圆锥曲线与方程(来自文科53)

合集下载

第二章 圆锥曲线与方程

第二章 圆锥曲线与方程

第二章 圆锥曲线与方程[课标研读][课标要求] 1.圆锥曲线① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.④ 了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. 2.曲线与方程了解方程的曲线与曲线的方程的对应关系. [命题展望]本章内容是高中数学的重要内容之一,也是高考常见新颖题的板块,各种解题方法在本章得到了很好的体现和充分的展示,尤其是在最近几年的高考试题中,平面向量与解析几何的融合,提高了题目的综合性,形成了题目多变,解法灵活的特点,充分体现了高考中以能力立意的命题方向。

通过对近几年的高考试卷的分析,可以发现选择题、填空题与解答题均可涉及本章的知识,分值高达30分左右。

主要呈现以下几个特点:1.考查圆锥曲线的基本概念、标准方程及几何性质等知识及基本技能、基本方法,常以选择题与填空题的形式出现;2.直线与二次曲线的位置关系、圆锥曲线的综合问题常以压轴题的形式出现,这类问题视角新颖,常见的性质、基本概念、基础知识等被附以新的背景,以考查学生的应变能力和解决问题的灵活程度;3.在考查基础知识的基础上,注意对数学思想与方法的考查,注重对数学能力的考查,强调探究性、综合性、应用性,注重试题的层次性,坚持多角度、多层次的考查,合理调控综合程度;4.对称问题、轨迹问题、多变量的范围问题、位置问题及最值问题也是本章的几个热点问题,但从最近几年的高考试题本看,难度有所降低,有逐步趋向稳定的趋势。

第一讲 椭圆[知识梳理][知识盘点]一.椭圆的基本概念1.椭圆的定义:我们把平面内与两个定点21,F F 的距离的和等于常数( |,|21F F )的点的轨迹叫做椭圆,用符号表示为 。

这两个定点叫椭圆的 ,两个焦点之间的距离叫做椭圆的 。

2.椭圆的第二定义:平面内,到定点)0,(c F 的距离与到定直线:l 的距离之比是常数a c (即 )的动点的轨迹叫做椭圆,其中常数ac叫做椭圆的 。

圆锥曲线与其方程

圆锥曲线与其方程

圆锥曲线与其方程圆锥曲线是数学中一个非常有趣且重要的概念,它是由一个平面与一个圆锥相交而形成的曲线。

圆锥曲线包括圆、椭圆、双曲线和抛物线四种类型,每种类型都有其独特的特点和方程。

首先,让我们来了解一下圆锥曲线中最简单的一种类型——圆。

圆可以被描述为一个平面上与一个圆心和半径相关联的点的集合。

其方程可以表示为(x-a)²+(y-b)²=r²,其中(a,b)是圆心的坐标,r是半径的长度。

圆的方程可以用来确定圆上的任意一点的坐标,从而使我们能够对圆进行研究和分析。

接下来,我们来讨论椭圆。

椭圆是圆锥曲线中另一种常见的类型,它具有两个焦点和一个长轴和短轴。

椭圆的方程可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。

椭圆的方程可以帮助我们确定椭圆上的点,并且可以用来计算椭圆的周长和面积。

双曲线是另一种重要的圆锥曲线类型。

它有两个分离的曲线分支,并且具有两个焦点和一个虚线的对称轴。

双曲线的方程可以表示为(x-h)²/a²-(y-k)²/b²=1,其中(h,k)是双曲线的中心坐标,a和b分别是曲线分支的长度。

双曲线的方程可以帮助我们确定双曲线上的点,并且可以用来研究双曲线的性质和特征。

最后,我们来谈谈抛物线。

抛物线是圆锥曲线中最具有特色的一种类型,它具有一个焦点和一条对称轴。

抛物线的方程可以表示为y=ax²+bx+c,其中a、b和c 是常数。

抛物线的方程可以帮助我们确定抛物线上的点,并且可以用来研究抛物线的形状和性质。

通过了解圆锥曲线和它们的方程,我们可以更好地理解和应用这些曲线。

圆锥曲线在几何学、物理学、工程学和计算机图形学等领域都有广泛的应用。

例如,在物理学中,椭圆轨道被用来描述行星的运动;在工程学中,抛物线被用来设计抛物面反射器;在计算机图形学中,圆锥曲线被用来生成二维和三维图形。

2020年高考“圆锥曲线与方程”专题命题分析

2020年高考“圆锥曲线与方程”专题命题分析

圆锥曲线是广泛应用于科学研究及生产和生活中的曲线,是高中数学中几何与代数知识的重要组成部分,是高中学生运用平面直角坐标系将曲线与方程、几何与代数融会贯通的重要载体,更是让学生体验和领悟数与形相互转化过程的重要途径,在高考数学中占有较大的比重.2020年高考数学试卷中圆锥曲线与方程专题部分的试题,着重考查圆锥曲线的定义、方程,以及简单的几何性质,立足“四基”,凸显基础性;注重对数形结合、代数方法与几何问题化归的考查,立意能力,在数与形之间彰显综合性、应用性;重视对数学运算、逻辑推理、直观想象等数学学科核心素养的考查,立旨素养,引导数学教学,实现数学学科的育人价值.同时,与往年相比,试题结构和难度保持稳定,既体现对主线内容、核心概念、数学本质考查的连贯性,也体现了对学生的人文关怀.一、考查内容分析2020年全国各地高考数学试卷共10套13份,具体为全国Ⅰ卷(文、理)、全国Ⅱ卷(文、理)、全国Ⅲ卷(文、理)、全国新高考Ⅰ卷、全国新高考Ⅱ卷、北京卷、上海卷、天津卷、江苏卷、浙江卷.有的试卷由国家统一命题,也有的由各省市自主命题,无论是延续2019年模式的全国卷和地方卷高考试题,还是2020年首次亮相的立足《普通高中数学课程标准(2017年版)》(以下简称《标准》)的全国新高考卷试题,都是重视基础,突出能力,并围绕学生的数学学科核心素养展开全方位考查.1.布局合理,考点紧扣标准2020年高考数学试卷,以圆锥曲线的定义、基本量、标准方程、简单几何性质、位置关系等核心内容为载体,重点考查学生对平面解析几何问题基本解决过程的掌握情况:用代数语言把几何问题转化为代数问题,根据对几何问题(图形)的分析,探索解决问题的思路,运用代数方法得到结论并给出代数结论合理的几何解释解决几何问题.突出考查学生运用代数方法研究上述曲线之间的基本关系、运用平面解析几何的思想解决一些简单的实际问题的能力,旨在考查学生的直观想象、数学运算、逻辑推理等数学学科核心素养.试题紧扣《标准》,以基础题、中档题为主,在总共的26道(相同试题算1道)试题中:基础题有10道、中档题有12道,占比约85%;难题4道,其中2020年高考“圆锥曲线与方程”专题命题分析段喜玲1摘要:2020年高考数学试题中的圆锥曲线与方程部分考查内容紧扣高中数学课程标准,分值、结构稳定,试题突出对“四基”的考查,注重圆锥曲线与其他知识的结合,注重对数学思维和数学学科核心素养的考查.试题体现基础性、应用性、综合性等特点,以基础知识的考查为载体,将对学生分析问题、解决问题能力的考查蕴含在解题过程之中,以实现对学生数学学科核心素养的考查.基于2020年高考试题的命题分析,给出高考复习建议,有效引导高三复习.关键词:圆锥曲线;命题分析;数形结合;数学运算收稿日期:2020-08-01基金项目:重庆市教育科学“十三五”规划2017年度规划课题——课堂教学中自主学习实施途径与策略的研究(2017-MS-13).作者简介:段喜玲(1979—),女,中学高级教师,主要从事高中数学课堂教学研究.全国新高考Ⅰ卷第22题、全国Ⅰ卷文科第21题(同理科第20题)、全国Ⅲ卷文科第21题(同理科第20题)为压轴题,布局合理.2.分值稳定,多选双填增新彩高考试题对本专题内容的考查一般是两道客观题和一道主观题,共22分,占全卷分值的14.7%,其中北京卷24分,占全卷分值的16%,而全国Ⅰ卷文科、全国Ⅱ卷文(理)科、天津卷、江苏卷、上海卷中是一道客观题和一道主观题,共17分,占全卷分值的11.3%.考查形式、题型分布及分值比例与往年基本持平,有很高的稳定性.在全国新高考Ⅰ卷、全国新高考Ⅱ卷中出现多选题,北京卷中出现两个空的填空题,使试题形式更丰富.这是新高考题型的示范,为教学指引方向.3.文、理略异,趋同铺垫新高考2020年高考数学试卷中只有全国卷分别命制了文、理科试题.由于新高考将不再区分文科和理科,因此2020年全国卷的文、理科试题从内容到难度,差异较往年减小,姊妹题数量增加.在对圆锥曲线与方程的考查中:全国Ⅰ卷文科第21题与理科第20题相同,第11题不同,文科比理科少一道填空题;全国Ⅱ卷文科第9题与全国Ⅱ卷理科第8题相同,全国Ⅱ卷文、理科试卷第19题第(1)小题相同,第(2)小题的已知条件不同,但求解相同,方法相同;全国Ⅲ卷文科第7题、第21题与全国Ⅲ卷理科第5题、第20题相同,文科第14题不同.由此可以看出,文、理科试题虽有不同之处,但同根同源,体现趋同性,明确导向新高考.4.层次分明,数形结合思想贯穿始终《标准》对圆锥曲线与方程的要求有了解和掌握两个层次:圆锥曲线的实际背景、圆锥曲线在刻画现实世界和解决实际问题中的作用、抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质、椭圆与抛物线的简单应用为了解;椭圆的定义、标准方程及简单几何性质为掌握.2020年高考数学试题对圆锥曲线与方程部分的考查层次分明,基础题和中档题均以抛物线和双曲线的定义、简单几何性质、位置关系为考查内容,部分较难的中档题和难题考查椭圆定义、标准方程、几何性质、简单应用,唯独上海卷的解答题考查圆和双曲线的组合,意在打破常规、力求创新,以考查学生的创新应用意识.同时,在试题中,数形结合思想这条主线贯穿始终,方程与曲线的表述与理解、代数与几何的转化与化归在数形结合中体现得淋漓尽致.5.综合性强,凸显思想育素养圆锥曲线与方程知识是平面几何、平面向量、直线与圆的知识的延续,可以将很多知识、方法(如三角形、直线位置关系、圆、向量、角度、长度、面积、坐标、方程、不等式及函数等)有机结合起来进行考查,体现在知识的交会处命题的基本原则.例如,全国Ⅰ卷理科第20题、全国Ⅲ卷理科第20题、全国新高考Ⅰ卷第22题、北京卷第20题、江苏卷第18题、浙江卷第21题,上海卷第20题综合性都较强,对学生要求较高.同时,试题凸显了数形结合、转化与化归、函数与方程等重要思想,为培育学生的数学抽象、直观想象、数学运算、逻辑推理等数学学科核心素养做好了指挥引领作用.二、命题思路分析1.注重对基础知识和基本方法的考查圆锥曲线的定义、方程、基本量、性质、位置关系是这部分知识的常规考查内容,要求学生既要对椭圆、双曲线、抛物线的共性建构良好的知识网络,又要对每种曲线的自身特点掌握得清楚准确,特别是区分不同曲线的定义、方程、基本量关系、性质、离心率的异同,这些知识容易混淆出错.借助平面直角坐标系将几何问题坐标化、用代数方法解决几何问题是解析几何的灵魂所在,因此建立方程或方程组、整体求解、设而不求等基本方法,通性、通法也是高频考点.命题围绕这些设置试题,突出考查学生对基本概念、基础知识、基本方法的掌握.例1(全国Ⅰ卷·理15)已知F为双曲线C:x2a2-y2b2=1()a>0,b>0的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C 的离心率为.【评析】该题主要考查对双曲线的离心率、直线斜率、双曲线的几何性质的应用,属于基础题.可以用方程组求出||BF,或者联立方程求得点B的坐标,再或者直接用公式求得||BF,然后用斜率公式求得离心率.该题解法常规,在运算处理上较灵活,能够对学生数学思维、数学运算进行多角度考查.例2(全国Ⅱ卷·理19)已知椭圆C1:x 2a2+y2b2=1()a>b>0的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且||CD=43||AB.(1)求C1的离心率;(2)设M是C1与C2的公共点,若||MF=5,求C1与C2的标准方程.【评析】考查椭圆、抛物线的基本量a,b,c,p 之间的关系,相交弦长(通径),椭圆离心率,抛物线定义及方程,椭圆方程.注重学生对基本量、关系式、离心率、弦长等基础知识的掌握,要求学生弄清知识之间的区别与联系.该题求解方法简单,整体法求离心率亦常见,第(2)小题利用离心率得a,c的关系,化简方程是解答关键,很好地考查了学生的数学运算素养.除了联立方程求解外,还可以用圆锥曲线的统一定义表示焦半径,简化了运算,提高了解题速度和准确率.类似试题还有全国Ⅰ卷理科第4题、第15题,全国Ⅱ卷文科第19题,全国Ⅲ文科第14题,全国新高考Ⅰ卷第9题、第13题,全国新高考Ⅱ卷第9题,北京卷第7题、第12题、第20题,天津卷第7题,江苏卷第6题,浙江卷第8题,上海卷第10题.2.注重对圆锥曲线与其他知识的综合应用的考查在知识的交会处命题一直是高考数学命题的一大特点,圆锥曲线不仅是知识交会的高频考点,更是代数与几何的完美结合体,因此将圆锥曲线内容与章节内、章节间、学段间、学科间的知识综合,既体现知识的连贯性,又体现知识的交叉性,既考查学生学习的延续性,也考查学生的综合能力.2020年高考数学试题中综合考查了圆锥曲线的方程、离心率、渐近线、弦长、交点,以及三角形的面积、周长等,综合考查圆锥曲线与向量、不等式、函数、解三角形的交会,其中不乏对特殊三角形、圆、线段中垂线等初中平面几何知识的考查,以及几何性质与代数表达式之间互相转化的考查,能有效检测学生的思维能力与水平.例3(全国Ⅲ卷·理11)设双曲线C:x2a2-y2b2=1 ()a>0,b>0的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a的值为().(A)1(B)2(C)4(D)8【评析】该题综合考查双曲线的定义、离心率、焦点直角三角形、三角形面积,要求学生不仅熟练掌握知识,还要熟悉求解方程组的方法,是一道题型常见、思路常规的综合性试题.例4(江苏卷·18)如图1,在平面直角坐标系xOy 中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP⋅QP的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【评析】考查椭圆的定义、直线与椭圆相交、向量数量积和点到直线的距离.第(2)小题中数量积的最值问题考查函数与方程思想,将最值问题转化为函数问题求解的关键点是选取变量,明晰点P,Q的主、被动关系,特别是OP的纵坐标为0,即点Q的纵坐标对数量积没有影响,从而可以不求点Q的纵坐标,这是降低该题难度的关键点,需要学生有极强的数学运算素养.第(3)小题考查三角形的面积关系,实质是考查点到直线的距离,需要学生看到问题的本质,即当三角形的一边为定值时,面积取决于这一边上的高,进一步将高的值转化为椭圆上的点到直线的距离,即直线和椭圆的位置关系.这一系列问题将圆锥曲线与三角形、向量、函数、直线,以及距离流畅地结合起来,在综合考查学生基础知识的同时,考查学生灵活运用转化与化归思想以及数形结合思想解决问题的能力.例5(全国Ⅲ卷·理20)已知椭圆C :x 225+y 2m 2=1()0<m <5的离心率为,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且||BP =||BQ ,BP ⊥BQ ,求△APQ 的面积.【评析】该题是以直线与椭圆相交成图,考查三角形面积的综合问题,试题表述简洁,脉络清晰,是常规题型,但是试题却不易找到解题突破口.利用垂直关系证得三角形全等,然后用三角形全等求得关键点P ,Q 的坐标是求解该题的切入点,要求学生认识知识的联系性,将圆锥曲线与初中三角形知识自然地糅合在一起,考查学生对初中所学知识的延伸及初高中知识的融合应用,对学生的跨学段知识综合应用能力要求较高.此类型的试题还有全国Ⅰ卷文科第11题、全国Ⅱ卷理科第8题、全国Ⅲ卷文科第21题、全国新高考Ⅱ卷第21题、天津卷第18题、上海卷第10题.3.注重对数学思维、核心素养的考查《标准》对高考数学命题提出明确要求:注重对学生数学学科核心素养的考查,处理好数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用;要适度增加试题的思维量,应特别关注数学学习过程中思维品质的形成.“一核”“四层”“四翼”的新高考评价体系也明确核心素养、关键能力等考查内容和要求.2020年高考圆锥曲线与方程的相关试题,以此为依据,注重考查数学思想方法、理性思维和学科核心素养,考查学生通过平面直角坐标系将图形定位、量化,利用代数(方程、方程组)研究平面图形的几何性质,将对数形结合思想、转化与化归思想、函数与方程思想、分类讨论思想的考查不动声色地浸润在试题里,使学生在解题中充分展示分析问题、解决问题的能力,同时注重对数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的考查,对数学教学起到很好的引导作用.例6(全国新高考Ⅰ卷·22)已知椭圆C :x 2a2+y 2b2=1()a >b >0的离心率为,且过点A ()2,1.(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.【评析】该题为全国新高考Ⅰ卷的压轴题,第(2)小题是圆锥曲线中的定点、定值问题,特别之处是并不知道定点Q 的具体位置,需要学生自己寻找,增加了试题的难度.首先,学生要分析点M ,N 在椭圆上运动的过程中的变量和不变量,找出直线MN 过定点E ;其次,求得定点E 的坐标,并能在由点A ,D ,E 构成的直角三角形中找到定长.该题不仅在思维上起点高、难度大,在运算上亦是如此,设点、设线还需分类讨论验证,需要学生具有超强的运算功底.在解答过程中,充分体现对通性、通法的重视,对技巧的弱化,完整展现学生分析问题、解决问题的能力,对学生数学抽象、直观想象、逻辑推理、数学运算等数学学科核心素养有充分的检验作用.由于知识和思维跨度较大,数学运算繁杂,对学生综合能力要求较高,真正考查学生用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界的能力.例7(上海卷·20)如图2,双曲线C 1:x 24-y 2b2=1,圆C 2:x 2+y 2=4+b 2()b >0在第一象限交点为A ,A ()x A ,y A ,曲线Γ:ìíîïïx 24-y 2b 2=1,x 2+y 2=4+b2()||x >x A .图2(1)若x A =6,求b ;(2)若b =5,C 2与x 轴交点记为F 1,F 2,P 是曲线Γ上一点,且在第一象限,并满足||PF 1=8,求∠F1PF2;(3)过点Sæèçöø÷0,2+b22且斜率为-b2的直线l交曲线Γ于M,N两点,用b的代数式表示OM⋅ON,并求出OM⋅ON的取值范围.【评析】该题是以双曲线系、圆系的交点为动点的轨迹问题,打破常规命题背景,有创新意识和应用意识.考查学生对曲线与方程的定义、双曲线的定义、直线与圆的位置关系、直线与直线的位置关系、向量数量积、函数最值的理解和综合应用.因为含有参数b使得轨迹不为学生所熟悉,所以要求学生对曲线方程的定义有较深的理解.第(3)小题中的直线l 与圆始终相切,切点为M是关键点,并观察直线l与一条渐近线平行,对学生的直观想象、逻辑推理素养要求较高,是一道以能力立意、考查素养、有创新意识的好题.此类型试题还有全国Ⅰ卷理科第20题、文科第21题,浙江卷第21题.三、复习建议通过对2020年高考圆锥曲线与方程试题的分析,可以看到试题对从基础知识、基本方法到运用基本数学思想解决数学问题的思维过程的考查,都体现了注重“四基”、能力立意、突出思维、落实素养的特点.因此,在高三复习过程中,要通过教学注重数学思想的渗透和学生思维能力的培养,让数学学科核心素养在课堂教学中生根发芽、开花结果.1.掌握知识,明辨异同,构建网络基础知识不仅是高考考查的重点,也是教学重点.高三复习首当其冲就是要把知识点弄清、理透、掌握牢.圆锥曲线部分的基本知识点有圆锥曲线的定义、标准方程、几何性质、位置关系,每个知识点所包含的内容很丰富.例如,圆锥曲线的定义,既有各自的定义,又有统一定义,还有其他方式的定义.又如,标准方程有焦点在x轴和焦点在y轴等.这些知识虽然靠记忆,但是学生容易混淆,因此复习时要让学生明晰同一知识点之间的联系与区别、圆锥曲线与圆锥曲线之间的联系与区别,牢固掌握基础知识.同时,复习不是知识点的简单重复与堆砌,复习是立足章节对所学知识的横向再认识,是站在数学学科角度对所学知识的纵向再认识,要高站位地建构横纵知识结构网络.2.注重通法,提升运算,渗透思想做题是复习课上必不可少的教学活动,《标准》在命题原则中明确提出:注重数学本质、通性和通法、淡化解题技巧.复习的例题、习题、试题要多选用通性、通法求解的题目,让学生熟练掌握通性、通法.圆锥曲线部分的内容特点决定了解题需要学生具有超强的运算能力,常用的运算方法、运算技巧、运算素养都需要在做题中提升.高中的运算不仅仅是简单的数的运算,更多的是式的运算,需要在理解运算对象的基础上,探究运算思路、选择运算方法、求得运算结果,即数学运算素养.这需要依赖教师在教学中加强对学生运算能力的培养,不能只靠学生自己算,要重视学生在求解运算中的过程设计,如整体解法、方程思想、设而不求、点差法、同理法等.运算的速度、准确度在很大程度上决定解析几何试题的得分情况,提升运算能力、培养数学运算素养是圆锥曲线部分复习的重点和难点.教学中要有意识渗透数学思想,方程与函数思想、数形结合思想、转化与化归思想、分类讨论思想等在解题中贯穿始终,能很好地体现理性思维.3.提高能力,增强思维,培育素养能力立意,关注思维,培育核心素养是新高考命题的宗旨,也是高三复习的风向标.能力、思维、素养的培养都“润物细无声”地存在于教学过程之中,因此教学要从培育核心素养的角度思考复习方案和教学设计,并深入了解学生学习的困难,关注一题多解和多题一解的内容与题目,体现灵活性,放手让学生大胆尝试、引导学生有效反思,有助于强化学生思维,培养学生在面对新的问题情境时运用数学概念对问题进行抽象,用数学符号表达,用逻辑推理分析问题、解决问题的能力,让学生真正做到用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界,以达到提炼学生思维品质,培养学生学科核心素养的课程目标.4.克服畏惧,锻炼意志,增强信心在高考数学试卷中,本专题试题繁冗的运算、大容量的思维使得学生有畏惧心理,很多学生给自己的定位是只做解答题第(1)小题,因此纵使有些试卷的解答题不难,考查结果却差强人意.例如,全国Ⅱ卷理科第19题,仍有很多学生没有做第(2)小题.高考不仅是对知识能力的检测,也是对心理素质的检测,复习中不能根据经验或规律,让学生将圆锥曲线与方程问题定性为难题而轻易舍弃,而要以此为契机培养学生面对较繁杂问题时耐心分析、善于转化的能力与勇气,要有意识选择一些基础题和中档题,引导学生在求解的过程中磨炼意志和耐心,克服畏惧心理,以平常心对待,增强“只要有足够的时间,我一定会做出来”的信念和信心.四、模拟题欣赏1.已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,若△MF 1F 2是直角三角形,且sin ∠MF 1F 2=12,则双曲线E 的离心率为().(A )3-1(B )3(C )3+1(D )3或3+1答案:D.2.设F 为抛物线C :y 2=3x 的焦点,过焦点F 的动直线交C 于A ,B 两点,则 OA ⋅OB 的值为.答案:-2716.3.若F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1()a >b >0的左、右焦点,且离心率为12,若过右焦点F 2的直线与曲线C 交于A ,B 两点,求当△ABF 1面积的最大值为12时的椭圆标准方程.答案:x 216+y 212=1. 4.已知过椭圆x 24+y 2=1左顶点A 的直线l 交椭圆于另一点B ,以AB 为直径的圆过椭圆的上顶点,求直线l 的方程.答案:3x +10y +6=0.5.在平面直角坐标系xOy 中,已知1是椭圆C :x 2a 2+y 2b2=1()a >b >0的右焦点,离心率为,过点F 1且垂直于x 轴的直线交椭圆C 于P ,Q 两点,||PQ =(1)求椭圆C 的标准方程;(2)若过椭圆左焦点F 2且斜率为k ()k >0的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点M ,交直线x =-3于点N .求证:||OE ,||OM ,||ON 构成等比数列.答案:(1)x 23+y 22=1;(2)略.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]吴彤,徐明悦.2019年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2019(9):24-27.[3]任佩文,张强,霍文明.2018年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2018(7/8):122-128.[4]范美卿,张晓斌.2016年高考“直线和圆”专题命题分析[J ].中国数学教育(高中版),2016(9):2-8.。

圆锥曲线求解方程

圆锥曲线求解方程

圆锥曲线求解方程全文共四篇示例,供读者参考第一篇示例:圆锥曲线是几何学中的一个重要概念,它包括圆、椭圆、双曲线和抛物线。

圆锥曲线经常出现在数学问题中,我们经常需要求解这些曲线的方程。

本文将介绍如何求解圆锥曲线的方程,并且以具体的实例来解释每种曲线的特点和解法。

我们来看圆的方程。

圆是一种平面上所有点到圆心的距离相等的曲线。

圆的方程一般形式为(x-a)² + (y-b)² = r²,其中(a,b)是圆心的坐标,r是圆的半径。

对于圆心坐标为(2,3),半径为4的圆,其方程为(x-2)² + (y-3)² = 4²。

第三种圆锥曲线是双曲线。

双曲线是一条开口向内或向外的曲线,其形状介于椭圆和抛物线之间。

双曲线的一般方程形式为(x-h)²/a² - (y-k)²/b² = 1或(y-k)²/b² - (x-h)²/a² = 1,其中(h,k)是双曲线的中心坐标,a和b分别是双曲线在x轴和y轴上的半轴长度。

对于中心坐标为(0,0),x轴半轴长度为3,y轴半轴长度为2的双曲线,其方程可以是x²/9 - y²/4 = 1或者y²/4 - x²/9 = 1。

最后是抛物线的方程。

抛物线是一种对称的曲线,其形状可以根据焦点的位置而有所不同。

抛物线的一般方程形式为y = ax² + bx + c或者x = ay² + by + c,其中a、b、c是常数。

对于抛物线y = 2x² + 4x + 1,其焦点的位置可以根据方程中的a、b、c来确定。

当遇到圆锥曲线的方程时,我们可以通过观察曲线的形状和特点来快速判断出曲线的类型,并且用数学方法来求解方程。

通过本文的介绍,希望读者能够更加深入地理解圆锥曲线的求解方法,并且能够灵活运用这些方法解决实际问题。

圆锥曲线知识点梳理(文科)

圆锥曲线知识点梳理(文科)

高考数学圆锥曲线部分知识点梳理一、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。

(4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交⇔有两个公共点;直线与圆相切⇔有一个公共点;直线与圆相离⇔没有公共点。

②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离22BA C Bb Aa d +++=与半径r 的大小关系来判定。

二、圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线。

其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率。

当0<e <1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e >1时,轨迹为双曲线。

三、椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F 1F2|<2a=点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222=+byax(ba>>0) 12222=-byax(a>0,b>0) pxy22=范围─a≤x≤a,─b≤y≤b |x| ≥ a,y∈R x≥0中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b)(a,0), (─a,0) (0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0) F1(c,0), F2(─c,0) )0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c (c=22ba-)2c (c=22ba+)离心率)10(<<=e ace )1(>=e ace e=1【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλby ax .【备注2】抛物线: (1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下.(2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221px AF p x x +==(AF 叫做焦半径).四、常用结论:1.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PFS b γ∆=. 且γcos 12221+=b PF PF2.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点,记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2).2cot221θb S FPF =∆3.)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.4. 通径为2p ,这是过焦点的所有弦中最短的.px y 22= px y 22-=py x 22= py x 22-=图形▲y xO▲yxO▲yxO▲yxO焦点 )0,2(pF )0,2(p F -)2,0(p F )2,0(p F -准线 2p x -= 2p x = 2p y -= 2p y =范围 R y x ∈≥,0 R y x ∈≤,0 0,≥∈y R x 0,≤∈y R x 对称轴 x 轴y 轴顶点 (0,0)离心率 1=e焦半径 12x pPF +=12x pPF +=12y pPF +=12y pPF +=。

圆锥曲线的性质与方程

圆锥曲线的性质与方程

圆锥曲线的性质与方程圆锥曲线是平面几何中重要的一类曲线,包括抛物线、椭圆和双曲线。

它们在数学、物理、工程等领域有着广泛的应用。

本文将介绍圆锥曲线的性质以及它们的方程。

一、抛物线的性质与方程抛物线是最简单的圆锥曲线,其性质和方程如下:1. 对称性:抛物线具有关于焦点对称的性质,即从焦点到抛物线上任意一点的距离与该点在水平直线上的投影之间的距离相等。

2. 焦点与准线:抛物线上的每个点到焦点的距离与该点到准线的距离相等。

焦点和准线都是抛物线的重要几何特征。

3. 方程形式:一般来说,抛物线的标准方程为y^2=4ax,其中a是抛物线的焦点到准线的距离,x和y分别表示坐标轴上的点。

二、椭圆的性质与方程椭圆是圆锥曲线中的另一种形式,其性质和方程如下:1. 对称性:椭圆具有关于两个焦点和两条主轴的对称性。

每个点到两个焦点的距离之和是一个常数。

2. 长轴与短轴:两焦点之间的距离等于椭圆的长轴长度,长轴的中点称为椭圆的中心。

3. 方程形式:一般来说,椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。

三、双曲线的性质与方程双曲线是另一种重要的圆锥曲线,其性质和方程如下:1. 对称性:双曲线有两个焦点,对于每个点到两个焦点的距离之差是一个常数。

2. 极限性质:双曲线的曲线趋向于两条互相平行的渐近线,与渐近线的距离越远,曲线越陡峭。

双曲线上的点的坐标差的绝对值等于常数。

3. 方程形式:一般来说,双曲线的标准方程为(x-h)^2/a^2 - (y-k)^2/b^2 = 1,其中(h,k)是双曲线的中心坐标,a和b分别是双曲线的焦点到准线距离的一半。

综上所述,圆锥曲线是平面几何中重要且有趣的一类曲线。

抛物线、椭圆和双曲线分别具有自己独特的性质和方程形式。

它们的研究和应用不仅在数学领域有着重要作用,还在物理、工程等领域得到广泛的应用。

对于理解和运用圆锥曲线,掌握其性质与方程是非常关键的。

圆锥曲线与方程学习课件

圆锥曲线与方程学习课件

由于解得k=- .故所求弦所在直线方程为x+2y-4=0. x+2y-4=0 x2+4y2=16 所以y1=0,y2=2.所以弦长

得y2-2y=0,
如图所示,已知A,B,C是椭圆E:(a>b>0)上的三点,其中A点的坐标为(2 ,0),BC过椭圆的中心O,且AC⊥BC,
(Ⅰ)求点C的坐标及椭圆E的方程; (Ⅱ)若椭圆E上存在两点P,Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量PQ与AB是否共线,并给出证明.
5.椭圆: 的两个焦点F1,F2,点P在椭圆上,如果线段PF1的中点恰在y轴上,则 = . 由已知椭圆方程得a=2 ,b= ,c=3,F1(-3,0),F2(3,0).
7
因为焦点F1和F2关于y轴对称,所以,则P(3, ),所 故填7.
1.椭圆的定义及其标准方程(1)平面内与两个定点F1,F2的距离之和等于常数(大于 )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.
已知P为椭圆 +y2=1上的动点,F1,F2是椭圆的两个焦点,且∠F1PF2=θ,求当θ取最大值时,点P的位置. 设则m+n=4,
在△F1PF2中,由余弦定理得因为m+n=4,m>0,n>0,所以mn≤当且仅当m=n时“=”取得,所以cosθ≥- .所以当θ取得最大值时,点P在短轴的两个顶点处.
在椭圆x2+4y2=16中,求通过点M(2,1)且被这点平分的弦所在的直线的方程和弦长. 当直线斜率不存在时,M不可能为弦的中点,所以可设直线方程为y=k(x-2)+1,代入椭圆方程,整理得:(1+4k2)x2-(16k2-8k)x+16k2-16k-12=0,显然1+4k2≠0,Δ=16(12k2+4k+3)>0.

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结圆锥曲线是解析几何学中的重要内容,它是解析几何学中的一大类曲线,经常与数学和物理学等学科结合起来进行研究。

圆锥曲线包含了椭圆、双曲线和抛物线三种曲线,它们都有着独特的性质和方程。

本文将对圆锥曲线的性质、方程和一些相关公式进行总结,以便读者更好地理解和应用这一知识点。

1. 椭圆椭圆是平面上的一个闭合曲线,它可以由一个动点到两个定点的距离之和等于常数的所有点构成。

椭圆的标准方程为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中a和b分别表示椭圆在x轴和y轴上的半轴长度。

椭圆还有一些重要的性质,比如焦点、离心率和直径等。

2. 双曲线双曲线也是平面上的一个曲线,它可以由一个动点到两个定点的距离之差等于常数的所有点构成。

双曲线的标准方程为:\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]类似椭圆,a和b分别表示双曲线在x轴和y轴上的半轴长度。

双曲线也有一些重要的性质,比如焦点、渐近线和离心率等。

3. 抛物线抛物线是平面上的一个曲线,它可以由一个动点到定点的距离等于动点到定直线的距离的所有点构成。

抛物线的标准方程为:\[y^2 = 2px\]其中p表示抛物线的焦点到定直线的距离。

抛物线也有一些重要的性质,比如焦点、准线和焦距等。

4. 圆锥曲线的性质圆锥曲线有一些重要的性质,比如中心对称性、轴对称性和离心率等。

这些性质对于研究圆锥曲线的形状和位置关系非常重要。

另外,圆锥曲线还有着许多重要的定理,比如焦点定理和渐近线定理等,这些定理为研究圆锥曲线提供了重要的依据和方法。

5. 圆锥曲线的方程圆锥曲线的方程是研究它们的重要工具,在应用数学和物理学中经常会用到。

椭圆、双曲线和抛物线分别有着自己的标准方程和一般方程,通过这些方程可以更好地理解和描述这些曲线的性质和形状。

同时,圆锥曲线还有一些重要的参数方程和极坐标方程,它们在解决一些特殊问题时非常有用。

高一数学圆锥曲线的标准方程与几何性质

高一数学圆锥曲线的标准方程与几何性质
圆锥曲线是平面内到定点和定直线距离相等的点的轨迹
单击此处添加标题
圆锥曲线包括椭圆、双曲线和抛物线
单击此处添加标题
圆锥曲线的标准方程包括x^2/a^2 + y^2/b^2 = 1(椭圆)、 x^2/a^2 - y^2/b^2 = 1(双曲线)和y = ax^2 + bx + c(抛 物线)
单击此处添加标题
椭圆的性质:对 称性、旋转性、 中心对称性、焦 点对称性
椭圆的应用:光 学、天体物理、 工程等领域
双曲线的标准方程
双曲线的定义:平面内与两个定点F1、F2的距离之差的绝对值等于常数(小于|F1F2|)的点 的轨迹
双曲线的标准方程:x^2/a^2 - y^2/b^2 = 1(a>0,b>0)
双曲线的焦点:F1(c,0), F2(-c,0)
利用几何性质和代 数关系,求解标准 方程
验证求解结果是否 满足圆锥曲线的定 义和性质
圆锥曲线的几何性质
圆锥曲线的焦点与准线
焦点:圆锥曲线上的一个特殊 点,决定了曲线的形状和性质
准线:与焦点相对应的直线, 决定了曲线的性质和位置
椭圆的焦点与准线:椭圆的焦 点在椭圆的中心,准线是垂直 于椭圆中心的直线
圆锥曲线在工程中 的应用:如建筑设 计、机械制造等
圆锥曲线在数学中 的应用:如解析几 何、微积分等
圆锥曲线在计算机 科学中的应用:如 图形学、计算机视 觉等
解析几何问题中的应用
圆锥曲线在物理中的应用:如天体运动、电磁场等 圆锥曲线在工程中的应用:如建筑设计、机械制造等 圆锥曲线在计算机图形学中的应用:如三维建模、图像处理等 圆锥曲线在数学竞赛中的应用:如奥林匹克数学竞赛、国际数学竞赛等
圆锥曲线在实际问题中 的应用

圆锥曲线与方程抛物线的标准方程

圆锥曲线与方程抛物线的标准方程

圆锥曲线与方程抛物线的标准方程xx年xx月xx日contents •圆锥曲线的概述•圆锥曲线的标准方程•圆锥曲线的性质•圆锥曲线与方程的关系•抛物线的几何性质与方程•应用实例与总结目录01圆锥曲线的概述圆锥曲线是平面内一个动点与一个定点和一条直线的距离之比为常数的点的轨迹定点称为焦点,直线称为准线圆锥曲线的定义当比值小于1时,动点的轨迹为椭圆圆锥曲线的分类椭圆当比值为1时,动点的轨迹为抛物线抛物线当比值大于1时,动点的轨迹为双曲线双曲线1圆锥曲线的应用23圆锥曲线可以用来描述光的传播路径和聚焦光学圆锥曲线在机械工程和电子工程中有广泛应用,如设计桥梁、飞机等工程圆锥曲线在描述天体的运动中有重要应用,如行星的运动轨迹等天文02圆锥曲线的标准方程椭圆的标准方程中心在原点,焦点在x轴上的椭圆的标准方程为$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$中心在原点,焦点在y轴上的椭圆的标准方程为$\frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = 1$抛物线的标准方程焦点在x轴正半轴,开口向右的抛物线的标准方程为:$y^{2} = 2px$焦点在y轴正半轴,开口向上的抛物线的标准方程为:$x^{2} = 2py$焦点在x轴正半轴,开口向左的抛物线的标准方程为:$y^{2} = - 2px$焦点在y轴正半轴,开口向下的抛物线的标准方程为:$x^{2} = - 2py$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$中心在原点,焦点在x轴上的双曲线的标准方程为$\frac{y^{2}}{a^{2}} - \frac{x^{2}}{b^{2}} = 1$中心在原点,焦点在y轴上的双曲线的标准方程为双曲线的标准方程在不同的坐标系下,圆锥曲线和方程的表达形式可能不同在建立圆锥曲线的标准方程前,需要先确定使用的坐标系坐标系的选择03圆锥曲线的性质03抛物线形状为开口向一侧的曲线,对称轴为开口方向,焦点在轴上。

圆锥曲线与方程抛物线及其标准方程

圆锥曲线与方程抛物线及其标准方程

圆锥曲线与方程在其它学科中的应用
天文学
圆锥曲线在天文学中也得到了广泛的应用。例如,星体运动 的轨迹可以近似为圆锥曲线中的椭圆、抛物线或双曲线等。
工程学
在工程学中,圆锥曲线也被广泛应用于各种机械零件的设计 中,如汽车车轮的轮廓线等。
THANK YOU.
02
点$F$为抛物线焦点,直线$l$为抛物线的准线
抛物线是圆锥曲线的一种
03
抛物线的性质
对于给定的抛物线,定点$F$和直线$l$的距离相等 抛物线的图形关于直线$l$对称
抛物线上的点到定点$F$和直线$l$的距离相等 抛物线焦点$F$在准线$l$上
抛物线的应用
光学反射和折射现象
抛物线在解析几何中的应用
抛物线可以看作是圆锥曲线的一种特殊情 况,其与其他圆锥曲线在某些性质上具有 相似之处。
圆锥曲线和抛物线的研究方法和解 题思路有相似之处,都可以归纳为 几何和代数的角度进行求解。
圆锥曲线与抛物线的区别
圆锥曲线是指动点按照一定规律在平面上运动所形成 的轨迹,而抛物线是一种特殊的圆锥曲线。
圆锥曲线的形状和大小会随着参数的变化而变化,而 抛物线的形状和大小不会随着参数的变化而变化。
数学应用
在数学中,利用抛物线标准方程可以求解一些与圆锥曲线有 关的几何问题,例如轨迹问题、最值问题等。同时,抛物线 与其他曲线(如椭圆、双曲线等)的性质进行比较,也可以 发现一些有趣的数学规律。
05
圆锥曲线与抛物线的联系与区别
圆锥曲线与抛物线的联系
圆锥曲线和抛物线都属于二次曲线, 具有一定的相似之处。
物理学中的抛物线运动
圆锥曲线在几何学中的应用
抛物线在物理学中的应用
03
圆锥曲线与方程的关系

圆锥曲线的方程圆锥曲线的标准方程与性质

圆锥曲线的方程圆锥曲线的标准方程与性质

圆锥曲线的方程圆锥曲线的标准方程与性质圆锥曲线的方程:圆锥曲线是由一个固定点(焦点)和一个到该点距离与到一个固定直线(称为准线)距离成比例的点(称为动点)构成的曲线。

圆锥曲线包括椭圆、双曲线和抛物线三种形式,每种形式都有其特定的方程和性质。

1. 椭圆的方程与性质:椭圆是焦点到准线的距离比常数小于1的点构成的曲线。

其标准方程为:[(x - h)^2 / a^2] + [(y - k)^2 / b^2] = 1其中(h, k)为椭圆中心的坐标,a和b为椭圆在x轴和y轴上的半轴长度。

椭圆的性质包括:- 对称性:椭圆关于中心轴和副中心轴对称。

- 焦点与准线:椭圆有两个焦点,位于椭圆的中心轴上,并且焦点到准线的距离之比为e,其中e为椭圆的离心率,0 < e < 1。

- 离心率:离心率e定义为焦点到准线的距离之比,e = c / a,其中c为焦点到中心轴的距离。

- 焦距:焦点到准线的距离称为椭圆的焦距。

- 根据离心率大小,椭圆可分为圆形(e = 0)、长椭圆(0 < e < 1)和扁椭圆(e > 1)三种情况。

2. 双曲线的方程与性质:双曲线是焦点到准线的距离比常数大于1的点构成的曲线。

其标准方程为:[(x - h)^2 / a^2] - [(y - k)^2 / b^2] = 1或[(y - k)^2 / b^2] - [(x - h)^2 / a^2] = 1其中(h, k)为双曲线中心的坐标,a和b为双曲线在x轴和y轴上的半轴长度。

双曲线的性质包括:- 对称性:双曲线关于中心轴和副中心轴对称。

- 焦点与准线:双曲线有两个焦点,位于双曲线的中心轴上,并且焦点到准线的距离之比为e,其中e为双曲线的离心率,e > 1。

- 离心率:离心率e定义为焦点到准线的距离之比,e = c / a,其中c为焦点到中心轴的距离。

- 焦距:焦点到准线的距离称为双曲线的焦距。

- 根据离心率大小,双曲线可分为关于x轴对称的双叶双曲线和关于y轴对称的单叶双曲线两种情况。

圆锥曲线与方程抛物线的标准方程

圆锥曲线与方程抛物线的标准方程

选择参数
选择适当的参数,如角度 、长度等,用于表示圆锥 曲线上的点。
建立方程
根据圆锥曲线的条件和参 数,建立表示该圆锥曲线 的方程。
解方程
通过调整参数的值,解方 程以获得圆锥曲线上点的 坐标。
使用几何法求解圆锥曲线与方程
分析图形
根据圆锥曲线的几何形状和性质,选择适当的几 何方法来求解方程。
建立方程
圆锥曲线与方程的未来研究方向展望
复杂系统的研究
随着科学技术的发展,对复杂系统的研究越来越受到关注 。圆锥曲线和方程作为描述复杂系统的有力工具,未来将 在复杂系统研究中发挥重要作用。
高维空间的研究
目前对圆锥曲线和方程的研究主要集中在低维空间,未来 将进一步拓展到高维空间,研究高维空间中的圆锥曲线和 方程的性质和应用。
圆锥曲线与方程的
04
ቤተ መጻሕፍቲ ባይዱ
求解方法
使用坐标法求解圆锥曲线与方程
01
02
03
定义坐标系
选择合适的坐标系,通常 为直角坐标系或极坐标系 。
建立方程
根据圆锥曲线的性质和条 件,建立表示该圆锥曲线 的方程。
解方程
利用数学工具,如解析几 何软件或编程语言,解方 程以获得圆锥曲线上点的 坐标。
使用参数法求解圆锥曲线与方程
抛物线的标准方程
02
与性质
抛物线的标准方程
定义
一般形式为 y^2 = 2px,其中p>0
特点
对称轴是一条垂直于x轴的直线,顶点为(0,0),焦点在x轴上
抛物线的性质
01
02
03
04
开口方向
开口朝右,可以用焦点和准线 来确定
顶点位置
顶点位于坐标原点,可以通过 焦点和准线来确定其位置

圆锥曲线(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

圆锥曲线(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

圆锥曲线(文科)解答题20题1.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y+=,2C : 28y x =.【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可; 【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中22c a b -不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x ya b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2b a-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±, 所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,3b c =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,3)c ,(0,3)c ,2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =. 所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.2.(2021年全国高考乙卷数学(文)试题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,进而可得20025910y x +=,再由斜率公式及基本不等式即可得解. 【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--, 所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++, 当00y =时,0OQ k =; 当00y ≠时,0010925OQ k y y =+, 当00y >时,因为0092530y y +≥, 此时103OQk <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.【点睛】关键点点睛:解决本题的关键是利用平面向量的知识求得点Q 坐标的关系,在求斜率的最值时要注意对0y 取值范围的讨论.3.(2021年全国高考甲卷数学(理)试题)抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析 【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ⊥,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +⋅与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论. 【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ⊥∴⋅=-=-=∴=,所以抛物线C 的方程为2y x =,(0,2),M M 与1x =相切,所以半径为1,所以M 的方程为22(2)1x y -+=;(2)设111222333(),(,),(,)A x y A x y A x y若12A A 斜率不存在,则12A A 方程为1x =或3x =, 若12A A 方程为1x =,根据对称性不妨设1(1,1)A , 则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意; 若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x -,又131********A A y y k y x x y y -====∴=-+, 330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切; 若直线121323,,A A A A A A 斜率均存在, 则121323121323111,,A A A A A A k k k y y y y y y ===+++, 所以直线12A A 方程为()11121y y x x y y -=-+, 整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=, 直线23A A 的方程为2323()0x y y y y y -++=, 12A A 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-⋅=--,M 到直线23A A 的距离为:21223122123213|2|21()1()1y y y y y -+=+++--22112222111111(1)4y y y y +===+-+,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +⋅与1y 关系,把23,y y 的关系转化为用1y 表示.4.(2019年全国统一高考数学试卷(理科)(新课标Ⅲ))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或2【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则21221,1d t d t =+=+.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以y'x =.则切线DA 的斜率为1x ,故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-=+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭,由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0=t 或1t =±.当0=t 时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.5.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点. (1)若2POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1) 31e =;(2)4b =,a 的取值范围为[42,)+∞. 【分析】(1)先连结1PF ,由2POF 为等边三角形,得到1290F PF ∠=,2PF c =,13PF c =;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点(,)P x y 存在,当且仅当12162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,根据三个式子联立,结合题中条件,即可求出结果. 【详解】(1)连结1PF ,由2POF 为等边三角形可知:在12F PF △中,1290F PF ∠=,2PF c =,13PF c ,于是1223a PF PF c c =+=, 故椭圆C 的离心率为3113c e a ===+; (2)由题意可知,满足条件的点(,)P x y 存在,当且仅当12162y c ⋅=,1y y x c x c⋅=-+-,22221x y a b +=, 即16c y = ① 222x y c += ②22221x y a b += ③ 由②③以及222a b c =+得422b y c =,又由①知22216y c=,故4b =;由②③得22222()a x c b c=-,所以22c b ≥,从而2222232a b c b =+≥=,故42a ≥当4b =,42a ≥P . 故4b =,a 的取值范围为[42,)+∞. 【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.【答案】(1)2或6; (2)见解析. 【分析】(1)设(),A t t -,(),B t t -,根据AB 4=,可知t =M 必在直线y x =上,可设圆心(),M a a ;利用圆心到20x +=的距离为半径和MA MB r ==构造方程,从而解出r ;(2)当直线AB 斜率存在时,设AB 方程为:y kx =,由圆的性质可知圆心M 必在直线1=-y x k 上;假设圆心坐标,利用圆心到20x +=的距离为半径和r MA =构造方程,解出M 坐标,可知M 轨迹为抛物线;利用抛物线定义可知()1,0P 为抛物线焦点,且定值为1;当直线AB 斜率不存在时,求解出M 坐标,验证此时()1,0P 依然满足定值,从而可得到结论. 【详解】 (1)A 在直线0x y +=上 ∴设(),A t t -,则(),B t t -又AB 4= 2816t ∴=,解得:t =M 过点A ,B ∴圆心M 必在直线y x =上设(),M a a ,圆的半径为rM 与20x +=相切 2r a ∴=+又MA MB r ==,即((222a a r +=((()2222a a a ∴+=+,解得:0a =或4a =当0a =时,2r ;当4a =时,6r =M ∴的半径为:2或6(2)存在定点()1,0P ,使得1MA MP -= 说明如下:A ,B 关于原点对称且AB 4=∴直线AB 必为过原点O 的直线,且2OA =①当直线AB 斜率存在时,设AB 方程为:y kx = 则M 的圆心M 必在直线1=-y x k上设(),M km m -,M 的半径为rM 与20x +=相切 2r km ∴=-+又222224r MA OA OMk m m ==+++22224km k m m ∴-+++,整理可得:24m km =-即M 点轨迹方程为:24y x =,准线方程为:1x =-,焦点()1,0FMA r =,即抛物线上点到2x =-的距离 ∴1MA MF =+ 1MA MF ∴-=∴当P 与F 重合,即P 点坐标为()1,0时,1MA MP -=②当直线AB 斜率不存在时,则直线AB 方程为:0x =M ∴在x 轴上,设(),0M n224n n ∴++0n =,即()0,0M 若()1,0P ,则211MA MP -=-=综上所述,存在定点()1,0P ,使得MA MP -为定值. 【点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决本定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,进而验证定值符合所有情况,使得问题得解.7.(2019年北京市高考数学试卷(文科))已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 【答案】(Ⅰ)2212x y +=;(Ⅱ)见解析. 【分析】(Ⅰ)由题意确定a ,b 的值即可确定椭圆方程;(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点. 【详解】(Ⅰ)因为椭圆的右焦点为(1,0),所以1225; 因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=. (Ⅱ)设1122(,),(,)P x y Q x y联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k-=+++=+. 直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0=t ,所以直线方程为y kx =,所以直线l 恒过定点(0,0). 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭ 当203y ≠时,∴直线CD 的方程为:0022*******22000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020年北京市高考数学试卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 【答案】(Ⅰ)22182x y +=;(Ⅱ)1.【分析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值. 【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦ 2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.10.(2020年天津市高考数学试卷)已知椭圆22221(0)x y a b a b +=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【分析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解. 【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=, 所以,椭圆的方程为221189x y +=; (Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥, 根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程. 11.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知椭圆C :22221(0)x y a b a b+=>>2()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【详解】(1)由题意可得:2222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2) 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()22212k 4260x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为2,1A ()不在直线MN 上,所以210k m +-≠, 故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =, 故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.【点睛】关键点点睛:本题的关键点是利用AM AN ⊥得 ·0AM AN =,转化为坐标运算,需要设直线MN 的方程,点()()1122,,,M x y N x y ,因此需要讨论斜率存在与不存在两种情况,当直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,与椭圆方程联立消去y 可12x x +,12x x 代入·0AM AN =即可,当直线MN 的斜率不存在时,可得()11,N x y -,利用坐标运算以及三角形的性质即可证明,本题易忽略斜率不存在的情况,属于难题. 12.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1) y =x –1,(2)()()223216x y -+-=或()()22116144x y -++=. 【详解】分析:(1)根据抛物线定义得12AB x x p =++,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线l 的方程;(2)先求AB 中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由()214y k x y x ⎧=-⎨=⎩得()2222240k x k x k -++=. 216160k ∆=+=,故212224k x x k ++=.所以()()21224411k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为()23y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则()()002200051116.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为()()223216x y -+-=或()()22116144x y -++=.点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程依据已知条件列出关于,,a b r 的方程组,从而求出,,a b r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.13.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠. 【答案】(1)112y x =+或112y x =--;(2)见解析. 【分析】(1)首先根据l 与x 轴垂直,且过点()20A ,,求得直线l 的方程为2x =,代入抛物线方程求得点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立. 【详解】(1)当l 与x 轴垂直时,l 的方程为2x =,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--; (2)设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由222x ty y x =+⎧⎨=⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠.综上,ABM ABN ∠=∠. 【点睛】该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.14.(2018年全国卷Ⅲ文数高考试题文档版)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+. 【答案】(1)证明见解析 (2)证明见解析 【详解】分析:(1)设而不求,利用点差法,或假设直线方程,联立方程组,由判别式和韦达定理进行证明.(2)先求出点P 的坐标,解出m ,得到直线l 的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设()11A x y ,,()22B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m =-.由题设得211,043m m +<>∴302m <<,故12k <-. (2)由题意得F (1,0).设()33P x y ,,则()()()()33112211100x y x y x y -+-+-=,,,,. 由(1)及题设得()31231x x x =-+=,()31220y y y m =-+=-<. 又点P 在C 上,所以34m =,从而312P ⎛⎫- ⎪⎝⎭,,3||=2FP . 于是()()222211111||1131242x xFA x y x ⎛⎫=-+-+-- ⎪⎝⎭.同理2||=22x FB -. 所以()121|43|||2FA FB x x +=-+=. 故2||=||+||FP FA FB .点睛:本题主要考查直线与椭圆的位置关系,第一问利用点差法,设而不求可减小计算量,第二问由已知得求出m ,得到FP ,再有两点间距离公式表示出,FA FB ,考查了学生的计算能力,难度较大.15.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版))设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析. 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =-=()由NP 2NM =得00x x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=. 因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,, ()OP m n PQ 3m t n ==---,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0.所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,21运用推理,到最后必定参数统消,定点、定值显现.16.(2017年全国1卷(文数))设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1;(2)y =x +7. 【分析】(1)设A (x 1,y 1),B (x 2,y 2),直线AB 的斜率k =1212y y x x --=124x x+,代入即可求得斜率;(2)由(1)中直线AB 的斜率,根据导数的几何意义求得M 点坐标,设直线AB 的方程为y =x +m ,与抛物线联立,求得根,结合弦长公式求得AB ,由AM BM ⊥知,|AB |=2|MN |,从而求得参数m . 【详解】解:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=214x ,y 2=224x ,x 1+x 2=4,于是直线AB 的斜率k =1212y y x x --=124x x+=1.(2)由y =24x ,得y ′=2x .设M (x 3,y 3),由题设知32x =1,解得x 3=2,于是M (2,1). 设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =24x 得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±1m + 从而|AB |2x 1-x 2|=()421m +由题设知|AB |=2|MN |,即()421m +2(m +1), 解得m =7.所以直线AB 的方程为y =x +7.17.(2016年全国2卷(文数))已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.试卷第22页,共26页(Ⅰ)当AM AN =时,求AMN 的面积 (Ⅱ) 当2AM AN =时,证明:32k <<. 【答案】(Ⅰ)14449;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示AM ,同理用k 表示AN ,再由2AM AN =求k 的取值范围. 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又(2,0)A -,因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =.因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故22121212134k AM x k k+=++=+. 由题设,直线AN 的方程为,故同理可得2121k k AN +=. 由2AM AN =得222343+4kk k =+,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t +=-'=-≥,所以()f t 在(0,)+∞单调递增.又(3)153260,(2)60f f ==,因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)32k <. 【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】对于直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立进行求解,注意计算的准确性.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.2318.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【答案】(1)2;(2)没有. 【分析】(Ⅰ)先确定2,,t N t ON p ⎛⎫ ⎪⎝⎭的方程为py x t =,代入22y px =整理得2220px t x -=,解得21220,t x x p ==,因此22(,2)t H t p ,所以N 为OH 的中点,即||2||OH ON =. (Ⅱ)直线MH 的方程为2py t x t-=,与22y px =联立得22440y ty t -+=,解得122y y t ==,即直线MH 与C 只有一个公共点,即可得出结论.【详解】(Ⅰ)由已知得()20,,,2t M t P t p ⎛⎫⎪⎝⎭. 又N 为M 关于点P 的对称点,故2,,t N t ON p ⎛⎫ ⎪⎝⎭的方程为py x t =,代入22y px =整理得2220px t x -=, 解得21220,t x x p ==,因此22(,2)t H t p, 所以N 为OH 的中点,即||2||OH ON =. (Ⅱ)直线MH 与C 除H 以外没有其它公共点. 理由如下: 直线MH 的方程为2py t x t-=,即2()t x y t p =-,代入22y px =,得22440y ty t -+=,解得122y y t ==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点. 【点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系试卷第24页,共26页是一个很宽泛的考试内容,主要由求值、求方程、求定值、求最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.19.(2021·新疆昌吉·高三阶段练习(文))已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分別为12,A A ,右焦点为F (1,0),且椭圆C 的离心率为12,M ,N 为椭圆C 上任意两点,点P 的坐标为(4,t )(t ≠0),且满足1122,AM MP A N NP λλ==. (1)求椭圆C 的方程; (2)证明:M ,F ,N 三点共线. 【答案】(1)22143x y +=; (2)证明见解析. 【分析】(1)根据椭圆的焦点坐标及离心率求椭圆参数,写出椭圆方程即可.(2)设()()1122,,,M x y N x y ,由题设易知1,,A M P 共线,2,,A N P 共线,利用向量共线的坐标表示有()()22112222292x y y x +=-,再由M ,N 在椭圆上可得()12122580x x x x -++=,最后由11(1,)FM x y =-,22(1,)FN x y =-结合分析法证明结论. (1)椭圆C 的右焦点为(1,0)F ,且离心率为12,∴a =2,c =1,则b 2=a 2-c 2=3, ∴椭圆C 的方程为22143x y +=.(2)由(1)知,12,A A 的坐标分别为(2,0),(2,0)-,设()()1122,,,M x y N x y , ∴111(2,)AM x y =+,1(6,)A P t =,222(2,)A N x y =-,2(2,)A P t =, ∵11AM MP λ=,22A N NP λ=,25∴1,,A M P 三点共线,2,,A N P 三点共线,即()()11226222y t x y t x ⎧=+⎪⎨=-⎪⎩,整理得1122322y x y x +=-,两边平方得()()22112222292x y y x +=-,① 又M ,N 在椭圆上,则22112222334334y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,代入①并化简得()12122580x x x x -++=,又11(1,)FM x y =-,22(1,)FN x y =-,∴要证M ,F ,N 三点共线,只需证()()211211y x y x -=-,即112211y x y x -=-,只需证()112221321x x x x +-=--,整理得()12122580x x x x -++=,∴M ,F ,N 三点共线. 【点睛】关键点点睛:第二问,设()()1122,,,M x y N x y ,由向量共线得1122322y x y x +=-,利用分析法结合向量共线的坐标表示只需证112211y x y x -=-,最后由M ,N 在椭圆上求证即可.20.(2021·宁夏·石嘴山市第三中学高三阶段练习(文))已知椭圆C :()222210x y a b a b +=>>的左焦点为F ,离心率为12,过点F 且垂直于x 轴的直线交C 于,A B 两点,3AB =(1)求椭圆的标准方程;(2)若直线l 过点()4,0M -且与椭圆相交于A ,B 两点,求ABF 面积最大值及此时直线l 的斜率. 【答案】 (1)22143x y += (2332114± 【分析】(1)根据题意得22221223c a ba abc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,再解方程即可得答案; (2)设直线l 的方程为4x my =-,设()11,A x y ,()22,B x y ,进而将直线l 的方程与椭圆试卷第26页,共26页方程联立,并结合韦达定理得ABFS =,再令)0t t =>,结合基本不等式求解即可. (1)解:由题知:2222122231c a a bb ac a b c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎪⎩ 所以椭圆22:143x y C +=.(2)设直线l 的方程为4x my =-,设()11,A x y 、()22,B x y ,与椭圆方程联立得224143x my x y =-⎧⎪⎨+=⎪⎩,消去x 得()223424360m y my +-+=.则()()2225764363414440m m m ∆=-⨯+=->,所以24m >.由根与系数的关系知1222434m y y m +=+,1223634y y m =+,所以1232ABFSy y =-=①令)0t t =>,则①式可化为21818163163ABFt St t t ==++当且仅当163t t =,即t =.此时3m =±l的斜率为14±.27。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.(2010 新课标,5)中心在原点,焦点在 x 轴上的双曲线的一条渐近线经过点(4,-2) ,则 它的离心率为( ) A. 6 B. 5 C.
6 2
D.
5 2
3.(2010 辽宁,9)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB于该双曲线的 一条渐近线垂直,那么此双曲线的离心率为( ) A. 2 B. 3 C.
3 4

B. 1
C.
5 4
D.
7 4
3.(2010 辽宁,7)设抛物线 y 2 8x 的焦点为 F ,准线为 l , P 为抛物线上,PA l , A 为垂足, 如果直线 AF 的斜率为 3 ,那么 PF ( A. 4 3 B. 8 C. 8 3 D. 16
6

x2 y 2 1 上一点M的横坐标是 3,则 4 12
考点 2 双曲线的性质 1(2011 天津,6)已知双曲线
x2 y 2 2 1(a 0, b 0) 的左顶点与抛物线 y 2 2 px( p 0) 的焦点 2 a b
4
的距离为 4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1) ,则双曲线的焦距 为( ) A. 2 3 B. 2 5 C. 4 3 D. 4 5
的距离是
5
第三节抛物线 考点 1 抛物线的定义和标准方程 1.(2011 山东,9)设 M ( x 0 , y0 ) 为抛物线C: x2 8 y 上一点,F为抛物线C的焦点,以F为圆心,
FM 为半径的圆和抛物线C的准线相交,则 y0 的取值范围是(
A. (0,2) B. [0,2] C. (2,) D. [2,)
考点 2 椭圆的性质
x2 y2 1 的离心率为( 1.(2011 新课标,4)椭圆 16 8

A.
1 3
B.
1 2
C.
3 3
D.
2 2
2.(2010 四川,10)椭圆
x2 y 2 1(a b 0) 的右焦点为 F ,其右准线与 x 轴的交点为 A .在垂直平分线过点 F ,则椭圆的离心率的取值范围是( A. (0,
4.(2011 福建,18)如图,直线 l : y x b 与抛物线 C : x2 4 y 相切于点A. (1)求实数 b 的值 (2)求一点A为圆心,且与抛物线 C 的准线相切的圆的方程。
考点 2 抛物线的性质 1.(2011 湖北,4)将两个顶点在抛物线上 y 2 2 px( p 0) 上,另一个顶点在此抛物线焦点的 正三角形个数记为n,则( ) A. n 0 B. n 1 C. n 2 D. n 3 2.(2011.辽宁.7)已知F是抛物线 y 2 x 的焦点, A, B 是抛物线上的两点, AF BF 3 ,则 线段 AB 的中点到 y 轴的距离为( A.

x2 y2 1 的中心和左焦点,点P为椭圆上的任意 2.(2010 福建,11)若点O和点F分别为椭圆 4 3
一点,则 OP FP 的最大值为( A.2 B.3 C.6 D.8

3(2008 上海,12)设P为椭圆 于( A.4 ) B.5
x2 y2 1 上的点.若 F1 , F2 是椭圆的两个焦点,则 PF 1 PF 2 等 25 16
C. (0,
2 ) 2
2 ,1) 2

4.(2007 全国 2,11)已知椭圆的长轴长是短轴长的 2 倍,则椭圆的离心率等于( A.
1 3
B.
1 2
C.
3 3
D.
3 2
6 x2 y 2 5.(2011 北京,19)已知椭圆 G : 2 2 1(a b 0) 的离心率为 ,右焦点为 (2 2 ,0) .斜率 a b 3

2.(2011 陕西,2)设抛物线的顶点在原点,准线方程为 x 2 ,则抛物线的方程是( A. y 2 8x B. y 2 4x C. y 2 8x D. y 2 4 x

3.(2010 湖南 5)设抛物线 y 2 8x 上一点P到 y 轴的距离是 4,则点P到该抛物线的焦点的距离 是( A.2 ) B.6 C.8 D.12

2 ] 2
1 B. ( 0, ] 2
C. [ 2 1,1)
1 D. [ ,1) 2
M 总是在椭圆的内部, 3. (2008 江西, 7) 已知 F1 , F2 是椭圆的两个交点,满足 MF 1 MF 2 0的
则椭圆的离心率的取值范围( A. (0,1)
1 B. ( 0, ] 2
) D. [
2.(2011 重庆,9)设双曲线的左准线与两条渐近线交于 A, B 两点,左焦点在以 AB 为直径的 圆内,则该双曲线的离心率的取值范围为( A. (0, 2 ) B. (1, 2 ) C. ( )
2 ,1) 2
D. ( 2 ,)
3.(2010 全国 1,8)已知焦点分别为 F1 , F2 为双曲线 C: x 2 y 2 1 的左右焦点,点P在 C上,
的个数为 5.(2011 重庆,21)如图,椭圆的中心为原点O,离心率 e (1)求该椭圆的方程 (2 ) 设动点P满足 OP OM 2ON , 其中M,N是椭圆上的点, 直线 OM与ON 的斜率之积为 1 . 2
2 ,一条准线方程是 x 2 2 2
问是否存在定点F,使得 PF 与点P到直线 l : x 2 10 的距离之比为定值?若存在,求出 F的坐 标,若不存在,说明理由.
1
6.(2010 新课标, 20)设 F1 , F2 分别是椭圆 E : x 2 交于 A, B 两点且 AF2 , AB , BF2 成等差数列. (1)求且 AB ; (2)若直线 l 的斜率为 1,求 b 的值.
y2 1(0 b 1) 的左右焦点, 过F1 的直线 l 与 E 相 b2
C.8
D.10
x2 y 2 1 的两个焦点分别为 F1 , F2 ,点 P( x0 , y0 ) 满 足 4. ( 2010 湖 北, 15 )已知椭圆 C : 2
0 x0 2 y0 1 ,则 PF 1 PF 2 的取值范围为 2
2
直线
x0 x y0 y 1 与椭圆C的公共点 2
2
为 1 的直线 l 与椭圆 G 交于 A, B 两点,以 AB 为底边做等腰三角形,顶点为 P(3,2) . (1)求椭圆 G 的方程 (2)求 PAB 的面积
6. ( 2011 天津, 18 )设椭圆
x2 y 2 1(a b 0) 的左右焦点分别为 F1 , F2 ,点 P(a, b) 满足 a 2 b2
PF 1 F 1 F2
(1)求椭圆的离心率 (2 ) 设直线 PF2 与椭圆相交于 A, B 两点, 若直线 PF2 与圆 ( x 1) 2 ( y 3) 2 16 相较于 M , N , 且 MN
5 AB ,求椭圆的方程 8
3
第二节双曲线 考点 1 双曲线的定义和标准方程 1.(2011 安徽,3)双曲线 2 x 2 y 2 8 放入实轴长是( A. 2 B. 2 2 C. 4 D. 4 2 )
第一节椭圆 考点 1 椭圆的定义和标准方程 1. ( 2011 福 建 , 11 ) 设 圆 锥 曲 线 C 的 两 个 焦 点 分 别 为 F1 , F2 , 若 曲 线 C 上 存 在 点 P 满 足
PF 1 : F 1 F2 : PF 2 4 : 3 : 2 ,则曲线C的离心率为(
1 3 A. 或 2 2 2 B. 或2 3 1 C. 或2 2 2 3 D. 或 3 2
3 1 2
D.
5 1 2
4.(2009 全国 1,5)设双曲线 曲线的离心率为( A. 3 B. 2 C. 5 )
x2 y 2 1(a 0, b 0) 的渐近线与抛物线 y x2 1 相切,则该双 a 2 b2
D. 6
x2 y 2 1(a 0, b 0) 的两个焦点,若 F1, F2 , P(0,2b) 是正 a 2 b2
曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 7.(2011 江西,12)若双曲线
x2 y 2 1 的离心率 e 2 ,则 m 16 m
y2 1(b 0) 的一条渐近线的方程为 y 2 x ,则 b2
8.(2011 北京,10)已知双曲线 x 2
b
x2 y 2 1 上一点P到双曲线右焦点的距离为 4,那么点P到左准线 9.(2011 四川,14)双曲线 64 36
F1PF2 60 ,则 PF 1 PF 2 (

A. 2
B.4
C.6
D.8
4.(2011 全国,16)已知为 F1 , F2 分别为双曲线C:
x2 y 2 1 的左右焦点,点 A C ,点M的 9 27
坐标为(2,0) AM为F1 AF2 的平分线,则 AF2 的长度为 5.(2010 江苏,6)在平面直角坐标系 xOy 中,已知双曲线 点M到此双曲线的右焦点的距离为
5.(2009 江西,7)设 F1 , F2 为双曲线
三角形的三个顶点,则双曲线的离心率为( A.
3 2

B. 2
C.
5 2
D. 3
x2 y 2 x2 y 2 1 ( a 0 , b 0 ) 1 有相同的焦点,且双 和椭圆 a 2 b2 16 9
6.(2011 山东,15)已知双曲线
相关文档
最新文档