.解析:如图所示,根据两个视图可以推知折起后∠CEA=90°,其侧视图是一个两直角边长为1的等腰直角三.角形,所以左视图的面积为12答案:18.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与最小值之差是.解析:由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:69.下图是一个几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.解由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体构成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱、下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.★10.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解由三视图可知其几何体是底面边长为2,高为3的正六棱锥,其直观图如图所示.§4空间图形的基本关系与公理第1课时平面性质1.两个平面重合的条件是()A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是()A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是()A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC 与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在P A,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线时,能得到一个平面图形.解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是.解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线P A,PB,PC,PD上各有两个点在α内,由公理2可知,直线P A,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下: 如图所示,连接DN,∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.第2课时 异面直线所成的角1.若直线a ∥b ,b ∩c=A ,则直线a 与c 的位置关系是( ) A.异面 B.相交 C.平行 D.异面或相交答案:D2.在三棱锥A-BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,如果AD 与BC 所成的角是60°,那么∠FEG 为( ) A .60° B .30°C .120°D .60°或120° 解析:异面直线AD 与BC 所成的角可能等于∠FEG ,也可能等于∠FEG 的补角.答案:D3.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定解析:因为l 2∥l 3,所以l 1⊥l 3,l 3⊥l 4.实质上就是l 1与l 4同垂直于一条直线,所以l 1⊥l 4,l 1∥l 4,l 1与l 4既不垂直也不平行都有可能成立,故l 1与l 4的位置关系不确定. 答案:D4.如图,在某个正方体的表面展开图中,l 1,l 2是两条面对角线,则在正方体中,l 1与l 2( ) A.互相平行 B.异面且互相垂直 C.异面且夹角为60° D.相交且夹角为60°解析:将表面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,△ABD 为正三角形,所以l 1与l 2的夹角为60°. 答案:D5.在三棱柱ABC-A 1B 1C 1中,若点E ,F 分别在AB ,AC 上,且AE=13AB ,AF=13AC ,则下列说法正确的是( ) A.EF ⊥BB 1 B.EF ∥A 1B 1 C.EF ∥B 1C 1D.EF ∥AA 1解析:∵AE=1AB ,AF=1AC ,∴EF ∥BC.又ABC-A1B1C1为棱柱,∴BC∥B1C1.∴EF∥B1C1.答案:C6.下列说法正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线解析:A,B选项中,两直线可能异面,D选项中两直线可能相交,也可能异面.答案:C7.如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.解析:将图形还原成正方体,观察有AB与CD,AB与GH,EF与GH共3对异面直线.答案:38.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD中点,则异面直线CD1,EF所成的角的大小为.答案:90°9.如图所示,在四棱锥C-ABED中,底面ABED是梯形.若AB∥DE,DE=2AB,且F是CD的中点,P是CE的中点,则AF与BP的位置关系是.解析:连接PF,∵P,F分别是CE,CD的中点,∴PF∥ED,且PF=1ED.2又AB∥ED,且DE=2AB,∴AB∥PF,且AB=PF,即四边形ABPF是平行四边形,∴BP∥AF.答案:平行10.如图所示,在三棱锥P-ABC中,D,E是PC上不重合的两点,F,H分别是P A,PB上的点,且与点P不重合.求证:EF和DH是异面直线.证明∵P A∩PC=P,∴P A,PC确定一个平面α.∵E∈PC,F∈P A,∴E∈α,F∈α,∴EF⫋α.∵D∈PC,∴D∈α,且D∉EF.又PB∩α=P,H∈PB,且点H与点P不重合,∴H∉α,DH∩α=D,且DH与EF不相交,于是直线EF和DH是异面直线.★11.如图所示,在空间四边形ABCD中,两条对边AB=CD=3,E,F分别是另外两条对边AD,BC上的点,且AE=BF=1,EF=5,求AB和CD所成的角的大小.解如图所示,过点E作EO∥AB,交BD于点O,连接OF,所以AEED =BOOD,所以BOOD=BFFC,所以OF∥CD.所以∠EOF或其补角是AB和CD所成的角.在△EOF中,OE=2AB=2,OF=1CD=1,又EF=5,所以EF2=OE2+OF2,所以∠EOF=90°.即异面直线AB和CD所成的角为90°.★12.在梯形ABCD中(如图①所示),AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD到C'D'的位置,G,H分别为AD'和BC'的中点,得到如图②所示的立体图形.求证:四边形EFGH为平行四边形.。

(完整word)高中数学北师大版目录.doc

(完整word)高中数学北师大版目录.doc

高中数学北师大版目录北师大版《数学 (必修 1)》§ 5 平行关系全书目录:§ 6 垂直关系第一章集合§ 7 简单几何体的面积和体积§ 1 集合的含义与表示§ 8 面积公式和体积公式的简单应用§ 2 集合的基本关系阅读材料蜜蜂是对的§ 3 集合的基本运算课题学习正方体截面的形状阅读材料康托与集合论第二章解析几何初步第二章函数§ 1 直线与直线的方程§ 1 生活中的变量关系§ 2 圆与圆的方程§ 2 对函数的进一步认识§ 3 空间直角坐标系§ 3 函数的单调性阅读材料笛卡儿与解析几何§ 4 二次函数性质的再研究探究活动 1 打包问题§ 5 简单的幂函数探究活动 2 追及问题阅读材料函数概念的发展课题学习个人所得税的计算必修 3全书目录第三章指数函数和对数函数第一章统计§ 1 正整数指数函数§ 1 统计活动:随机选取数字§ 2 指数概念的扩充§ 2 从普查到抽样§ 3 指数函数§ 3 抽样方法§ 4 对数§ 4 统计图表§ 5 对数函数§ 5 数据的数字特征§ 6 指数函数、幂函数、对数函数增长§ 6 用样本估计总体的比较§ 7 统计活动:结婚年龄的变化阅读材料历史上数学计算方面的三大§ 8 相关性发明§ 9 最小二乘法阅读材料统计小史第四章函数应用课题学习调查通俗歌曲的流行趋势§ 1 函数与方程§ 2 实际问题的函数建模第二章算法初步阅读材料函数与中学数学§ 1 算法的基本思想探究活动同种商品不同型号的价格问§ 2 算法的基本结构及设计题§ 3 排序问题§ 4 几种基本语句必修 2 课题学习确定线段 n 等分点的算法全书目录:第一章立体几何初步第三章概率§ 1 简单几何体§ 1 随机事件的概率§ 2 三视图§ 2 古典概型§ 3 直观图§ 3 模拟方法――概率的应用§ 4 空间图形的基本关系与公理探究活动用模拟方法估计圆周率∏的值 1.2 数列的函数特性§ 2 等差数列必修 4 全书目录: 2.1 等差数列2.2 等差数列的前n项和第一章三角函数§ 3 等比数列§ 1 周期现象与周期函数 3.1 等比数列§ 2 角的概念的推广 3.2 等比数列的前n项和§ 3 弧度制§ 4 书雷在日常经济生活中的应§ 4 正弦函数用§ 5 余弦函数本章小节建议§ 6 正切函数复习题一§ 7 函数的图像课题学习教育储蓄§ 8 同角三角函数的基本关系阅读材料数学与音乐第二章解三角形课题学习利用现代信息技术探究的图§ 1 正弦定理与余弦定理像 1.1 正弦定理1.2 余弦定理第二章平面向量§ 2 三角形中的几何计算§ 1 从位移、速度、力到向量§ 3 解三角形的实际应用举例§ 2 从位移的合成到向量的加法本章小结建议§ 3 从速度的倍数到数乘向量复习题二§ 4 平面向量的坐标§ 5 从力做的功到向量的数量积第三章不等式§ 6 平面向量数量积的坐标表示§ 1 不等关系§ 7 向量应用举例 1.1 不等关系阅读材料向量与中学数学 1.2 比较大小§ 2 一元二次不等式第三章三角恒等变形 2.1 一元二次不等式的解法§ 1 两角和与差的三角函数 2.2 一元二次不等式的应用§ 2 二倍角的正弦、余弦和正切§ 3 基本不等式§ 3 半角的三角函数 3.1 基本不等式§ 4 三角函数的和差化积与积化和差 3.2 基本不等式与最大(小)§ 5 三角函数的简单应用值课题学习摩天轮中的数学问题§ 4 简单线性规划探究活动升旗中的数学问题 4.1 二元一次不等式(组)与平面区域4.2 简单线性规划必修 5 4.3 简单线性规划的应用全书共三章:数列、解三角形、不等式。

北师大版必修2高中数学第1章《立体几何初步》垂直关系的判定导学案

北师大版必修2高中数学第1章《立体几何初步》垂直关系的判定导学案

1高中数学 第1章《立体几何初步》垂直关系的判定导学案北师大版必修2你的 疑惑3.(1)半平面:一个平面内的一条直线,把这个平面分成 _________,其中的________都叫作半平面.(2)二面角:从一条直线出发的___________所组成的图形叫作二面角,___________叫做二面角的棱,______________叫作二面角的面.(3)二面角的记法:以直线AB 为棱,半平面α、β为面的二面角,记作________________.(如下图(1))(4)二面角的平面角:以二面角的棱上_________为端点,在两个半平面内分别作___________的两条射线,这两条射线所组成的角叫作二面角的平面角. 如下图(2)中的AOB ∠. ______________的二面角叫作直二面角.(5)两个平面相交,如果所成的二面角是__________,就说这两个平面互相垂直.4. 将一支铅笔垂直于桌面,再用一本书紧贴着铅笔转动,你能观察到书本和桌面的关系吗?再观察下图(1)(2)中的长方体,可以发现:平面α内的直线a 与平面β________,这时,α____β.抽象概括平面和平面垂直的判定定理:如果一个平面经过另一个平面的一条_______,那么这两个平面互相垂直.图形语言: 符号语言:若直线AB ____平面β,AB ______平面α,策略与反思 纠错与归纳【学习目标】 1. 理解直线和平面、平面和平面垂直的判定定理,并能进行简单应用. 2. 通过垂直关系判定定理的探究和应用过程,进一步提高空间想象能力和逻辑思维能力. 3. 通过垂直关系判定定理的探究和应用过程,体会数学和生活的紧密联系. 【重点难点】 重点:直线和平面、平面和平面垂直的判定定理及应用. 难点:对直线和平面、平面和平面垂直判定定理的理解. 【使用说明】 1. 认真阅读课本第35—37页的内容,独立完成自主学习内容. 2. 在自主学习的基础上,通过小组讨论,完成合作探究内容. 【自主学习】 1. 如右图,拿一块教学用的直角三角板,放在墙角,使三角板的 直角顶点C 与墙角重合,直角边AC 所在直线与墙角所在直线重合,将三角板绕AC 转动,在转动过程中,直角边CB 与地面紧贴,这就表示,AC 与地面垂直.抽象概括 直线和平面垂直的定义:如果一条直线和一个平面内的___________直线都_________,那么称这条直线和这个平面垂直. 2. 观察上图(1)的长方体,c b ,是平面α内的两条_______直线,直线a __b ,a __c ,这时,a __α. 观察上图(2)的长方体,平面α内的两条直线c b ,不相交,虽然直线a 与c b ,都______,但是a 与α_________. 抽象概括 直线和平面垂直的判定定理:如果一条直线和一个平面内的_______________都垂直,那么该直线与此平面垂直. 图形语言: 符号语言:若直线a ____平面α,直线b _____平面α, 直线l ____a , 直线l ____b ,a ____A b =, 则α⊥l .天才在于积累 聪明在于勤奋。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)

高中数学课本内容及其重难点北师大版高中数学必修一1、集合的基本关系ﻫ·2、集合·第一章集合(考点的难度不是很大,是高考的必考点)ﻫ·的含义与表示ﻫ·3、集合的基本运算(重点)(2课时)1、生活中的变量关系··第二章函数ﻫ·4、二次函数性质的再研究(重点)3、函数的单调性(重点)ﻫ· 2、对函数的进一步认识ﻫ··5、简单的幂函数(5课时)ﻫ·第三章指数函数和对数函数·2、指数概念的扩充·1、正整数指数函数ﻫ· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)ﻫ·第四章函数应用ﻫ·1、函数与方程ﻫ·2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步ﻫ·1、简单几何体ﻫ2、三视图(重点)·· 3、直观图(1课时)ﻫ·4、空间图形的基本关系与公理(重点)ﻫ·5、平行关系(重点)ﻫ·6、7、简单几何体的面积和体积(重点)·垂直关系(重点)ﻫ· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步·3、空间直角坐标系· 1、直线与直线的方程ﻫ·2、圆与圆的方程ﻫ(4课时)北师大版高中数学必修三1、统计活动:随机选取数字··第一章统计ﻫ· 2、从普查到抽样ﻫ·3、抽样方法6、用样本估计总体·4、统计图表ﻫ·5、数据的数字特征(重点)ﻫ·· 7、统计活动:结婚年龄的变化· 8、相关性ﻫ·9、最小二乘法(3课时)ﻫ·第二章算法初步· 1、算法的基本思想·3、排序问题(重点)· 2、算法的基本结构及设计(重点)ﻫ·4、几种基本语句(2课时)1、随机事件的概率(重点)··第三章概率ﻫ· 2、古典概型(重点)·3、模拟方法――概率的应用(重点、难点)(4课时)ﻫ北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数ﻫ·2、角的概念的推广ﻫ·3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)·7、函数的图像(重点)·8、同角三角函数的基本关系(重点、难点)(5课时)1、从位移、速度、力到向量ﻫ·2、从位移的合成到向量的加法(重ﻫ·第二章平面向量ﻫ·3、从速度的倍数到数乘向量(重点)·点)ﻫ· 4、平面向量的坐标(重点)·5、从力做的功到向量的数量积(重点)ﻫ·6、平面向量数量积的坐标表示(重点)·7、向量应用举例(难点)(5课时)ﻫ·第三章三角恒等变形(重点)·2、二倍角的正弦、余弦和正切·1、两角和与差的三角函数ﻫ·3、半角的三角函数·4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列ﻫ·1、数列的概念· 2、数列的函数特性4、等差数列的前n项和(重点)· 3、等差数列(重点)ﻫ·· 5、等比数列(重点)·6、等比数列的前n项和(重点)ﻫ·7、数列在日常经济生活中的应用·3、2、正弦定理ﻫ1、正弦定理与余弦定理正弦定理ﻫ(6课时)ﻫ·第二章解三角形(重点)ﻫ··4、三角形中的几何计算(难点)ﻫ·5、解三角形的实际应用举例·余弦定理ﻫ(6课时)ﻫ·第三章不等式·1、不等关系ﻫ· 1.1、不等式关系· 1.2、比较大小(重点)ﻫ2,一元二次不等式(重点)ﻫ·2.1、一元二次不等式的解法(重点)ﻫ·2.2、一元二次不等式的应用【4课时】· 3、基本不等式(重点)3.1 基本不等式· 3.2、基本不等式与最大(小)值4线性规划(重点)·4.1、二元一次不等式(组)与平面区(重点)ﻫ·4.2、简单线性规划(重点)· 4.3、简单线性规划的应用(重点、难点) 【3课时】选修1-1第一章常用逻辑用语1命题2.2必要条件2充分条件与必要条件(重点)ﻫ2.1充分条件ﻫ2.3充要条件3全称量词与存在量词ﻫ3.1全称量词与全称命题ﻫ3.2存在量词与特称命题ﻫ3.3全称命题与特称命题的否定ﻫ4逻辑联结词“且’’‘‘或…‘非(重点)4.1逻辑联结词“且ﻫ4.2逻辑联结词“或4.3逻辑联结词‘‘非【1.5课时】ﻫ第二章圆锥曲线与方程(重点)ﻫ1椭圆ﻫ1.1椭圆及其标准方程1.2椭圆的简单性质ﻫ2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3 曲线3.2双曲线的简单性质3.1双曲线及其标准方程ﻫ【8课时】第三章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念ﻫ2.2导数的几何意义3计算导数(重点)ﻫ4导数的四则运算法则(重点)ﻫ4.1导数的加法与减法法则4.2导数的4.2导数的乘法与除法法则ﻫ第四章导数应用(重点)ﻫ4.1导数的加法与减法法则ﻫ乘法与除法法则【6课时】ﻫ选修1-2第一章统计案例1 回归分析ﻫ1.1 回归分析ﻫ1.2相关系数ﻫ1.3可线性化的回归分析ﻫ2独立性检验(重点、重点)2.1条件概率与独立事件2.2独立性检验2.3独立性检验的基本思想ﻫ2.4独立性检验的应用(重点、难点)【4课时】第二章框图(重点,高考必考点)1 流程图ﻫ2结构图【1.5课时】第三章推理与证明1归纳与类比ﻫ1.1归纳推理1.2类比推理ﻫ2数学证明3综合法与分析法3.1综合法3.2分析法4反证法【2课时】1.2复1.1数的概念的扩充ﻫﻫ第四章数系的扩充与复数的引入ﻫ1数系的扩充与复数的引入ﻫ数的有关概念(重点)ﻫ2复数的四则运算(重点、高考必考点)2.1复数的加法与减法ﻫ2.2复数的乘法与除法【1.5课时】ﻫ选修2-1ﻫ第一章常用逻辑用语1命题2充分条件与必要条件ﻫ3全称量词与存在量词4逻辑联结词“且”“或”“非”&…&…(重点)【1.5课时】第二章空间向量与立体几何(重点,在解决立体几何方面有很大的帮助)1 从平面向量到空间向量2 空间向量的运算ﻫ3向量的坐标表示和空间向量基本定理4用向量讨论垂直与平行ﻫ5夹角的计算ﻫ6距离的计算【6课时】ﻫ第三章圆锥曲线与方程(重点、高考大题必考知识点)1 椭圆ﻫ1.1椭圆及其标准方程1.2 椭圆的简单性质2 抛物线2.1抛物线及其标准方程3.1双曲线及其标准方程ﻫ3.2双曲线的简单性质2.2抛物线的简单性质ﻫ3双曲线ﻫﻫ4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征ﻫ4.3 直线与圆锥曲线的交点【8课时】选修2-2第一章推理与证明(重点)ﻫ1归纳与类比ﻫ2综合法与分析法ﻫ3反证法4数学归纳法【2课时】ﻫ第二章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义ﻫ3计算导数ﻫ4导数的四则运算法则4.1导数的加法与减法法则ﻫ4.2导数的乘法与除法法则5简单复合函数的求导法则【2课时】第三章导数应用(重点)1函数的单调性与极值1.1导数与函数的单调性ﻫ1.2函数的极值(重、难点)ﻫ2导数在实际问题中的应用ﻫ2.1实际问题中导数的意义2.2最大、最小值问题(重、难点)【5课时】第四章定积分1定积分的概念1.1定积分背景-面积和路程问题(重点)ﻫ1.2定积分2微积分基本定理3定积分的简单应用(重点)3.1平面图形的面积3.2简单几何体的体积【4课时】ﻫ第五章数系的扩充与复数的引入(重点)1 数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念2复数的四则运算ﻫ2.1复数的加法与减法2.2复数的乘法与除法【2课时】选修2-3第一章计数原理(重点)1.分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2分步乘法计数原理ﻫ2.排列(重点、难点)ﻫ2.1排列的原理2.2排列数公式3.组合3.1 组合及组合数公式3.2 组合数的两个性质ﻫ4.简单计数问题ﻫ5.二项式定理(重、难点)5.2二项式系数的性质5.1二项式定理ﻫ【8课时】第二章概率(重点)ﻫ1.离散型随机变量及其分布列2.超几何分布ﻫ3.条件概率与独立事件4.二项分布5.离散型随机变量均值与方差5.1 离散型随机变量均值与方差(一)5.2离散型随机变量均值与方差(二)6.正态分布6.1 连续型随机变量6.2正态分布【4课时】ﻫ第三章统计案例1.1回归分析1.回归分析ﻫ1.2 相关系数1.3 可线性化的回归分析2.1独立性检验2.独立性检验(重点)ﻫ2.2 独立性检验的基本思想2.3 独立性检验的应用【2课时】选修3-1ﻫ第一章数学发展概述第二章数与符号ﻫ第三章几何学发展史ﻫ第四章数学史上的丰碑----微积分第五章无限第六章数学名题赏析ﻫ选修3-2选修3-3ﻫ第一章球面的基本性质1.直线、平面与球面的我诶制关系ﻫ2.球面直线与球面距离ﻫ第二章球面上的三角形1.球面三角形2.球面直线与球面距离ﻫ3.球面三角形的边角关系4.球面三角形的面积【2课时】ﻫ第三章欧拉公式与非欧几何1.球面上的欧拉公式2.简单多面体的欧拉公式3.欧氏几何与球面几何的比较ﻫ选修4-1第一章直线、多边形、圆(重点)1.全等与相似ﻫ2.圆与直线ﻫ3.圆与四边形【2课时】第二章圆锥曲线ﻫ1.截面欣赏ﻫ2.直线与球、平面与球的位置关系3.柱面与平面的截面ﻫ4.平面截圆锥面5.圆锥曲线的几何性质【3课时】ﻫ选修4-2ﻫ第一章平面向量与二阶方阵ﻫ1平面向量及向量的运算2向量的坐标表示及直线的向量方程ﻫ3二阶方阵与平面向量的乘法ﻫ第二章几何变换与矩阵1几种特殊的矩阵变换2 矩阵变换的性质ﻫ第三章变换的合成与矩阵乘法ﻫ1变换的合成与矩阵乘法2矩阵乘法的性质ﻫ第四章逆变换与逆矩阵1 逆变换与逆矩阵2 初等变换与逆矩阵ﻫ3二阶行列式与逆矩阵4 可逆矩阵与线性方程组第五章矩阵的特征值与特征向量ﻫ1矩阵变换的特征值与特征向量ﻫ2特征向量在生态模型中的简单应用ﻫ选修4-4ﻫ第一章坐标系1 平面直角坐标系2 极坐标系ﻫ3柱坐标系和球坐标系ﻫ第二章参数方程ﻫ1参数方程的概念2 直线和圆锥曲线的参数方程ﻫ3参数方程化成普通方程4平摆线和渐开线ﻫ选修4-5第一章不等关系与基本不等式(重点)l不等式的性质ﻫ2含有绝对值的不等式(难点)3平均值不等式ﻫ4不等式的证明5不等式的应用第二章几个重妻的不等式1柯西不等式ﻫ2排序不等式ﻫ3数学归纳法与贝努利不等式选修4-6第一章带余除法与书的进位制1、整除与带余除法ﻫ2、二进制ﻫ第二章可约性1、素数与合数2、最大公因数与辗转相除法ﻫ3、算术基本定理及其应用ﻫ4、不定方程第三章同余ﻫ1、同余及其应用ﻫ2、欧拉定理还在更新。

2018秋新版高中数学北师大版2习题:第一章立体几何初步 1.1.2

2018秋新版高中数学北师大版2习题:第一章立体几何初步 1.1.2

1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3 cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为的正三棱锥中∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos 30°=2×答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P 沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与的交点为求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又所以NC。

高中数学:第一章《立体几何初步》单元测试(9)北师大版必修2

高中数学:第一章《立体几何初步》单元测试(9)北师大版必修2

立体几何初步—小题型11、空间两直线m l 、在平面βα、上射影分别为1a 、1b 和2a 、2b ,若1a ∥1b ,2a 与2b 交于一点,则l 和m 的位置关系为(A )一定异面 (B )一定平行 (C )异面或相交 (D )平行或异面2、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900(B )∠1+∠2≥900(C )∠1+∠2≤900(D )∠1+∠2<9003、(A 方案)二面角α―AB ―β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么 (A )∠CEB =∠DEB (B )∠CEB >∠DEB(C )∠CEB <∠DEB (D )∠CEB 与∠DEB 的大小关系不能确定 (B 方案)若点A (42+λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为(A )1,-4,9 (B )2,-5,-8 (C )-3,-5,8 (D )2,5,8 4、已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β取最大值时,二面角B ―AC ―D 等于(A )1200(B )900(C )600(D )4505、有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ (C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ 6、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 (A )2F+V=4 (B )2F -V=4 (C )2F+V=2 (D )2F -V=2 7、(A 方案)如图,直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B -APQC 的体积为 (A )2V (B )3V (C )4V (D )5VABCPQA 1B 1C 1(7方案A 图) (7方案B 图)(B 方案)侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 (A )239 (B )433 (C )233 (D )439(A ) (B ) (C ) (D )ABC DA 1B 1C 1D 1AB CDA 1B 1C 1D 1F(8题A 方案图) (8题B 方案图)8、(A 方案)在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是 (A )4条 (B )6条 (C )8条 (D )10条(B 方案)正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,则(A )θ=600(B )θ=450(C )52cos =θ (D )52sin =θABC DA 1B 1C 1D 1OM P(第9题B 方案图)9、(A 方案)已知三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 (A )4π (B )3π (C )2π (D )32π(B 方案)如图,正方体ABCD -A 1B 1C 1D 1中,M 是DD 1的中点,O 是底面正方形ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角为(A )4π (B )3π (C )2π(D )与P 点的位置有关 10、(A 方案)如图所示,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215ACDEFABC DE(第10题A 方案图) (第10题B 方案图)(B 方案)如图所示,四面体ABCD 中,AB ,BC ,CD 两两互相垂直,且AB=BC =2,E 是AC 的中点,异面直线AD 与BE 所成的角的大小是1010arccos,则四面体ABCD 的体积是 (A )8 (B )6 (C )2 (D )3811、已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是(A )2∶π (B )1∶2π (C )1∶π (D )4∶3πABC D A 1B 1C 1D 1PQ(第12题图)12、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a,则三棱锥P -BDQ 的体积为(A )3363a (B )3183a (C )3243a (D )无法确定 13、如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为 (A )61cm (B )157cm (C )1021cm (D )1037cm14、在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外 15、已知四棱锥P -ABCD 的底面为平行四边形,设x =2PA 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为(A )x >y (B )x =y (C )x <y (D )不能确定(B 方案)如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若=11B A a ,=11D A b ,=A A 1c ,则下列向量中与M B 1相等的是(A )21-a +21b +c (B )21a +21b +c (C )21a 21-b +c (D )21-a 21-b +c 16、(A 方案)a 、b 为异面直线,α⊂a ,β⊂b ,又A ∈α,B ∈β,AB =12cm ,AB 与β成60角,则a 、b 间距离为 . (B 方案)已知向量a 、b 满足| a | = 31,| b | = 6,a 与b 的夹角为3π,则3| a |-2(a ·b )+4| b | = .17、正方体的两个面上的两条对角线所成的角为 .18、如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为 时,体积V P -AEB 恒为定值(写上你认为正确的一个答案即可).ABCDEP(第35题图)19、四棱柱ABCD -A 1B 1C 1D 1中,给出三个结论:(1)四棱柱ABCD -A 1B 1C 1D 1为直四棱柱;(2)底面ABCD 为菱形;(3)AC 1⊥B 1D 1. 以其中两个论断作为条件,余下的一个论断作为结论,可以得到三个命题,其中正确命题的个数为 .20、(A 方案)一个四面体的所有棱长都是2,四个顶点在同一个球面上,则此球的表面积为 .(B 方案)已知点A 、B 、C 的坐标分别为(0,1,0),(-1,0,1),(2,1,1),点P 的坐标为(x ,0,z ),若AB PA ⊥,AC PA ⊥,则点P 的坐标为 .简明参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案A CB B D B BC CD C A A A B16、(A 方案)36cm ; (B 方案)23 17、00或600或90018、可有多种答案,如正方形 19、120、(A 方案)3π ; (B 方案)(31,0,32-)。

2018秋新版高中数学北师大版必修2习题:第一章立体几何初步 1.4.1

2018秋新版高中数学北师大版必修2习题:第一章立体几何初步 1.4.1

§4 空间图形的基本关系与公理第1课时 平面性质1.两个平面重合的条件是( )A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是( )A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是( )A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是( )①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是( )A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是( ) A.直线AC B.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C 的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在PA,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点( )A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是( )A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线 时,能得到一个平面图形. 解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是 .解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线PA,PB,PC,PD上各有两个点在α内,由公理2可知,直线PA,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下:如图所示,连接DN, ∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.。

2018秋新版高中数学北师大版必修2习题第一章立体几何初步 1.6.1.1 Word版含解析

2018秋新版高中数学北师大版必修2习题第一章立体几何初步 1.6.1.1 Word版含解析

§垂直关系
垂直关系的判定
第课时直线与平面垂直的判定
.垂直于梯形两腰的直线与梯形所在平面的位置关系是()
.垂直
.相交但不垂直
.平行
.不能确定
解析:梯形的两腰所在的直线相交,根据线面垂直的判定定理可知选项正确.
答案
.若直线不垂直于平面α,则平面α内与直线垂直的直线有()


.无数条
.α内所有直线
解析不垂直于α,但是过上一点作平面α的垂线,令直线与垂线确定的平面与α的交线为,则在α内与垂直的直线必与垂直.
答案
.已知矩形.将△沿矩形的对角线所在的直线进行翻折,在翻折过程中,()
.存在某个位置,使得直线与直线垂直
.存在某个位置,使得直线与直线垂直
.存在某个位置,使得直线与直线垂直
.对任意位置,三对直线“与”“与”“与”均不垂直
解析:当时,由,得∠为直角⊥,又因为⊥,所以⊥平面.所以⊥.
答案
.在正方体中,若为的中点,则直线垂直于()
解析:如图所示,连接,
∵⊥∥,∴⊥.
∵⊥,∴⊥平面.
∵⫋平面,∴⊥.
答案
.在△中⊥平面,则点到的距离是()
.
解析:如图所示,作⊥于,连接,
因为⊥平面,
所以⊥∩,
所以⊥平面,
所以⊥.
因为,所以.
在△中,所以,
在△中,
所以.
答案
.
如图所示,在正方体中,下列判断正确的是() ⊥面
⊥面
⊥面。

北师大版高中数学必修2第一章《立体几何初步》空间直线与直线的位置关系

北师大版高中数学必修2第一章《立体几何初步》空间直线与直线的位置关系
12
知识探究( ):等角定理 知识探究(三):等角定理
思考1:在平面上, 思考1:在平面上,如果一个角的两边与 1:在平面上 另一个角的两边分别平行, 另一个角的两边分别平行,那么这两个 角的大小有什么关系? 角的大小有什么关系?
13
思考2: 如图,四棱柱ABCD--A′B′C′D′ ABCD-思考2: 如图,四棱柱ABCD--A′B′C′D′
北师大版高中数学必修2第一 北师大版高中数学必修 第一 章立体几何初步
1
法门高中姚连省制作
一、教学目标 1、知识与技能:( )了解空间中两条直线的位置关系; :(1)了解空间中两条直线的位置关系; 、知识与技能:( (2)理解异面直线的概念、画法,培养学生的空间想象能 )理解异面直线的概念、画法, ;(3)理解并掌握公理4;( ;(4)理解并掌握等角定理; 力;( )理解并掌握公理 ;( )理解并掌握等角定理; (5)异面直线所成角的定义、范围及应用。 )异面直线所成角的定义、范围及应用。 2、过程与方法:( )师生的共同讨论与讲授法相结合; :(1)师生的共同讨论与讲授法相结合; 、过程与方法:( (2)让学生在学习过程不断归纳整理所学知识。 )让学生在学习过程不断归纳整理所学知识。 3、情感与价值: 3、情感与价值:让学生感受到掌握空间两直线关系的必要 提高学生的学习兴趣。 性,提高学生的学习兴趣。 教学重点、 二、教学重点、难点 重点: 、异面直线的概念; 、公理4及等角定理 及等角定理。 重点:1、异面直线的概念;2、公理 及等角定理。 难点:异面直线所成角的计算。 难点:异面直线所成角的计算。 三、学法与教法 1、学法:学生通过阅读教材、思考与教师交流、概括,从 、学法:学生通过阅读教材、思考与教师交流、概括, 而较好地完成本节课的教学目标。 、教法: 而较好地完成本节课的教学目标。2、教法:探究交流法 四、教学过程

2018秋新版高中数学北师大版必修2习题:第一章立体几何初步 1.6.1.1 Word版含解析

2018秋新版高中数学北师大版必修2习题:第一章立体几何初步 1.6.1.1 Word版含解析

§6垂直关系6.1垂直关系的判定第1课时直线与平面垂直的判定1.垂直于梯形两腰的直线与梯形所在平面的位置关系是()A.垂直B.相交但不垂直C.平行D.不能确定解析:梯形的两腰所在的直线相交,根据线面垂直的判定定理可知选项A正确.答案:A2.若直线a不垂直于平面α,则平面α内与直线a垂直的直线有()A.0条B.1条C.无数条D.α内所有直线解析:a不垂直于α,但是过a上一点作平面α的垂线,令直线a与垂线确定的平面与α的交线为b,则在α内与b垂直的直线必与a垂直.答案:C3.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”“AB与CD”“AD与BC”均不垂直解析:当AC=1时,由DC=1,AD=2,得∠ACD为直角,DC⊥AC,又因为DC⊥BC,所以DC⊥平面ABC.所以DC⊥AB.答案:B4.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则直线CE垂直于()A.ACB.BDC.A1DD.A1A解析:如图所示,连接AC,BD,∵BD⊥AC,A1C1∥AC,∴BD⊥A1C1.∵BD⊥A1A,∴BD⊥平面ACC1A1.∵CE⫋平面ACC1A1,∴BD⊥CE.答案:B5.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则点P到BC的距离是()A.B.2C.3D.4解析:如图所示,作PD⊥BC于D,连接AD,因为PA⊥平面ABC,所以PA⊥BC,PD∩PA=P,所以CB⊥平面PAD,所以AD⊥BC.因为AB=AC,所以CD=BD=3.在Rt△ACD中,AC=5,CD=3,所以AD=4,在Rt△PAD中,PA=8,AD=4,所以PD=2+424答案:D6.如图所示,在正方体ABCD-A1B1C1D1中,下列判断正确的是()A.A1C⊥面AB1D1B.A1C⊥面AB1C1DC.A1B⊥面AB1D1D.A1B⊥AD1解析:在正方体ABCD-A1B1C1D1中,∵平面A1B1C1D1为正方形,∴A1C1⊥B1D1,B1D1⊥CC1,∴B1D1⊥面A1C1C,∴B1D1⊥A1C.同理可得A1C⊥AD1,又AD1∩B1D1=D1,∴A1C⊥面AB1D1.答案:A7.如图所示,平行四边形ABCD的对角线交于点O,点P在▱ABCD所在平面外,且PA=PC,PD=PB,则PO 与平面ABCD的位置关系是.解析:因为AO=CO,PA=PC,所以PO⊥AC,因为BO=DO,PD=PB,所以PO⊥BD.又AC∩BD=O,所以PO⊥平面ABCD.答案:PO⊥平面ABCD8.如图,在直角三角形BMC中,∠BCM=90°,∠MBC=60°,BM=5,MA=3,MA⊥BC,AB=4,则∠MCA的正弦值为.解析:因为BM=5,MA=3,AB=4,所以AB2+AM2=BM2,所以MA⊥AB.又因为MA⊥BC,AB⫋平面ABC,BC⫋平面ABC,且AB∩BC=B,所以MA⊥平面ABC,所以MA⊥AC.又因为∠MBC=60°,所以=23.MC=53,所以sin∠MCA=MA=532答案:2359.如图所示,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,给出下面四个结论:①AH⊥平面EFH;②AG⊥平面EFH;③HF⊥平面AEF;④HG⊥平面AEF.其中正确结论的序号是.解析:在这个空间图形中,AH⊥HF,AH⊥HE,所以AH⊥平面EFH.答案:①★10.如图所示,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF,EF∥AB,EF⊥FB,BF=FC,H为BC的中点.求证:AC⊥平面EDB.证明如图所示,设AC与BD交于点G,则G为AC的中点,连接EG,GH,则GH∥AB∥EF,且AB=EF,∴四边形EFHG为平行四边形.由四边形ABCD为正方形,有AB⊥BC.又EF∥AB,∴EF GH=12⊥BC,又EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH.∴AB⊥FH.又BF=FC,H为BC的中点,∴FH⊥BC,∴FH⊥平面ABCD.∴FH⊥AC.又由四边形EFHG为平行四边形得FH∥EG,∴AC⊥EG.又AC⊥BD,EG⫋平面EDB,BD⫋平面EDB,EG∩BD=G,∴AC⊥平面EDB.★11.如图所示,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.分析在第(1)问中,可考虑利用线线平行去证明线面平行,连接AD1,可先证明AD1和FP平行,再证明BC1平行于AD1,从而可证BC1平行于平面EFPQ.在第(2)问中,可考虑利用线线垂直去证线面垂直,需证AC1与平面MNPQ内两条相交直线垂直.证明(1)如图所示,连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⫋平面EFPQ,BC1⊈平面EFPQ,故直线BC1∥平面EFPQ.(2)如图所示,连接AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⫋平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⫋平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可得PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.。

高中数学第1章立体几何初步1_1_1简单旋转体学案北师大版必修2

高中数学第1章立体几何初步1_1_1简单旋转体学案北师大版必修2

1.1 简单旋转体1.以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面.球面所围成的几何体叫作球体,简称球.半圆的圆心叫作球心.连接球心和球面上任意一点的线段叫作球的半径.连接球面上两点并且过球心的线段叫作球的直径.2.分别以矩形的一边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台.在旋转轴上这条边的长度叫作它们的高,垂直于旋转轴的边旋转而成的圆面叫作它们的底面,不垂直于旋转轴的边旋转而成的曲面叫作它们的侧面,无论转到什么位置,这条边都叫作侧面的母线.圆台也可以看作是用平行于圆锥底面的平面截这个圆锥而得到的.3.一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.判断正误(正确的打“√”,错误的打“×”)(1)在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线.( )(2)圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线.( )(3)在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线. ( )(4)圆柱的任意两条母线相互平行.( )(5)球和球面是两个不同的概念.球面指球的表面,而球不仅包括球的表面,还包括球面包围的空间.( )[答案] (1)×(2)√(3)×(4)√(5)√题型一旋转体的结构特征【典例1】给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的母线长大于高;④夹在圆柱的两个截面间的几何体还是一个旋转体;⑤圆锥侧面的母线长有可能大于圆锥底面圆的直径.其中说法正确的是________.[思路导引] 根据圆柱、圆台、圆锥的几何特征判断.[解析] ①正确,圆柱的底面是圆面;②正确,如图(1)所示,经过圆柱任意两条母线的截面是一个矩形面;③正确,圆台的上下底面半径、母线及高构成一个直角梯形,母线长大于高;④不正确,圆柱夹在两个不平行于底面的截面间的几何体不是旋转体;⑤正确,如图(2)所示,圆锥侧面的母线长有可能大于圆锥底面圆半径的2倍(即直径).[答案] ①②③⑤(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[针对训练1] 下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截圆锥得到的截面一定是一个圆;③圆台的任意两条母线的延长线,可能相交也可能不相交;④球的半径是球面上任意一点与球心的连线段.其中正确的个数为( )A.0 B.1 C.2 D.3[解析] ②错误,截面可能是一个三角形;③错误,圆台的任意两条母线的延长线必相交于一点;①④正确.故选C.[答案] C题型二旋转体的有关计算【典例2】已知一个圆台的上、下底面半径分别是1 cm、2 cm,截得圆台的圆锥的母线长为12 cm,求这个圆台的母线长.[思路导引] 圆锥、圆台的轴截面中有母线与上、下底面圆半径.因此可以考虑用轴截面解答.[解] 如图是几何体的轴截面,由题意知AO=2 cm,A′O′=1 cm,SA=12 cm.由A′O′AO=SA′SA,得SA′=A′O′AO·SA=12×12=6(cm),于是AA′=SA-SA′=6(cm),故这个圆台的母线长为6 cm.旋转体中有关底面半径、母线、高的计算,可利用轴截面求解,即将立体问题平面化.对于圆台的轴截面,可将两腰延长相交后在三角形中求解.这是解答圆台问题常用的方法.[针对训练2] 用一个平行于圆锥底面的平面截该圆锥,截得圆台的上、下底面半径之比是1∶4,截去的小圆锥的母线长是3 cm,则圆台的母线长________cm.[解析] 如图,设圆台的母线长为y,小圆锥底面与被截的圆锥底面半径分别是x,4x.根据相似三角形的性质得33+y=x4x,解此方程得y=9.所以圆台的母线长为9 cm.[答案] 91.关于下列几何体,说法正确的是( )A.图①是圆柱B.图②和图③是圆锥C.图④和图⑤是圆台D.图⑤是圆台[解析] 图①与图④中几何体两个底面不互相平行,所以它们不是圆柱和圆台.图②与图③中几何体的过旋转轴的截面(轴截面)不是等腰三角形,所以它们不是圆锥.图⑤是圆台.[答案] D2.下列命题正确的个数为( )①圆柱的轴是过圆柱上、下底面圆的圆心的直线;②矩形的任意一条边都可以作为轴,其他边绕其旋转围成圆柱;③矩形绕任意一条直线旋转,都可以围成圆柱.A.1 B.2 C.3 D.4[解析]3.球的直径有( )A.一条 B.两条 C.三条 D.无数[解析] 经过球心且端点在球面上的线段都是球的直径,则球有无数条直径.[答案] D4.关于圆台,下列说法正确的是________.①两个底面平行且全等;②圆台的母线有无数条;③圆台的母线长大于高;④两底面圆心的连线是高.[解析] 圆台的上底面和下底面是两个大小不同的圆,则①不正确,②③④正确.[答案] ②③④课后作业(一)(时间45分钟)学业水平合格练(时间20分钟)1.下列说法:①以直角三角形的一边所在的直线为旋转轴,旋转一周得到的旋转体为圆锥;②以直角梯形的一腰所在的直线为旋转轴,旋转一周得到的旋转体为圆台;③圆柱、圆锥、圆台的底面都是圆;④分别以矩形两条不相等的边所在直线为旋转轴,将矩形旋转一周,所得的两个圆柱是不同的圆柱.其中正确的有( )A.1个 B.2个 C.3个 D.4个[解析] 圆锥是以直角三角形的一条直角边所在的直线为旋转轴旋转而成的,所以①是错误的;圆台是以直角梯形中垂直于底边的腰所在的直线为旋转轴旋转而成的,所以②是错误的;③显然是正确的;由圆柱的定义可知,随便以矩形的哪条边所在的直线为旋转轴,将矩形旋转一周所得到的旋转体都是圆柱,但显然不是同一圆柱,所以④正确,所以答案选B.[答案] B2.下列说法不正确的是( )A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面[解析] 由圆锥的概念知直角三角形绕它的一条直角边所在直线旋转一周所围成的几何体是圆锥,即旋转轴为直角三角形的一条直角边所在的直线,因而C错.[答案] C3.一个圆锥的母线长为5,底面半径为3,则该圆锥的轴截面的面积为( )A .10B .12C .20D .15[解析] 圆锥的轴截面是等腰三角形、两腰为圆锥的母线、底边为圆锥的底面圆的直径,所以轴截面的面积S =12×2×3×52-32=12,故选B.[答案] B4.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是( )A .30°B .45°C .60°D .90°[解析] 设圆锥底面半径为r ,母线长为l ,则有2πr =12·2πl .∴2r =l ,即△ABC 为等边三角形,故顶角为60°. [答案] C5.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( ) A .8 B.8π C.4π D.2π[解析] 若4为底面周长,则圆柱的高为2,此时圆柱的底面直径为4π,其轴截面的面积为8π;若底面周长为2,则圆柱高为4,此时圆柱的底面直径为2π,其轴截面面积为8π.[答案] B6.一圆锥的母线长为6,底面半径为3,用该圆锥截一圆台,截得圆台的母线长为4,则圆台的另一底面半径为________.[解析] 作轴截面如图,则r 3=6-46=13, ∴r =1. [答案] 17.一个与球心距离为1的平面截球所得的圆面面积为π,则球的直径为________. [解析] 设球心到平面的距离为d ,截面圆的半径为r ,则πr 2=π,∴r =1.设球的半径为R ,则R =d 2+r 2=2,故球的直径为2 2.[答案] 2 2 8.有下列说法:①球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体; ②球的半径是球面上任意一点与球心的连线; ③球的直径是球面上任意两点间的连线; ④用一个平面截一个球,得到的是一个圆. 其中正确的序号是________.[解析] 球的直径过球心,③不正确;用一个平面截一个球,得到一个圆面,④不正确. [答案] ①②9.已知一个圆柱的轴截面是一个正方形且其面积是Q ,求此圆柱的底面半径. [解] 设圆柱底面半径为r ,母线为l ,则由题意得⎩⎪⎨⎪⎧2r =l ,2r ·l =Q ,解得r =Q2.所以此圆柱的底面半径为Q2.10.若一个圆锥的母线长为12,其轴截面为等边三角形,求这个圆锥的底面圆的面积及圆锥的高.[解] ∵圆锥的轴截面是一个等边三角形,∴圆锥的底面圆的直径为12,∴半径R=6,∴圆锥的底面圆的面积S=πR2=36π,圆锥的高h=122-62=6 3.应试能力等级练(时间25分钟)11.下面说法正确的是( )A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形[解析] 平行于圆锥一条母线的截面不是多边形,因为它的边界有曲线段,只有过母线且过顶点作截面才会出现等腰三角形,故A错误,C正确;过圆台一个底面中心的截面若不经过另一底面,截面也不是多边形,更谈不上等腰梯形,只有过轴的平面才截得等腰梯形,故B、D都不正确.故选C.[答案] C12.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为( )[解析] 截面图形应为图C所示的圆环面.[答案] C13.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体[解析] 外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所以形成的几何体为一个球体挖出一个圆柱.[答案] B14.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为________cm 2.[解析] 如图所示,过球心O 作轴截面,设截面圆的圆心为O 1,其半径为r .由球的性质,OO 1⊥CD .在Rt △OO 1C 中,R =OC =5,OO 1=4,则O 1C =3,所以截面圆的面积S =π·r 2=π·(O 1C )2=9π.[答案] 9π15.一个圆锥的底面半径为2 cm ,高为6 cm ,在圆锥内部有一个高为x cm 的内接圆柱.(1)用x 表示圆柱的轴截面面积S;(2)当x 为何值时,S 最大?[解] (1)如图,设圆柱的底面半径为r cm ,则由r 2=6-x 6,得r =6-x 3, ∴S =-23x 2+4x (0<x <6).(2)由S =-23x 2+4x =-23(x -3)2+6, ∴当x =3时,S max =6 cm 2.。

1.5.1.2面面平行的判定

1.5.1.2面面平行的判定
H 思路一:在平面PAD内找MN 平行线。
A
M
N G
D
线线平行 线面平行
B
C
思路二:先证面MNG//面PAD,得到MN//面PAD
6.已知有公共边AB的两个全等的矩形ABCD和ABEF不 在同一个平面内,P,Q分别是对角线AE,BD的中点
D
求证:PQ∥平面BCE。
Q A P R
C
B
F
思路1:在平面BCE内找PQ平行线。 思路2:过PQ构造与平面BCE平行的平面。
【例1】如图,在正方体 ABCD A ' B ' C ' D ' 中, 求证:平面 C ' DB // 平面 AB ' D ' .
// DC // D ' C ' 证明: AB ABC ' D ' 是平行四边形 BC '// AD '
' ' 又 BC ' 平面 AB D / ' ' ' AD 平面AB D
D1 A1 N M D
G
C1 B1
H
C B
A
变式3:
分析:连结EF, 证明B1 E // FC,AF // DE
进而证明B1E // 平面ACF,
DE // 平面ACF,
从而平面DEB1 // 平面ACF,
1.判断下列命题是否正确,并说明理由. (1)若平面 内的两条直线分别与平面 平行,则 与 平行; × (2)若平面 内有无数条直线分别与平面 平行,则 与 平行;× (3)平行于同一直线的两个平面平行; × (4)两个平面分别经过两条平行直线,这两个平面平 行; × (5)过已知平面外一条直线,必能作出与已知平面平 行的平面.×
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时平面与平面平行的判定
1.已知三个不重合平面α,β,γ,一条直线l,要得到α∥β,必须满足下列条件中的()
A.l∥α,l∥β,且l∥γ
B.l⫋γ,且l∥α,l∥β
C.α∥γ,且β∥γ
D.以上都不正确
解析:与无公共点
与无公共点
α与β无公共点α∥β.
答案:C
2.下列命题中,正确的是()
A.若平面α内的两条直线和平面β平行,则平面α∥平面β
B.若一条直线和平面α,β都平行,则α∥β
C.若平面α∥β,则平面α内的任一直线都平行于平面β
D.若直线l∥平面α,则l与平面α内所有直线平行
解析:A错误.因为平面α内的这两条直线不一定是相交直线;B错误,平面α与β还可能相交;C正确,因为线面无公共点;D错误,l还可能与α内的直线异面.
答案:C
3.已知直线l,m,平面α,β,则下列命题正确的是()
A.m∥l,l∥αm∥α
B.l∥β,m∥β,l⫋α,m⫋αα∥β
C.l∥m,l⫋α,m⫋βα∥β
D.l∥β,m∥β,l⫋α,m⫋α,l∩m=Mα∥β
解析:A中,m可能在α内,也可能与α平行;B中,α与β可能相交,也可能平行;C中,α与β可能相交,也可能平行;D中,l∩m=M,l,m分别在平面α内,且l,m分别与平面β平行,依据面面平行的判定定理知α∥β.
答案:D
4.在正方体EFGH-E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()
A.平面E1FG1与平面EGH1
B.平面FHG1与平面F1H1G
C.平面F1H1E与平面FHE1
D.平面E1HG1与平面EH1G
解析:如图所示,根据面面平行的判定定理可得,平面E1FG1∥平面EGH1.故选A.
答案:A
5.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有条.
解析:如图所示,设M,N,P,Q为所在棱的中点,易知平面MNPQ∥平面DBB1D1,则过M,N,P,Q这四个点中的任意两个点的直线与平面DBB1D1平行,这种情形有6条,同理,经过BC,CD,B1C1,C1D1四条棱的中点也有6条,故共有12条.
答案:12
6.在空间四边形PABC中,A1,B1,C1分别是△PBC,△PCA,△PAB的重心,则平面ABC与平面A1B1C1的位置关系是.
解析:如图所示,连接PC1,PA1,并延长分别交AB,BC于E,F两点,
∵C1,A1分别为重心,
∴E,F分别为AB,BC的中点,连接EF.
又=2,∴A1C1∥EF.
又EF为△ABC边AC上的中位线,
∴EF∥AC,
∴AC∥A1C1,
又A1C1⊈平面ABC,AC⫋平面ABC,
∴A1C1∥平面ABC,
同理A1B1∥平面ABC,A1B1∩A1C1=A1,
∴平面A1B1C1∥平面ABC.
答案:平行
★7.在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,CD的中点,N是BC的中点,点M 在四边形EFGH及其内部运动,则M满足时,有MN∥平面B1BDD1.
解析:如图所示,当点M在线段FH上时,∵HN∥BD,MH∥DD1,∴平面MNH∥平面BDD1B1, ∴MN∥平面B1BDD1.
答案:点M在线段FH上移动
8.如图所示,在三棱柱ABC-A1B1C1中,E,F,G分别为AA1,AB,AC的中点,M,N,P分别为A1C1,A1B1,C1C的中点.求证:平面EFG∥平面MNP.
证明连接A1C,在四边形ACC1A1中,E,G分别为AA1,AC的中点,所以EG∥A1C.
同理MP∥A1C,
所以EG∥MP.
又因为EG⫋平面EFG,MP⊈平面EFG,
所以MP∥平面EFG.
因为M,N分别为A1C1,A1B1的中点,
所以MN∥B1C1.同理可得,FG∥BC.
又因为BC∥B1C1,所以MN∥FG.
而MN⊈平面EFG,FG⫋平面EFG,所以MN∥平面EFG.
又因为MN∩MP=M,所以平面EFG∥平面MNP.
9.如图所示,E,F,G,H分别是正方体ABCD-A1B1C1D1的棱BC,CC1,C1D1,AA1的中点.求证:
(1)GE∥平面BB1D1D;
(2)平面BDF∥平面B1D1H.
证明(1)如图所示,取B1D1的中点O,连接GO,OB,易证OG∥B1C1,且OG=B1C1,BE∥B1C1,且
BE=B1C1.
∴OG∥BE且OG=BE,
∴四边形BEGO为平行四边形,
∴OB∥GE.
∵OB⫋平面BB1D1D,GE⊈平面BB1D1D,
∴GE∥平面BB1D1D.
(2)由正方体的性质,易知B1D1∥BD,且易证BF∥D1H.
∵B1D1⊈平面BDF,BD⫋平面BDF,
∴B1D1∥平面BDF.
∵D1H⊈平面BDF,BF⫋平面BDF,
∴D1H∥平面BDF.
又B1D1∩D1H=D1,
∴平面BDF∥平面B1D1H.
★10.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,问过点A1作与截面PBC1平行的截面也是三角形吗?并求该截面的面积.
解如图所示,取AB的中点M,C1D1的中点N,连接A1M,A1N,CM,CN.
因为A1N PC1MC,
所以四边形A1MCN是平行四边形.
又A1N∥PC1,A1N⊈平面PBC1,PC1⫋平面PBC1,
所以A1N∥平面PBC1.同理A1M∥平面PBC1.
又A1M∩A1N=A1,
所以平面A1MCN∥平面PBC1.
而过点A1有且仅有一个平面与平面PBC1平行.
=2.故过点A1作与截面PBC1平行的截面是平行四边形A1MCN.容易求得
▱。

相关文档
最新文档