带电粒子在电场中的运动-林鹏
带电体在电场中的运动
带电体在电场中的运动
作者:况鹏鸣
来源:《物理教学探讨》2007年第20期
带电体在电场中的运动是电场基础知识和力学的综合运用,需要处理带电体在电场中的运动分析步骤:
①明确研究对象②分析场的结构③受力分析④分析物体的运动过程,判断物体的运动性质,分析物体状态⑤选用恰当的力学规律⑥求解方程并讨论。
现在我们分类讨论
1 恒力作用下带电体在电场中的运动
1.1 直线运动
在恒力作用下直线运动用牛顿定律、动能定理可解决。
例1 如图1所示,平行板电容器的极板长为L,板间电场强度为E,极板与水平面夹角为α。
现有一质量为m的带电液滴从两极板的中央P点由静止开始沿与极板平行的直线运动到达Q点 (P、Q两点为电容器的边缘,忽略边缘效应)。
求:(1)液滴的电荷量;(2)液滴到达Q点的速度和所用时间。
分析场由重力场和电场组成,受力分析如图2,由牛顿定律可知,
平行极板的方向F合=mgsinα=ma得
a=g sinα
垂直极板的方向Eq=mgcosα得
q=mgcosα/E
用运动学公式可以计算出时间。
1.2 类平抛运动
例2 如图3地球表面某一区域有一与水平面成α角的匀强电场如图,在此区域内放一个质量为m,电量为q的带电小球,绳的一端连接小球,绳的另一端固定,小球静止绳恰好水平。
小球离地的高度为h。
一个质量为m的绝缘的小球(不转移电荷)以竖直向下速度v0去撞带电小球,撞后绝缘的小球速度竖直为v0/3,碰撞后绳断,带电小球落地后不反弹。
求带电小球电势能的变化多少?。
高三物理复习课“分层次教学法”一例——《带电粒子在电场中的运动》
的偏 转 电场 , 两平行板间距为
图2
模型 1 : 如 图1 , 在加上恒定 电压 , 并处于 真空中的 金属板间有一带 电量为
口 的 负 电 荷 ,质 量 为 m, 只 在 电 场 力 作用 下从 静
d , 板 长为 ( 粒 子重力不计 ) , 求( 1 ) 带 电粒子离 开偏 转 电场时偏移量Y; ( 2 ) 速度偏转角t a n O 。
到 手 心 ,有 力 说 明 了 手 指 与 笔 之 间 静摩 擦 力 的 客 观存
在。
以实验为基础 的学科 ,而实验是发展学生创新能力 的
重要 途 径 , 物 理 随 堂 实 验 由 于其 特殊 性 , 对 培 养 学 生 的
高三物理复习 课“ 分层次教 学法” 一 例
《 带 电粒子在 电场 中的运动》
连江 尚德 中学
摘 要: 《 带电粒子在 电场 中的运动》 复 习课采用“ 分层
赵 丽 霞
求 出末速度 的大小 ,但是对于过程 中的加速度和时间 只能通过动力学方法解 决。 练 习1 : 质子和氦核经过相 同的金属板( 如上模 型 ) 加速, 求两者的末速度之 比和加速时间之比。 这个练习题设计是为 了应用规律快速处理 比值问
因素有关 , 以及掌握求 比值的方法 。
情绪必须让学生先跳 出题海 ,教师讲解 的例题和学生
练 习 的 题 目应 遵 循 典 型性 、 针对性和层次性的原则 , 使
解 析 : 由 g = 吉 m 得 t = 、 / ,
所以 o c 、 / 旦 ,
由d = t得 t 。 C 1.
练 习2 : 如 图3 所示 , 质 量 相 同 的 两 个 带 电 粒 子P、 Q
【技巧】静电场 带电粒子在电场中运动的分析方法
带电粒子在电场中运动的分析方法河南省者平县第一高级中学(474250)梁波在力学中我们学习了牛顿运动定律,动能定理、功能关系、能量守恒定律等,能熟练应用这些知识分析物体的运动,并能进行定量的计算。
学习了电场的知识后,我们又了解了一种相互作用和一种能量——电场力和电势能,带电粒子在电场中的运动就是电荷在电场力作用下的运动,在运动过程中电势能和其他形式的能相互转化。
电场力和重力、弹力、摩擦力一样是一种相互作用,电势能和重力势能、动能一样是能的一种特殊形式。
所以带电粒子在电场中的运动同样适用前面学习的动力学知识。
一、牛顿运动定律的应用例 1 静电透镜是利用静电场使电子束会聚或发散的一种装置,其中某部分静电场的分布如图1所示。
虚线表示这个静电场在xoy 平面内的一簇等势线,等势线形状相对于Ox 轴、Oy 轴对称。
等势线的电势沿x 轴正向增加,且相邻两等势线的电势差相等。
一个电子经过P 点 (其横坐标为-x 0) 时,速度与x 轴平行。
适当控制实验条件,使该电子通过电场区域时仅在Ox 轴上方运动。
在通过电场区域过程中。
该电子沿y 方向的分速度v y 随位置坐标x 变化的示意图是( )解析 根据题意分析得:等势线的电势沿x 轴正向增加。
因为电场强度方向与等势线是相互垂直的,且指向电势降低的方向,结合题中所给的等势线形状得到:在y 轴的左边电场强度方向指向左上方向。
可以分解为水平向左的分量左E 和竖直向上的分量上E ;在y 轴的右边电场强度方向指向左下方,也可以分解为水平向左的分量左E 和竖直向下的分量下E 。
由于对称的关系,所以上E 和下E 的关系是关于了对称的地方总是大小相等、方向相反的,所以可以得到该电子在整个运动过程中,在水平方向总是加速的,而在y 方向上只是先向下加速,后减速运动。
但是电子从-x 0运动到y 轴位置过程中的运动平均速度小于从y 轴运动到+x 0处过程中的平均速度所。
以前一段运动经历的时间大于后一段运动经历的时间,电子在y 方向上加速和减速运动不对称,所以速度不会减到零,综上所述。
高三复习:带电粒子在电场中的运动(白云鹏)
·
考点:带电粒子在匀强电场中的受力 与运动分析。 能力:由运动情况判断受力情况的 推理能力。试题难度:较小。
例2(2015新课标Ⅱ卷14.)如图,两平行的带电金属板 水平放置。若在两板中间a点从静止释放一带电微粒,微 粒恰好保持静止状态。现将两板绕过a点的轴(垂直于纸 面)逆时针旋转45°,再由a点从静止释放一同样的微粒, 该微粒将( ) D A.保持静止状态 Eq B.向左上方做匀加速运动 mg C.向正下方做匀加速运动 D.向左下方做匀加速运动 考点:带电粒子在匀强电场中的受力 与运动分析。 能力:由受力情况判断运动情况的 推理能力。试题难度:较小。
例3(2014·高考安徽卷)如图所示,充电后的平行板电容 器水平放置,电容为C,极板间距离为d,上极板正中有一 小孔.质量为m,电荷量为+q 的小球从小孔正上方高h处 由静止开始下落,穿过小孔到达下极板处速度恰为零 (空 气阻力忽略不计,极板间电场可视为匀强电场,重力加速 度为g).求: (1)小球到达小孔处的速度; (2)极板间电场强度大小和电容器所带电荷量; (3)小球从开始下落运动到下极板处的时间.
或
W电 W其他力
1 2 1 2 mv mv 0 2 2
一.电容器与力学综合问题
例1(2012年新课标18).如图,平行板电容器 的两个极板与水平地面成一角度,两极板与一 直流电源相连。若一带电粒子恰能沿图中所示 水平直线通过电容器,则在此过程中,该粒子 A.所受重力与电场力平衡 BD Eq B.电势能逐渐增加 C.动能逐渐增加 mg D.做匀变速直线运动
(1)求出重力与电场力的合力 F合,将这个合 力视为一个“等效重力”. (2)将g/=F合/m视为“等效重力加速度”. (3)找物理最高点 (4) 将物体在重力场中做圆周运动的规律迁 移到等效重力场中分析求解.
人教版高中物理选修3-1课件1.9带电粒子在电场中的运动1.pptx
带
电 粒受 子电 在场 电力 场
产 生 加 速 度
使 速 利用电场 度 变 使带电粒子 化
加 速
偏 转
中
一、
怎样求粒子加速后到达另一板的速度?
+q +
m ++
V0
匀速
++ ++ +
_
E
_ _ V=?
__
__
加速
_
匀速
U
U
一、带电粒子的加速
丝移动到金属板,
两处的电势差为U,电势 能减少量为eU.
减少的电势能全部转化为 电子的动能:
1 mv2 qU 2
例与练
1、下列粒子由静止经加速电压为U的电场加
速后,
哪种粒子动能最大 ( D )
哪种粒子速度最大 (B )
A、质子
B、电子
C、氘核
D、氦核
Ek
1 2
mv 2
qU
v 2qU m
与电量成正比
问:被这种紫外线照射出的电子,最大速度是 多少?
例与练
4、如图所示的电场中有A、B两点,A、B的电势 差UAB=100V,一个质量为m=2.0×10-12kg、电 量为q=-5.0×10-8C的带电粒子,以初速度v0 =3.0×103m/s由A点运动到B点,求粒子到达B点
时的速率。(不计粒子重力)
1、动力学观点:
只适用于
电场力:F=qE qU 匀强电场
d
由牛顿第二定律:a
F
qU
m md
Ad B
由运动学公式:
E
v2 0 2ad
高中物理选修3-1-带电粒子在电场中的运动
带电粒子在电场中的运动知识集结知识元带电粒子在匀强电场中的运动知识讲解带电粒子在电场中的加速减速运动1.受力分析:与力学中受力分析方法相同,只是多了一个电场力而已.如果带电粒子在匀强电场中,则电场力为恒力(qE),若在非匀强电场,电场力为变力.2.运动过程分析:带电粒子沿与电场线平行的方向进入匀强电场,收到的电场力与运动方向在同一直线上,做匀加(减)速直线运动.3.两种处理方法:①力和运动关系法——牛顿第二定律:带电粒子受到恒力的作用,可以方便地由牛顿第二定律求出加速度,结合匀变速直线运动的公式确定带电粒子的速度、时间和位移等.②功能关系法——动能定理:带电粒子在电场中通过电势差为U AB的两点时动能的变化是ΔE k,则.例题精讲带电粒子在匀强电场中的运动例1.如图所示,两平行带电金属板,从负极板处释放一个电子(不计重力),设其到达正极板时的速度为v1,加速度为a1.若将两极板间的距离增大为原来的4倍,再从负极板处释放一个电子,设其到达正极板时的速度为v2,加速度为a2,则()A.a1:a2=1:1,v1:v2=1:B.a1:a2=2:1,v1:v2=1:2C.a1:a2=2:1,v1:v2:1D.a1:a2=1:1,v1:v2=1:2例2.一正点电荷仅在电场力作用下,从A点运动到B点,其速度随时间变化的图象如图所示,下列关于A、B两点电场强度E的大小和电势的高低的判断,正确的是()A.E A=E B,φA=φBB.E A>E B,φA>φBC.E AB,φA>φBD.E AB,φA=φB例3.'如图甲所示,在竖直平面内有一水平向右的匀强电场,场强E=1.0×104N/C.电场内有一半径为R=2.0m的光滑绝缘细圆环形轨道竖直放置且固定,有一质量为m=0.4kg、带电荷量为q=+3.0×10-4C的带孔小球穿过细圆环轨道静止在位置A,现对小球沿切线方向作用一瞬时速度v A,使小球恰好能在光滑绝缘细圆环形轨道上做圆周运动,取圆环的最低点为重力势能和电势能的零势能点.已知g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)瞬时速度v A的大小;(2)小球机械能的最小值.'例4.'在如图所示的装置中,初速度为零的一价氢离子和二价氢离子,在经过同一电场加速后垂直射入同样的电场偏转,证明这些离子离开电场后沿同轨迹运动,到达荧光屏产生一个亮斑.(不计离子重力)'例5.'如图所示,MPQO为有界的竖直向下的匀强电场,电场强度为E,ACB为光滑固定的半圆形轨道,轨道半径为R,A、B为圆水平直径的两个端点,AC为圆弧。
带电粒子在电场中运动解题方法
带电粒子在电场中运动解题方法
1. 嘿,先得搞清楚电场的性质啊!就像你要去一个陌生地方,得先知道那地方啥样吧!比如一个带正电的粒子在匀强电场中,那它受力方向不就清楚啦!
2. 别忘了分析粒子的初始状态呀!这好比跑步比赛前你得知道自己站在哪,速度是多少呀!像粒子一开始静止,那后面运动就有规律可循啦!
3. 运动轨迹得重视起来呀!这就像你走的路,得知道它是直直的还是弯弯的呀!要是粒子轨迹是抛物线,那解题思路不就有啦!
4. 动能定理用起来呀!这可是个好帮手,就如同你有个厉害的工具能解决难题!比如知道粒子的初末动能,就能算出电场力做的功啦!
5. 能量守恒也不能忘啊!这就像你的宝贝不能丢了一样重要呀!像粒子在电场中能量怎么转化,心里得有数呀!
6. 电场力做功的计算要准确呀!这可不能马虎,就像你数钱不能数错一样!比如根据电场强度和位移来算做功。
7. 受力分析要做好呀!这就像给粒子做个体检,清楚它受到哪些力的作用!像电荷大小不同,受力可就不一样啦!
8. 速度的分解与合成也很关键呢!这就像把一个东西拆开来再组合起来一样有趣!比如粒子斜着进入电场,速度就得好好分析啦!
9. 多画几个示意图呀!这就像给自己画个地图,清楚明白!比如画出电场线和粒子轨迹,解题就更直观啦!
10. 多做些题目练练手呀!这就像运动员要多训练才能出好成绩一样!只有熟练了,遇到各种带电粒子在电场中的问题才能应对自如呀!
我的观点结论就是:只要掌握这些方法,带电粒子在电场中运动的问题就不难解决啦!。
高二物理竞赛辅导(带电粒子在电场中运动)
郑裕彤中学高二物理竞赛辅导材料之二-----解答带电粒子在电场中运动问题的思想与方法带电粒子在电场中的运动,是一个综合电场力、电势能的力学问题,研究的方法与质点动力学相同,它同样遵循运动的合成与分解、牛顿运动定律、动能定理等力学规律,处理问题的要点是要注意区分不同的物理过程,弄清在不同的物理过程中物体的受力情况及运动性质,并选用相应的物理规律。
为了加深对这部分知识的理解与应用,以下就处理这类问题的常见思想、方法分类加以例析与辅导。
一、用运动的分解思想处理带电粒子的曲线运动在处理带电粒子在匀强电场或电场与重力场组成的复合场中做曲线运动时,运动的合成与分解法比较常见,一般将粒子比较复杂的曲线运动分解为沿电场方向和垂直于电场方向的两个分运动来求解。
例1.一个带负电的小球质量为m ,带电荷量为q ,在一个如图1所示的平行板电容器的右侧边被竖直上抛,最后落在电容器左侧边缘同一高度处,两板间距为d ,板间电压为U ,求电荷能达到的最大高度H 及抛出时的初速度v 0。
解析:由题设条件可知:小球在复合场中做曲线运动,可将其运动分解为水平方向的匀加速直线运动和竖直方向的竖直上抛运动。
由竖直上抛运动规律得:小球上升的最大高度H g 2v2=小球自抛出至回到左侧板边缘同一高度处所需时间为:g v 2t 0=根据小球在水平方向的运动规律可得:2tmd qU 21d ⋅⋅=联立解得:qU 2mgdv 0=二、用能量观点处理相关问题由于电场力做功与粒子在电场中运动的路径无关,只决定于始、末位置的电势差,即:W AB =qU AB ,因此用功能关系法处理粒子在匀强电场或非匀强电场的直线运动或曲线运动问题都是比较有效的。
例2.如图2所示,光滑绝缘竖直细杆与以正电荷Q 为圆心的圆交于B 、C 两点,一质量为m ,电荷量为-q 的空心小球从杆上的A 点由静止开始下落,设AB=BC=h ,小球滑到B 点时速度为gh 3,试求: (1)小球滑至C 点的速度. (2)A 、B 两点的电势差. 解析:(1)因B 、C 是在电荷Q 产生的电场中处在同一等势面上的两点,即U BC =0,所以从B 到C 时电场对带电小球所做的功为零,由B →C ,根据动能定理得:2B2C mv 21mv 21mgh -=将gh 3v B =代入, 解得gh 5v C = (2)由A →B ,根据动能定理2B AB mv 21)qU (mgh =-+所以q 2mghU AB -=三、用极限思想分析临界问题涉及到带电粒子在电场中运动的临界问题时,关键是找到临界状态所对应的临界条件,而临界条件可以借助极限法进行分析。
人教版物理选修3-1 第一章静电场第9节:带电粒子在电场中的运动 (共16张PPT)
1.9带电粒子在电场中的运动
一、带电粒子在电场中的加速
• 1、动力学方法:
由牛顿第二定律:������
=只������������适=用���������于��������� =
������������ ������������
由运动A学公d式:B������2 − 0匀=强2电���������场���
解:根据动能定理得:������������ = 1 ������������2 ⇒ ������ = 2������������
2
������������
=
2
×
1.6 × 10−19 × 2500 0.91 × 10−30
������/������
=
3
×
107������/������
二、带电粒子在匀强电场中的偏转
E +F v
U
2������������ ������ = 2������������ = ������
2������������ ������ = ������
初速度不 为零呢?
一、带电粒子在电场中的加速
• 2、动能定理:
由动能A 定d理B:也匀���强适��� =用电于场12 ���非���������2 − 0
例与练
4、三个电子在同一地点沿同一直线垂直飞入偏转电场,如 图所示。则由此可判断( ) A、b和c同时飞离电场
B、在b飞离电场的瞬间,a刚好打在下极板上 C、进入电场时,c速度最大,a速度最小 D、c的动能增量最小,a和b的动能增量一样大
解析:
y
qUl2 2mv02d
而yc yb
v0c v0b
带电粒子在三种典型电场中的运动问题解析
带电粒子在三种典型电场中的运动问题解析张路生淮安贝思特实验学校 江苏 淮安 邮编:211600淮安市经济开发区红豆路8号 tel:带电粒子在电场中的运动是每年高考的热点和重点问题,带电粒子在电场中的运动主要有直线运动、往复运动、类平抛运动等。
考查的类型主要有:带电粒子在点电荷电场中的运动、带电粒子在匀强电场中的运动和带电粒子在交变电场中的运动。
这类试题可以拟定不同的题设条件,从不同角度提出问题,涉及力学、电学的很多关键知识点,要求学生具有较强的综合分析能力。
下面笔者针对三种情况分别归纳总结。
初速度与场强方向的关系 运动形式 υ0∥E 做变速直线运动υ0⊥E 可能做匀速圆周运动υ0与E 有夹角 做曲线运动【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是A 将质子从a 点由静止释放,质子向b 点做匀加速运动B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b 点的速率为2/2υ C 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υD 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2/2υ 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得2/qU m υ=,由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有22Qq k m r r υ=成立,可得/kQq mr υ=,据此判断C 错D 对。
答案:BD2、根据带电粒子在电场的运动判断点电荷的电性【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。
已知在a 、b 两点粒子所受电场力分别为F a 、F b ,则下列判断正确的是A 若Q 为正电荷,则q 带正电,F a >F bB 若Q 为正电荷,则q 带正电,F a <F bC 若Q 为负电荷,则q 带负电,F a >F bD 若Q 为负电荷,则q 带正电,F a <F b 〖解析〗:由于粒子从a 到b 电场力做正功,可知电场力指向外侧,Q 、q 带同种电荷;电场线密集的地方场强大,由F=qE 得,a 点的电场力大,故A C 正确。
带电粒子在电场中的运动过程分析
带电粒子在电场中的运动过程分析作者:孙艺玮来源:《新教育时代·学生版》2017年第10期摘要:分析电场中的带电粒子的运动过程首先是要准确把握受力情况和初始状态,根据合外力与速度之间的关系来对运动状态进行分析。
本文主要是从带电粒子在电场内静止、匀速直线运动、匀变速直线运动、非匀变速直线运动以及曲线运动等情况展开分析,探讨合理的解题方法和途径,提升学习效率。
关键词:带电粒子电场合外力物体运转状态的改变都是力作用的效果,不同的受力情况会形成不同的运动状态,也会形成不同的运动规律。
在对物体的运动过程进行分析前,首先要进行准确的受力分析。
电场内带电粒子的运动问题是对力学和电学只是的综合考察,由于其综合了动力学、功能关系、运动学以及矢量的合成与分解,在无法综合应用的情况下就会造成解题中困难,因此成为电学的一个难点,需要有足够的空间想象力和创新思维能力,也是高中物理学习过程中的一个重点。
一、带电粒子在电场内静止或匀速直线运动由于物体自身惯性,在受到外力合力为0或是不受力作用的情况下,其状态保持匀速直线运动或是静止。
如果带电粒子在电场内匀速直线运动或是静止,此时通过平衡条件列式就能完成其运动过程分析。
[1]如:在均匀磁场内,电荷通过细线悬挂在O点,直线与垂直方向夹角为θ,电话的电量为-Q,质量为m,求水平方向上电场的强度;在保证θ角固定的情况下,求最小场强。
解析:在平衡条件下由此可得,方向朝右。
电荷最小场强出现在静电力方向垂直于细线的情况下,则有,方向与细线垂直,方向向下。
[2]二、带电粒子在电场内的匀变速直线运动当作用在物体上的合力在方向上与速度相同,其运动状态为加速直线运动;如果合力方向相反与速度方向,其运动状态为减速直线运动。
分析物体的运动状态,其变速直线运动是由合外力方向于速度方向之间的关系决定。
恒定合外力组用于物体的方向与速度方向在同一直线下,其状态为匀变速直线运动。
此类情况下状态遵循速度公式、位移公式、速度-位移公式以及两个推论。
【技巧】静电场 剖析 带电粒子在电场中的运动
剖析带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.带电粒子在电场中运动时是否考虑重力的处理方法(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都要考虑重力。
2.解决带电粒子在电场中的直线运动问题的两种思路(1)运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一条直线上,做加(减)速直线运动。
(2)用功与能的观点分析:电场力对带电粒子做的功等于带电粒子动能的变化量,即qU=12mv2-12mv02。
例1如图1所示,在某一真空中,只有水平向右的匀强电场和竖直向下的重力场,在竖直平面内有初速度为v0的带电微粒,恰能沿图示虚线由A向B做直线运动。
那么()A.微粒带正、负电荷都有可能B.微粒做匀减速直线运动C.微粒做匀速直线运动D.微粒做匀加速直线运动解析微粒做直线运动的条件是速度方向和合外力的方向在同一条直线上,只有微粒受到水平向左的电场力才能使得合力方向与速度方向相反且在同一条直线上,由此可知微粒所受的电场力的方向与场强方向相反,则微粒必带负电,且运动过程中微粒做匀减速直线运动,故B 正确。
例2 如图2所示,电子由静止开始从A板向B板运动,当到达B极板时速度为v,保持两板间电压不变,则()图2A .当增大两板间距离时,v 增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间变长解析 电子从静止开始运动,根据动能定理,从A 板运动到B 板动能的变化量等于电场力做的功。
因为保持两个极板间的电势差不变,所以末速度不变,而位移(两板间距离)如果增加的话,电子在两板间运动的时间变长,故C 、D 正确。
答案 CD点评 解决此类问题的关键是灵活利用动力学分析的思想,采用受力分析和运动学方程相结合的方法进行解决,也可以采用功能结合的观点进行解决,往往优先采用动能定理。
芒市中学高中物理 1.9 带电粒子在电场中的运动教学案(无答案)新人教选修3-1(2021年整理)
云南省潞西市芒市中学高中物理1.9 带电粒子在电场中的运动教学案(无答案)新人教选修3-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(云南省潞西市芒市中学高中物理1.9 带电粒子在电场中的运动教学案(无答案)新人教选修3-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为云南省潞西市芒市中学高中物理1.9 带电粒子在电场中的运动教学案(无答案)新人教选修3-1的全部内容。
1。
9带电粒子在电场中的运动班级:____ _姓名:__ ___组号:_ ____一、教学目标1、理解带电粒子在电场中的运动规律,并能分析解决加速和偏转方向的问题.2、知道示波管的构造和基本原理.教学重点:带电粒子在电场中的加速和偏转规律 教学难点:带电粒子在电场中的偏转问题及应用。
二、预习导学1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线 方向进入电场,受到的电场力与运动方向在 上,做 直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于 的变化量,等于 力做的功.即: 221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0 于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做 运动。
(2)运动的分析方法(看成类平抛运动):①沿初速度方向(X 方向)做速度为v 0的 .X= ;②沿电场力方向做初速度为零的 . a y = ; V y = ; Y= . ③偏角:==vv y θtan 。
速解几例带电粒子在电场中的运动问题
速解几例带电粒子在电场中的运动问题江苏省江阴市长泾中学(214411)陈长宏下面是96年的一道高考试题及其常规解法:原题:在光滑水平面上有一静止的物体。
现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体。
当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32焦,则在整个过程中,恒力甲做的功等于____焦,恒力乙做的功等于____焦。
解:设水平恒力甲(F甲)、水平恒力乙(F乙)分别对应加速度a1、a2,相同作用时间为t,因全过程总位移为0,根据运动学公式有a1t2/2+v1t-a2t2/2=0;v1= a1t可得a2/a1=3/1,根据牛顿第二定律有F乙/F甲=3/1由于F甲、F乙分别作用时物体位移大小相等,且均做正功,则W乙/W甲=3/1 从而有W甲=32*1/4=8(J),W乙=32*3/4=24(J)本题的解题关键是根据运动学公式得出F乙/F甲=3/1。
这一结论在解以下几例带电粒子在电场中的运动问题时显得极为方便。
例一:如图1,一水平放置的平行板电容器置于真空中,开始时,两板间匀强电场的场强大小为E1,这时一带电微粒在该电场中正好处于静止状态。
现将两板间场强大小由E1突然变大到E2,但保持方向不变。
持续一段时间后又突然将电场反向,而保持场强的大小仍为E2,再持续一段同样长的时间后带电微粒恰好回到最初位置。
已知整个过程中微粒并未与极板相碰,求场强E1的大小。
设E2已知。
解:带电微粒静止时有mg=qE1……………………①仅改变两板间场强大小时,带电微粒所受合力大小为(qE2-mg)两板间场强方向改变后,带电微粒所受合力大小为(qE2+mg)根据以上结论有qE2+mg=3 (qE2-mg)……………………②联立①②两式易解得E1=E2/2例二:一水平放置的平行板电容器置于真空中,开始对两板充以电量Q,这时一带电油滴恰在两板间处于静止状态。
现在两板上突然增加△Q1的电量,持续一段时间后,又突然减小△Q2的电量,持续一段相等的时间后,带电油滴恰好回到初始位置。
带电粒子在电场中的运动(不计重力)【难度:中等】
【难度:中等】 苗老师
(2011 福建卷 21)反射式调管是常用的微波器械之一,它利用电子团在电场中 的震荡来产生微波,其震荡原理与下述过程类似。如图所示,在虚线 MN 两侧分 别存在着方向相反的两个匀强电场,一带电微粒从 A 点由静止开始,在电场力 作 用 下 沿 直线 在 A 、 B 两 点 间 往 返运 动 。 已 知 电 场 强度 的 大 小 分 别 是
(2013新课标Ⅱ卷24)如图,匀强电场中有一半径为r的光滑 绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的 两端,该直径与电场方向平行。一电荷量为q(q> 0)的质点 沿轨道内侧运动,经过a点和b点时对轨道压力的大小分别为 Na和Nb。不计重力,求电场强度的大小E、质点经过a点和b
点时的动能。
r a b
E
(2013大纲卷25)一电荷量为q(q>0)、质量为m的带电粒子 在匀强电场的作用下,在t=0时由静止开始运动,场强随时间变 化的规律如图所示,不计重力。求在t=0到t=T的时间间隔内 (1)粒子位移的大小和方向 (2)粒子沿初始电场反方向运动的时间
M d1 d2
A E1
B E2
N
r a b
E1 2.0 103 N/C 和 E2 4.0 103 N/C , 方 向 如 图 所 示 , 带 电 微 粒 质 量
m 1.0 1020 kg ,带电量 q 1.0 109 C ,A 点距虚线 MN 的距离 d1 1.0cm ,不 计带电微粒的重力,忽略相对论效应。求: (1)B 点到虚线 MN 的距离 d 2 ; (2)带电微粒从 A 点运动到 B A d1 M d2
B E2
N
(2015新课标Ⅱ卷24)如图,一质量为m、电荷量为q(q>0) 的粒子在匀强电场中运动,A、B为其运动轨迹上的两点。已 知该粒子在A点的速度大小为v0,方向与电场方向的夹角为 60°;它运动到B点时速度方向与电场方向的夹角为30°。不 计重力。求A、B两点间的电势差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点之八带电粒子在电场中的运动一、难点突破策略:带电微粒在电场中运动是电场知识和力学知识的结合,分析方法和力学的分析方法是基本相同的:先受力分析,再分析运动过程,选择恰当物理规律解题。
处理问题所需的知识都在电场和力学中学习过了,关键是怎样把学过的知识有机地组织起来,这就需要有较强的分析与综合的能力,为有效突破难点,学习中应重视以下几方面:1.在分析物体受力时,是否考虑重力要依据具体情况而定。
(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外一般都忽略不计。
(2)带电颗粒:如尘埃、液滴、小球等,除有说明或有明确的暗示以外一般都不能忽略。
“带电粒子”一般是指电子、质子及其某些离子或原子核等微观的带电体,它们的质量都很小,例如:电子的质量仅为0.91×10-30千克、质子的质量也只有1.67×10-27千克。
(有些离子和原子核的质量虽比电子、质子的质量大一些,但从“数量级”上来盾,仍然是很小的。
)如果近似地取g=10米/秒2,则电子所受的重力也仅仅是meg=0.91×10-30×10=0.91×10-29(牛)。
但是电子的电量为q=1.60×10-19库(虽然也很小,但相对而言10-19比10-30就大了10-11倍),如果一个电子处于E=1.0×104牛/库的匀强电场中(此电场的场强并不很大),那这个电子所受的电场力F=qE=1.60×10-19×1.0×104=1.6×10-15(牛),看起来虽然也很小,但是比起前面算出的重力就大多了(从“数量级”比较,电场力比重力大了1014倍),由此可知:电子在不很强的匀强电场中,它所受的电场力也远大于它所受的重力——qE>>meg。
所以在处理微观带电粒子在匀强电场中运动的问题时,一般都可忽略重力的影响。
但是要特别注意:有时研究的问题不是微观带电粒子,而是宏观带电物体,那就不允许忽略重力影响了。
例如:一个质量为1毫克的宏观颗粒,变换单位后是1×10-6千克,它所受的重力约为mg=1×10-6×10=1×10-5(牛),有可能比它所受的电场力还大,因此就不能再忽略重力的影响了。
2.加强力学知识与规律公式的基础教学,循序渐进的引入到带电粒子在电场中的运动,注意揭示相关知识的区别和联系。
3.注重带电粒子在电场中运动的过程分析与运动性质分析(平衡、加速或减速、轨迹是直线还是曲线),注意从力学思路和能量思路考虑问题,且两条思路并重;同时选择好解决问题的物理知识和规律。
带电粒子在匀强电场中的运动,是一种力电综合问题。
解答这种问题经常运用电场和力学两方面的知识和规律,具体内容如下:所需电场的知识和规律有:EqF=→F=qE;W=qU;E dU=;电场线的性质和分布;等势面的概念和分布:电势、电势差、电势能、电场力做功与电势能变化关系。
所需力学的知识和规律有:牛顿第二定律F=ma;动能定理W=ΔEk;动能和重力势能的概念和性质;能的转化和守恒定律;匀变速直线运动的规律;抛物体运动的规律;动量定理;动量守恒定律;解答“带电粒子在匀强电场中运动”的问题,既需要掌握较多的物理知识,又需要具有一定的分析综合能力。
处理带电粒子运动问题的一般有三条途径:(1)匀变速直线运动公式和牛顿运动定律(2)动能定理或能量守恒定律(3)动量定理和动量守恒定律处理直线变速运动问题,除非题目指定求加速度或力,否则最好不要用牛顿第二定律来计算。
要优先考虑使用场力功与粒子动能变化关系,使用动能定理来解,尤其是在非匀强电场中,我们无法使用牛顿第二定律来处理的过程,而动能定理只考虑始末状态,不考虑中间过程。
一般来说,问题涉及时间则优先考虑冲量、动量,问题涉及空间则优先考虑功、动能。
对带电粒子在非匀强电场中运动的问题,对中学生要求不高,不会有难度过大的问题。
4.强化物理条件意识,运用数学工具(如,抛物线方程、直线方程、反比例函数等)加以分析求解。
(一)带电粒子的加速1.运动状态分析带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。
2.用功能观点分析粒子动能的变化量等于电场力做的功。
(1)若粒子的初速度为零,则qU=mv2(2)若粒子的初速度不为零,则qU=mv2/2- mv023.用牛顿运动定律和运动学公式分析:带电粒子平行电场线方向进入匀强电场,则带电粒子做匀变速直线运动,可由电场力求得加速度进而求出末速度、位移或时间。
说明:(1)不管是匀强电场还是非匀强电场加速带电粒子W=qU 都适应,而W=qEd ,只适应于匀强电场. (2)对于直线加速,实质上是电势能转化为动能,解决的思路是列动能定理的方程(能量观点)来求解。
例1:如图8-1所示,带电粒子在电场中的加速:在真空中有一对平行金属板,两板间加以电压U ,两板间有一个带正电荷q 的带电粒子,它在电场力的作用下,由静止开始从正极板向负极板运动,到达负极板时的速度有多大?(不考虑带电粒子的重力)【审题】本题是带电粒子在匀强电场中的加速问题,物理过程是电场力做正功,电势能减少,动能增加,利用动能定理便可解决。
【解析】带电粒子在运动过程中,电场力所做的功W=qU 。
设带电粒子到达负极板时的动能EK=12 mv2, 由动能定理qU=12 mv2 得:v=2qU m【总结】上式是从匀强电场中推出来的,若两极板是其他形状,中间的电场不是匀强电场,上式同样适用。
例2:下列粒子从初速度为零的状态经过加速电压为U 的电场之后,哪种粒子的速度最大? (A )a 粒子(B )氚核 (C )质子 (D )钠离子+aN【审题】解答本题需要把带电粒子在电场中加速的知识与原子核知识联系起来。
1.本题已知电场的加速电压为U ,要判断的是粒子被加速后的速度v 的大小,因此采用221mv qU =分析问题比较方便。
2.若以mp表示质子11H 的质量、以 e 表示质子的电量,则根据所学过的原子核知识可知——α粒子He42的质量应为4mp 、电荷量应为2e ;氚核H 31的质量应为3mp 、电量应为e ;钠离子N a +的质量比其它三种粒子的质量都大(由于是选择判断题,对此未记质量数也无妨)、电量应为e 。
【解析】根据212qU mv =可以导出下式:m qUv 2=图8-1由此可知:对于各种粒子来说,加速电压U 都是相同的。
因此v 与q成正比;v 与m 成反比。
因为质子和钠离子所带的电量相同,而钠离子的质量却比质子大得多,所以可断定——电场加速后的质子速度应比钠离子大得多。
因此选项(D )首先被淘太。
2.为了严格和慎重起见,我们对被加速后的α粒子、氚核、质子的速度进行下列推导:对于α粒子——质量为4mp 、电量为2e paa m eU mpeUm Uq va =⨯==4222对于氚核——质量为3mp 、电量为e ppm eU m eUv∙==3232氚对于质子——质量为mp 电量为e pp p m eUm eU v 22==从比较推导的结果中知:质子的速度 VP 最大,正确答案为(C )。
【总结】本题关键是正确使用动能定理,正确得出速度的表达式,由表达式加以讨论,进而得出正确选项。
例3:如图8-2所示,真空中相距d=5 cm 的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图8-3所示.将一个质量m=2.0×10-23 kg,电量q=+1.6×10-1C 的带电粒子从紧临B 板处释放,不计重力.求:(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;(2)若A 板电势变化周期T=1.0×10-5 s,在t=0时将带电粒子从紧临B 板处无初速释放,粒子到达A 板时动量的大小;(3)A 板电势变化频率多大时,在t=4T 到t=2T 时间内从紧临B 板处无初速释放该带电粒子,粒子不能到达A 板.【审题】本题需要正确识别图像,由图像提供的信息分析带电粒子在电场中的受力,由受力情况得出粒子的运动情况,选择正确的物理规律进行求解。
【解析】电场强度E =Ud图8-2图8-3带电粒子所受电场力UqF Eq d ==,F=ma924.010/Uqa m s dm ==⨯粒子在02T时间内走过的距离为221() 5.01022T a -=⨯m 故带电粒在在2Tt =时恰好到达A 板根据动量定理,此时粒子动量234.010p Ft -==⨯kg ·m/s带电粒子在42T T t t == 向A 板做匀加速运动,在324T T t t == 向A 板做匀减速运动,速度减为零后将返回,粒子向A 板运动的可能最大位移22112()2416T s a aT =⨯=要求粒子不能到达A 板,有s < d由1f T=,电势频率变化应满足410f >=HZ【总结】带电粒子在周期性变化的匀强电场中的运动比较复杂,运动情况往往由初始条件决定,具体问题需要具体分析。
(1)运动分析:若粒子受力方向与运动方向相同,则粒子加速运动;若粒子受力方向与运动方向相反,则粒子减速运动。
(2)处理方法:①利用牛顿运动定律结合运动学公式。
②利用能量观点,如动能定理,若为非匀强电场只能用能量观点。
(二)带电粒子的偏转(限于匀强电场)1.运动状态分析:带电粒子以速度V0垂直电场线方向飞入匀强电场时,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动。
2.偏转问题的分析处理方法:类似平抛运动的分析处理,应用运动的合成和分解知识分析处理。
(1)垂直电场方向的分运动为匀速直线运动:t=L/V0;vx=v0 ;x=v0t (2)平行于电场方向是初速为零的匀加速运动:vy=at ,y=12 at2 经时间t 的偏转位移:y=qU 2md (xV0 )2; 粒子在t 时刻的速度:Vt=V02+Vy2 ;时间相等是两个分运动联系桥梁;偏转角:tg φ=Vy V0 =qUxmdv02例4:如图8-4所示,一束带电粒子(不计重力),垂直电场线方向进入偏转电场,试讨论在以下情况下,粒子应具备什么条件才能得到相同的偏转距离y 和偏转角度φ(U 、d 、L 保持不变)。
(1)进入偏转电场的速度相同; (2)进入偏转电场的动能相同; (3)进入偏转电场的动量相同;(4)先由同一加速电场加速后,再进入偏转电场。
【审题】本题是典型的带电粒子在匀强电场中的偏转问题,是一个类平抛运动,关键是正确推出偏转距离y 和偏转角度φ的表达式,根据题目给出的初始条件得出正确选项。