18.1 公开课教案勾股定理(三)

合集下载

勾股定理教案

勾股定理教案

18.1 勾股定理【教学目标】知识与技能:1、体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握直角三角形三边之间的数量关系。

2、学会初步运用勾股定理进行简单的计算,并解决实际问题。

过程与方法:经历用面积法、拼图法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜测、验证的数学方法,体验从特殊到一般的逻辑推理过程。

情感态度与价值观:1、通过了解勾股定理的历史,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2、体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。

【教学重点】探索和证明勾股定理【教学难点】用拼图方法证明勾股定理【教学过程】一、创设情境导入新课活动1问题1:我们再来看章头图,在下角的图案,它有什么意义?•为什么选定它作为2002年在北京召开的国际数学大会的会徽?问题2:在我国古代,人们将直角三角形中的短的直角边叫做勾,•长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?二、新知探究活动2毕达哥拉斯是古希腊著名的数学家。

相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。

同学们,请你也来观察下图中的地面,看看能发现些什么?问题:你能发现下图中等腰直角三角形ABC 有什么性质吗?活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗? 如下图,•每个小方格的面积均为1,请分别计算出下图中正方形A 、B 、 C ,A′、B′、C ′的面积,看看能得出什么结论.展示交流,获得猜想:命题1:如果直角三角形两直角边分别为a 、b,斜边为c ,那么即 直角三角形两直角边的平方和等于斜边的平方。

赵爽弦图的证法我国汉代的数学家赵爽指出:四个全等的直角三角形 如下拼成一个中空的正方形。

18.1勾股定理(第3课时)教学设计

18.1勾股定理(第3课时)教学设计

第三课时一、教学目标知识与技能能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.过程与方法1.经历将实际问题转化为直角三角形的数学模型过程,•并能用勾股定理来解决此问题,发展学生的应用意识.2.在解决实际问题的过程中,体验解决问题的策略,•发展学生的实践能力和创新精神.3.在解决实际问题的过程中,学会与人合作,•并能与他人交流思维过程和结果,形成反思的意识.情感、态度与价值观1.在用勾股定理探索实际问题的过程中获得成功的体验,•锻炼克服困难的意志,建立自信心.2.•在解决实际问题的过程中形成实事求是的态度以及进行质疑和独立思考的习惯.二、教学重、难点重点:将实际问题转化为直角三角形模型.难点:如何用解直角三角形的知识和勾股定理来解决实际问题.三、教学准备多媒体课件四、教学方法讲练结合,分组探讨五、教学过程(一)复习回顾,引入新课问题1:欲登12米高的建筑物,为完全需要,需使梯子底端离建筑物5米,至少需多长的梯子?设计意图:勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大.它不仅在数学中,而且在其他自然科学中也被广泛的应用.此活动让学生体验勾股定理在生活中的一个简单应用.师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入小组活动中,倾听学生的想法.此活动,教师应重点关注②学生能否将简单的实际问题转化为数学模型;②学生能否利用勾股定理解决实际问题并给予解释;③学生参加数学活动是否积极主动.生:根据题意,(如图)AC是建筑物,则AC=12m,BC=5m,AB是梯子的长度.•所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,AB=13m.所以至少需13m长的梯子.师:很好!由勾股定理可知,已知两直角边的长a,b,就可以求出斜边c的长.•由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知已知斜边与一条直角边的长,就可以求出另一条直角边,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?设计意图:进一步体会勾股定理在现实生活中的广泛应用,提高解决实际问题的能力.师生行为:学生分组讨论、交流,教师深入学生的数学活动中,引导他们发现问题,寻找解决问题的途径.教师在此活动中应重点关注:①学生能否独立思考,发现解决问题的途径,比较AC与宽2.2m 的大小即可;②学生遇到困难,能否有克服的勇气和坚强的毅力.生:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生:在长方形ABCD 中,对角线AC 是斜着能通过的最大长度,求出AC ,再与木板的宽比较,就能知道木板是能否通过.师生共析:解:在Rt △ABC 中,根据勾股定理AC2=AB2+BC2=12+22=52.因此≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.(二)新课教授例1:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?设计意图:进一步熟悉如何将实际问题转化为数学模型,并能用勾股定理解决简单的实际问题,发展学生的应用意识和应用能力.师生行为:学生独立思考后,在小组内交流合作.教师深入到学生的数学活动中,倾听他们是如何将实际问题转化为数学问题的.教师在此活动中应重点关注:①学生克服困难的勇气和坚强的意志力;②学生用数学知识解决实际问题的意识.生:梯子底端B随着梯子顶端A沿墙下滑而外移到D,即BD的长度就是梯子外移的距离.观察图形,可以看到BD=OD-OB,求BD可以先求出OB,OD.师:OB、OD如何求呢?生:根据勾股定理,在Rt△OAB中,AB=3m,OA=2.5m,所以OB2=AB2-OA2=32-2.52=2.752.OB≈1.658m(精确到0.001m)在Rt△OCD中,OC=OA-AC=2m,CD=AB=3m,所以OD2=CD2-OC2=32-22=5.OD≈2.336m(精确到0.001)BD=OD-OB=2.236-1.658≈0.58m(精确到0.01m),所以梯子顶端沿墙下滑0.5m,梯子底端外移0.58m.例2:“执竿进屋”:笨人持竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角.笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.──当代数学教育家清华大学教授许莼舫著作《古算题味》设计意图:通过古代算题的研究,揭发学生学习数学的兴趣,进一步提高学习数学应用数学知识的能力.师生行为:学生先独立思考,读懂题意,后小组交流、讨论、合作完成本活动.教师深入到学生的数学活动中去,倾听学生理解题意,寻找解题思路的过程.本活动教师应重点关注:①学生能否积极主动地参与;②学生能否运用勾股定理,借助方程(或方程组)解决问题.生:解:设竿长为x尺,门框的宽度为(x-4)尺,高度为(x-2)尺,•根据题意和勾股定理,得x2=(x-4)2+(x-2)2.化简,得x2-12x+20=0,(x-10)(x-2)=0,x1=10,x2=2(不合题意,舍去).所以竿长为10尺.(三)例题讲解例1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米。

十八章勾股定理全章教案

十八章勾股定理全章教案

第十八章勾股定理18.1 勾股定理课时安排: 4课时第1课时 18.1 .1 勾股定理(1)三维目标一、知识与技能让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.二、过程与方法1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.三、情感态度与价值观1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。

从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教具准备学生准备若干张方格纸。

教学过程一、创设问题情境,引入新课活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?二.实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1正方形A中含有________个小方格,即A的面积是________个单位面积;正方形B中含有________个小方格,即B的面积是________个单位面积;正方形C中含有________个小方格,即C的面积是________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)?活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,也满足上述结论吗?我们通过对A、B、C,A'、B'、C'几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方,一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,我们不妨在你准备好的方格纸上画出一个两直角边为0,5,1.2的直角三角形来进行验证.生:也有上述结论.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题:(1)如下图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.解:(1)解:由勾股定理可求得旗杆断裂处到杆顶的长度是:92+122=15(m);15+9=24(m),所以旗杆折断之前高为24m.(2)解:另一直角边的长为172-152=8(cm),所以此直角三角形的面积为12×8×15=60(cm2).师:你能用直角三角形的三边关系解答活动1中的问题2.请同学们在小组内讨论完成.四、课时小结1.掌握勾股定理及其应用;2.会构造直角三角形,利用勾股定理解简单应用题.五.布置作业六.板书设计18.1.1勾股定理(1)第2课时勾股定理(2)三维目标一、知识与技能1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.运用勾股定理解决一些实际问题.二、过程与方法1.经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识.三、情感态度与价值观1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义的教育.2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值.教学难点经历用不同的拼图方法证明勾股定理.教具准备每个学生准备一张硬纸板.教学过程一、创设问题情境,引入新课活动1问题:我们曾学习过整式的运算,其中平方差公式(a+b(a-b)=a2-b2,完全平方公式(a±b)2=a2±2ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?生:这两个公式都可以用多项式乘以多项式的乘法法则推导.如下:(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以(a+b)(a-b)=a2-b2;(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2;所以(a±b)2=a2±2ab+b2;生:还可以用拼图的方法说明上面的公式成立.例如:图(1)中,阴影部分的面积为a2-b2,用剪刀将(1)中的长和宽分别为(a-b)和b的长方形剪下来拼接成图(2)的形式便可得图(2)中阴影部分的面积为(a+b)(a-b).而这两部分面积是相等的,因此(a+b)(a-b)=a2-b2成立.生:(a+b)2=a2+2ab+b2也可以用拼图的方法,通过计算面积证明,如图(3)我们用两个边长分别a和b的正方形,两个长和宽分别a和b的长方形拼成一个边长为(a+b)的正方形,因此这个正方形的面积为(a+b)2,也可以表示为a2+2ab+b2,所以可得(a+b)2=a2+2ab+b2.师:你能用类似的方法证明上一节猜想出的命题吗?二、探索研究活动2我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:(1)在一张纸上画4个与图(4)全等的直角三角形,并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用拼图的方法,面积之间的关系说明上节课关于直角三角形三边关系的猜想吗?(3)有人利用图(4)这4个直角三角形拼出了图(5),你能用两种方法表示大正方形的面积吗?大正方形的面积可以表示为:_______________,又可以表示为________________.对比两种衷示方法,你得到直角三角形的三边关系了吗?生:我也拼出了图(5),而且图(5)用两种方法表示大正方形的面积分别为(a+b)2或4× ab+c2.由此可得(a+b)2=4×12 ab+c2.化简得a2+b2=c2.由于图(4)的直角三角形是任意的,因此a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

勾股定理教案 (3)

勾股定理教案 (3)

勾股定理教案一、教学目标1.了解勾股定理的概念和历史;2.掌握勾股定理的表达形式和原理;3.能够运用勾股定理解决实际问题;4.培养学生的逻辑思维和数学推理能力。

二、教学准备1.教学工具:黑板、彩色粉笔、直角三角形模型;2.教学材料:教科书、练习题。

三、教学内容和步骤第一步:导入1.讲解勾股定理的由来和历史背景,引发学生的兴趣;2.提问:你了解什么是勾股定理吗?它有什么作用?第二步:概念讲解1.定义直角三角形:直角三角形是指其中一个角是直角(90度)的三角形;2.定义勾股定理:直角三角形中,直角边的平方等于斜边两个直角边平方和的关系,即a^2 + b^2 = c^2;3.画出直角三角形的示意图,标注出直角边和斜边。

第三步:数学推导1.教师通过几何图形推导,证明勾股定理的成立;2.解释每一步的推理和逻辑。

第四步:示例演算1.教师给出几个实际问题,引导学生运用勾股定理解决;2.学生进行小组讨论,并在黑板上展示他们的解答。

第五步:练习巩固1.发放练习题,让学生自主解答;2.教师巡回指导,帮助学生克服困难。

第六步:拓展应用1.教师介绍几个勾股定理的拓展应用,如勾股数、勾股定理在建筑设计中的应用等;2.引导学生思考其他实际应用,展示他们的思考成果。

第七步:归纳总结1.教师带领学生复习并总结勾股定理的概念和推导过程;2.引导学生思考三角形中其他重要的定理和公式;3.学生合作讨论,向全班展示他们的学习成果。

四、课堂互动1.小组讨论:学生分组进行勾股定理的实际应用讨论;2.教师提问:结合实际情境,向学生提出需要运用勾股定理解决的问题。

五、课后作业1.练习题:完成教师布置的练习题;2.思考题:学生自主思考勾股定理在实际生活中的其他应用,并进行记录。

六、教学评估1.课堂回答问题的准确性和深度;2.练习题完成情况;3.学生在小组讨论中的合作和表达能力。

七、教学延伸1.鼓励学生自主探究勾股定理的拓展应用;2.建议学生查阅相关资料,扩大对勾股定理的了解。

勾股定理教学教案

勾股定理教学教案

人教版:八年级数学下册18.1勾股定理教学教案教学过程(一)、创设情景,导入新课。

人类一直想弄清楚其他星球上是否存在着“人”,并试图与“他们”取得联系,那么我们怎样才能与“外星人”接触呢?数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

人们一直在想:浩瀚无边的宇宙中,不会只有地球上有高级生物——人吧?如果在别的星球上也有“人”,那么怎么互相沟通呢?我国著名的数学家华罗庚教授,在他生前写的文章中这样说:“……如果我们宇宙航船到了一个星球上,那儿也有如我们人类一样高级的生物存在.我们用什么东西作为我们之间的媒介.带幅画去吧,那边风景殊,不了解.带一段录音去吧,也不能沟通.我看最好带两个图形去.一个…数‟,一个…数形关系‟(勾股定理).为了使那里较高级的生物知道我们会几何证明,还可送去下面的图形,即…青朱出入图‟.这些都是我国古代数学史上的成就.”很多国家出版有关勾股定理的邮票用以纪念人类的这一伟大发现和有关数学家。

2002年在北京召开了第24届国际数学大会,曾被誉为数学界的“奥运会”,这就是本届大会会徽的图案(展示图案)。

这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”。

你见过这图案吗?勾股定理有着悠久的历史。

古巴比伦人和古代中国人看出了这个关系;古希腊的毕达哥拉斯学派首先证明了这个关系,很多具有古老文化的民族和国家都会说:我们首先认识的数学定理是勾股定理。

(二)实验操作,探求新知相传2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形的某种数量关系。

a b情境:毕达哥拉斯从朋友家的地砖中发现了什么?问题1:你能发现图中等腰直角三角形ABC三边有什么关系吗?问题2:等腰直角三角形都有上述性质吗?观察a图,并回答问题:(1)观察图1。

正方形A中含有___个小方格,即A的面积是___个单位面积;正方形B中含有___个小方格,即B的面积是___个单位面积;正方形C中含有___个小方格,即C的面积是___个单位面积;(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到结果的?与同伴交流。

【精】《勾股定理》第3课时精品教案

【精】《勾股定理》第3课时精品教案

《勾股定理》第3课时精品教案【教学目标】1.知识与技能(1)了解在数轴上无理数的表示。

(2)能用勾股定理解决问题。

2.过程与方法在讲解与练习中进一步加深理解。

3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。

【教学重点】无理数的表示【教学难点】正确的在数轴上表示无理数。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件。

【课时安排】1课时【教学过程】一、复习导入【过渡】在之前的学习中,我们了解到了数轴这样一个概念。

现在,大家看一下这两个问题,来复习一下有关无理数与数轴的知识。

(1)数轴上表示的点-√5到原点的距离是;(2)点M在数轴上与原点相距√15个单位,则点M表示的实数为。

【过渡】结合数轴的相关知识,我们能够很容易的给出答案。

对于有理数而言,我们能够很轻松的在数轴上找出对应的点。

但是像刚刚的√5与√15,这样的无理数,却很难去表示。

今天,我们就来寻找一种方法,在数轴上找到这样的点的位置。

二、新课教学1.勾股定理【过渡】在八年级上册的学习中,我们得到了一种证明两个直角三角形全等的结论。

寻找大家看一下思考的内容,你能通过勾股定理去证明这个结论是否正确吗?【过渡】在解决数学问题时,我们常常利用数学语言会更直观。

因此,将上述结论转化为数学语言,即为:已知:如图,在Rt △ABC 和Rt △A ’B ’C ’中,∠C=∠C ’=90°,AB=A ’B ’,AC=A ’C ’。

求证:△ABC ≌△A ’B ’C ’。

现在大家来证明一下吧。

(学生回答)课件展示证明过程。

【过渡】这个证明显示了勾股定理在三角形的运算或证明等过程中的应用。

大家在遇到这样的问题的时候,要能够灵活运用勾股定理。

表示无理数【过渡】现在,我们回到课堂最开始的问题,如何在数轴上找到√13的点呢?既然是在勾股定理的应用,那么我们就从这个角度来进行分析。

【过渡】根据勾股定理,知道√13是两个直角边分别为2、3的直角三角形的斜边。

第十八章 勾股定理教案

第十八章 勾股定理教案

备课时间:授课时间:课题:第十八章勾股定理18.1 勾股定理(一)教学目标1、知识与技能探索直角三角形三边关系,掌握勾股定理的运用思想,发展几何思维.2、过程与方法:经历观察与发现直角三角形三边关系过程,感受勾股定理应用意识.3、情感态度与价值观:培养严谨的数学学习的态度,体会勾股定理的应用价值.重点、难点重点:了解勾股定理的演绎过程,掌握定理的应用.难点:理解勾股定理的推导过程.教学过程一、(见课本图P64).教师:讲述毕达哥拉斯的故事(上网收集),引导学生观察该图片,发现问题.学生:观察、听取老师的讲述,从中发现图片a•中含有许多大大小小的等腰直角三角形.教师提问:发现课本图18.1-1中的等腰直角三角形有什么性质吗?学生活动:与同伴合作探讨,从网格图中不难发现下面的现象:图18.1-1右边的三个正方形SⅠ=SⅡ,SⅢ=SⅠ+SⅡ,•即以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.小结:从图18-1-1,我们发现,等腰直角三角形的三边之间具有一种特殊的关系:斜边的平方等于两直角边的平方和.教师提问:上面我们研究了等腰直角三角形三边的性质,但是等腰直角三角形是一种特殊的直角三角形,对于一般的直角三角形是否也有这样的性质呢?请同学们观察图18.1-2,设定每个小方格的面积均为1,(1)•分别计算图中正方形A、B、C、A′、B′、C′的面积;(2)观察其中的规律,你能得出什么结论?•与同伴交流.二、合作探究,体验发现猜想:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2.(命题1)教师活动:介绍我国的赵爽证法,充分应用拼图(课本P65 图18.1-3),•解释“命题1”的,让学生领悟勾股定理的推理。

“赵爽证法”以教师讲解为主,学生参与分析为辅,让学生形成拼图意识,感受我国科学家的伟大发明,拓展学生的知识面,达到加深理解勾股定理的目的.三、联系实际,应用所学问题探究1:一个门框的尺寸如课本图形18.1-4所示,一块长3m,宽2.2m•的薄木板能否从门框内通过?为什么?学生活动:观察、讨论,得到必须应用勾股定理求出木框的斜边AC2=AB2+BC2=12+22=5, 2.236,然后以此为尺寸,来判断薄木板能否通过木框,结论是可以!问题探究2:如图18.1-5,一个3cm长的梯子,AB,斜靠在一竖直的墙AO上,这时AO 的距离为 2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?思路点拨:从BD=OD-OB可以看出,必需先求OB,OD,因此,•可以通过勾股定理在Rt△AOB,Rt△COD中求出OB和OD,最后将BD求出.教师:提出问题,引导学生观察、应用勾股定理,提问个别学生.学生:观察、交流,从中寻找出Rt△AOB,Rt△COD,以此为基础应用勾股定理求得OB和OD.四、随堂练习1.课本P68 “练习”1,2.五、课堂总结1.勾股定理:Rt△ABC中,∠C=90°,a2+b2=c2.2.勾股定理适用于任何形状的直角三角形,在直角三角形中,•已知任意两边的长都可以求出第三边的长.六、布置作业,课本P69 习题18.1 1,2,3,4,5.备课时间:授课时间:课题: 18.1 勾股定理(二)教学目标1、知识与技能:掌握勾股定理在实际问题中的应用.2、过程与方法:经历探究勾股定理在实际问题中的应用,感受勾股定理的应用方法.3、情感态度与价值观:培养良好的思维意识,发展数学理念,体会勾股定理的应用价值.重难点、关键重点:掌握勾股定理的实际应用.难点:理解勾股定理的应用方法.学习方式:采用讲练结合的学习方式教学过程一、回顾交流,小测评估1.填空题(1)等腰三角形中,一边长为4,另一边长为9,则这个三角形的面积是_______.(•填:=______(填:2cm)(2)在Rt△ABC中,∠C=90°,若a=b=2cmm,S△ABC采用“测中反思”的方法,促进学生对知识的理解,发现问题,以利于本节课解决.二、数形结合,应用所学问题探究3:课本P68大家知道,数轴上的点有些是表示有理数,有些表示无理数,•请你在数轴思路点拨:可以利用勾股定理在数轴上作出的线段,做法如下:(1)•在数轴上找到一点A,使OA=5,(2)过A作AT垂直于数轴,垂足为A,在AT上截取AB=2,(3)•连结OB,(4)以O为圆心,OB为半径作弧,弧与数轴的交点C提出问题.12学生活动:借助课本图18.1-7M.【设计意图】拓展勾股定理的应用知识,学会在数轴上作无理数的点.三、随堂练习,巩固深化课本P69 “练习”1,2.四、课堂总结本节课主要学习的内容是:(1)勾股定理的应用,•通过两个“探究”领会勾股定理的应用思想,如可以用来在数轴上描无理数点,可以解决实际情境中的问题等.(2)感受勾股定理的历史.五、布置作业课本P70—71 习题18.1 7,8,9,11,12。

数学:18.1勾股定理教案_(新人教版八年级下)

数学:18.1勾股定理教案_(新人教版八年级下)

人教版八年级下《勾股定理》教学设计江西赣县第二中学李小平一、教案背景1、面向学生:初中八年级2、学科:数学3、课时:1课时4、课前准备:百度搜索勾股定理相关内容和图片5、学情分析:在学习了一般三角形的有关性质,进一步学习特殊三角形的性质-—直角三角形三边的关系。

二、教学课题:用数形结合这一重要的数学思想来证明勾股定理,提高学生的解题技能。

三、教材分析(一)教材的地位与作用勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)教学目标基于以上分析和数学课程标准的要求,制定了本节课的教学目标。

知识与技能:1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。

2、了解勾股定理的内容。

3、能利用已知两边求直角三角形另一边的长。

数学思考:在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。

解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

(三)教学重、难点重点:探索和证明勾股定理难点:用拼图方法证明勾股定理(四)学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。

部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。

18.1 勾股定理 教案.doc

18.1 勾股定理 教案.doc

第十八章勾股定理单元要点分析教材内容本单元教学的主要内容:本单元教学的主要内容是探索直角三角形的三边之间的关系,并运用所得结论解决问题,而且能根据三角形三边的长,判断这个三角形是不是直角三角形.本单元知识结构图:本单元教材分析:在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.勾股定理为我们提供了直角三角形的三边间的数量关系,其逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法.教材通过2500年前,毕达哥拉斯的发现来引入直角三角形三边关系,以及通过“赵爽弦图”来引进勾股定理:“直角三角形两直角边的平方和等于斜边平方”,这个定理教材利用拼图的方法论证勾股定理存在的合理性.教材介绍了古埃及人做直角的方法:把一根长绳打上等距离的13个结,然后以3个结、4个结、5•个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.体现了如果围成的三角形的三边分别为3,4,5,有下面的关系“32+42=52”,那么围成的三角形是直角三角形.从而推出“如果三角形的三边长a、b、c 满足a2+b2=c2时,那么这个三角形是直角三角形”这个勾股定理的逆定理.在应用勾股定理时,应强调直角的前提并分清斜边和直角边.注意a、b、c可以取满足于等式的适当数(整数、分数、小数等).教学目标(三维目标)知识与技能:结合具体的情境,理解和掌握勾股定理和逆定理以及应用.过程与方法:经历探索勾股定理的过程,理解勾股定理的意义以及内涵,掌握其应用方法.情感态度与价值观:以我国古代在勾股定理的研究方面所取得辉煌成就,激发学生的爱国热情,体会勾股定理的应用价值.教学重点本单元教学重点是理解和掌握勾股定理及其逆定理,以及应用.教学难点本单元教学难点是理解勾股定理的推导.教学关键本单元教学关键是通过古今中外的科学家的探究思想,引入勾股定理和逆定理.单元课时划分18.1 勾股定理 2课时18.2 勾股定理的逆定理 1课时复习与交流 1课时单元自测优化设计 1课时教学活动设计18.1 勾股定理第一课时勾股定理(一)教学内容与背景材料本节课主要内容是学习勾股定理及其应用.(课本P72~P76)教学目标知识与技能探索直角三角形三边关系,掌握勾股定理的运用思想,发展几何思维.过程与方法:经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.情感态度与价值观:培养严谨的数学学习的态度,体会勾股定理的应用价值.重难点、关键重点:了解勾股定理的演绎过程,掌握定理的应用.难点:理解勾股定理的推导过程.关键:通过网格拼图的办法来探索勾股定理的证明过程,理解其内涵.教学准备教师准备:制作投影片,设计好拼图(用纸片制作):“探究”1、2的教具.学生准备:预习本节课内容.学法解析1.认知起点:已认识几何图形:直角三角形(含等腰直角三角形).2.知识线索:3.学习方式:采用观察、合作探究、交流的方式理解领会本节课内容.教学过程一、回眸历史,感悟辉煌【显示投影片1】内容1:公元前572~前492年,古希腊著名的哲学家、数学家、•天文学家毕达哥拉斯,他在一次朋友家做客时,发现朋友家用砖铺成的地面中用了直角三角形三边的某种数量关系,请同学们一起来观察图中的地面(显示投影图片a),•你能发现什么呢?(图片见课本图P72).【活动方略】教师活动:操作投影仪,讲述毕达哥拉斯的故事(上网收集),引导学生观察该图片,发现问题.学生活动:观察、听取老师的讲述,从中发现图片a•中含有许多大大小小的等腰直角三角形.内容2:用图片置示学生的发现,引导学生继续发现.教师活动:教师提问:同学们,你能发现课本图18.1-1中的等腰直角三角形有什么性质吗?学生活动:与同伴合作探讨,从网格图中不难发现下面的现象:图18.1-1右边的三个正方形SⅠ=SⅡ,SⅢ=SⅠ+SⅡ,•即以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.教师小结:从图18-1-1,我们发现,等腰直角三角形的三边之间具有一种特殊的关系:斜边的平方等于两直角边的平方和.教师提问:上面我们研究了等腰直角三角形三边的性质,但是等腰直角三角形是一种特殊的直角三角形,对于一般的直角三角形是否也有这样的性质呢?请同学们观察图18.1-2,设定每个小方格的面积均为1,(1)•分别计算图中正方形A、B、C、A′、B′、C′的面积;(2)观察其中的规律,你能得出什么结论?•与同伴交流.学生活动:分四人小组,讨论,并踊跃发表自己的看法.思路点拨:实际上,以斜边为边长的正方形的面积,等于某个正方形的面积减去4个直角三角形的面积.【设计意图】通过历史情境引入,使学生感受到古代文明的成就.在大自然中,看似平淡无奇的现象有时却隐藏着深刻的哲理,激发学生的求知欲.二、合作探究,体验发现【问题牵引】猜想:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2.(命题1)教师活动:介绍我国的赵爽证法,充分应用拼图(课本P74 图18.1-3),•解释“命题1”的,让学生领悟勾股定理的推理;为了加深学生对勾股定理的理解,•设计下面的“阅读理解”.阅读与填空:(显示投影片3)全世界许多国家的数学家以及数学爱好者都曾为勾股定理的证明付出过努力,作出过贡献,这使得这一定理至今已有几百种不同的证法.下面介绍的是古希腊数学家欧几里得(公元前330~前275年)给出的证明.为了使读者更好地理解这个证明,并且从中获得提高几何证题能力与思维能力的收获,对证明过程做了一些推想,请读者边阅读,边思考,并完成填空.为了使阅读能够顺利进行,首先来做一项准备工作,即对图的局部做如下分析:图中的四边形BHJC是正方形,作HM⊥AB,交AB的延长线于M,在△CBK与△BHM中,∵BC=BH,∠CBK=∠_____(填∠BHN),∠CKB=∠BMH,∴△CBK≌△BHM()(填AAS).• ∴BK=HM.现在来看欧几里得是怎样证明勾股定理的.这位几何大师的出发点,与课本中用拼图方法给出的证明的出发点是相同的:都是把一条线段的平方看作是以这条线段为边的________(填:正方形的面积).从这样的想法出发,欧几里得是为了证明“a2+b2=c2”,分别以Rt△ABC的三边为边向三角形外作正方形(如图).欧几里得可能是想到当一条直线从AE所在直线的位置开始,在保持与AE平行的前提下逐步向BD移动时,一定有一个时刻,把正方形ABDE分成的两部分的面积恰好分别等于a和b.上述特殊的位置究竟在何处呢?欧几里得大概是注意到了图形中一个极为特殊的点──点C,决定仔细考虑过点C并且与ED垂直的直线.于是,欧几里得首先引出这样辅助线:过点C 作CL ⊥ED ,交AB 于K ,交ED 于L . 下面是这位杰出的数学家在引出上述辅助线后继续进行探索的结晶.连结CH 、AH 、KD ,则由∠ACB=90°及四边形CBHJ 知AC ∥BH ,点A•与点C•到直线BH 的距离_______(填:相等),又因为△ABH 与△CBH 有公共边________(填BH ),所以S △ABH =S △CBH ( )(填:等底等高面积相等);再把△ABH 看作是以AB•为底的三角形,则其高为_______(填HM ),由于AB=_______(填BD ),HM=_______•(填:BK ),所以,S △ABH =S △BDK ( )(等底等高面积相等),∴S △BDK =S △CBH ( )(•填:等量代换).而S △CBH =12a 2,S △BDK =12S 矩形DBKL ,∴a 2=S 矩形DBKL ①同理可证,b 2=S 矩形AELK ②. 把①②相加,就得到a 2+b 2=S 长方形DBKL +S 长方形AELK ,即a 2+b 2=c 2.学生活动:阅读填空,从中吸引勾股定理的证明方法,加深对勾股定理的领悟.【设计意图】“赵爽证法”以教师讲解为主,学生参与分析为辅,让学生形成拼图意识,感受我国科学家的伟大发明,再通过设计“阅读与填空”,拓展学生的知识面,达到加深理解勾股定理的目的.三、联系实际,应用所学 【显示投影片4】问题探究1:一个门框的尺寸如课本图形18.1-4所示,一块长3m ,宽2.2m•的薄木板能否从门框内通过?为什么?思路点拨:从观察实验可知,木板横着进,竖着进,都无法从门框内通过,因此,尝试斜着通过,而对角线AC 或BD 是斜着能通过的最大长度.只要测出AC 或BD ,与木板的宽比较,就能知道木板是否能通过. 【活动方略】教师活动:拿出教具:如图18.1-4的木框,几块木板,演示引导学生思考. 学生活动:观察、讨论,得到必须应用勾股定理求出木框的斜边AC 2=AB 2+BC 2=12+22=5,2.236,然后以此为尺寸,来判断薄木板能否通过木框,结论是可以!问题探究2:如图18.1-5,一个3cm 长的梯子,AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?思路点拨:从BD=OD-OB 可以看出,必需先求OB ,OD ,因此,•可以通过勾股定理在Rt △AOB ,Rt △COD中求出OB和OD,最后将BD求出.【活动方略】教师活动:制作投影仪,提出问题,引导学生观察、应用勾股定理,提问个别学生.学生活动:观察、交流,从中寻找出Rt△AOB,Rt△COD,以此为基础应用勾股定理求得OB和OD.【课堂演练】演练题:在Rt△ABC中,已知两直角边a与b的和为pcm,斜边长为qcm,求这个三角形的面积.思路点拨:因为Rt△的面积等于12ab,所以只要求出ab即可,由条件知a+b=p,c=q,•联想勾股定理a2+b2=c2,将几何问题转化为代数问题.由a+b=p,a2+b2=q2求出ab.教师活动:操作投影仪,组织学生演练,以练促思;引导学生进行等式变形.学生活动:先独立思考,完成演练题1,再争取上台演示.解:∵a+b=p,c=q,∴a2+2ab+b2=(a+b)2=p2,a2+b2=q2(勾股定理)∴2ab=p2-q2∴S Rt△ABC=12ab=14(p2-q2)cm2【设计意图】以两个探究为素材,帮助学生应用勾股定理,再通过设置的演练题来灵活学生的思维.四、随堂练习,巩固深化1.课本P76 “练习”1,2.2.【探研时空】(1)若已知△ABC的两边分别为3和4,你能求出第三边吗?为什么?(2)如图,已知:在△ABC,∠A=90°,D、E分别在AB、AC上,你能探究出CD2+BE2=BC2+DE2吗?(提示:BE2+CD2=AD2+AC2+AB2+AE2=(AD2+AE2)+(AC2+AB2)=(DE2+BC2)五、课堂总结,发展潜能1.勾股定理:Rt△ABC中,∠C=90°,a2+b2=c2.2.勾股定理适用于任何形状的直角三角形,在直角三角形中,•已知任意两边的长都可以求出第三边的长.六、布置作业,专题突破1.课本P77 习题18.1 1,2,3,4,5.2.选用课时作业优化设计七、课后反思第一课时作业优化设计【驻足“双基”】1.在Rt△ABC中,∠C=90°,BC=12cm,S△ABC=30cm2,则AB=________.2.等腰△ABC的腰长AB=•10cm,•底BC•为16cm,•则底边上的高为______,•面积为_____. 3.一个直角三角形三条边为三个连续偶数,则它的三边长分别为_______.4.△ABC中,∠ACB=90°,AC=12,BC=5,M,N在AB上,且AM=AC,BN=BC,则MN的长为(• ).A.2 B.26 C.3 D.45.等腰三角形腰长32cm,•顶角的大小的一个底角的4•倍,•求这个三角形的面积_____.【提升“学力”】6.某车间的人字形屋架为等腰三角形ABC,跨度AB=24m,上弦AC=13m,求中柱CD.(D 为底AB的中点)7.如图,折叠长方形的一边AD,点D落在BC上的点F处,已知AB=8cm,BC=•10cm,求EC的长.【聚焦“中考”】8.(1994年天津市中考题)如图,在Rt△ABC中,∠C=90°,D是BC边上一点,•且BD=AD=10,∠ADC=60°,求△ABC面积.第一课时作业优化设计(答案)1.13cm 2.6cm;48cm2 3.6、8、10 4.D 5..5cm 7.3;8第二课时勾股定理(二)教学内容与背景材料本节课继续探究勾股定理及其应用(课本P76~P77)教学目标知识与技能:掌握勾股定理在实际问题中的应用.过程与方法:经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.情感态度与价值观:培养良好的思维意识,发展数学理念,体会勾股定理的应用价值.重难点、关键重点:掌握勾股定理的实际应用.难点:理解勾股定理的应用方法.关键:把握Rt△中的三边关系,充分应用两直角边的平方等于斜边的平方,要注意直角边和斜边的区分.教学准备教师准备:制作投影片,收集并制作补充问题的投影片.学生准备:复习勾股定理.学法解析1.认知起点:在前面已经学习了一些几何知识,以及勾股定理的基础上,•对勾股定理的应用加以理解.2.知识线索:实际问题−−→←−−勾股定理3.学习方式:采用讲练结合的学习方式,注重合作交流.教学过程一、回顾交流,小测评估【课堂小测题】(投影显示)1.填空题(1)等腰三角形中,一边长为4,另一边长为9,则这个三角形的面积是_______.(•填:)(2)在Rt△ABC中,∠C=90°,若a=b=2cmm,S△ABC=______(填:2cm)2.选择题(1)在△ABC中,∠C=90°,∠A=∠B,则BC:AC:AB=(A).A.1:1 B.1:1:2 C.1:1:1 D.以上结论都不对(2)等边三角形面积为8cm,它的边长(D).A.cm B.cm C.cm D.以上结论都不对【活动方略】教师活动:操作投影仪,组织学生测试,而后讲评,通过讲评,理解勾股定理的应用.学生活动:独立小测,通过小测加深对勾股定理应用的理解.【设计意图】采用“测中反思”的方法,促进学生对知识的理解,发现问题,以利于本节课解决.二、数形结合,应用所学【显示投影片2】问题探究3:大家知道,数轴上的点有些是表示有理数,有些表示无理数,•请你在数(1)•在数轴上找到一点A,使OA=5,(2)过A作AT垂直于数轴,垂足为A,在AT上截取AB=12,(3)•连结OB,(4)以O为圆心,OB为半径作弧,弧与数轴的交点C【活动方略】教师活动:提出问题.12学生活动:借助课本图18.1-7的点M.【设计意图】拓展勾股定理的应用知识,学会在数轴上作无理数的点.问题探究4:如图,△ABC中,∠B=90°,AC=12cm,BC=4cm,D•在AC•上,•且AD=8cm,E在AB上,且△AED的面积是△ABC面积的14,求AE和DE的长.思路点拨:求AE的长时,可过D作DE⊥AB于F,可求出DF=23BC=83,•这样先把AF•求出AF=23AB=163.再由面积公式S△AED=12AE·DF先求出DF=43AE,由S△ADE=14S△ABC,求出,因而EF=73•应用勾股定理求.教师活动:操作投影仪,组织学生探究,巡视、引导、启发学生进行思考,•然后请两位学生上台演示,纠正.学生活动:小组合作交流(4人),将所学习的面积、勾股定理应用于该题,•踊跃上台发言,“板演”.三、随堂练习,巩固深化1.课本P77 “练习”1,2.2.【探研时空】(1)已知,如图:在△ABC中,∠ACB=90°,CD⊥AB于D点,求证:AB2=AD2+2CD2+BD2.(提示:AB2=AC2+BC2=AD2+CD2+CD2+BD2=AD2+2CD2+BD2)(2)有一正方形ABCD池塘,边长为一丈(3丈=10米),有棵芦苇生在它的中央,高出水面部分有1尺(3尺=1米)长,把芦苇拉向岸边,恰好碰到岸沿,•向水深和芦苇长各是多少?(提示:设水深EF=x尺,芦苇EG=(x+1)尺,则EC=(x+1)尺,CF=5尺,通过构建△EFG,再应用勾股定理得(x+1)2=x2+52,求解出x=12尺,这样得到水深12尺,芦苇长为13尺).四、课堂总结,发展潜能本节课主要学习的内容是:(1)勾股定理的应用,•通过两个“探究”领会勾股定理的应用思想,如可以用来在数轴上描无理数点,可以解决实际情境中的问题等.(2)感受勾股定理的历史.五、布置作业,专题突破1.课本P78 习题18.1 7,8,9,11,12,13.2.选用课时作业优化设计六、课后反思第二课时作业优化设计【驻足“双基”】1.请写出满足勾股定理a2+b2=c2的三组数值______________.2.要登上12m高的建筑物,为完全起见,需要使梯子的底端离建筑物5m,至少需要_______m长的梯子.3.一艘轮船以16海里/•时的速度离开A•港向东南方向航行,•另一艘轮船同时以12海里/时的速度离开A港向西南方向航行,经过1.5小时后它们相距_____海里.4.如图,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使点C与点A•重合,•则折痕EF的长为().A.3.74 B.3.75 C.3.76 D.3.775.一个长方形的长是宽的2倍,其对角线的长是5cm,则长方形的长是().cm C.A.2.5cm B.26.如图,在四边形ABCD中,∠BAD=90°,AD=4,AB=3,BC=12,求正方形DCEF的面积.【提升“学力”】7.已知,如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC•上任意一点,• 求证:BD2+CD2=2AD2.【聚焦“中考”】8.(2003年贵州省贵阳市中考题)如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货,此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.(1)问:B处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:≈1.4≈1.7)第二课时作业优化设计(答案)1.3、4、5,5、12、13,8、15、17 2.13 3.30 4.B 5.C 6.169 7.提示:过A作AE⊥BC于E 8.(1)B处会影响,(2)3.8小时。

《第18章勾股定理》word版 公开课一等奖教案 (3)

《第18章勾股定理》word版 公开课一等奖教案 (3)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料.这些资料因为用的比拟少,所以在全网范围内,都不易被找到.您看到的资料,制作于2021年,是根据最|新版课本编辑而成.我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品.本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最|终形成了本作品.本作品为珍贵资源,如果您现在不用,请您收藏一下吧.因为下次再搜索到我的时机不多哦!18.2 勾股定理探索过程教学目标知识技能1、了解勾股定理的文化背景 .2、体验勾股定理的探索过程 .3、运用勾股定理进行简单计算 .数学思考在勾股定理的探索过程中 ,开展合情推理能力 ,体会数形结合的思想 .解决问题1、通过拼图活动 ,体验数学思维的严谨性 ,开展形象思维 .2、在探究活动中 ,学会与人合作并能与他人交流思维的过程和探究结果 .3、初步渗透运用勾股定理解决直角三角形相关的问题的数学方法 .情感态度1、通过对勾股定理历史的了解 ,感受数学文化 ,激发学习热情 .2、在探究活动中 ,体验解决问题方法的多样性 ,培养学生的合作交流意识和探索精神 .教学重点探索和证明勾股定理 .教学难点用拼图的方法证明勾股定理 .教学方法引导发现、合作探究式教学手段多媒体学法指导将勾股定理的探索过程设计为梯度式 ,先从等腰直角三角形入手 ,发现规律 ,再探究一般直角三角形是否满足规律 ,让学生直接发现两条直角边的平方和等于斜边的平方有难度 ,教学中安排先发现以直角三角形两直角边为边长的正方形的面积与以斜边为边长的正方形的面积之间的关系 .教学流程安排教学活动流程活动内容和目的活动1创设情境通过对赵爽弦图的了解 ,调动起学生对勾股定理的探索兴趣 .活动2探索勾股定理观察、分析网格图 ,得出直角三角形的性质 - -勾股定理 ,初步掌握转化和从特殊到一般的数学思想 ,开展学生分析问题的能力 .活动3证明勾股定理通过剪拼图形证明勾股定理 ,学生亲自动手割补拼接 ,体会数形结合的数学思想 ,尝试一题多解 ,激发探索精神 .活动4欣赏图片了解历史学生已经知道勾股定理后 ,教师展现勾股定理的有关有关背景知识 ,使学生对勾股定理的开展过程有所了解 ,感受勾股定理的丰富文化内涵 ,培养民族自豪感 ,提高学习兴趣 .本课教学反思英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力.写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进.因此, 写作教案具有重要地位.然而, 当前的写作教案存在" 重结果轻过程〞的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,无视了语言的输入.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。

人教版八年级数学下册整册教案(三)第十八章勾股定理

人教版八年级数学下册整册教案(三)第十八章勾股定理

第十八章勾股定理1 8 1勾股定理(一)1 8 1勾股定理(二)1 8 1勾股定理(三)18 1勾股定理(四)1 8 2勾股定理的逆定理(一)1 8 2勾股定理的逆定理(二)1 8 2勾股定理的逆定理(三)第十八章勾股定理18.1 勾股定理(一)一、教案目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、例题的意图分析例1 (补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2 使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

进一步让学生确信勾股定理的正确性。

四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm和4cm的直角△ ABC,用刻度尺量出AB的长。

以上这个事实是我国古代3000 多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ ABC,用刻度尺量AB的长。

32+42=52, 52+122=132,那么就你是否发现32+42与52的关系,52+122和132的关系,即有勾2+股2=弦2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公开课教案
课题:18.1 勾股定理(三) 教师:蔡运富 时间:2012年3月20日 班级:八(1)班 教学目标:1.会用勾股定理解决简单的实际问题。

2.会用勾股定理解决较综合的问题。

3.树立数形结合的思想。

重点:勾股定理的综合应用。

难点:实际问题向数学问题的转化。

教法:讲练结合
一、练习导入
1、在Rt △ABC ,∠C=90°,两直角边分别为a 、b ,斜边为c
⑴已知a=b=5,求c 。

⑵已知a=1,c=2, 求b 。

⑶已知c=17,b=8, 求a 。

⑷已知a :b=1:2,c=5, 求a 。

⑸已知b=15,∠A=30°,求a ,c 。

2.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。

3.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米。

2题图 3题图 4题图
4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。

5.如图,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?
C
A
B
C B
二、范例讲解
例1、已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长。

分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。

目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。

例2、已知:如图,△ABC 中,AC=4,∠B=45°,∠A=60°,根据题设可求得AD ,CD ,BD ,AB ,BC 及S △ABC 吗?
分析:因本题中的△ABC 不是直角三角形,所以根据题设只能直接求得∠ACB=75°。

在学生充分思考和讨论后,发现添置AB 边上的高这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC 。

让学生充分讨论还可以作其它辅助线吗?为什么?
三、课堂练习
1.如图,欲测量松花江的宽度,沿江岸P 、Q 两点,在江对岸取一点R ,使PR 垂直江岸,测得PQ=50米,∠R=60°,则江面的宽度为 (精确至0.01米)。

2.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。

3.已知:如图,△ABC 中,AB=26,BC=25,AC=17, 求S △ABC 。

四、课堂小结:解一般三角形的问题常常通过作高转化为直角三角形的问题。

五、课后反思:
P
Q
C
A
D
B
A
C
D
B
C
八、参考答案: 课堂练习: 1.2250
; 2.6, 32;
3.18米; 4.11600; 课后练习
1.350米; 2.
2
2;
3.20; 4.83米,48米,32米;。

相关文档
最新文档