六年级数学上册知识汇总(沪教版)

合集下载

2023学年度沪教版六年级数学上册全册知识点归纳

2023学年度沪教版六年级数学上册全册知识点归纳

2023学年度沪教版六年级数学上册全册
知识点归纳
本文档总结了2023学年度沪教版六年级数学上册全册的知识点。

以下是各个单元的知识点概述:
第一单元:整数
- 正整数、负整数、零
- 整数的比较与排序
- 整数的加法和减法
- 整数的加减法应用
第二单元:几何图形
- 平行线与垂直线
- 三角形与四边形
- 重点图形的性质:正方形、长方形、等边三角形和等腰三角形
- 图形的面积计算
第三单元:小数
- 小数的读法与写法
- 小数之间的比较与排序
- 小数的加法和减法
- 小数的乘法和除法
第四单元:分数
- 分数的读法与写法
- 分数之间的比较与排序
- 分数的加法和减法
- 分数的乘法和除法
第五单元:图表与数据
- 读取、制作和分析图表
- 对数据进行统计和排序
- 图表的比较和解读
- 问题解决与推理思维
第六单元:整数乘法和除法
- 整数的乘法和除法
- 整数运算的应用
- 在解决实际问题中应用整数运算第七单元:数的算法
- 乘法算法(竖式乘法)
- 除法算法(长除法)
- 运算法则及其应用
第八单元:多位数的加减法
- 多位数的竖式加法
- 多位数的竖式减法
- 两步计算和多步计算
- 分多次计算的应用
第九单元:时间、温度和长度
- 小时、分钟和秒钟的读法和写法
- 温度的读法和写法
- 长度单位的换算
- 解决与时间、温度和长度有关的实际问题
以上是2023学年度沪教版六年级数学上册全册的知识点归纳。

希望对你有帮助!。

沪教版六年级数学上册知识点

沪教版六年级数学上册知识点

沪教版六年级数学上册知识点
以下是沪教版六年级数学上册的知识点:
1.整数的意义及表示法:正整数、负整数、0,绝对值,数轴。

2.四则运算:整数间的加法、减法、乘法和除法,加减法的交换律和结合律。

3.小数的初步认识:小数的定义、读法和写法,小数在数轴上的位置,小数和分数的关系。

4.小数的运算:小数的加法、减法和乘法,小数与整数的运算。

5.小数的比较:小数的大小比较,加零不变的比较法,小数的大小与小数点位置的关系。

6.分数的初步认识:分数的定义和表示法,分数和整数的关系,分数在数轴上的位置。

7.分数的运算:分数的加法、减法和乘法,带分数的四则运算,分数的化简和约分。

8.分数的比较:分数的大小比较,同分母比较法,同分子比较法。

9.倍数与约数:倍数和最小公倍数,约数和最大公约数。

10.面积的初步认识:面积的定义和单位,计算矩形面积的公式,面积的性质和简单应用。

11.尺度:尺度的意义和应用,求实物和图纸的比例尺。

12.长、宽和高:直角坐标系,矩形的长、宽和高的认识和测量。

13.长方体和正方体:长方体和正方体的定义,计算体积的公式,体积的性质和简单应用。

14.长方形和正方形:长方形的性质,正方形的性质,计算周长的公式。

15.面积和周长:计算矩形和正方形的周长和面积,解决与面积和周长有关的问题。

16.鲁迅故居:阅读鲁迅故居的图纸,计算房间面积和旅馆用地面积。

请注意,以上只是列举了一部分知识点,具体的内容可能还有其他的知识点未包含在内。

沪教版数学六年级上册知识点

沪教版数学六年级上册知识点

沪教版数学六年级上册知识点阅历是数学的基础,问题是数学的心脏,思索是数学的核心,进展是数学的目标,思想方法是数学的灵魂。

下面是我整理的沪教版数学六班级上册学问点,仅供参考盼望能够关心到大家。

数学六班级上册学问点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是其次个因数必需是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是其次个因数必需是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。

(整数千万不能与分母相乘,计算结果必需是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必需不再含有公因数,这样计算后的结果才是最简洁分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b 1时,ca。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b 1时,ca(b≠0)。

p=一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要留意因数为0时的特别状况。

(四)分数乘法混合运算1、分数乘法混合运算挨次与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

沪教版六年级数学复习资料(已标注重点)

沪教版六年级数学复习资料(已标注重点)

沪教版六年级数学复习资料(已标注重点)
本文档旨在为六年级学生提供沪教版数学的复资料,以准备即将到来的考试。

下面将列出已经标注了重点的重要知识点和技巧。

请同学们认真研究并加以复。

一、整数运算
1. 四则运算:加法、减法、乘法、除法的运算规则和性质。

2. 整数的绝对值:如何求整数的绝对值及其性质。

3. 数轴上的整数:如何在数轴上表示整数,并进行各种运算。

4. 整数的比较:如何比较两个整数的大小。

二、小数运算
1. 小数的读法和写法:正确读写小数并了解小数的性质。

2. 小数的加减法:掌握小数的加法和减法运算。

3. 小数的乘除法:熟练掌握小数的乘法和除法运算。

4. 小数的大小比较:学会比较大小。

三、分数
1. 分数的表示和读法:了解分数的基本表示形式和读法。

2. 分数的化简:熟练化简分数和约分。

3. 分数的加减法:掌握分数的加法和减法运算。

4. 分数的乘除法:熟练掌握分数的乘法和除法运算。

5. 分数的大小比较:学会比较大小。

四、面积和周长
1. 长方形的面积和周长:了解如何计算长方形的面积和周长。

2. 正方形的面积和周长:掌握计算正方形的面积和周长。

3. 三角形的面积:学会计算三角形的面积。

4. 圆的面积和周长:熟悉计算圆的面积和周长的方法。

五、图形的旋转
1. 图形的旋转:学会将图形按照一定规律进行旋转。

以上是本文档的部分内容,希望同学们在复习过程中能够扎实掌握这些知识点和技巧,顺利应对考试。

加油!。

最新沪教版(五四学制)六年级数学上册知识点

最新沪教版(五四学制)六年级数学上册知识点

1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.分解素因数方法: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积.第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子\分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。

沪教版数学六年级上册知识点

沪教版数学六年级上册知识点

沪教版数学六年级上册知识点沪教版数学六年级上册知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数〞指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数〞指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b 1时,ca。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b 1时,ca(b≠0)。

p=一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

沪教版六年级上册--数学知识点梳理

沪教版六年级上册--数学知识点梳理

沪教版六年级上册--数学知识点梳理(共5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--沪教版六年级上册数学知识点梳理一、数的整除1.内容要目数的整除性、因数和倍数、奇数和偶数、素数和合数、公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

2.教学目标(1)知道数的整除性、因数和倍数,奇数和偶数、素数和合数、公因数和公倍数等的意义;知道能被2、5整除的正整数的特征。

(2)会用短除法分解素因数;会求两个正整数的最大公因数和最小公倍数。

3.重点、难点及易错点重点:正确的分解素因数,并会求两个正整数的最大公因数和最小公倍数。

难点:会求两个正整数的最小公倍数。

易错点:1既不是素数也不是合数,概念易混淆。

4.中考必考题型及分数占比结合概率考察素数合数等问题一道填空题4分5.知识结构二、分数1.内容要目(1)分数的概念,分数的加减乘除运算法则,分数与小数的互划与运算;(2)异分母分数的运算,通分、约分的技巧。

2.教学目标(1)知道分数的意义,学会分数的运算法则;(2)通过对分数的学习,提高运算能力和解决实际问题的能力,初步掌握转化的思维方法;(3)能够比较分数与小数的关系及混合运算。

3.重点、难点及易错点重点:分数的乘除混合运算以及通分和约分;易错点:乘除法则的运算4.中考必考题型及分数占比分数的混合运算,一道选择题或者一道填空题,占4分5.知识结构三、比和比例1.内容要目(1)必和比例的概念,比的基本性质,比和比例的有关性质;(2)百分比的概念及应用,百分比与小数、分数的关系。

(3)等可能事件2.教学目标(1)理解比和比例的有关概念及意义,根据比例的概念和基本性质,会解决简单的比例问题;(2)了解百分比在生活中的简单应用,会解决有关比和百分比的简单问题,从中体会数学与现实生活的联系;(3)了解等可能事件,学习用数量来描述一个事件发生的可能性的大小,初步体会概率思想。

沪教版数学六年级上册知识点

沪教版数学六年级上册知识点

沪教版数学六年级上册知识点沪教版数学六年级上册知识点上学期间,不管我们学什么,都需要掌握一些知识点,知识点就是掌握某个问题/知识的学习要点。

为了帮助大家掌握重要知识点,下面是小编收集整理的沪教版数学六年级上册知识点,欢迎大家分享。

(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b<1时,c<a(b≠0)。

< p=""></a(b≠0)。

<>一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

六年级上册数学知识点沪教版(供参考)

六年级上册数学知识点沪教版(供参考)

1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.分解素因数方法: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积.第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子\分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。

沪教版六年级上册知识点详细梳理

沪教版六年级上册知识点详细梳理

上册上海数学知识点梳理版本——沪教版(6)年级上一、数得整除1.内容要目数得整除性、因数与倍数、奇数与偶数、素数与合数、公因数与最大公因数、公倍数与最小公倍数、分解素因数;能被2与5整除得正整数得特征。

2.教学目标(1)知道数得整除性、因数与倍数,奇数与偶数、素数与合数、公因数与公倍数等得意义;知道能被2、5整除得正整数得特征。

(2)会用短除法分解素因数;会求两个正整数得最大公因数与最小公倍数。

3.重点、难点及易错点重点:正确得分解素因数,并会求两个正整数得最大公因数与最小公倍数。

难点:会求两个正整数得最小公倍数。

易错点:1既不就是素数也不就是合数,概念易混淆。

4.中考必考题型及分数占比结合概率考察素数合数等问题一道填空题4分5.知识结构二、分数1.内容要目(1)分数得概念,分数得加减乘除运算法则,分数与小数得互划与运算;(2)异分母分数得运算,通分、约分得技巧。

2.教学目标(1)知道分数得意义,学会分数得运算法则;(2)通过对分数得学习,提高运算能力与解决实际问题得能力,初步掌握转化得思维方法; (3)能够比较分数与小数得关系及混合运算。

3.重点、难点及易错点重点:分数得乘除混合运算以及通分与约分;难点:通分与约分易错点:乘除法则得运算4.中考必考题型及分数占比分数得混合运算,一道选择题或者一道填空题,占4分5.知识结构三、比与比例1.内容要目(1)必与比例得概念,比得基本性质,比与比例得有关性质;(2)百分比得概念及应用,百分比与小数、分数得关系。

(3)等可能事件2.教学目标(1)理解比与比例得有关概念及意义,根据比例得概念与基本性质,会解决简单得比例问题;(2)了解百分比在生活中得简单应用,会解决有关比与百分比得简单问题,从中体会数学与现实生活得联系;(3)了解等可能事件,学习用数量来描述一个事件发生得可能性得大小,初步体会概率思想。

3.重点、难点、易错点重点:比例内项、比例中项难点:百分比结合实际生活问题易错点:百分比得运用及比例中项4.中考题型及分数占比线段得比例关系,结合生活得实际应用问题,占4分,一题填空题5.知识结构四、圆与扇形1.内容要目(1)圆得周长与面积、弧长与扇形得面积等有关概念与计算公式;(2)运用所学结合实际生活问题。

六年级数学上册知识汇总(沪教版)

六年级数学上册知识汇总(沪教版)

六年级数学教材目录(沪教版)六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积第一章整数1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 用字母表示为p÷q= (p、q为正整数)2.2 分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3 分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。

六年级数学上册知识汇总 沪教版

六年级数学上册知识汇总 沪教版

六年级数学教材目录(沪教版)六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积第一章整数1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

沪教版六年级上册数学知识点

沪教版六年级上册数学知识点

1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.通常用什么方法分解素因数: 树枝分解法,短除法公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是1公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。

六年级数学上册知识汇总(沪教版)

六年级数学上册知识汇总(沪教版)

六年级数学上册知识汇总(沪教版)六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积第一章整数1.1 整数和整除的意义1.在数物体的时候;用来表示物体个数的数1,2,3,4,5;……;叫做整数2.在正整数1,2,3,4,5;……;的前面添上“—”号;得到的数—1;—2;—3;—4;—5;……;叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b;如果除得的商正好是整数而没有余数;我们就说a能被b整除;或者说b能整除a。

1.2 因数和倍数1.如果整数a能被整数b整除;a就叫做b倍数;b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的;其中最小的因数是1;最大的因数是它本身4.一个数的倍数的个数是无限的;其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数;能被2整除的数叫做偶数;不能被2整除的数叫做奇数3.在正整数中(除1外);与奇数相邻的两个数是偶数4.在正整数中;与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数;这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数;素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式;这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

极力推荐最全最有效沪教版六年级(预备班)数学知识汇总(全年级配练习)

极力推荐最全最有效沪教版六年级(预备班)数学知识汇总(全年级配练习)

六年级第一学期数学知识汇总(上教版 含练习)第一章:数的整除1. 零和正整数统称为自然数。

正整数、零、负整数统称为整数。

重点题型:1. 在8,-10,0,,-50,73,100,-中,正整数有 , 自然数有 ,整数有 2.最小的自然数是提高:非负整数,如小于3的非负整数有2. 整数a 除以整数b ,若是除得的商是整数而余数为零,咱们就说a 能被b 整除,或说b 能整除a 。

用式子表示:若是 a ÷b=c(其中a 、b ,c 都为整数)称a 能被b 整除或b 能整除a 。

(区分两种表述) 重点题型:1. 以下各组数中,第一个数能被第二个数整除的是 ,第二个数能整除第一个数的是 12和24;39和13;54和27;46和4;17和51;84和72. 12÷3=4,那么 能被 整除; 能整除3. 整除的条件:1)除数,被除数都为整数2)被除数除以除数,商是整数而且余数为零。

重点题型:小明以为能被5整除。

这种说法对吗?4. 整数a被整数b整除,a叫b的倍数(mutiple),b叫a的因数(factor)(也称为约数)因数和倍数是彼此依存的。

重要结论:一个整数的因数的个数是的(填:无穷或有限),其中最小的因数是,最大的因数是。

一个整数的倍数的个数是的(填:有限或无穷),其中最小的倍数是,一个整数最大的倍数。

重点题型:1. 因为4÷2=2,因此4是倍数,2是因数,这种说法对吗?2. 一个整数的最大因数减去那个正整数的最小倍数,所得的差必然()A <0B =0C >0D 不等于03. 会求一个数的因数:如求105的因数4. 会求一个数的倍数:如求7的倍数(写出5个)5. 任何一个正整数至少有两个因数。

( )6. 若是一个数既是12的因数,又是12的倍数,那么那个数必然是。

7. 18的因数 24的因数18和24的最大公因数是5. 能被2整除的数的特点:个位上的数是0,2,4,6,8能被5整除的数的特点:个位上的数是0,5能被10整除(既能被2整除又能被5整除)的数的特点:个位上的数是0能被3整除的数的特点:列位上的数字的和能被3整除能被9整除的数的特点:列位上的数字的和能被9整除重点题型:1. 在15,27,38,62,90,135,420这七个数中:1)能被2整除的数是。

沪教版六年级数学知识点

沪教版六年级数学知识点

沪教版六年级数学知识点沪教版六年级数学课程内容丰富,涵盖了多个数学领域的关键知识点。

以下是一些重要的学习内容:一、数的认识与运算1. 整数:了解整数的基本概念,掌握整数的比较大小和四则运算。

2. 小数:学习小数的意义,小数的读写,以及小数的加减乘除运算。

3. 分数:理解分数的意义,掌握分数的加减法和简单的分数乘除法。

二、代数基础1. 字母表示数:学习用字母表示未知数,理解代数表达式的基本概念。

2. 方程:初步接触方程的概念,学习解简单的一元一次方程。

三、几何初步1. 平面图形:认识常见的平面图形,如三角形、四边形、圆等,理解它们的基本性质。

2. 周长与面积:学习计算平面图形的周长和面积,如正方形、长方形、圆等。

四、数据的收集与处理1. 数据收集:了解数据收集的基本方法,如调查、观察等。

2. 数据整理:学习如何将收集到的数据进行分类、整理。

3. 图表表示:掌握用条形统计图、折线统计图等图表来表示数据。

五、应用题1. 问题解决:学习如何将实际问题转化为数学问题,并运用数学知识解决。

2. 数量关系:理解并应用常见的数量关系,如速度、时间、距离的关系,工作效率等。

六、数学思维与逻辑1. 归纳推理:学习通过观察、实验等方法归纳出一般性的结论。

2. 演绎推理:理解演绎推理的过程,学会从已知条件推导出结论。

七、数学文化1. 数学史:了解数学的发展历史,认识一些著名的数学家及其贡献。

2. 数学在生活中的应用:探索数学在日常生活中的应用,提高数学意识。

结语沪教版六年级数学课程旨在培养学生的数学基础知识和技能,同时激发学生的数学兴趣,提高他们的数学思维能力。

通过这些知识点的学习,学生能够更好地理解数学概念,掌握数学运算技巧,并能够将数学知识应用于解决实际问题。

希望每位学生都能在数学的海洋中遨游,发现数学之美。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学教材目录(沪教版)六年级上册
第一章数的整除
第一节整数和整除
1.1整数和整除的意义
1.2因数和倍数
1.3能被2、5整除的数
第二节分解质因数
1.4素数、合数与分解质因数
1.5公因数与最大公因数
1.6公倍数与最小公倍数
第二章分数
第一节分数的意义和性质
2.1分数与除法
2.2分数的基本性质
2.3分数的大小比较
第二节分数的运算
2.4分数的加减法
2.5分数的乘法
2.6分数的除法
2.7分数与小数的互化
第三章比和比例
第一节比和比例
3.1比的意义
3.2比的基本性质
3.3比例
第二节百分比
3.4百分比的意义
3.5百分比的应用
3.6等可能事件
第四章圆和扇形
第一节圆的周长和弧长
4.1圆的周长
4.2弧长
第二节圆和扇形的面积
4.3圆的面积
4.4扇形的面积
第一章整数
1.1 整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数
2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数
3. 零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2 因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
2.倍数和因数是相互依存的
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
1.3能被2,5整除的数
1.个位数字是0,2,4,6,8的数都能被2整除
2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数
4.在正整数中,与偶数相邻的两个数是奇数
5.个位数字是0,5的数都能被5整除
6. 0是偶数
1.4 素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3. 1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.通常用什么方法分解素因数: 树枝分解法,短除法
1.5 公因数与最大公因数
1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数
3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数
4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数
5.如果两个数是互素数,那么这两个数的最大公因数是1
1.6公倍数与最小公倍数
1.几个数公有的倍数,叫做这几个数的公倍数
2.几个数中最小的公因数,叫做这几个数的最小公倍数
1.同分母分数相加减,分母不变,分子相加减
2.异分母分数相加减,先通分成同分母分数,再按照同分母分数相加减
3.分子比分母小的分数,叫做真分数
4.分子大于或者等于分母的分数叫假分数
5.整数与真分数相加所成的分数叫做带分数
6.假分数化为带分数:分母不变,整数部分为原分子除以分母的商,分子则为原分子除以分母的余数
7.列方程求未知数的一般书写步骤:(1)设未知数为x;(2)根据题意列出方程:(3)根据加减互为逆运算,表示出x等于那些数相加减;(4)计算出x的值,并写出上结论
2.5 分数的乘法
1.两个分数相乘,分子相乘作为分子,分母相乘作为分母
2.如果乘数是带分数,先化成假分数,再进行运算
2.6 分数的除法
1.一个数与其相乘的积为1的数为这个数的倒数;0没有倒数
2.除以一个分数等于乘以这个分数的倒数
3.被除数或除数中有带分数的先化成假分数再进行运算
2.7分数与小数的互化
1.一个分数能不能化为有限小数和分数的分母有关
2.从小数点后某一位开始不断地重复出现前一个或一节数字的无限小数叫做循环小数3.被重复的一个或一节数码称为循环小数的循环节
4.一个分数总可以化为有限小数或无线循环小数
第三章比和比例
3.1比的意义
1.将a与b相除叫a与b的比,记作a:b,读作a比b
2.求a与b的比,b不能为零
3.a叫做比例前项,b叫做比例后项,前项a除以后项b的商叫做比值
4.求两个同类量的比值时,如果单位不同,先统一单位再做比
5.比值可以用整数、分数或小数表示
3.2 比的基本性质
1.比的基本性质是比的前项和后项同时乘以或除以相同的数(0除外),比值不变2.利用比的基本性质,可以把比华为最简整数比
3.两个数的比,可以用比号的形式表示,也可以用分数的形式表示
4.三项连比性质是:如果a:b=m:n,b:c=n:k,那么a:b:c=m:n:k
如果k≠0,那么a:b:c=ak:bk:ck=::
5.将三个整数比化为最简整数比,就是给每项除以最大公约数;
将三个分数化为最简整数比,先求分母的最小公倍数,再给各项乘以分母的最小公倍数;将三个小数比化为最简整数比先给各项同乘以10,100,1000等,化为整数比,再化为最简
整数比
6.求三项连比的一般步骤是:(1)。

寻找关联量,求关联量对应的两个数的最小公倍数(2)根据毕的基本性质,把两个比中关联量化成相同的数
(3)对应写出三项连比
3.3 比例
1.a(第一比例项):b(第二比例项)=c(第三比例项):d(第四比例项);其中a、d叫做比例外项,b、c叫做比例内项
2.如果两个比例内项(外项)相同,即a:b=b:c,那么b叫做a、c的比例中项3.利用比例的基本性质,可以把比例方程转化化为我们常见的形式ad=bc,简单的说,就是内项之积等于外项之积
3.4列方程解应用题的一般书写步骤
分四步:(1)设未知数(2)列方程(3)解方程(4)答
列比例方程时,一定要注意对应关系,一定要注意同类量的单位要对应统一
3.5 百分比的应用
1.赢利问题的俩个基本公式:售价-成本=赢利,赢利率=赢利/成本×100%;
在售价、成本和赢利三个量中,只要知道其中的两个量,就可以计算出赢利率
打折问题的一个基本公式:原(售)价×折数=现(售)价;
在原价、现价和折数三个量中,只要知道其中两个量,就可以计算出第三个量
亏损时赢利意义相对的量:赢利=售价-成本,亏损=成本-售价
2.银行利息的结算和本金、利率和期数有关(注意:贷款利息不纳税)
利息=本金×利率×期数;利息税=利息×20%;
税后本息和=本金+税后利息=本金+利息-利息税=本金+利息×(1-20%)增长率=增长的量/原来的基数×100%
3.6等可能事件
1.从实际生活中感悟那些事件是可能事件,哪些事件是不可能事件
2.可能性的大小可以用一个真分数或百分数表示
第四章圆和扇形
4.1圆的周长
1.周长公式C=πd=2πr ,其中π是一个无限不循环小数,通常取π=3.14 2.会根据题意,有其中2个量求第三个量的值
4.2弧长
1.圆上两点间的部分就是弧,∠AOB称为圆心角
2.圆心角所对的弧长与圆周长的关系
3.设圆的半径为r,圆心角所对的弧长是,弧长公式I=nπr÷180
4.3圆的面积
1.圆的面积
2.环形的面积=大圆的面积-小圆的面积
4.4 扇形的面积
1.扇形面积公式S=LR/2
2.要求阴影部分面积,要善于抓住图形间的位置关系和数量关系进行适当的割补.。

相关文档
最新文档