高考数学专题-不等式

合集下载

高考数学复习专题 基本不等式 (文 精讲)

高考数学复习专题 基本不等式  (文 精讲)

专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)直线ab经过点M可得1+a*log(m)=b,化简得a*log(m)=b-1将a*log(m)代入第一个式子得到11/b+log(m)的最小值令t=log(m),则有11/b+t的最小值,根据部分“1”代换可得11/b+t=(1+1/b)*b+(t-1)的最小值,当且仅当b=2时取“=”,此时a=log(2)即为最小值。

已知$x>0$,$y>0$,且$x+y=1$,求$\frac{y^4}{x^2y^2}$的最小值。

解析:$\frac{y^4}{x^2y^2}=y^2+\frac{y^4}{x^2}\geq2\sqrt{y^2\cdot\frac{y^4}{x^2}}=2y^2$,所以最小值为$2$,当且仅当$x=y=\frac{1}{2}$时取等号。

已知正数$x$,$y$,且$x+y=4$,求$\frac{4}{x+2y+1}$的最小值。

解析:令$m=x+2$,$n=y+1$,则$x+2+y+1=m+n=5$,$\frac{4}{x+2y+1}=\frac{4}{m+n-2}\geq\frac{4}{4}=1$,所以最小值为$1$,当且仅当$x=2$,$y=1$时取等号。

已知$x>y>0$,且$x+y\leq 3$,求$\frac{3x+y}{2x+by+1}$的最小值。

解析:令$m=2x+y$,$n=y+1$,则$x=\frac{m-2n}{3}$,$y=n-1$,$x>y$可得$\frac{m-2n}{3}>n-1$,即$m>5n-3$。

所以$\frac{3x+y}{2x+by+1}=\frac{3m-6n+n}{2m+bn+1}=\frac{3}{2}\cdot\frac{m}{m+\frac{bn+1}{2}-n}\geq\frac{3}{2}\cdot\frac{5}{3}=2.5$,所以最小值为$2.5$,当且仅当$m=5n-3$时取等号,即$x=2$,$y=1$。

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高考数学知识点:不等式

高考数学知识点:不等式

高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。

不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。

下面将对高考数学中常见的不等式知识点进行详细介绍。

一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。

要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。

2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。

3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。

二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。

要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。

2. 计算抛物线的顶点坐标,即x₀=-b/2a。

3. 根据a的正负性确定抛物线的上升段或下降段。

4. 根据a的正负性确定不等式的解集。

三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。

要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。

2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。

2024年新高考版数学专题1_2.2 基本不等式及不等式的应用

2024年新高考版数学专题1_2.2   基本不等式及不等式的应用

x2
x
b
,则
x
2
x
b
≥1,由b>0得b≤x-x2,
即b≤
(
x
x
2
)
max
,∵x-x2=-
x
1 2
2
+
1 4
,x∈
1 4
,
3 4
,∴x=
1 2
时,(x-x2)max=
1 4
,则b≤
1 4
.
故0<b≤ 1 .
4
答案
0<b≤
1 4
例3
已知函数f(x)=x2,g(x)=
1 2
x
-m,若对任意x∈[1,2],都有f(x)≥g(x),则实
2.几个重要不等式
1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
2)a+b≥2 ab (a>0,b>0),当且仅当a=b时取等号.
3)ab≤
a
2
b
2
(a,b∈R),当且仅当a=b时取等号.
4)a+ 1 ≥2(a>0),当且仅当a=1时取等号;a+ 1 ≤-2(a<0),当且仅当a=-1时取
4.双变量的恒成立与存在性问题 1)若∀x1∈I1、∀x2∈I2 ,f(x1)>(≥)g(x2)恒成立,则f(x)min>(≥)g(x)max. 2)若∀x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)min>(≥)g(x)min. 3)若∃x1∈I1,∀x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)max. 4)若∃x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)min. 5)已知f(x)在区间I1上的值域为A,g(x)在区间I2上的值域为B,若∀x1∈I1,∃x2 ∈I2,使得f(x1)=g(x2)成立,则A⊆B.

高考不等式题型及解题方法

高考不等式题型及解题方法

高考不等式题型及解题方法高考不等式题型及解题方法不等式作为数学中的一种重要的数学概念,它在高考数学中也占有重要的地位。

在高考中,关于不等式的考点主要有以下几个方面:1. 不等式的基本性质:包括不等式的传递性、反对称性、加减乘除不等式两端的数等等。

2. 不等式的解法:包括一元一次不等式的解法、一元二次不等式的解法、绝对值不等式的解法等等。

3. 不等式的应用:包括利用不等式求最值、证明不等式等等。

在高考中,关于不等式的考点是非常多的,而其中涉及到的不等式类型也是非常多的,下面我们就来了解一下高考中常见的不等式类型及其解法。

一、一元一次不等式一元一次不等式是指一个未知数的一次不等式,它的一般形式为ax+b>0或ax+b<0。

解一元一次不等式时,首先需要将未知数的系数和常数项分别移项,然后根据不等式符号判断解的范围。

例如:解不等式2x-3>1。

解:将不等式中的常数项移项得:2x>4,再将未知数的系数2移项得:x>2。

所以,不等式2x-3>1的解集为{x|x>2}。

二、一元二次不等式一元二次不等式是指一个未知数的二次不等式,它的一般形式为ax+bx+c>0或ax+bx+c<0。

解一元二次不等式时,可以利用函数图像、配方法、求根公式等方法进行求解。

例如:解不等式x+2x-3>0。

解:首先求出x+2x-3=0的两个根:x1=-3,x2=1。

然后将不等式方程对应的二次函数的图像画出来,根据函数图像的上下关系,可以判断出不等式的解集为(-∞,-3)U(1,+∞)。

三、绝对值不等式绝对值不等式是指一个未知数与定值或其他未知数之间的关系,它的一般形式为|ax+b|<c或|ax+b|>c。

解绝对值不等式时,一般需要进行分情况讨论,然后利用不等式的基本性质进行求解。

例如:解不等式|2x-1|<3。

解:首先将不等式中的绝对值拆开,得到两个一元一次不等式:2x-1<3和2x-1>-3。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

高考数学专题--不等式

高考数学专题--不等式

高考数学专题--不等式———————主干整合·归纳拓展———————[第1步▕ 核心知识再整合]1.在证明不等式的各种方法中,作差比较法是一种最基本、最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握.2.解不等式的过程,实质上是不等式等价转化的过程.因此在学习中理解保持同解变形是解不等式应遵循的基本原则.转化的方法是: 超越式、分式、整式(高次)、整式(低次)、一次(或二次)不等式.其中准确熟练求解一元二次(一次)不等式是解其他不等式的基础,这体现了转化与化归的数学思想.3.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎪⎫a +b 22,要理解它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.4.在应用均值定理求最值时,要把握定理成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”.若忽略了某个条件,就会出现错误.5.平面区域的确定方法是“直线定界,特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集.确定平面区域中单个变量的范围、整点个数等,只需把区域画出来,结合图形通过计算解决.线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b 可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.6.含有绝对值的不等式常用的方法是:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方;(4)利用绝对值的几何意义.[第2步▕ 高频考点细突破]【例1】已知实数x ,y 满足⎩⎨⎧2x -y ≤0,x +y -5≥0,y -4≤0,若不等式a (x 2+y 2)≥(x +y )2恒成立,则实数a 的最小值是________.[解析] 可行域为一个三角形ABC 及其内部(图略),其中A (2,4),B (1,4),C ⎝ ⎛⎭⎪⎫53,103,因此y x ∈[k OA ,k OB ]=[2,4],因为y x +x y 在[2,4]上单调递增,所以y x +x y ∈⎣⎢⎡⎦⎥⎤52,174,不等式a (x 2+y 2)≥(x +y )2恒成立等价于a ≥⎣⎢⎡⎦⎥⎤x +y 2x 2+y 2max =⎣⎢⎡⎦⎥⎤1+2y x +x ymax=95⇒a min =95. [答案]95[规律方法] 这是简单线性规划的应用的基本题型.基本思路是:画、移、解、代.技巧是:往往在“角点”处取得最值,直接代入点的坐标即可,关键点是理解目标函数的几何意义. [举一反三]若实数x ,y 满足⎩⎨⎧2x +y ≤4,x +3y ≤7,x ≥0,y ≥0,则z =3x +2y 的最大值为________.7 [作出不等式组对应的平面区域如图:(阴影部分). 由z =3x +2y 得y =-32x +12z ,平移直线y =-32x +12z ,由图象可知当直线y =-32x +12z 经过点A 时,直线y =-32x +12z 的截距最大,此时z 最大.由⎩⎨⎧2x +y =4,x +3y =7,解得A (1,2),代入目标函数z =3x +2y 得z =3×1+2×2=7. 即目标函数z =3x +2y 的最大值为7.【例2】已知x ,y 满足⎩⎨⎧y ≥x ,x +y ≤2x ≥a ,,若z =3x +y 的最大值为M ,最小值为m ,且M +m =0,则实数a 的值为________.[解析]画出不等式组⎩⎨⎧y ≥xx +y ≤2x ≥a表示的区域如图,结合图形可以看出当动直线y =-3x +z 经过点A (a ,a )和B (1,1)时,z =3x +y 分别取最小值m =4a 和最大值m =4,由题设可得4a +4=0,所以a =-1.[答案] -1[规律方法] 尝试画出“可行域”,通过平移直线确认“最优解”,建立参数的方程. [举一反三]实数x ,y 满足⎩⎨⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-2,则实数m 的值为________.8 [如图,约束条件表示的可行域应该是△ABC 内部(含边界)(否则可行域不存在),作直线l :x -y =0,当把直线l 向上平移时,z 减小,因此其最小值点是直线y =2x -1与直线x +y =m 的交点,由⎩⎨⎧y =2x -1x -y =-2得B (3,5),代入x +y=m 得m =8.]【例3】 若函数y =tan θ+sin 2θ⎝⎛⎭⎪⎫0<θ<2,则函数y 的最小值为________.[解析] ∵θ∈⎝⎛⎭⎪⎫0,π2,∴tan θ>0.y =tan θ+cos 2θ+1sin 2θ=tan θ+2cos 2θ2sin θcos θ=tan θ+1tan θ≥2tan θ·1tan θ=2,当且仅当tan θ=1时取等号.因此y 的最小值为2.[答案] 2[规律方法] 应用基本不等式,应注意“一正、二定、三相等”,缺一不可.灵活的通过“拆、凑、代(换)”,创造应用不等式的条件,是解答此类问题的技巧;忽视等号成立的条件,是常见错误之一. [举一反三]已知正数a ,b 满足1a +9b=ab -5,则ab 的最小值为________.36 [1a +9b =ab -5⇒ab -5≥29ab⇒(ab )2-5ab -6≥0⇒ab ≥6⇒ab≥36,当且仅当b =9a 时取等号,因此ab 的最小值为36.]【例4】 f (x )≤0的解集为[]-1,n .(1)当a >0时,解关于x 的不等式:ax 2+n +1>(m +1)x +2ax ;(2)是否存在实数a ∈(0,1),使得关于x 的函数y =f (a x )-3a x +1(x ∈[1,2])的最小值为-5?若存在,求实数a 的值;若不存在,说明理由.[解] (1)由不等式mx 2-2x -3≤0的解集为[]-1,n 知,关于x 的方程mx 2-2x -3=0的两根为-1和n ,且m >0, 由根与系数关系,得⎩⎪⎨⎪⎧-1+n =2m,1n =-3m ,∴⎩⎨⎧m =1,n =3.所以原不等式化为(x -2)(ax -2)>0,①当0<a <1时,原不等式化为(x -2)⎝ ⎛⎭⎪⎫x -2a >0,且2<2a ,解得x >2a 或x <2;②当a =1时,原不等式化为(x -2)2>0,解得x ∈R 且x ≠2;③当a >1时,原不等式化为(x -2)⎝ ⎛⎭⎪⎫x -2a >0,且2>2a ,解得x <2a 或x >2;综上所述:当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >2a或x <2; 当a =1时,原不等式的解集为{x |x ∈R 且x ≠2}; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >2或x <2a . (2)假设存在满足条件的实数a , 由(1)得:m =1,f (x )=x 2-2x -3,y =f (a x )-3a x +1=a 2x -(3a +2)a x -3.令a x =t (a 2≤t ≤a ),则y =t 2-(3a +2)t -3(a 2≤t ≤a ), 对称轴t =3a +22, 因为a ∈(0,1),所以a 2<a <1,1<3a +22<52, 所以函数y =t 2-(3a +2)t -3在[]a 2,a 上单调递减, 所以当t =a 时,y 的最小值为y =-2a 2-2a -3=-5,解得a =5-12. [规律方法] 应用导数研究函数的单调性、极值(最值)、证明不等式,解题格式明确、规范,基本思路清晰,能使问题解决的领域更宽广.解题过程中,注意应用转化与化归思想,化生为熟、化难为易、化繁为简,是解决问题的基本方法. [举一反三]已知函数f (x )=|x -1|,g (x )=-x 2+6x -5(x ∈R ). (1)若g (x )≥f (x ),求x 的取值范围; (2)求g (x )-f (x )的最大值. [解] (1)当x ≥1时,f (x )=x -1, 由g (x )≥f (x ),得-x 2+6x -5≥x -1, 整理得(x -1)(x -4)≤0,所以x ∈[1,4]; 当x <1时,f (x )=1-x ,由g (x )≥f (x ),得-x 2+6x -5≥1-x ,整理得(x -1)(x -6)≤0,所以x ∈[1,6],由⎩⎨⎧x <1,1≤x ≤6 ,得x ∈∅,综上x 的取值范围是[1,4].(2)由(1)知,g (x )-f (x )的最大值必在[1,4]上取到, 所以g (x )-f (x )=-x 2+6x -5-(x -1)=-⎝⎛⎭⎪⎫x -522+94≤94,所以当x =52时,g (x )-f (x )取到最大值为94.[第3步▕ 高考易错明辨析]1.简单线性规划问题,扩大(缩小)可行域的范围例、已知1≤x -y ≤2且2≤x +y ≤4求4x -2y 的范围. [错解] 由于1≤x -y ≤2,① 2≤x +y ≤4;② ①+②得3≤2x ≤6,③ ①×(-1)+③得0≤2y ≤3,④ ③×2+④×(-1)得3≤4x -2y ≤12. [错解分析] 可行域范围扩大了. [正解] 线性约束条件是:⎩⎨⎧1≤x -y ≤2,2≤x +y ≤4,令z =4x -2y , 画出可行域如图所示,由⎩⎨⎧ x -y =1x +y =2 得A 点坐标(1.5,0.5),此时z =4×1.5-2×0.5=5.由⎩⎨⎧x -y =2x +y =4得B 点坐标(3,1),此时z =4×3-2×1=10.∴5≤4x -2y ≤10.2.简单线性规划问题,理解题意错误例、已知⎩⎨⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求x 2+y 2的最值.[错解]不等式组⎩⎨⎧7x -5y -23≤0x +7y -11≤04x +y +10≥0表示的平面区域如图所示△ABC 的内部(包括边界),令z =x 2+y 2, 由⎩⎨⎧ 7x -5y -23=0x +7y -11=0得A 点坐标(4,1),此时z = x 2+y 2=42+12=17, 由⎩⎨⎧7x -5y -23=04x +y +10=0得B 点坐标(-1,-6),此时z = x 2+y 2=(-1)2+(-6)2=37, 由⎩⎨⎧x +7y -11=04x +y +10=0得C 点坐标(-3,2),此时z = x 2+y 2=(-3)2+22=13, ∴当⎩⎨⎧x =-1y =-6时,x 2+y 2取得最大值37,当⎩⎨⎧x =-3y =2时,x 2+y 2取得最小值13.[错解分析] 误将求可行域内的点到原点的距离的平方的最值误认为是求三点A ,B ,C 到原点的距离的平方的最值.[正解]不等式组⎩⎨⎧7x -5y -23≤0x +7y -11≤04x +y +10≥0表示的平面区域如图所示△ABC 的内部(包括边界),令z =x 2+y 2,则z 即为点(x ,y )到原点的距离的平方. 由⎩⎨⎧ 7x -5y -23=0x +7y -11=0得A 点坐标(4,1),此时z =x 2+y 2=42+12=17, 由⎩⎨⎧7x -5y -23=04x +y +10=0得B 点坐标(-1,-6),此时z =x 2+y 2=(-1)2+(-6)2=37, 由⎩⎨⎧x +7y -11=04x +y +10=0得C 点坐标(-3,2),此时z =x 2+y 2=(-3)2+22=13, 而在原点处,⎩⎨⎧x =0,y =0,此时z =x 2+y 2=02+02=0, ∴当⎩⎨⎧x =-1y =-6时,x 2+y 2取得最大值37,当⎩⎨⎧x =0y =0时,x 2+y 2取得最小值0.3.应用基本不等式,忽视等号成立的条件例、已知:a >0,b >0,a +b =1,求⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2的最小值.[错解] ⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2=a 2+b 2+1a 2+1b 2+4≥2ab +2ab +4≥4ab ·1ab+4=8,所以,⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2的最小值是8.[错解分析] 上面的解答中,两次用到了基本不等式a 2+b 2≥2ab ,第一次等号成立的条件是a =b =12,第二次等号成立的条件是ab =1ab,显然,这两个条件是不能同时成立的.因此,8不是最小值.[正解] ⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2=a 2+b 2+1a 2+1b 2+4=[(a +b )2-2ab ]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a +1b 2-2ab +4=(1-2ab )⎝ ⎛⎭⎪⎫1+1a 2b 2+4,由ab ≤⎝⎛⎭⎪⎫a +b 22=14, 得1-2ab ≥1-12=12, 且1a 2b 2≥16, 1+1a 2b 2≥17,∴原式≥12×17+4=252 (当且仅当a =b =12时,等号成立), 所以,⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2的最小值是252. ———————专家预测·巩固提升———————1.已知正实数x ,y 满足x +2x +3y +4y=10,则xy 的取值范围为________.⎣⎢⎡⎦⎥⎤1,83 [设xy =t ,则y =t x ,所以10=x +2x +3y +4y =x +2x +3t x +4x t =⎝ ⎛⎭⎪⎫1+4t x+()2+3t 1x≥2⎝⎛⎭⎪⎫1+4t 2+3t .即3t 2-11t +8≤0,解之得1≤t ≤83.]2.已知函数的定义域是[-2,+∞)且f (4)=f (-2)=1, f ′(x )为f (x )的导函数,且f ′(x )的图象如图7-1所示,则不等式组⎩⎨⎧x ≥0y ≥0f 2x +y1所围成的平面区域的面积是________.图7-14 [由导函数的图象得到f (x )在[-2,0]递减; 在[0,+∞)递增,∵f (4)=f (-2)=1, ∴f (2x +y )≤1,-2≤2x +y ≤4,∴⎩⎨⎧ x ≥0y ≥0f 2x +y 1⇒⎩⎨⎧ x ≥0y ≥0-2≤2x +y ≤4 表示的平面区域如下:所以平面区域的面积为12×2×4=4.] 3.已知函数f (x )的定义域是[-3,+∞)且f (6)=2,f ′(x )为f (x )的导函数,f ′(x )的图象如图7-2所示,若正数a ,b 满足f (2a +b )<2,则b +3a -2的取值范围是________.图7-2⎝⎛⎭⎪⎫-∞,-32∪()3,+∞ [如图所示:f ′(x )≥0在[0,+∞)上恒成立, ∴函数f (x )在[-3,0)是减函数,(0,+∞)上是增函数,又∵f (2a +b )<2=f (6),∴⎩⎨⎧ 2a +b >0,2a +b <6,画出平面区域令t =b +3a -2表示过定点(2,-3)的直线的斜率, 如图所示:t ∈⎝⎛⎭⎪⎫-∞,-32∪()3,+∞.] 4.已知x ,y 满足约束条件⎩⎨⎧ x ≥0,x +y ≥1,y ≥0,则x 2+4y 2的最小值是________. 45 [设x 2+4y 2=z (z >0)⇒x 2z +y 2z 4=1,这个椭圆与可行域有公共点,只需它与线段x +y =1(0≤x ≤1)有公共点,把y =1-x 代入椭圆方程得5x 2-8x +4-z =0,由判别式Δ=64-4×5(4-z )≥0得z ≥45,且x =45∈[0,1]时,z =45.] 强化训练:1.已知实数x ,y 满足⎩⎨⎧ x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.⎣⎢⎡⎦⎥⎤45,13 [根据已知的不等式组画出可行域,如图阴影部分所示,则(x ,y )为阴影区域内的动点.d =x 2+y 2可以看做坐标原点O 与可行域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d 的最小值是点O 到直线2x +y -2=0的距离.由⎩⎨⎧ x -2y +4=0,3x -y -3=0可得A (2,3),所以d max =22+32=13,d min =|-2|22+12=25.所以d 2的最小值为45,最大值为13.所以x 2+y 2的取值范围是⎣⎢⎡⎦⎥⎤45,13.] 2.不等式2x 2-x <4的解集为______. {x |-1<x <2}()1,2 [∵2x 2-x <4,∴2x 2-x <22,∴x 2-x <2,即x 2-x -2<0,∴-1<x <2.]3.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.⎝ ⎛⎭⎪⎫-22,0 [作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0, 则有⎩⎨⎧ f m <0,fm +1<0, 即⎩⎨⎧ m 2+m 2-1<0,m +12+m m +11<0,解得-22<m <0. 所以实数a 的取值范围为⎝ ⎛⎭⎪⎫-22,0.] [命题规律]在近年来的高考数学中,有关不等式的试题都占有较大的比重. 不仅考查有关不等式的基础知识、基本技能、基本思想方法,而且注重考查逻辑思维能力、运算能力以及分析问题和解决问题的能力. 在题型上,填空题主要考查不等式的性质、解简单不等式、简单线性规划的应用、绝对值不等式、简单转化求参数范围、比较大小等;解答题主要考查基本不等式的应用、含参不等式的解法、求恒成立中的参数范围、证明不等式、最值型综合题以及实际应用题等. 试题常常是寓不等式的证明、解不等式、求参数范围于函数、数列、复数、三角、解析几何、立体几何、实际应用等问题之中,知识覆盖面广、综合性强、思维力度大、能力要求高,是高考数学思想、数学方法、考能力、考素质的主阵地. 从近几年数学试题得到启示:涉及不等式解法的题目,往往较为容易;对简单线性规划的应用的考查,不但具有连续性,而且其题型规律易于把握;对基本不等式的考查,较多的寓于综合题目之中.通过第二轮的专题复习,应注意在巩固基础知识、基本方法的基础上,强化记忆,熟化常见题型的解法,提升综合应用不等式解题的能力.。

高考数学复习专题 基本不等式

高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。

2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。

3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。

2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。

4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。

2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。

3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。

4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。

5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。

6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。

7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。

二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。

题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。

2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。

高考数学不等式专题解析

高考数学不等式专题解析

高考数学不等式专题解析题目1:已知a、b为正实数,且a + b = 1,求证:\(ab \leq \frac{1}{4}\)。

题目2:若\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(ab \geq \frac{1}{4}\)。

题目3:若\(a > 0\),\(b > 0\),求证:\(a^2 + b^2 \geq 2ab\)。

题目4:已知\(a > 0\),\(b > 0\),求证:\(a^2 + b^2 \leq 2ab\)。

题目5:若\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 \geq 2ab\)。

题目6:若\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 \leq 2ab\)。

题目7:已知\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 = 2ab\)。

题目8:已知\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 = 2ab\)。

题目9:已知\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 = 2ab\)。

题目10:已知\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 = 2ab\)。

题目11:已知\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 = 2ab\)。

题目12:已知\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 = 2ab\)。

题目13:已知\(a > 0\),\(b > 0\),\(a + b = 1\),求证:\(a^2 + b^2 = 2ab\)。

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。

高考数学专题03 不等式(解析版)

高考数学专题03 不等式(解析版)

专题03 不等式一、单选题1.(2022·江苏宿迁·高三期末)不等式10x x->成立的一个充分条件是( ) A .1x <- B .1x >- C .10x -<< D .01x <<【答案】C 【分析】 首先解不等式10x x->得到1x >或10x -<<,再根据充分条件定理求解即可. 【详解】()()211001101x x x x x x x x-->⇒>⇒+->⇒>或10x -<<, 因为{}{|01x x x x ≠<<⊂或}10x -<<, 所以不等式10x x->成立的一个充分条件是01x <<. 故选:C2.(2022·江苏如皋·高三期末)已知a b =3-ln4,c =32,则下列选项正确的是( )A .a <b <cB .a <c <bC .c <b <aD .c <a <b【答案】C 【分析】由e 2.718,ln 20.69≈≈及不等式性质,进行计算即可得出结果. 【详解】 229e, 2.254a c ===,∴22a c >,即a c >, 2222(3ln 4) 1.62 2.6244b a =-==<,∴a b >,331e 1193ln 4 1.52ln 2ln ln 02216216b =--=-=>>,∴b c >,∴a b c >>,故选:C3.(2022·江苏苏州·高三期末)已知11a b >+> 则下列不等式一定成立的是( ) A .b ab B .11a b a b+>+ C .1e 1ln bb a a+<- D .ln ln a b b a +<+【答案】C 【分析】错误的三个选项ABD 可以借助特殊值法进行排除,C 可以利用求导得出证明. 【详解】取10,8a b ==,则b a b ,故A 选项错误;取3a =,13b =,11a b a b+=+,则B 选项错误; 取3a =,1b =,则ln 3a b ,2ln 1ln31ln 3b a e ,即ln ln a b b a +>+,故D 选项错误;关于C 选项,先证明一个不等式:e 1x x ≥+,令e 1x y x =--,e 1xy '=-, 于是0x >时0y '>,y 递增;0x <时0y '<,y 递减; 所以0x =时,y 有极小值,也是最小值0e 010--=, 于是e 10x y x =--≥,当且仅当0x =取得等号,由e 1x x ≥+,当1x >-时,同时取对数可得,ln(1)x x ≥+, 再用1x -替换x ,得到1ln x x -≥,当且仅当1x =取得等号, 由于11a b >+>,得到e 1bb ,ln 1a a <-,111ln e b a b a ,即1e 1ln bb a a+<-, C 选项正确. 故选:C.4.(2022·湖南郴州·高三期末)已知函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,则2m n +的最小值是( ) A.6 B .C .8 D .【答案】D 【分析】有()()f x f x =-可得m 、n 的关系,再用均值不等式即可. 【详解】因为函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,所以()()f x f x =-,xxxxm n m n --+=+,x xxxx xm n m n m n ++=因为0,0,1,1m n m n >>≠≠,所以1x x m n =,即1mn =,2m n +≥m n =. 故选:D.5.(2022·湖北武昌·高三期末)已知实数a ,b 满足28log 3log 6a =+,6810a a b +=,则下列判断正确的是( ) A .2a b >> B .2b a >> C .2a b >> D .2b a >>【答案】C 【分析】根据对数和指数的单调性可判断2a >,2b >;在构造函数()6810x x xf x =+-,2x >,再根据换元法和不等式放缩,可证明当2x >时,()68100x x xf x =+-<,由此即可判断,a b 的大小.【详解】因为()28221log 3log 6log 3log 233a =+=+⨯2241414317log 3log 233333233=+>=⨯+=>,所以2a >; 由6810a a b +=且2a >,所以683664100a a +>+=,所以2b >,令()6810x x xf x =+-,2x >,令20t x =-> ,则2x t =+,则()6810x x x f x =+-,2x >等价于()36664810010t t tg t =⨯+⨯-⨯,0t >;又()366648100101008100100t t t t tg t =⨯+⨯-⨯<⨯-⨯<,所以当2x >时,()68100x x xf x =+-<,故681010a a b a +=<,所以2a b >>. 故选:C .6.(2022·湖北武昌·高三期末)已知正数x ,y 满足115x y x y+++=,则x y +的最小值与最大值的和为( ) A .6 B .5C .4D .3【答案】B 【分析】利用基本不等式进行变形得4x y xy x y+≥+,然后将115x y x y +++=进行代换得45x y x y++≤+,继而解不等式可得答案. 【详解】 因为0,0x y >>,所以x y +≥,即2()2x y xy +≤ , 所以214()xy x y ≥+,即4x y xy x y+≥+, 又因为115x yx y x y x y xy++++=++=, 所以45x y x y++≤+,即2()5()40x y x y +-++≤ , 解得14x y ≤+≤ ,故x y +的最小值与最大值的和为5, 故选:B7.(2022·山东青岛·高三期末)已知2319,sin ,224a b c ππ===,则( ) A .c b a << B .a b c << C .a <c <b D .c <a <b【答案】D 【分析】先通过简单的放缩比较c 和a 的大小,再通过构造函数,利用图像特征比较b 和a 的大小,由此可得答案. 【详解】 293334π2π2π2πc a ==⨯<= c a ∴<3132π2a π==⨯, 设()sin f x x =,3()g x x π=,当6x π=时,31sin662πππ=⨯= ()sin f x x ∴=与3()g x x π=相交于点1,62π⎛⎫⎪⎝⎭和原点 ∴0,6x π⎛⎫∈ ⎪⎝⎭时,3sin x x π> 10,26π⎛⎫∈ ⎪⎝⎭∴13sin22π>,即b a > ∴c a b <<故选:D.8.(2022·山东枣庄·高三期末)已知1x >,则11x x +-的最小值是( ). A .6 B .5 C .4D .3【答案】D 【分析】 由于1x >,把11x x +-转化为11++11x x --,再利用基本不等式求出最小值即可得到答案. 【详解】1x >,故110,01x x ->>-,111121=31x x ∴-++≥=+-,当且仅当1121x x x -=⇒=-时,等号成立,故11x x +-的最小值是3. 故选:D.9.(2022·河北张家口·高三期末)已知102,105x y ==,则( ) A .1x y +< B .14xy >C .2212x y +> D .25y x ->【答案】C 【分析】结合指数运算、基本不等式、对数运算、比较大小等知识对选项进行分析,由此确定正确选项. 【详解】因为10101010x y x y +⋅==,所以1x y +=,所以A 错误;又102,105x y ==,所以0,0x y >>,又,1x y x y ≠+=>,所以14xy <,所以B 错误; 因为222()12x y x y xy +==++,所以2212x y xy +=-,又14xy <,所以2212x y +>,故C 正确; 因为lg5,lg2y x ==,所以2552lg ,lg1025y x -==,故只要比较52和2510的大小即可,又55255312510010232⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,所以52lg 25y x -=<,故D 错误.故选: C二、多选题10.(2022·江苏无锡·高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <【答案】ABD 【分析】先根据函数单调性,得到0b a <<,AC 选项用作差法比较大小;B 选项用基本不等式求取值范围;D 选项,先用作差法,再结合函数单调性比大小. 【详解】e e 1b a <<,则0b a <<,因为22()()0a b a b a b -=-+<,所以22a b <,A 选项正确;因为0b a <<,所以0,0b a a b >>,由基本不等式得:2a b b a +>=,B 选项正确; 2()0ab b b a b -=-<,2ab b ∴<,C 选项错误;2()0a ab a a b -=-<,2a ab ∴<,2lg lg a ab ∴<,D 选项正确,故选:ABD11.(2022·广东·铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2< C .111a b+≥D .22118a b ≤+ 【答案】CD 【分析】结合基本不等式对选项进行分析,由此确定正确选项. 【详解】22222a b a bab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b+⎛⎫≤ ⎪⎝⎭,则222211112,8,48a b ab a b ≥≤+≥≤+, 即AB 错误,D 正确.对于C 选项,1141414a b a ab ab b ++==≥⨯=,C 选项正确. 故选:CD12.(2022·广东汕尾·高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( ) A .a b c c > B .c c a b >C .log log c c a b >D .11()()4a b ab++>【答案】BD 【分析】根据指数函数,对数函数,幂函数的单调性,结合题意,可判断A 、B 、C 的正误,根据基本不等式,可判断D 的正误,即可得答案. 【详解】函数x y c =,因为01c <<,所以x y c =是减函数, 因为a >b ,所以a b c c <,故A 错.函数c y x =,因为01c <<,所以c y x =在(0,)+∞是增函数, 因为a >b ,所以c c a b >,故B 正确.函数log c y x =,因为01c <<,所以log c y x =在(0,)+∞是减函数, 因为a >b ,所以log log c c a b <,故C 错.11()1124a b a b a b b a ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当a b =时取等号,又a b >,所以11()4a b a b ⎛⎫++> ⎪⎝⎭,故D 正确.故选:BD13.(2022·湖南常德·高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥【答案】BD 【分析】利用基本不等式及指对数函数的性质逐项分析即得. 【详解】∵0a >,0b >,111a b +=≥∴4ab ≥,当且仅当2a b ==时取等号,故A 错误;由()1124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当b aa b =,即2a b ==时取等号,故B 正确;因为228a b ≥=+,当且仅当2a b ==时取等号,故C 错误; 因为()2222log log log log 42a b ab +=≥=,当且仅当2a b ==时取等号,故D 正确. 故选:BD.14.(2022·湖北襄阳·高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>【答案】ACD 【分析】利用()()f a f b =,可得lg lg a b -=,从而得到1ab =,再对每一个选项进行分析即可. 【详解】因为()()f a f b =,且a b <,可得lg lg lg lg 0a b a b -=⇒+=,从而得到1ab =, 因为0a b <<,所以01a b <<<,所以2221111()244b b b b a -=-+=--+<,而12a b b b +=+>,(1b >,等号不成立)所以422a b >==+. 从而可知选项ACD 正确. 故选:ACD15.(2022·山东泰安·高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( ) A .11a b a>- B .11a b > C .2a bb a+>D .a b >【答案】BCD【分析】以求差法判断选项AB ;以均值定理判断选项C ;以绝对值的几何意义判断选项D. 【详解】 选项A :()()11()a a b b a b a a b a a b a ---==---,由0a b <<,可知0a <,0b <,0a b -<,则()0ba b a <-,即11a b a<-.选项A 判断错误;选项B :11b a a b ab --=,由0a b <<,可知0a <,0b <,0b a ->,则0b aab ->,即11a b>.选项B 判断正确;选项C :当0a b <<时,2a b b a +>=.选项C 判断正确;选项D :当0a b <<时,a b >.选项D 判断正确. 故选:BCD16.(2022·山东德州·高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( ) A.a b +的最小值为3+B .22a b +的最小值为16C D .lg lg a b +的最小值为3lg 2【答案】ACD 【分析】利用“1”的代换结合基本不等式判断AD C ,由对数的运算结合基本不等式判断B. 【详解】由2a b ab +=可得,211b a +=,212()3322a b a b a b b a b a ⎛⎫+=++=+++ ⎪⎝⎭(当且仅当2b =等号),故A 正确;214(2)44248a b ab a b b a b a ⎛⎫=++=+++= ⎪⎝⎭(当且仅当24b a ==时,取等号),即lg lg lg lg83lg 2a b ab +=≥=,故D 正确;222a b ab +≥(当且仅当3b a ==时,取等号),8ab (当且仅当24b a ==时,取等号),即2216a b +>,故B 错误;2212112b a b =+++=≤1212a b ==时,取等号),故C 正确; 故选:ACD17.(2022·山东烟台·高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤ D .若1a b +=,则114a b+≥【答案】ABD 【分析】利用基本不等式逐项判断. 【详解】A.若1ab =,则2222a b ab +≥=,当且仅当1a b ==时,等号成立,故正确;B.若1ab =,则112a b +≥当且仅当1a b ==时,等号成立,故正确;C.若1a b +=,则()2221122=+≥+a b a b ,当且仅当1a b ==时,等号成立,故错误; D.若1a b +=,则2111421a b ab a b ab a b +==≥++⎛⎫⎪⎝⎭=,当且仅当1a b ==时,等号成立,故正确; 故选:ABD18.(2022·山东济南·高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( )A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+ D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为4【答案】BC 【分析】对于A ,利用不等式的性质判断,对于BC ,作差判断即可,对于D ,利用基本不等式判断 【详解】对于A ,因为0a b c >>>,所以11a b <,10c a<-,所以()()11a c a b c a >--,所以A 错误, 对于B ,因为0a b c >>>,所以()0,()0c a b a a c ->+>, 所以()()()0()()()b c b a b c b a c ab ac ab bc c a b a c a a a c a a c a a c ++-++----===>++++,所以b b ca a c+<+,所以B 正确, 对于C ,因为0a b c >>>,所以0,0a c b c ->->,所以2()()()()()0ab c ac bc a b c c b c a c b c +-+=---=-->,所以2ab c ac bc +>+,所以C 正确,对于D ,因为0,0a b >>,所以()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时取等号,因为a b >,所以取不到等号,所以()11a b a b ⎛⎫++ ⎪⎝⎭的最小值不为4,所以D 错误,故选:BC三、填空题19.(2022·江苏扬州·高三期末)已知正实数x ,y 满足x +y =1,则23x y xy++的最小值为__________.【答案】9+ 【分析】利用基本不等式来求得最小值. 【详解】 由题意可知,23x y xy ++=233x y x y xy +++=45x y xy +=4y +5x =(4y +5x)(x +y )=4+5+4x y +5y x ≥9+9+,当且仅当4x y =5yx,2x =时取等号, 此时54x y =-=,故23x y xy++的最小值为9+故答案为:9+20.(2022·广东罗湖·高三期末)已知存在实数(),0,1x y ∈,使得不等式21121y yt x x-+<+-成立,则实数t 的取值范围是______. 【答案】(3,)+∞ 【分析】根据基本不等式求得111x x+-的最小值为4,将问题转化为只需存在实数(0,1)y ∈,使得224y y t -+>成立即可,即242y yt ->-,再根据二次函数和指数函数的性质可求得答案.【详解】解:∵11111(1)()224111x x x x x x x x x x -+=+-+=++≥+=---,当且仅当11x x x x -=-,即()01x =,时取等号, ∴111x x+-的最小值为4, ∴只需存在实数(0,1)y ∈,使得224yyt -+>成立即可,即242yyt ->-,又当01y <<时,20y y -<,所以20221y y -<=,∴2423y y -->,∴3t >,∴实数t 的取值范围为(3,)+∞, 故答案为:(3,)+∞.21.(2022·湖南娄底·高三期末)已知a ,b 为正实数,且21a b +=,则22aa b+的最小值为______.【答案】6 【分析】利用已知化简可得24224222a a b a b a a b a b a b +⎛⎫+=+=++ ⎪⎝⎭,根据基本不等式计算即可. 【详解】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++≥= ⎪⎝⎭, 当且仅当22b a a b =,即25a =,15b =时取等号. 故答案为:6.22.(2022·湖北·黄石市有色第一中学高三期末)设0x >,0y >,且2116yx y x ⎛⎫-= ⎪⎝⎭,则当1x y +取最小值时,221x y +=______. 【答案】12 【分析】当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取最小值,变形可得21416=x y x y y x ⎛⎫++ ⎪⎝⎭,由基本不等式和等号成立的条件可得答案. 【详解】解析:∵0x >,0y >,∴当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取得最小值,∵222112x x x y y y ⎛⎫+=++ ⎪⎝⎭,又2116yx y x ⎛⎫-= ⎪⎝⎭,∴221216x y x y y x +=+,∴21416x y x y y x ⎛⎫+=+ ⎪⎝⎭16≥=, ∴14x y+≥,当且仅当416x y y x=,即2x y =时取等号, ∴当1x y +取最小值时,2x y =,221216x x y y++=, ∴2212216y x y y ⋅++=,∴22116412x y +=-=. 【点睛】本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属中档题. 23.(2022·山东日照·高三期末)已知54x >,则函数1445y x x =+-的最小值为_______.【答案】7 【分析】 由54x >,得450x ->,构造导数关系,利用基本不等式即可得到. 【详解】 法一:54x >,450x ∴->, 114(45)52574545y x x x x =+=-++≥+=--, 当且仅当14545x x -=-,即32x =时等号成立,故答案为:7. 法二:54x >,令2440(45)y x '=-=-得1x =或32x =, 当5342x <<时'0y <函数单调递减, 当32x >时'0y >函数单调递增, 所以当32x =时函数取得最小值为:314732452⨯+=⨯-, 故答案为:7. 【点晴】此题考基本不等式,属于简单题.24.(2022·河北深州市中学高三期末)已知正实数a ,b 满足321a b +=,则6a +1b 的最小值为______. 【答案】32 【分析】利用“1"的代换,将6a +1b 转化为6a +1b =(6a +1b )(3a +2b),然后化简整理,利用均值不等式即可求出结果. 【详解】由0a >,0b >且321a b +=,得 6a+1b =(6a +1b )(3a +2b)=18+12b a+3a b+2≥20+2√12b a⋅3a b=32,当且仅当12b a =3a b ,即2a b =时,取等号,此时{a =14b =18,则6a +1b 的最小值为32.故答案为:32.25.(2022·河北保定·高三期末)22244x x x+++的最小值为___________.【答案】9 【分析】由222224445x x x x x+++=++结合基本不等式得出答案.【详解】因为22222444559x x x x x +++=++≥=,当且仅当224x x =,即22x =时,等号成立,所以22244x x x+++的最小值为9. 故答案为:9。

不等式 专题 高考数学专题复习精细高效梳理(附详解)

不等式 专题 高考数学专题复习精细高效梳理(附详解)

不等式第一节 不等关系与不等式一、必记4个知识点1.实数的大小顺序与运算性质的关系(1)a >b ⇔①________.(2)a =b ⇔a -b =0.(3)a <b ⇔②________.2.不等式的基本性质(1)对称性:a >b ⇔③________.(双向性)(2)传递性:a >b ,b >c ⇒④________.(单向性)(3)可加性:a >b ⇔a +c >b +c .(双向性)(4)同向可加性:a >b ,c >d ⇔⑤________.(单向性)(5)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc .(6)a >b >0,c >d >0⇒⑥________.(单向性)(7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥1).(单向性)(8)开方法则:a >b >0⇒n a >n b (n ∈N ,n ≥2).(单向性) 3.倒数性质(1)ab >0,则a <b ⇔1a >1b.(双向性) (2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a. 4.有关分数的性质若a >b >0,m >0,则(1)b a <b +m a +m ;b a >b -m a -m(b -m >0) (2)a b >a +m b +m ;a b <a -m b -m(b -m >0) 二、必明2个易误点1.在应用传递性时,注意等号是否传递下去,如a ≤b ,b <c ⇒a <c .2.在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).三、技法1. 用作差法比较两个实数大小的四步曲2. 不等式性质应用问题的3大常见类型及解题策略(1)利用不等式性质比较大小.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充要条件相结合问题.用不等式的性质分别判断p⇒q和q⇒p是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.3. 利用不等式性质求范围(1)此类问题的一般解法:先建立待求整体与已知范围的整体的关系,最后通过“一次性”使用不等式的运算求得整体范围.(2)求范围问题如果多次利用不等式有可能扩大变量取值范围.参考答案①a-b>0 ②a-b<0 ③b<a④a>c⑤a+c>b+d⑥ac>bd第二节一元二次不等式及其解法一、必记2个知识点1.一元二次不等式的特征一元二次不等式的二次项(最高次项)系数不等于0. 2.一元二次不等式的解法1.二次项系数中含有参数时,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.2.当Δ<0时,易混ax2+bx+c>0(a>0)的解集为R还是∅.三、技法1. 解一元二次不等式的4个步骤2. 含参数一元二次不等式求解步骤(1)讨论二次项系数的符号,即相应二次函数图象的开口方向.(2)讨论判别式的符号,即相应二次函数图象与x轴交点的个数.(3)当Δ>0时,讨论相应一元二次方程两根的大小.(4)最后按照系数中的参数取值范围,写出一元二次不等式的解集.3. 一元二次不等式在R上恒成立的条件(1)根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围;(2)数形结合,利用二次函数在端点a,b处的取值特点确定不等式求参数的取值范围.5. 已知参数范围求函数自变量的范围的一般思路是更换主元法.把参数当作函数的自变量,得到一个新的函数,然后利用新函数求解.参考答案①{x|x<x1或x>x2} ②{x|x≠x1} ③R④{x|x1<x<x2} ⑤∅⑥∅第三节二元一次不等式(组)与简单的线性规划问题一、必记6个知识点1.二元一次不等式表示平面区域在平面直角坐标系中,平面内所有的点被直线Ax+By+C=0分成三类:(1)满足Ax+By+C=0的点.(2)满足Ax+By+C>0的点.(3)满足Ax+By+C<0的点.2.二元一次不等式表示平面区域的判断方法直线l:Ax+By+C=0把坐标平面内不在直线l上的点分为两部分,当点在直线l的同一侧时,点的坐标使式子Ax+By+C的值具有相同的符号,当点在直线l的两侧时,点的坐标使Ax+By+C的值具有相反的符号.3.线性规划中的基本概念(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.5.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方.(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.6.最优解和可行解的关系最优解必定是可行解,但可行解不一定是最优解,最优解不一定唯一,有时唯一,有时有多个.二、必明2个易误点1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax+by+c>0(a>0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.三、技法1. 平面区域面积问题的解题思路(1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解.若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.2. 求目标函数的最值3步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.3.常见的3类目标函数(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距z b的最值间接求出z 的最值. (2)距离型:形如z =(x -a )2+(y -b )2.(3)斜率型:形如z =y -b x -a. [提醒] 注意转化的等价性及几何意义.4. 解线性规划应用题3步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题.(2)求解——解这个纯数学的线性规划问题.(3)作答——将数学问题的答案还原为实际问题的答案.5.求解线性规划应用题的3个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号.(2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、是否是非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.第四节 基本不等式一、必记3个知识点1.基本不等式ab ≤a +b 2(1)基本不等式成立的条件:①________.(2)等号成立的条件:当且仅当②________时取等号.(3)两个平均数:a +b 2称为正数a ,b 的③________,ab 称为正数a ,b 的④________.2.几个重要不等式(1)a 2+b 2≥⑤________(a ,b ∈R ).(2)ab ≤⑥________(a ,b ∈R ).(3)⎝ ⎛⎭⎪⎪⎫a +b 22≤⑦________(a ,b ∈R ). (4)b a +a b≥⑧________(a ·b >0). (5)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).3.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当⑨________时,x +y 有最小值是⑩________(简记:“积定和最小”).(2)如果和x +y 是定值s ,那么当且仅当⑪________时,xy 有最大值是⑫________(简记:“和定积最大”).二、必明2个易误点1.求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件.2.多次使用基本不等式时,易忽视取等号的条件的一致性.三、技法1. 配凑法的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;变形的目的是配凑出和或积为定值.2. 常值代换法:根据已知条件或其变形确定定值(常数),再把其变形为1,再把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式.3. 消元法:根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.4. 利用基本不等式证明不等式时,要先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之转化为能使用基本不等式的形式;若题目中还有已知条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换,另外,解题时要时刻注意等号能否取到.5. 利用基本不等式求解含参数的不等式的策略(1)观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或取值范围.(2)在处理含参数的不等式恒成立问题时,往往将已知不等式看作关于参数的不等式,体现了主元与次元的转化.参考答案①a >0,b >0 ②a =b ③算术平均数 ④几何平均数 ⑤2ab⑥⎝ ⎛⎭⎪⎪⎫a +b 22 ⑦a 2+b 22 ⑧2 ⑨x =y ⑩2p ⑪x =y ⑫s 24第五节合情推理与演绎推理一、必记知识点二、必明1个易误点演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.三、技法1.在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.2.归纳推理问题的常见类型及解题策略用三段论写演绎推理的过程,关键是明确大前提、小前提,大前提提供了一个一般性的原理,在演绎推理的过程中往往省略,而小前提指出了大前提下的一个特殊情况,只有将二者结合起来才能得到完整的三段论.一般地,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.参考答案①归纳推理②全部对象③部分④个别⑤类比推理⑥这些特征⑦由特殊到特殊⑧一般原理⑨对象⑩特殊问题⑪一般⑫特殊第六节直接证明与间接证明一、必记3个知识点1.综合法一般地,利用①______________________,经过一系列的②________,最后推导出所要证明的结论成立,这种证明方法叫做综合法.用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法可用框图表示为:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q2.分析法一般地,从要③________出发,逐步寻求使它成立的④________,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明的方法叫做分析法.用Q表示要证明的结论,则分析法可用框图表示为:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件3.反证法一般地,假设⑤____________,经过正确的推理,最后得出⑥________,因此说明⑦________,从而证明了原命题成立,这样的证。

高考数学—不等式专题

高考数学—不等式专题

不等式专题不等式基础篇不等式知识体系中的核心问题主要有以下几个方面:(1)解不等式问题解一般不等式:一元二次,分数,高次和绝对值不等式,利用函数思想解含参数不等式的解法。

(2)线性规划问题(3)不等式的性质和不等式的证明问题:不等式的性质是解不等式和不等式证明的基础工具,不等式的证明问题中,归纳出几点:一元含参不等式,一般来讲,求导是一种基础方法,基本可以解决很多题目。

这类题目一般与函数和导函数的知识相关,利用函数,导数相关知识证明不等式数列不等式的证明。

比如说一元不等式的恒成立问题,可以将不等式转换成某一个区间上函数的最值问题来求解,就可以运用导函数的正负来判断函数的单调性,从而求出最值。

多元不等式的求解和证明中,往往需要使用均值不等式和柯西不等式。

与数列有关的不等式,一般难度较高,出现在高考试卷的最后几道大题中,并且分几个小问,在解题中I.注意利用题中所给结论,很多情况下,第二问需要用到第一问给的结论,第三问需要前两问的结论。

II.注意积累放缩技巧,在求和之类的问题不能直接求得的时候,需要估计。

其中常用的几种方法,包括裂项求和,无穷缩比数列的求和等。

例1、集合{}30<≤∈=x Z x P ,{}92≤∈=x R x M ,则=M PA .{}2,1B .{}2,1,0C .{}30<≤x xD .{}30≤≤x x答案:B解析:集合P 容易求得,P={1,2,3},本题关键在于求集合M ,根据不等式的运算法则,M=[-3,3], {}2,1,0=M P 。

这种题目简单但考的很基础,一般在选择题的前几道题目中出现。

例2、若集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=21log 21x x A,则R A =A .(]⎪⎪⎭⎫⎝⎛+∞∞-,220,B .⎪⎪⎭⎫⎝⎛+∞,22 C .(]⎪⎪⎭⎫⎢⎣⎡+∞∞-,220,D .⎪⎪⎭⎫⎢⎣⎡+∞,22 答案:A解析:对于函数,首先考虑定义域,则x>0;该题目中的对数函数为递减,所以2x ≤,最后R A =(]⎪⎪⎭⎫ ⎝⎛+∞∞-,220, 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M ﹣PAB 、三棱锥 M ﹣ PBC、三棱锥 M ﹣ PCA 的体积.若 f( M )=( ,x,y),且

8 恒成立,则正实数 a 的最小值为

21.( 2010?南京模拟)已知实数 x、s、t 满足: 8x+9t=s,且 x>﹣ s,则
的最小值为

2
22.( 2016?杭州一模)设 x>0, y> 0,且( x﹣ ) =
二.填空题(共 7 小题)
每天练一练
爱拼才会赢
19.( 2011?南岸区校级一模)过△ ABO 的重心 G 的直线与 OA 、 OB 两边分别交于 P、Q 两
点,且此直线不与 AB 边平行,设
=m , =n ,求
的值

20.( 2015?张掖模拟) 如图, 在三棱锥 P﹣ ABC 中,PA、PB、PC 两两垂直, 且 PA=3.PB=2 , PC=1.设 M 是底面 ABC 内一点,定义 f ( M )=(m, n,p),其中 m、n、p 分别是三棱锥

的最小值为
R 的函数 f( x) =ax2+2x+c 的值域是 [ 0,+∞),那 .
每天练一练
爱拼才会赢
三.解答题(共 5 小题)
26.( 2010?广东模拟)函数
是[ 1, +∞)上的增函数.
(Ⅰ)求正实数 a 的取值范围; (Ⅱ)若函数 g( x )=x 2+2x,在使 g( x)≥ M 对定义域内的任意 x 值恒成立的所有常数 M
正实数 a, b, c 满足 abc+b2+c2=4d ,则 log4a+log2b+log2c 的最大值是(

A.
B. 4 C. 2 D.
6.( 2011?云南模拟)已知
x1>
1,
x2>
1,
x1x
2
2 =100

+
的最小值等于(

A.4 B.
C.
D.
7.( 2011?江西模拟)已知关于 x 的不等式
( ab> 1)的解集为空集,则
的最小值为(

A.
B. 2 C.
D. 4
8.(2011?朝阳区二模) 已知点 P 是△ ABC 的中位线 EF 上任意一点, 且 EF∥ BC .设△ ABC ,
△PBC ,△ PCA,△ PAB 的面积分别为 S,S1,S2,S3,记



定义 M ( P)=( λ1, λ2, λ3).当 λ2?λ3 取最大值时,则 M ( P)等于(

A . 0<t≤ 2 B .0< t≤ 4 C. 2< t≤ 4 D .t≥4 3.( 2011?临川区校级一模)设二次函数 f( x) =ax2﹣ 4x+c 的值域为 [ 0, +∞),且 f ( 1)≤
4,则
的最大值为(

A.
B.
C.
D.
4.( 2016?重庆校级模拟)已知 a+2b=1 且 b> 1,则 + 的取值范围(


A 4( 4,0).设 D 是四边形 A 1A 2A 3A 4 及其内部的点构成的点的集合,点 P0 是四边形对角
线的交点,若集合 S={ P∈D || PP0| ≤ | PAi| ,i=1 ,2,3,4} ,则集合 S 所表示的平面区域的
面积为(

A . 2 B. 4 C. 8 D. 16
12.( 2015 秋 ?九江期末) (普通中学做)若正实数 x, y 满足 2x+y+6=xy ,则 xy 的最小值为 ()
的取值范围是(

A .(﹣ ∞,﹣ 4] B.(﹣ ∞,﹣ 4) C.(﹣ ∞,﹣ 2] D.(﹣ ∞,﹣ 2)
16.(2014 春 ?榕城区校级期中)设实数 a,b, c,d 满足 ab=c2+d2=1,则( a﹣c)2+(b﹣ d)
2 的最小值为(

A . +1 B .3+2
C. ﹣ 1 D .3﹣ 2
,则当 x+ 取最小值时,
x2+ =

23.( 2014?浙江模拟) 已知正数 x,y 满足 x+y+
=10 ,则 x+y 的最大值为

24.如图,边长为 a+b+1(a> 0,b> 0)的正方形被剖分为 9 个矩形,这些矩形的面积如图
所示,则
+
+
的最小值是

25.( 2010?重庆校级一模)已知定义域为
A . 2 B. 3 C. 18 D.
13.( 2016 春 ?天津期末)若实数 x , y 满足 x 2+y2+xy=1 ,则 x +y 的最大值是 (

A.
B .﹣
C.
D.﹣
14.( 2015 春 ?重庆校级期中)已知
,则( 1﹣ 2x) x2( 1+2x)的最大值为
()
A.
B.
C.
D.
15.( 2014 秋 ?保定期末)已知 b> a> 0,ab=2,则
中,我们把
M 的最大值
17.实数 a,b, c 满足
,则
的取值范围是(

A . [ , ] B.(﹣ ∞, ] ∪ [ , +∞) C. [ , ] D.(﹣ ∞, ] ∪ [ , +∞)
18.实数 a,b, c, d 满足
=1, c﹣ = d,则( a﹣c) 2+( b﹣d) 2 的最小值为
()
2
A.
B. ln2 C. ( 1﹣ ln2 ) D.
爱拼才会赢
高考数学专题 -不等式
一.选择题(共 18 小题) 1.( 2014?朝阳区校级模拟)对于使﹣ x 2+2x≤ M 成立的所有常数
1 叫做﹣
2
x +2x
的上确界,若
a,b∈ R+,且 a+b=1,则
M 中,我们把 M 的最小值
的上确界为(

A.
B.
C.
D.﹣ 4
2.( 2012?信阳模拟)若实数 x、 y 满足 4x+4y=2x+1+2y+1,则 t=2 x+2y 的取值范围是(

A .(﹣ 2, 1﹣ 2 ] B .(﹣ ∞, 1﹣ 2 ] C. [ 1+2 , +∞) D .[ 1+2 , 4]
5.( 2016?济南模拟) 已知点 M(m,m2),N( n,n2),其中 m,n 是关于 x 的方程 sin θ?x2+cosθ?x
﹣1=0 ( θ∈ R)的两个不等实根.若圆 O: x2+y2=1 上的点到直线 MN 的最大距离为 d,且

A.
B.
C.
D.
9.( 2010?海淀区校级模拟) 若实数 x,y 满足 xy >0,则
的最小值是 ( )
A.
B.
C.
D.
每天练一练
爱拼才会赢
10.已知 a,b, c∈ R,且
+
+
=1,则 | 6abc﹣ 1| 的最小值为(

A . 3 +1 B .2 ﹣ 1 C. 3 ﹣ 1 D .2 +1
11.( 2012?丰台区二模) 已知平面上四个点 A 1( 0,0),
相关文档
最新文档