视频第9章 逻辑代数基础 4页

合集下载

逻辑代数的基本概念与基本运算

逻辑代数的基本概念与基本运算

逻辑代数的基本概念与基本运算1. 引言逻辑代数是数学中的一个分支,它主要研究逻辑关系、逻辑运算和逻辑函数等内容。

逻辑代数作为数理逻辑的一个重要工具,不仅在数学、计算机科学等领域具有重要的应用,同时也在现实生活中扮演着重要的角色。

本文将介绍逻辑代数的基本概念与基本运算,帮助读者更好地理解逻辑代数的基本原理和运算规则。

2. 逻辑代数的基本概念逻辑代数是一种用于描述逻辑运算的代数体系,它主要包括逻辑变量、逻辑常量、逻辑运算和逻辑函数等基本概念。

2.1 逻辑变量逻辑变量是逻辑代数中的基本元素,通常用字母表示,表示逻辑命题的真假值。

在逻辑代数中,逻辑变量通常只能取两个值,即真和假,分别用1和0表示。

2.2 逻辑常量逻辑常量是逻辑代数中表示常量真假值的符号,通常用T表示真,用F 表示假。

逻辑常量在逻辑运算中扮演着重要的角色。

2.3 逻辑运算逻辑运算是逻辑代数中的基本运算,包括与、或、非、异或等运算。

逻辑运算主要用于描述不同命题之间的逻辑关系,帮助我们进行逻辑推理和逻辑计算。

2.4 逻辑函数逻辑函数是逻辑代数中的一种特殊函数,它描述了不同逻辑变量之间的逻辑关系。

逻辑函数在逻辑代数中具有重要的地位,它可以通过逻辑运算表达逻辑命题之间的关系,是描述逻辑代数系统的重要工具。

3. 逻辑代数的基本运算逻辑代数的基本运算包括与运算、或运算、非运算、异或运算等。

这些基本运算在逻辑代数中有着严格的规则和性质,对于理解逻辑代数的基本原理和进行逻辑推理具有重要的意义。

3.1 与运算与运算是逻辑代数中的基本运算之一,它描述了逻辑与的关系。

与运算的运算规则如下:- 真与真为真,真与假为假,假与假为假。

与运算通常用符号“∧”表示,A∧B表示命题A与命题B的逻辑与关系。

3.2 或运算或运算是逻辑代数中的基本运算之一,它描述了逻辑或的关系。

或运算的运算规则如下:- 真或真为真,真或假为真,假或假为假。

或运算通常用符号“∨”表示,A∨B表示命题A与命题B的逻辑或关系。

逻辑代数基础数字电子技术基础课件

逻辑代数基础数字电子技术基础课件

二进制数 自然码 8421码 5211码 2421码 余三码
0000 0001
0010 0011 0100 0101 0110 0111 1000 1001
1010 1011 1100 1101 1110 1111
0 00
1 11
22
33
4 42
5 53
66
7 74 8 85
996
10
11
12
7
13
0. 654 ×2
1.308 0.308 ×2
0.616
0.616 ×2
1.232
取整数 1 … K-1 取整数 0 … K-2 取整数 1 … K-3
0. 232 ×2
0.464 0.464 ×2
0.928
0.928 ×2
1. 856
取整数 0 … K-4 取整数 0 … K-5 取整数 1 … K-6
( A 5 9 . 3 F )H =
1010 0101 1001 . 0011 1111
二——十转
按换权展开法
十——二转
整换数除2取余倒序法 小数乘2取整顺序法
二——十六转 小数换点左、右四位一组
分组,取每一组等值旳 十六进制数
十六——二转 每一换位十六进制数用相
应旳四位二进制数替代
1.1.3 码制
【 】 内容 回忆
二——十
按权展开相加法
十——二
整数部分除2取余倒序法 小数部分乘2ቤተ መጻሕፍቲ ባይዱ整顺序法
【 】 内容 回忆 二——十 六 小数点左、右四位一组分组, 取每一组等值旳十六进制数
十六——二
每一位十六进制数用相应旳四 位二进制数替代
1.1.3 码制 1、原码

逻辑代数基础知识讲解

逻辑代数基础知识讲解
2007、3、7
2. 与普通代数相似的定律
交换律 A·B=B·A
A+B=B+A
结合律 (A·B)·C=A·(B·C) (A+B)+C=A+(B+C)
分配律 A·(B+C)=AB+AC A+BC=(A+B)(A+C)
以上定律可以用真值表证明,也可以用公式证明。例如, 证明加对乘的分配律A+BC=(A+B)(A+C)。
事情通过为逻辑“1”, 没通过为逻辑“0”。
第三步:根据题义及上述规定 列出函数的真值表如表。
2007、3、7
一般地说,若输入逻辑变量A、B、 C…的取值确定以后,输出逻辑变量L的 值也唯一地确定了,就称L是A、B、C的
逻辑函数,写作:
L=f(A,B,C…)
逻辑函数与普通代数中的函数相比较,有两个 突出的特点: (1)逻辑变量和逻辑函数只能取两个值0和1。 (2)函数和变量之间的关系是由“与”、 “或”、“非”三种基本运算决定的。
“⊙”的对偶符号,反之亦然。由以上分析可以看出, 两 变量的异或函数和同或函数既互补又对偶,这是一对特殊 函数。
2007、3、7
2.3 逻辑代数的基本定律和规则
2.3.1 基本定律
1. 逻辑变量的取值只有0和1,根据三种基本运算的定 义,可推得以下关系式。 0-1律: A·0 =0 A+1 =1 自等律:A·1=A A+0=A 重叠律:A·A=A A+A=A 互补律:A·A=0 A+A=1
反演规则是反演律的推广,运用它可以简便地求出一个
函数若的F反函A数B 。 C例 D如:AC, 则 F [(A B) C D](A C);

逻辑代数基础

逻辑代数基础

Y
R
3.“非”逻辑关系和非门 逻辑关系表达式
“非”运算电路图
+R
U
AY
-
“非”运算电路真值表:
状态表
A
Y
0
1
1
0
由真值表可以得出“非”运算电路的运算规则:
三极管构成的“非”门电路及“非”门逻辑符号: UCC
RA A
RC Y
T
RB -UBB
逻辑符号
A
1
Y
4.基本逻辑关系的扩展 (1)与非运算 (2)或非运算 (3)与或非运算
1. F ABD ABC D A(B C) BC
2. F(A、B、C、D) m(0,1,4,5,6,12,13)
3. F ABC ABC AC
1. F ABC ABC D A(B C) BC AB BC AC AD
2. F(ABCD) m(0,1,4,5,6,12,13) AC BC ABD
一个逻辑函数可以有多种不同的表达式。如果按 照表达式中乘积项的特点,以及各个乘积项之间的关 系进行分类,则大致可分成下列五种:与或表达式、 或与表达式、与非-与非表达式、或非-或非表达式、 与或非表达式等五种。逻辑函数常用标准与或式来表 示,下面介绍最小项的概念。
若由n个变量组成的与项中,每个变量均以原变量或反变量 的形式出现且仅出现一次,则称该“与项”为n个变量的最小项。 n个变量 就有2n个最小项。 例如:设 A,B,C是三个逻辑变量,其最小项为
2. 为什么在晶体管用于数字电路时可等效为一个电子开关?
根据晶体管的开关特性,工作在饱和区时,其间电阻相 当为零,可视为电子开关被接通;工作在截止区时,其间电 阻无穷大,可视为电子开关被断开。
描述逻辑关系的数字工具是逻辑代数,它又称为布尔 代数.或是二值代数。

逻辑代数的基本知识

逻辑代数的基本知识

逻辑代数的基本知识 1. 逻辑代数的基本定律根据逻辑变量和逻辑运算的基本定义,可得出逻辑代数的基本定律。

①交换律: A+B = B+A , A • B = B • A;②结合律: A+(B+C) = (A+B)+ C , A • (B • C) = (A • B) • C;③分配律: A •(B+C) = A • B+A • C , A+B • C=(A+B) • (A+C);④互非定律: A+A = l ,A • A = 0 ;1=+A A ,0=•A A ; ⑤重叠定律(同一定律):A • A=A, A+A=A ;⑥反演定律(摩根定律):A • B=A+B 9 A+B=A • B B A B A •=+,B A B A +=•;⑦还原定律: A A = 2. 逻辑代数的基本运算规则 (1)代入规则在逻辑函数表达式中凡是出现某变量的地方都用另一个逻辑函数代替,则等式仍然成立,这个规则称为代入规则。

例如,已知A+AB=A ,将等式中所有出现A 的地方都以函数(C+D)代替则等式仍然成立,即(C+D) + (C+D)B = C+D 。

(2)反演规则对于任意的Y 逻辑式,若将其中所有的“ • ”换成“ + ”换成“ • ”,0换成1,1换成0,原变量换成反变量,反变量换成原变量,则得到原函数Y 的反函数,运用它可以简便地求出一个函数的反函数。

运用反演规则时应注意两点: ① 要注意运算符号的优先顺序,不应改变原式的运算顺序。

例:CD B A Y +=应写为))((D C B A Y ++= 证: ))((D C B A CD B A CD B A Y ++=•=+=② 不属于单变量上的非号应保留不变。

例:)(E D C C B A Y•+•= 则[])()(E D C C B A Y ++•++=D C B A Y +•= 则 D C B A Y •++=(3)对偶规则对于任何一个逻辑函数,如果将其表达式Y 中所有的算符“ • ”换成“ + ”换成“ •”,常量 “0”换成换成“0”,而变量保持不变,则得出的逻辑函数式就是Y 的对偶式,记为Y’。

逻辑代数基础(课件)

逻辑代数基础(课件)

图形符号
A
L
B
23
2. 或逻辑
逻辑表达式 L= A + B
只有决定某一事件的原因有一个或 一个以上具备,这一事件才能发生
AB L 00 0 01 1 10 1 11 1 或逻辑真值表
图形符号
A 1
L
B
24
3. 非逻辑
当决定某一事件的条件满足时,事 件不发生;反之事件发生
非逻辑真值表
AL
图形符号
0
1
1
0
逻辑表达式 F= A
A
1
L
25
1.3.2 常用复合逻辑运算
与非逻辑运算
或非逻辑运算
L=AB
L=A+B
L
L
与或非逻辑运算 L=AB+CD
L
26
异或运算
AB 00 01 10 11
L 0 1
1 0
逻辑表达式
L=AB=AB+ AB
图A 形符号=1
B
L
同或运算
AB 00 01 10
L 1 0
0
逻辑表达式 L=A B= AB
利用真值表
用真值表证明反演律
A B AB A+ B A• B A+B
00 1
1
1
1
01 1
1
0
0
10 1
1
0
0
11 0
0
0
0
A• B= A+B A+ B=AB
31
1.4.2 逻辑代数中的基本规则
1. 代入规则
任何一个含有某变量的等式,如果等式中 所有出现此变量的位置均代之以一个逻辑函数 式,则此等式依然成立。

逻辑代数基础

逻辑代数基础

“或”运算的规则:输入有1,输出为1;输入全0,输出为0。
00 0 01 1
10 1 11 1
“或”运算也可以推广到多变量:
F ABC
2.“与”运算
对于某一逻辑问题,只有当决定一件事情的多个条件全部 具备之后,这件事情才会发生,我们把这种因果关系称为“与” 逻辑。
“与”运算的逻辑真值表如表1-7所示。
表1-7 “与”运算真值表
A
B
F
0
0
0
0
1
0
1001 Nhomakorabea1
1
若用逻辑表达式来描述,则可写为 F AB
“与”运算的规则:“输入有0,输出为0;输入全1,输出为1”。
00 0 01 0
10 0 11 1
“与”运算也可以推广到多变量:
F ABC
3.“非“运算
对于某一逻辑问题,如果某一事件的发生取决于条件的否 定,即事件的发生与事件发生条件之间构成矛盾,我们把这种 因果关系称为“非”逻辑。
A
B
F
0
0
1
0
1
1
1
0
1
1
1
0
若用逻辑表达式来描述,则可写为 F A B
2.“或非”运算
“或非”运算是由或运算和非运算组合而成的,其真值表 如表1-10所示:
表1-10 “或非”运算真值表
A
B
F
0
0
1
0
1
0
1
0
0
1
1
0
若用逻辑表达式来描述,则可写为 F A B
3.“异或”运算
“异或”是一种二变量逻辑运算,当两个变量取值相同时, 逻辑函数值为0;当两个变量取值不同时,逻辑函数值为1。异 或的逻辑真值表如表1-11所示。

《逻辑代数》课件

《逻辑代数》课件

基本概念
逻辑代数的符号表示
用符号表示逻辑代数中的命题和运算。
真值表
通过真值表可以表示逻辑运算的结果。
命题与命题变量
理解命题及其变量对于逻辑代数的学习至关 重要。
逻辑运算符的性质
了解逻辑运算符的各种性质和规则。
逻辑代数的基本定理
1 同一律、零元律、
反演律、等幂律
逻辑代数中的一些基本 定理和运算法则。
基本演算例子
通过一些具体的例 子来加深对逻辑运 算的理解。
逻辑电路设计
1
调用程序与逻辑代数的转换
了解调用程序和逻辑代数之间的关系,
逻辑电元素
2
以及如何将调用程序转换为逻辑代数 表达式。
掌握常见的逻辑电元素,包括门电路
和触发器等。
3
逻辑电路的类型
了解不同类型的逻辑电路,如组合逻
代数实现逻辑电路的步骤
《逻辑代数》PPT课件
逻辑代数是一门关于逻辑与代数的研究领域。本课件将介绍逻辑代数的基本 概念、定理、逻辑运算、逻辑电路设计、进制转换以及逻辑代数的应用实例。
绪论
逻辑代数是研究逻辑与代数之间关系的学科。它的研究目的是通过代数方法 来研究逻辑。
• 逻辑代数定义: 逻辑与代数的结合 • 逻辑与代数的关系: 逻辑代数是逻辑和代数之间的桥梁 • 逻辑代数的研究目的: 研究逻辑的形式化、符号运算和推理
逻辑电路在计算机中的 应用
了解逻辑电路在计算机中的具 体应用。
逻辑运算在算法中的应用
逻辑运算在算法设计和分析中 扮演重要角色。4辑电路和时序逻辑电路。
了解逻辑电路设计的基本步骤。
进制转换
二进制、十进制、十 六进制的相互转换
掌握不同进制之间的转换 方法。

逻辑代数基础PPT课件

逻辑代数基础PPT课件

逻辑图表示法
总结词
逻辑图表示法是一种图形化的逻辑函数表示方法,通过使用逻辑门(如与门、或门、非 门等)来构建逻辑函数的逻辑关系。
详细描述
逻辑图表示法是一种更为直观和简洁的逻辑函数表示方法。它通过使用各种逻辑门(如 与门、或门、非门等)来构建逻辑函数的逻辑关系。在逻辑图中,输入和输出变量用线 连接,并标注相应的逻辑门。通过逻辑门的组合和连接,可以清晰地表达出逻辑函数的
04
逻辑函数的表示方法
真值表表示法
总结词
真值表表示法是一种直观的逻辑函数表示方法,通过 列出输入和输出变量的所有可能取值组合,以及对应 的函数值,来描述逻辑函数。
详细描述
真值表表示法是一种基础的逻辑函数表示方法,它通 过列出输入和输出变量的所有可能取值组合(即所有 可能的输入状态和对应的输出状态),来全面描述逻 辑函数的特性。在真值表中,每个输入状态的组合与 对应的输出状态之间用函数值来表示,函数值为1表 示输出为真,函数值为0表示输出为假。通过查看真 值表,可以直观地理解逻辑函数的逻辑关系和行为。
重写律
重写律:在逻辑代数中,重写律指的是逻辑表达式之间的等价关系。具体来说,如果两个逻辑表达式 在相同的输入下产生相同的输出,则这两个表达式是等价的。重写律允许我们通过改变表达式的形式 而不改变其逻辑值来简化逻辑表达式。
重写律的意义在于简化逻辑表达式的形式,使得逻辑运算更加直观和易于理解。同时,重写律也是实 现逻辑代数中的等价变换和化简的重要工具。
逻辑关系和行为。逻辑图表示法在数字电路设计和分析中应用广泛。
代数表示法
总结词
代数表示法是一种符号化的逻辑函数表示方法,通过 使用逻辑运算符(如与、或、非等)和变量符号来表 示逻辑函数。
详细描述

逻辑代数基本公式与化简数字系演示文稿

逻辑代数基本公式与化简数字系演示文稿

例1: F1 A B C D 求F1的反。
解: F1 A B C D
注意
括号 F1 A B (C D)
注意括号
F1 AC BC AD BD
与或式
第18页,共27页。
例2:F2 ( A BC)CD 求F2的反。
解: F2 ( A BC)CD
F2 A(B C) C D F2 AB AC C D F2 AB A C D F2 A C D
9
A •B=A+B
序号
公式
规律
10
A+1律
12
A=A
还原律
13
A+A=A
重叠律
14
A+A=1
互补律
15
A+B=B+A
交换律
16 A+(B+C德)•=摩(根A+(BD)e+. C 结合律 17 A+(B•C)M=o(rgAan+)B)定• (理A+C) 分配律
18
A+B=A•B
最小项的编号规则:把最小项 m 值为1 的输入变量取值 看作二进制数,其对应的十进制数即为该最小项的编号, 记作mi 。
第3页,共27页。
回顾:
4、最小项的其性质
最小项的性质:
a) 对应任意一组输入变量取值,有且只有一个最小项 值为1;
b) 任意两个最小项之积为0;
c) 全体最小项之和为1; d)具有逻辑相邻性的两个最小项相加,可合并为 一项,并消去一个不同因子。
A B(A A) A B
例如:
A ABC DC A BC DC
被吸收
第14页,共27页。
(3)混合变量的吸收: AB AC BC AB AC

逻辑代数

逻辑代数
全部输入条件的所有组 合与输出的关系。 合与输出的关系
有0出 0 全1为 1
逻辑代数的基本运算
• 与的逻辑表达式
F=A ●B 或者 F=A∧B 简写为:F=AB 读作:F等于A与B AB=BA A●1=1●A A●0=0 A●A=A
逻辑代数的基本运算
与门逻辑符号
A B A B A B & Y Y Y
基本公式和常用公式
• 重点
摩根定理: 摩根定理 A+B=A⋅ B A+A ⋅ B=A+B A ⋅ B =A+B A⋅ ( A +B)=A⋅ B
A• B + A•C + B •C = A• B + A•C A• B + A•C + B •C • D = A• B + A•C
逻辑代数的基本定理
1. 代入定理: 任何一个含有某变量的等式, 任何一个含有某变量的等式,如果等式中所 有出现此变量的位置均代之以一个逻辑函数式, 有出现此变量的位置均代之以一个逻辑函数式, 变量的位置均代之以一个逻辑函数式 则此等式依然成立。 则此等式依然成立。
逻辑代数
主讲人: 主讲人:刘瑛
主要内容
1 2 3 4
逻辑代数的概念
逻辑代数的基本运算
基本公式及常用公式
基本定理
逻辑代数的概念
• 什么是逻辑代数 什么是逻辑代数?
– 又称为布尔代数或开关代数,是数学的一个分支,是 用数学方法研究逻辑的学科 .
逻辑代数的基本运算
• “与”运算(逻辑乘) 运算(逻辑乘)
• “非”运算
定义:某一事情的发生,取决于对另一事情的否定,这种 逻辑关系叫“非”逻辑。 例1:高压配电柜
+u K F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章逻辑代数基础例题解析
例9.1 已知逻辑函数F的真值表如表9.1所示,试写出F的逻辑函数式。

解逻辑函数F的表达式可以写成最小项之和的形式。

将真值表中所有F=1的最小项(变量取值为1的用原变量表示,取值为0的用反变量表示)选出来,最后将这些最小项加起来,得到函数F的表达式为:
例9.2 列出逻辑函数的真值表。

解从表达式列真值表的规则是先将表达式写成最小项之和的形式,即:
然后填入对应的真值中,如表9.2所示。

例9.3 用代数法化将下列逻辑表达式化成最简的"与或"表达式。

(1)
(2)
解用代数法化简任意逻辑函数,应综合利用基本公式和以下几个常用公式:
--项多余;
--非因子多余;
--第3项多余;
---互补并项;
根据式可添加重复项,或利用式可将某些项乘以,进而拆为两项--即配项法。

用代数法对本例逻辑表达式化简:
例9.4 写出以下逻辑函数的反函数并化成最简"与或"形式。

(1)
(2)
解(1)根据反演定律:对于任意一个逻辑函数F,如果把其中所有的"."换成"+","+"换成".",0换成1,1换成0,原变量换成反变量,反变量换成原变量,得到的结果就是。

(1)

(2)

例9.5 试用卡诺图化简法将以下逻辑函数化简成最简"或与"式及最简"或非或非式"。

解利用卡诺图化简逻辑函数时,在函数的卡诺图中,可合并相邻的1格得出原函数的最简与或式;也可合并相邻的0格得出反函数的最简与或式,然后再利用反演规则求反,即可得出原函数的最简或与式。

经逻辑变换后可得出函数的最简或非或非式。

给定逻辑函数式的卡诺图如图9.1所示。

圈0得出反函数的最简与或式为:
将上式求反即可得出逻辑函数的最简或与式为:
经逻辑变换后(利用非非律),函数的最简或非或非式为
例9.6 将逻辑函数转换成最小项之和(标准与或式)的形式。

解 (1) 用配项法
(2) 用卡诺图法
画4变量卡诺图,由于函数F由AB和两项组成,即A=l且B=l时F=1,故在A=l且B=1的行内填1;类似地,在C=0且D=0的列内填1,即得函数的卡诺图如图9.2所示。

然后由卡诺图可直接写出逻辑函数的最小项之和形式:
例9.7 将逻辑函数成最大项之积(标准或与式)的形式。

解用公式法
由式例9.6得出逻辑函数的最小项之和形式为:
因为
所以最大项之积:

如果已知函数的卡诺图,也可由卡诺图中为0的那些小方格直接写出标准或与式。

例9.8 化简具有约束条件的逻辑函数,其约束条件为AB=0。

解用公式化对具有约束条件的逻辑函数的化简时,可以将约束项加到逻辑表达式中,化简后到的最简表达式中若含有约束项,再将约束项去掉。

即:
例9.9 化简下列函数
解用卡诺图法化简带有约束条件的逻辑函数,其方法是在卡诺图中,将函数F的最小顶用1填入,约束顶用×填入。

在画卡诺圈时,可充分利用约束项取值的任意性(作为1或0)合并相邻项。

将最小项及约束项填入对应的卡诺图中,如图9.3所示,则化简后逻辑表达式为:
F=D
例9.10 化简具有约束条件的逻辑函数
(约束条件)
解:采用卡诺图法化简。

由约束条件,求出约束项:
将最小项用1填入,约束项用×填入,画出卡诺图如图9.4所示,由图9.4得到化简后的逻辑表达式为:
1。

相关文档
最新文档