北师大版数学七年级下册全册教案-第六章变量之间的关系
(完整版)新北师大版七年级数学下册全册教案
周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。
1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
北师大版七年级初一变量之间的关系
欢迎阅读变量之间的关系复习知识点总结:自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象单价元/升)这三个量中, 是常量, 是自变量, 是因变量.?5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器6.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量.上表中___________是自变量, __________是因变量x为__________℃时,声速y达到346 m/s.?x(kg)间有下面的关系:(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?13.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x(单位:min)之间有如下关系(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当提出概念所用时间是10 min 时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为多少时,学生的接受能力最强?12AE 时,3.如图,△ABC 的面积是2cm 2,直线l ∥BC ,顶点A 在l 上,当顶点C 沿BC 所在直线向点B 运动(不超过点B )时,要保持△ABC 的面积不变,则顶点A 应( )lCB AA.向直线l 的上方运动;B.向直线l 的下方运动;C.在直线l上运动;D.以上三种情形都可能发生.4.当一个圆锥的底面半径为原来的2倍,高变为原来的13时,它的体积变为原来的( )A.2B.2C.4D.49.设梯形的上底长为x cm,下底比上底多 2 c m,高与上底相等,面积为2cm2,则根据题意可列方程为_____.10.用一根长50cm的细绳围成一个矩形.设矩形的一边长为xcm,面积为y cm2.求y与x的函数关系式;11.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km(1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;(2)当12y cm2.(1)(2)(3)(4)13.(1)(2)6(3)14所示:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?15.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少《用图象表示的变量间关系》习题6.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如上图,下面的说法正确的是( )A.每相隔1s,苹果下落的路程是相同的;B.每秒钟下落的路程越来越大C.经过3s,苹果下落了一半的高度;D.最后2s,苹果下落了一半的高度7.一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2.(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).8.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯_______元.9.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,根据图象回答:这是一次____米赛跑;先到达终点的是____;乙的速度是________.14.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行.三人步行速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系用如图三个图象表示.根据图象回答下列问题:(1)三个图象中哪个对应小明、爸爸、爷爷?(2)家距离目的地多远?(3)小明与爷爷骑自行车的速度是多少?爸爸步行的速度是多少?15.如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?第三章变量之间的关系达标检测卷一、选择题(每题3分,共24分)与x的,车t的图( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4二、填空题(每题5分,共30分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.?11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来由变化到.?弹簧的长度是___________;?(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?。
数学北师大版七年级下册用关系式表示变量间的关系
400 cm3 。 3
议一议(P67)
(1)家居用电的二氧化碳排放量可以用 y = 0.785x 关系式表示为_____________ ,
其中的字母表示:
y 为家居用电的二氧化 碳排放量 ; x 为耗电量 。
(2)在上述关系式中,耗电量每增加 1 KW· h,二氧化碳排放量增加 0.785kg ___________ 。当耗电量 从1 KW· h增加到100 KW· h时,二氧化碳排 0.785kg 增加 放量从_______ 78.5kg 到_________ 。
(3)小明家本月用电大约110 KW· h、 天然气20m3、自来水5t、油耗75L,请 你计算一下小明家这几项的二氧化碳 总排放量。
0.785 110
0.19 20
2.7 75
0.91 5
ห้องสมุดไป่ตู้
297.2kg
随堂练习(P67)
1、在地球某地,温度T(℃)与高度d(m)
来表示,根据这个关系式,当
面积 y y=3x表示了 三角形底边长 _ x 和_________
之间的关系,它是变量 的关系式。
y
随
x
变化
y = 3x
因变量 含自变量代数式 自变量的取值要符合实际
7 cm 当三角形的面积为21cm2时,底边长为______
自学检测一
1.将一个长为20cm,宽为10cm的长方形的四个角, 分别剪去大小相等的正方形,若被剪去正方形
B
(2)如果三角形底边BC长为x(cm)
C
那么三角形的面积y(cm2)可以表示为 (3)当底边长从12cm变化到3cm时,
y=3x
.
36 2变化到____cm 2 9 三角形的面积从______cm
北师大版七年级数学下册说课稿(含解析):第六章概率初步尖子生成长计划7概率中的代数问题
北师大版七年级数学下册说课稿(含解析):第六章概率初步尖子生成长计划7概率中的代数问题一. 教材分析北师大版七年级数学下册第六章“概率初步”是学生初步接触概率论的内容,对于培养学生的逻辑思维能力和概率观念具有重要意义。
本章主要介绍了概率的基本概念、等可能事件的概率、条件概率以及独立事件的概率等。
在这些内容中,代数问题占据了重要的地位,因为概率本身就是一个涉及代数运算的数学分支。
在教材中,代数问题主要出现在条件概率和独立事件的概率部分。
例如,在条件概率的计算中,我们需要利用代数方法来求解给定条件下事件A发生的概率;在独立事件的概率中,我们需要利用代数运算来判断两个事件是否独立。
这些问题对于学生来说具有一定的挑战性,需要他们能够灵活运用代数知识来解决实际问题。
二. 学情分析面对七年级的学生,他们对概率的概念和代数知识都有一定的了解,但要将这两个领域结合起来解决问题,还需要进行一定的引导和培养。
根据学生的实际情况,我将教学内容进行适当的调整,将重点放在如何引导学生利用已知的代数知识解决概率问题,以及如何培养学生灵活运用知识的能力。
三. 说教学目标1.知识与技能:理解条件概率和独立事件的概率的概念,掌握计算条件概率和判断两个事件是否独立的方法。
2.过程与方法:培养学生运用代数知识解决实际问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观:激发学生对概率论的兴趣,培养学生积极探究、勇于挑战的精神。
四. 说教学重难点1.教学重点:条件概率和独立事件的概率的计算方法。
2.教学难点:如何引导学生灵活运用代数知识解决概率问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、小组讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的参与度。
同时,利用多媒体手段辅助教学,如PPT、网络资源等,以直观、生动的方式展示概率问题,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个简单的概率问题,引发学生对概率代数问题的思考,激发学生的学习兴趣。
七年级数学下册 4.4 变量之间的关系复习课教案 (新版)北师大版
4.4变量之间的关系复习课教案教学目标:1.回顾总结表示变量之间关系的方法。
2.深刻理解用表格、关系式和图象表示某些变量之间的关系的意义,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。
3.进一步感受用运动变化的观点去认识数学对象,发展对数学更高层次的认识。
教学重点与难点:重点:读懂表格、关系式、图象所表示的信息,理解自变量和因变量的概念;掌握变量之间关系的不同方法。
难点:学会整理实际问题中变量之间关系的信息,并能进行预测。
教法与学法指导:本节课主要采用问题导学——知识建构——题组复习——典例剖析——总结感悟——课堂检测----布置作业的课堂教学模式.即以问题串、题组串的方式帮助学生总结本章的内容,在小组讨论的基础上,引导学生梳理本章的知识结构框架,然后通过课堂练习来巩固本章的主要内容,达到回顾与思考的目的,并在师生互动的学习过程中,让学生体会到学习数学的成就感.教学准备:多媒体课件.教学过程:一、知识回顾,构建网络生:举例说明常量、变量;自变量和因变量;师:本章我们学习了哪几种表示变量之间关系的方法?它们各有什么好处?生:(三种)分别是:表格法、关系式法和图象法。
表格的好处是:非常直观,对于表格中自变量的每一个值,不需要计算就可以直接从表格中找到与它对应的因变量的值,使用较简便,但这种方法列出的数值是有限的,而且从表格中也不容易得到自变量与因变量的对应关系。
关系式法能准确地表示出自变量与其因变量之间的数量关系,能很准确地得到与所有自变量对应的因变量的值,但并非所有变量之间的关系都能用关系式表示出来。
图象法形象直观,但是从图象上一般只能得到近似的数量关系。
师生:总结本单元知识结构如下:设计意图:从学生已有的知识出发,引导学生探索、回忆、思考、归纳,巩固知识技能,发展思维,把获得的零散的知识进一步系统化,给学生整体的认识。
二、深入剖析,融会贯通师:多媒体出示例1.一名同学在用弹簧做实验,在弹簧上挂不同质量的物体后,弹簧的长度就会发生变化,实验数据如下表:(2)弹簧不挂物体时的长度是多少?如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?(3)如果此时弹簧最大挂重量为15千克,你能预测当挂重为10千克时,弹簧的长度是多少?答:(1)上表反映了弹簧的长度与所挂物体的质量之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量。
七年级数学第六章 变量之间的关系北师大版知识精讲
初一数学第六章变量之间的关系北师大版【本讲教育信息】一. 教学内容:第六章变量之间的关系[教学要求]1、能分清实际问题中的常量与变量、自变量与因变量,并能举出反映变量之间关系的例子。
2、通过对某种图形中变量之间关系的探索,进一步体验一个变量的变化对另一个变量的影响,发展符号感。
能根据具体问题,用关系式表示某些变量之间的关系。
3、经历从图像中分析变量之间关系的过程进一步感受变量之间的关系。
4、进一步经历从图中分析变量之间关系的过程,从而加深对图像表示自变量与因变量关系的理解,逐步培养从图像中获取信息的能力。
[重点及难点]1、重点是对常量、自变量及因变量等概念的理解。
难点是根据表格中的数据尝试对变化趋势进行初步的预测。
2、重点是根据具体问题求自变量与因变量之间的关系式,并能用关系式求因变量的值。
难点是建立实际问题中自变量与因变量之间的关系式。
3、从熟悉的情景出发用图像直观的表示两个变量之间的关系,并获得对图像反映变量之间关系的体验。
4、重点是从图像中获取信息,难点是用语言描述图像所表示的变化过程。
[知识要点]一、小车下滑的时间1、如果用h 表示支撑物的高度,t 表示小车下滑时间,随着h 逐渐变大,t 的变化趋势是什么?在表中,支撑物高度h 和小车下滑时间t 都在变化,它们都是变量,其中t 随h 的变化而变化,h 是自变量,t 是因变量。
二、变化中的三角形(1)关系式:表示自变量与因变量之间关系的数学式子叫做关系式。
△ABC 底边BC 上的高是6厘米,当三角形的顶点C 沿所在直线向点B 运动时,三角形的面积发生了什么变化?如果三角形的底边长为x 厘米,那么三角形的面积y 可以表示为(y =3x )圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之发生了变化。
如果圆锥底面半径为r (厘米),那么圆锥的体积V 与r 的关系式为(V =43πr 2)圆锥的底面半径是2厘米,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化,如果圆锥的高为h (厘米),那么圆锥的体积V 与h 的关系式为(V =43πh )(2)因变量的值:对于每一个确定的自变量值,例如x=a时,因变量有一个唯一确定的对应值,这个对应值,叫做当自变量x=a时的因变量的值。
3.2 用关系式表示的变量间关系课件 2021-2022学年北师大版七年级数学下册
C.36 cm3
D.48 cm3
6. 已知三角形ABC的底边BC上的高为8 cm,当底
边BC从16 cm变化到5 cm时,三角形ABC的面 积( )
B A.从20 cm2变化到64 cm2 B.从64 cm2变化到20 cm2 C.从128 cm2变化到40 cm2 D.从40 cm2变化到128 cm2
有一种粗细均匀的电线,为了确定其长度,从一捆上剪下1 m, 称得它的质量是0.06 kg. (1)写出这种电线长度与质量之间的关系式; (2)如果一捆电线剪下1 m后的质量为b kg,请写出这捆电线的总
长度.
易错点:混淆自变量与因变量导致关系式错误
知识点1:用关系式表示的变量间的关系并和表格互化
【例1】长方形的周长为24 cm,其中一边长为x cm(x>0),面积
为y cm2,则该长方形中y与x的关系可以写为( C )
A.y=x2
B.y=(12-x)2
C.y=(12-x)·x
D.y=2(12-x)
【导引】因为长方形的周长为24 cm,其中一边长为x cm, 所以另一边长为(12-x) cm,因为面积为y cm2, 所以该长方形中y与x的关系可以写为y=(12-x)·x.
知识点1:用关系式表示的变量间的关系并和表格互化
3.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加 一定的利润,其长度x与售价y如下表:
长度x/m
1
2
3
4
…
售价y/元 8+0.3 16+0.6 24+0.9 32+1.2 …
下列用长度x表示售价y的关系式中,正确的是( B )
A.y=8x+0.3
______cm2变化到
______cm2.
最新北师大版七年级数学下册教学计划
2015—2016学年度七年级第二学期数学科教学计划梁施丽一.基本情况本学期我担任七(4)班数学教学,该班有学生49人,上学期期末考试有14个同学及格,最高分91,最低分10分,平均分49,学生基础中等,整体水平稍微偏低,两极分化有点严重,基础知识掌握还不够牢固。
二.教材分析本学期学习的章节:有《整式的乘除》、《相交线与平行线》、《变量之间的关系》、《三角形》、、《生活中的轴对称》、《概率初步》。
各章教学内容概述如下:《整式的乘除》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础。
重点是探索整式运算的运算法则,理解整式运算的算理,推导乘法公式。
难点是灵活运用整式运算法则解决一些实际问题,正确地运用乘法公式。
《相交线与平行线》两条直线被第三条直线所截,即所谓的“三线八角”问题和对平行线的讨论是平面几何中重要的议题,也是基础性的内容,有很大的教育价值。
《变量之间的关系》:把变量之间的关系列为单独一章,这是在学习了代数式求值和探索规律等地方渗透了变化的思想基础上引入的,为进一步学习函数概念进行铺垫,因为函数是一种特殊的变量之间的“关系”。
《三角形》:教材提供许多活动,给学生充分的实践和探索的空间,使他们通过探索和交流发现一些与三角形有关的结论,并应用它解决实际问题,给学生提供积累数学经验的可能,建立推理意识,用自己的方式来表达推理过程。
重点是三角形的性质与三角形全等的判定、三角形的分类。
难点是能进行简单的说理。
《生活中的轴对称》:实际上是轴对称图形的认识和讨论,并通过轴对称图形来探索轴对称图形的性质。
轴对称可以看成反射变换,也是一种几何变换。
事实上,平移和旋转可以经过两次反射变换得到,因此它更基本。
重点是研究轴对称及轴对称的基本性质。
难点是从具体的现实情境中抽象出轴对称的过程。
《概率初步》一章,在七年级上册感受了可能性有大有小的基础上,进一步刻画可能性的大小,因而十分自然地给出了概率的概念,重点是理解概率的意义,并会计算一些事件发生的概率,能设计出符合要求的简单概率模型。
北师大版数学七年级下册全册教案-第六章变量之间的关系
教案:第六章变量之间的关系一、教学目标1.经历探索具体情境中两个变量之间关系的过程,进一步发展符号感和抽象思维.2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量.3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力.4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.5.体验从运动变化的角度认识数学对象的过程,发展对数学的认识.二、课时安排建议1小车下滑的时间~~~~~~~~~~~~~1课时2变化中的三角形~~~~~~~~~~~~~1课时3温度的变化~~~~~~~~~~~~~~~1课时4速度的变化~~~~~~~~~~~~~~~1课时回顾与思考~~~~~~~~~~~~~~~~1课时三、教学建议1.创设丰富的现实情境,使学生在对变化规律的丰富经历中理解变量之间的相依关系.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论函数的有关概念.教师可以充分利用教科书中提供的问题,也可以根据学生实际创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论.2.注重使学生亲身经历探索现实世界变化规律的过程.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实验或实践其他可操作性的实验,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对函数思想的理解,必须使他们对函数的多种表示——数值表示、解析表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表达.当学生运用语言进行表达时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.四、评价建议1.关注对学生探索现实世界变化规律的过程的评价.在本章的学习中,学生花费了较多的时间经历从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程的考查应当成为评价的首要方面.对这一方面评价的重点显然不是记忆概念的准确性和使用技能、法则的熟练程度,而是对以下诸方面的考查:从事活动的投入程度,从表格、关系式、图象中获取信息的准确性和广泛性,对具体情境中变量之间关系的敏感性,运用语言等描述变量之间关系的合理性等.例如,在对学生探索小车下滑时间与支撑物高度关系的过程进行评价时,可以关注以下几个方面:学生是否积极地进行活动,并在活动中进行独立思考;能否从实际操作或表格中意识到下滑时间与支撑物高度之间存在着相依关系;能否从表格中获取尽可能多的信息;能否运用自己的语言描述下滑时间与支撑物高度之间的关系等.2.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对函数性质本身(如单值对应、三种表达形式)进行讨论.§6.1 小车下滑的时间一、[教学目标]1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
北师大初中数学知识分类整理函数
函数一、变量之间的关系(七年级下册第六章)1. 小车下滑的时间①经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感;②在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间相依关系的例子;③能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的数据尝试对变化趋势进行初步的预测。
在具体情境中理解变量、自变量、因变量:在教材的下滑试验中,支撑物高度h 和小车下滑的时间t 在变化,它们都是变量。
其中t 随h 的变化而变化,h 是自变量,t 是因变量。
在教材的人口普查问题中,我国人口总数y 随x 的变化而变化,x 是自变量,y 是因变量。
在这两个问题中,变量用字母表示,更显示了数学符号的简洁。
借助表格,可以把因变量随自变量的变化而变化的情况表示出来。
2. 变化中的三角形①经历探索图形中变量关系的过程,进一步体验一个变量的变化对另一个变量的影响,发展符号感;②会用关系式表示变量关系;③能根据关系式求值,初步体会变量间的数值对应关系。
关系式是我们表示变量之间关系的另一种方法,利用关系式,我们可以根据任何一个自变量的值求相应的因变量的值。
注意:用关系式表示变量之间的关系时,因变量单独放在关系式的左边。
在本节的“做一做”中,要运用以前我们学过的圆锥体积公式:是高)是底面半径,(底圆锥h r h r h S V 23131π==3. 温度的变化①经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系;②结合具体情境理解图象上的点所表示的意义;③能从图象中获取变量之间关系的信息,并能用语言进行描述。
图象是我们表示变量之间关系的又一种方法,它的特点是非常直观。
在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量。
4. 速度的变化①通过速度随时间变化的实际情境,经历用图象分析变量之间的关系;②能从图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达能力;③感受从图象中获取变量之间关系的信息,并能解决相关问题;④通过学习,提高学生的认知能力、观察能力、想像能力。
完整版北师大版七年级数学下册变量之间的关系知识点汇总
完整版北师大版七年级数学下册变量之间的关系知识点汇总在数学学习中,变量是一个非常重要的概念。
变量之间的关系更是数学中的基础知识之一。
本文将对北师大版七年级数学下册关于变量之间的关系的知识点进行汇总和总结。
一、平方和平方根的关系在数学中,平方和平方根是常见的两个概念。
平方是指一个数与自己相乘的运算,可以用 x²表示。
而平方根则是指一个数的平方的逆运算,用√x 表示。
对于两个正数 a 和 b,它们满足以下关系:a² + b² = (a + b)² - 2ab√(a + b) = √a + √b二、正比例和反比例的关系正比例和反比例是描述两个变量之间关系的常用术语。
正比例是指当一个变量增大时,另一个变量也相应增大的关系。
而反比例则是指当一个变量增大时,另一个变量相应减小的关系。
在数学中,可用如下公式表示:正比例关系:y = kx (k为常数,y和x为变量)反比例关系:y = k/x (k为常数,y和x为变量)三、函数的关系函数是描述两个变量之间关系的数学工具,它描述了每个自变量(输入)对应唯一的因变量(输出)的关系。
函数可以用一个公式表示,形如 y = f(x)。
其中 x 是自变量,y 是因变量,f(x) 是函数关系。
函数也可以用函数图像表示,这样更直观地反映了变量之间的关系。
四、等式的关系等式是指两个表达式通过等号连接的关系。
等式表示两个值相等,可用 x = y 表示。
在等式中,可以进行加减乘除等运算,从而实现变量之间的关系。
五、不等式的关系不等式是指两个表达式通过不等号连接的关系。
不等式描述了大小关系,可用 x < y、x > y、x ≤ y、x ≥ y 等形式表示。
不等式表示一组值的范围,更适用于解决实际问题中变量之间的关系。
六、递推关系递推关系是指通过已知的一些值,推导出其他值的关系。
递推关系中通常会涉及到一个初始值和一个递推公式。
通过递推公式,可以计算出后续的值,从而揭示变量之间的关系。
变量之间的关系用图像法表示两个变量间的关系(填选题压轴)-2020-2021学年北师大版七年级数学下
《变量之间的关系》题型解读3:用图像法表示两个变量间的关系(填选题压轴)【知识梳理】①首先明确图像横轴、纵轴表示的意义;一般横轴表示运动时间,纵轴表示运动路程或离出发点距离或速度,在解题前一定要清楚两个变量倒底指的是谁?②明确图像中线段表示的意义;包括上升线段、水平线段、下降线段、线段陡缓情况所表示的意义;③明确特殊位置上的点表示的意义;如起点、拐点、终点所对应横纵轴上的数据所表示的意义【典型例题】例1.水池中原有3升水,现每分钟向池内注1升,则水池内水量Q(升)与注水时间t(分)之间关系的图像大致为()解析:①图像的横轴表示注水时间,纵轴表示水池内现有水量;②上升线段表示水池内现有水量在增加,水平线段表示水池内现有水量不变,下降线段表示水池内现有水量在减少;③线段起点表示水池原有水量经过以上三点图像解读,答案自然而言就呈现出来,选B.例2.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中。
如图是他离家的路程y(千米)与时间x(分)关系的图象,根据图象信息,下列说法正确的是()A、小王去时的速度大于回家的速度B、小王去时走上坡路,回家时走下坡路C、小王去时所花的时间少于回家所花的时间D、小王在朋友家停留了10分钟解析:①图像的横轴表示离家时间,纵轴表示离家距离;②上升线段OA表示小王离家距离在增加,水平线段AB表示小王离家距离不变,下降线段BC表示小王离家距离在减小,上升线段OA比下降线段BC更缓,表示速度更慢;③线段起点O表示小王从家出发,点A表示20分后离家2千米,点C表示30分钟后离家距离开始减少,点D表示离家距离为0。
经过以上三点图像解读,我们就可以得到这些信息:小王去的速度要小于回家的速度、小王去时所花时间为20分钟,而回家时间为10分钟、小王在朋友家从20分钟呆到30分钟,停留了10分钟,选D.例3.如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是( D )A.B.C.D.解析:作OD⊥AB于点D,离家距离由O到A越来越大,A—D则距离越来越小,当到达O与AB的垂线段的垂足位置时最近,由垂足到B时距离则变大,由B—O则距离变小,故选D例4.李大爷以每千克2.1元的价格批发了一批南瓜到镇上出售,为了方便,他带了一些零钱备用,他先按市场价售出一些后,由于滞销,然后他每千克降低1.6元将剩余部分全部售出,他手中持有的钱数y元(含备用零钱)与售出南瓜千克数x的关系如图所示,下列说法中正确的有()x(千克)①李大爷自带的零钱是50元;②降价前他每千克南瓜出售的价格是4.1元;③这批南瓜一共有160千克;④李大爷销售这批南瓜一共赚了194元.A. 1个B. 2个C. 3个D. 4个解析:中等难度题,考查图像法表示两个变量间的关系和学生的图像理解能力.但由于这道题考过太多次了,学校单元测试卷、练习册上都有此题,难度降低了很多.选B.(1)由图可知,当出售千克数x=0时,手中持有钱数y=50,所以①正确;(2)图中的两条线段中一条更陡一条更缓,更陡的说明钱数y变化更大,即反映降价前的钱数;更缓的说明钱数y 变化更小,即反映降价后的钱数,所以降价前出售的单价=(410−50)÷100=3.6元,所以②错误;(3)降价前卖了100千克,降价后的单价是3.6−1.6=2元,卖了(530−410)÷2=60千克,所以一共卖出160千克,③正确;(4)降价前赚了(3.6−2.1)×100=150元,降价后赚了(2−2.1)×60=−6元,所以总共赚了150−6=144元. 故选B例5.某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油_____升;(2)根据图计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目的地还有400km,车速为60km/h,机动车行驶每小时耗油量同加油前相同,要到达目的地,油箱中的油是否够用?请说明理由。
北师大版初中七年级下册数学 《用关系式表示的变量关系》变量之间的关系PPT教学课件
3kg
x/kg 1
2
3
4
5 ……
y/cm 3.5 4 4.5 5 5.5 ……
完成上表,并依据上表数据,写出y与x之间的关系式. y = 3+0.5x
新知探究
……
y x2 1
x
1
2
3
4
5
……
y
2
5
10
17
26 ……
12+1
22+1 32+1
解:(1)当x≤3时,y=8; 当x>3时,y=8+1.6(x-3) =1.6x+3.2 .
(2)当y=14.40时,1.6x+3.2=14.40,解得x=7, 故他这次乘车坐了7千米的路程.
底和高
A
h
B
a
C
新知探究
例1.如图,三角形ABC底边BC上的高是6厘米. 当 三角形的顶点C沿底边所在的直线向B运动时, 三角形的面积发生了怎样的变化?
S三角形ABC=
―1 BC·h=3BC 2
逐渐缩小
B
C
(1)在这个变化过程中,自变量、因变量各是什么?
自变量是三角形的底,因变量是三角形的面积 .
燃烧时间x/min 10 20 30 40 50 …
剩余长度 y/cm 19 18 17 16 15 …
则剩余长度 y(cm)与燃烧时间x(min)的关系式为
y 20 x 10
,估计这支
蜡烛最多可燃烧 200 min.
课堂小测
4.某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程 超过3千米的部分,按每千米1.60元计费. (1)求出租车收费y(元)与行驶路程x(千米)之间的关系式; (2)若某人一次乘出租车时,付了车费14.40元,求他这次乘车坐了多少千 米的路程?
北师大版七年级下册数学《用图象表示的变量关系》变量之间的关系说课教学课件复习巩固
课堂检测
探索推广题
如果OA、BA分别表示甲、乙两名学生
运动的路程s和时间t的关系,根据图象
判断快者的速度比慢者的速度每秒快
(C )
A、2.5m
B、2m C、1.5m
D、1m
s (m)
64
A
B
12
0
t(s )
8
解析:由图象可知在8s时间内,学生甲的路程为64m,学生乙
的路程为(64-12)=52m,所以V甲=64/8=8(m/s)
课堂检测
基础巩固题
3.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总
结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔
再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1
表示乌龟所行的路程,y2表示兔子所行的路程).下列说法
错误的是( B )
A.“龟兔再次赛跑”
的路程为1000米
B.兔子和乌龟同时从起点出发
哪队先到达终点?
例3
解:由纵坐标看出,这次龙舟
赛的全程是1000米;由横坐标
看出,乙队先到达终点;
探究新知
(2)求乙与甲相遇时乙的速度.
解:由图象看出,相遇是在乙加速
后,加速后的路程是1000-400=
600(米),加速后用的时间是3.8-
2.2=1.6(分钟),乙与甲相遇时乙
的速度600÷1.6=375(米/分钟).
V乙=52/8=6.5(m/s) 故V甲- V乙=1.5(m/s)
北师大版 数学 七年级 下册
第三章 变量之间的关系
用图象表示的变量关系
课件
学习目标
1、结合具体情境,能理解图象上的点所表示的意义。
2、能从图象中获取变量之间关系的信息,并对未来的
北师大初中数学七下变量之间的关系(附答案)
北师大初中数学七下变量之间的关系(带解析)1.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度大于乙的速度;(5)甲、乙两人同时到达目的地.其中,符合图象描述的说法有()A.2个B.4个C.3个D.5个2.甲、乙二人约好沿同一路线去某地集合进行宣传活动,如图,是甲、乙二人行走的图象,点O代表的是学校,x表示的是行走时间(单位:分),y表示的是与学校的距离(单位:米),最后都到达了目的地,根据图中提供的信息,下面有四个推断:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达的目的地;③甲在停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.所有正确推断的序号是()A.①②B.①②③C.①③④D.①②④3.已知A、B两地相距600米,甲、乙两人同时从A地出发前往B地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②两分钟后乙每分钟走50米;③甲比乙提前3分钟到达B地;④当x=2或6时,甲乙两人相距100米.正确的有(在横线上填写正确的序号).4.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s (米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.5.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为km;点M表示的实际意义是;(2)小张开车的速度是km/h;小李骑摩托车的速度是km/h.(3)试求出发多长时间后,两人相距60km.6.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_____米.7.赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个9.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,中途与乙相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为___________千米.10.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米;(2)小明在书店停留了多少分钟;(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?11.某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(2)已知洗衣机的排水速度为每分钟19升.①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.12.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?1.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度大于乙的速度;(5)甲、乙两人同时到达目的地.其中,符合图象描述的说法有()A.2个B.4个C.3个D.5个【分析】通过观察图象可得到甲出发0.5小时后停留了0.5小时,然后再用1.5小时到达离出发地18千米的目的地;乙比甲晚0.5小时出发,用1.5小时到达离出发地18千米的目的地,根据此信息分别对5种说法分别进行判断.【解答】解:观察图象,甲、乙到达目的地时离出发地的距离,所以(1)正确;都为18千米,甲在0.5小时至1小时之间,S没有变化,说明甲在途中停留了0.5小时,所以(2)正确;甲出发0.5小时后乙开始出发,说明(3)正确;两图象相交后乙的图象在甲的上方,说明甲的速度小于乙的速度,所以(4)不正确;甲出发2.5小时后到达目的地,而乙在甲出发2小时后到达目的地,所以(5)不正确.故选:C.【点评】本题考查了函数图象:学会看函数图象,从函数图象中获取信息,并且解决有关问题.2.甲、乙二人约好沿同一路线去某地集合进行宣传活动,如图,是甲、乙二人行走的图象,点O代表的是学校,x表示的是行走时间(单位:分),y表示的是与学校的距离(单位:米),最后都到达了目的地,根据图中提供的信息,下面有四个推断:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达的目的地;③甲在停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.所有正确推断的序号是()A.①②B.①②③C.①③④D.①②④【分析】根据函数图象中的数据得出路程、时间与速度,进而解答即可.【解答】解:①甲、乙二人第一次相遇后,停留了20﹣10=10分钟,说法正确;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,说法正确;⑧甲在停留10分钟之后减慢了行走速度,说法错误;④甲行走的平均速度要比乙行走的平均速度快,说法正确;故选:D.【点评】本题考查一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3.已知A、B两地相距600米,甲、乙两人同时从A地出发前往B地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②两分钟后乙每分钟走50米;③甲比乙提前3分钟到达B地;④当x=2或6时,甲乙两人相距100米.正确的有(在横线上填写正确的序号).【分析】①根据函数图象中的数据,可知甲6分钟走了600米,从而可以计算出甲每分钟走的路程,从而可以判断该小题是否正确;②根据图象中的数据可知,乙2分钟到6分钟走的路程是500﹣300=200米,从而可以计算出两分钟后乙每分钟走的路程,从而可以判断该小题是否正确;③根据乙2分钟后的速度,可以计算出乙从A地到B地用的总的时间,然后与6作差,即可判断该小题是否正确;④根据图象,可以分别计算出x=2和x=6时,甲乙两人的距离,从而可以判断该小题是否正确.【解答】解:由图象可得,甲每分钟走:600÷6=100(米),故①正确;两分钟后乙每分钟走:(500﹣300)÷(6﹣2)=200÷4=50(米),故②正确;乙到达B地用的时间为:2+(600﹣300)÷50=2+300÷50=2+6=8(分钟),则甲比乙提前8﹣6=2分钟达到B地,故③错误;当x=2时,甲乙相距300﹣100×2=300﹣200=100(米),当x=6时,甲乙相距600﹣500=100米,故④正确;故答案为:①②④.【点评】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题的条件,利用数形结合的思想解答.4.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s (米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.【分析】由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则:80x﹣40x=80,解得x=2分钟,推出小欢一共走了40×(2+2)=160(米),由此即可解决问题.【解答】解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9【点评】本题考查一次函数的应用,路程,速度,时间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为240km;点M表示的实际意义是出发2小时小张与小李相遇;(2)小张开车的速度是80km/h;小李骑摩托车的速度是40km/h.(3)试求出发多长时间后,两人相距60km.【分析】(1)根据题意和函数图象中的数据解答即可;(2)根据题意和函数图象中的数据可以求得小张开车的速度和小李骑摩托车的速度;(3)由(2)的结论分情况列方程解答即可.【答案】解:(1)根据函数图象中的数据可得A、B两市之间的路程为240km,M表示的实际意义是出发2小时小张与小李相遇;故答案为:240;出发2小时小张与小李相遇;(2)小张开车的速度为:240÷3=80(km/h),小李骑摩托车的速度为:240÷2﹣80=40(km/h).故答案为:80;40;(3)设出发x小时两人相距60km.有三种情况:相遇前:80x+40x+60=240,解得x=1.5;相遇后小张未到达B市前:80x+40x﹣60=240,解得x=2.5;小张返回途中:40x﹣80(x﹣3)=60,解得x=4.5;答:出发1.5,2.5,4.5小时,两人相距60km.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_____米.【答案】200【详解】由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15-10)v=15×40,v=120,则妈妈回家的时间:154060⨯=10,(30-15-10)×40=200.故答案为200.7.赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【答案】(1)3000米;(2)甲龙舟队先出发,乙龙舟队先到达终点;(3)y=200x﹣1000(5≤x≤20);(4)甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得:05300020a ba b=+⎧⎨=+⎩,解得:2001000ab=⎧⎨=-⎩,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=53(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=703(符合题意);综上所述,甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米.8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个【答案】A【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.9.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,中途与乙相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为___________千米.【答案】150180÷1.5=120(千米/时),300÷120=2.5(小时),300÷(5.5-2.5)=100(千米/时),(300-180)÷1.5=80(千米/时),300÷80+(1.75-1.5)=3.75+0.25=4(小时),(4-2.5)×100=1.5×100=150(千米).答:乙车到达A地时甲车距B地的路程为150千米.故答案为:150.10.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米;(2)小明在书店停留了多少分钟;(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?【答案】(1)1500米;(2)4分钟;(3)2700米;共用14分钟.(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从(8分)到(12分),故小明在书店停留了4分钟.(3)一共行驶的总路程=1200+(1200−600)+(1500−600)=1200+600+900=2700米;共用了14分钟.11.某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(2)已知洗衣机的排水速度为每分钟19升.①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.【答案】(1)洗衣机的进水时间是4分钟;清洗时洗衣机中水量为40升.(2)排水时间为2分钟,排水结束时洗衣机中剩下的水量为2升.【解析】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)①∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40-19(x-15)=-19x+325,②∵排水时间为2分钟,∴y=-19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.(1)根据函数图象可以确定洗衣机的进水时间,清洗时洗衣机中的水量;(2)①由于洗衣机的排水速度为每分钟19升,并且从第15分钟开始排水,排水量为40升,由此即可确定排水时y与x之间的关系式;②根据①中的结论代入已知数值即可求解.12.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【答案】(1)3600,20;(2)65(米/分),55(米/分);(3)1100(米).【详解】(1)根据图象可知:小亮行驶的总路程为3600m ,中途休息时间为:50﹣30=20min ,故答案为;3600,20;(2)观察图象可知小亮休息前走了30分钟,1950米,所以小亮休息前的速度为:19506530=(米/分),小亮休息后的速度为:36001950558050-=-(米/分),答:小亮休息前的速度为65米/分,休息后的速度为55米/分;(3)缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟,小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,80-60=20(分),∴小颖到达终点时,小亮离缆车终点的路程为:20⨯55=1100(米),答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.。
北师大版数学初中全册教案
北师大版数学初中全册教案1. 知识与技能:(1)理解整式的概念,掌握整式的加减、乘除运算方法。
(2)了解相交线与平行线的位置关系,掌握平行线的性质。
(3)理解变量之间的关系,学会用表格、关系式、图象表示变量间的关系。
(4)认识三角形的基本概念,掌握三角形的全等条件,学会用尺规作三角形。
2. 过程与方法:(1)通过实例让学生感受整式的运算,培养学生的抽象思维能力。
(2)通过观察、实验、探究等活动,让学生发现直线平行的条件,提高学生的动手操作能力。
(3)让学生通过实际操作,掌握变量间关系的表示方法,培养学生的创新能力。
(4)通过合作交流,让学生学会用尺规作三角形,提高学生的合作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习数学的积极性。
(2)培养学生勇于探究、勇于创新的精神,提高学生的自主学习能力。
(3)培养学生合作交流的意识,增强学生的团队协作能力。
二、教学内容1. 第一章:整式的乘除(1)同底数幂的乘法、幂的乘方与积的乘方。
(2)整式的乘法、平方差公式、完全平方公式。
(3)整式的除法。
2. 第二章:相交线与平行线(1)两条直线的位置关系。
(2)直线平行的条件。
(3)平行线的性质。
3. 第三章:变量之间的关系(1)用表格表示的变量间关系。
(2)用关系式表示的变量间关系。
(3)用图象表示的变量间关系。
4. 第四章:三角形(1)认识三角形、三角形的基本性质。
(2)三角形的全等条件。
(3)用尺规作三角形。
三、教学重点与难点1. 教学重点:(1)整式的加减、乘除运算。
(2)直线平行的条件。
(3)变量间关系的表示方法。
(4)三角形的基本性质、全等条件、尺规作三角形。
2. 教学难点:(1)整式的乘除运算。
(2)直线平行的判断。
(3)变量间关系的表示方法。
(4)三角形的全等条件、尺规作三角形。
四、教学方法1. 情境教学法:通过生活实例引入数学概念,让学生在实际情境中学习数学。
2. 启发式教学法:引导学生主动探究、发现知识,培养学生的创新能力。
北师大版数学七年级下册第六章变量之间的关系速度的变化教案附教学反思
速度的变化教学目标:知识与技能目标:能恰当地从图中分析变量之间的关系,能从图象获得有关信息,能根据图象有条理地进行语言表达.过程与方法目标:在课堂学习过程中,通过速度随时间变化的实际情境,进一步发展从图象中获得信息的能力及有条理地进行语言表达的能力,形成数形结合的思想和意识.情感、态度、价值观目标:通过对生活中实际问题的分析和研究,培养学生热爱生活,热爱祖国的热情,以及对待生活严谨、科学的态度.教学重点:从图中分析变量之间的关系,同时获取相关信息.教学难点:从图中分析变量之间的关系,同时获取有用的信息.教学方法:讨论式教学法、探究教学法教具:多媒体课件学生课前准备:预习本节内容教材分析:我们是生活在一个变化的世界中,从数学的角度去研究变量和变量之间的关系,将有助于人们更好地认识现实世界,预测未来,同时研究现实世界中的变化规律,使学生从常量的世界进入到了变量的世界,逐步接触一种新的思维方式.本节教材是在前几节学习和研究变量之间关系的同时,突出了对图象表示的变量之间的关系进行了讨论,让学生用语言描述图象所表示的变化过程,加强学生对图象表示的理解,发展从图象中获得信息的能力及有条理地进行语言表达的能力.教学程序教学内容教师活动学生活动设计意图创设情境导入新课一、看一看想一想“同学们,你们喜欢春游吗?”“喜欢”“好久没有去春游了”,“好,那我们就随小明一家去春游”.一个周末,春暖花开,天气晴朗,小明和爸爸、妈妈一家三口驾着心爱的汽车向郊外驶去.他们去干什么呢?他们去春游.在路上,小明非常激动,一会儿透过车窗看看外面的风景,一会儿看看车上的时速度表.在途中小明发现了一辆新车,带着好奇心,小明要求爸爸加速追赶,两车一前一后,不相上下,最后还是小明他们的车行驶到前面去了.很快到达了目的地.问题1:通过汽车时速表可知某时刻汽车的速度,但对汽车运行过程缺乏全面的认识,怎样才能达到这一目的呢?用挑逗的口气问:“同学们,你们喜欢春游吗?”多媒体演示小明一家春游的情境.提出问题学生答:“喜欢”“好久没有去春游了”观看多媒体动画.思考老师提出的问题,同时说出自己的思考结果.利用学生喜爱的春游活动场面来创设情境,易于吸引学生的注意力.教学程序教学内容教师活动学生活动设计意图合作探究交流学习这就是我们这节课要学习的内容:速度的变化二、做一做看谁完成得最好问题2:小明是一位勤学、善思的同学,他在车上通过观察时速表,掌握了汽车的行驶情况,到达目的地后,他把汽车行驶的速度随时间的变化关系画成了下面的图象.同学们你能根据图象回答下面相关的问题吗?下面的图象表示一辆汽车的速度随时间变化而变化的情况.你能回答下列问题吗?试一试①从直观的角度看,这个图象象什么?②“梯形”的各个顶点表示什么?③汽车从出发到最后停止共经过了多长时间?最高时速是多少?④汽车在哪段时间保持匀速行驶?其图象有什么特点,时速分别是多少?⑤汽车哪段时间在加速行驶?哪段时间在减速行驶?图象分别有什么特点?⑥出发后8分到10分之间可能发生什么情况?⑦你能用自己的语言大致描述这辆汽车的行驶情况吗?写出课题多媒体展示问题.引导学生先独立思考,然后以学习小组为单位进行讨论、交流,得出一致结论.在学生完成了上述问题之后,教师可根据学生的回答,进行点评:①怎样看图:在速度与时间关系的图象中,从左往右看,若图象是“上升的线”,表明速度在增大;若图象是“下降的线”,表明速度在减小;若图象与表示时间的数轴平行,表明速度保持不变,匀速行驶.②图象所表示变量之间的关系直观形象,而图象包含着丰富的信息资源,请同学们仔细观察,不断加工、提炼,并利用这些信息解决问题.先独立思考,写出自己得到的结论,然后以学习小组为单位进行讨论、交流,形成共同的认识.①表面直觉是两个梯形(缺下底).②“梯形”的各个顶点表示速度发生变化.③汽车一共行驶了24分钟,最高时速为90千米/时.④汽车大约在2分到6分,18分到22分之间保持匀速行驶,其图象与水平方向表示时间的数轴平行.⑤汽车大约在0分到2分,10分到18分之间加速行驶,其图象从左向右看在上升,汽车在6分到8分,22分到24分之间减速行驶,其图象从左向右看在下降.⑥出发8分到10分之间,汽车停止,没有行驶,可能开车的人在买物品.⑦汽车刚开始时加速行驶,至2分时以30千米/时的速度匀速行驶,到6分时汽车减速行驶直到停了下来,8分至10分时,车上的人买了一点物品,然后又加速行驶到18分,18分至22分时,汽车以90千米/时的速度匀速行驶,22分到24分时汽车减速行驶最后停了下来.通过合作探究学习,让学生理解和掌握如何从图象中去获取相关的信息.4 8 12 16 20 24306090时间/分速度(千米/时)教学程序教学内容教师活动学生活动设计意图创新探究迁移应用三、议一议,帮帮小明吧小明的爸爸看到小明善于观察生活,爱动脑思考,很是高兴,想起了一次停电时,小明点蜡烛时的情景,不仅哑然失笑.给出了以下两个问题,要考考小明.同学们,你能帮助小明解这两个问题吗?问题3:一根长20厘米的蜡烛,点燃后每小时燃烧5厘米,下图表示蜡烛燃烧时剩下的高度h(厘米)随时间t(小时)变化的情况①图中A、B两点表示什么意思?②当蜡烛剩下的高度为原来的四分之一时,蜡烛还能燃烧多少时间?问题4:请分析下图,想像一个适合它的实际情境.激励学生独立思考,得出结论.鼓励学生大胆思考,从多角度思考.学生的答案只要合理都行.让学生充分思考,大胆发言.①A点表示蜡烛燃烧1小时后,剩下的高度为15厘米,B点表示蜡烛燃烧2小时后,剩下的高度为10厘米;②蜡烛还能燃烧1小时.积极思考,可在小组内交流,大胆发表自己的见解.培养学生的迁移应用能力.在培养学生创新意识和创新能力的同时,培养学生的语言表达能力.10 2 3 45101520h/厘米A● B●t/小时巩固练习深化理解四、试一试你能完成下列问题吗小明也不甘示弱,想到秋天柿子成熟吊到地上和上学乘公交车的情景.提出了如下两个问题,他要求同学们来完成一下,你们行吗?练习1:柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况?利用多媒体演示柿子的下落过程,引导学生思考,得出答案.观看演示过程,先独立完成练习1,然后小组内讨论交流.答案(3)巩固本节课所学内容教学程序教学内容教师活动学生活动设计意图巩固练习深化理解练习2:一辆公共汽车,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?利用多媒体演示汽车的运行过程,引导学生独立思考,得出答案.观看演示过程,先独立思考,得出答案后,小组交流.答案:(2)小结归纳1、请你总结一下,本节课你随小明同学春游后,有哪些收获?2、在速度与时间关系的图象中,从左往右看,若图象是“上升的线”,表明速度在增大;若图象是“下降的线”,表明速度在减小;若图象与表示时间的数轴平行,表明速度保持不引导学生小结,由学生充分发言.先独立小结,再在小组讨论、交流,最后积极地在全班发言.培养学生的归纳小结能力.时间时间时间时间速度速度速度速度0 0(1)(2)(3)(4)速度时间速度(2)速度(1)(3)时间速度时间(4)时间变,匀速行驶.图象所表示变量之间的关系直观形象,而图象包含着丰富的信息资源.作业P178习题6.4中1、2题.教学反思这节课在教学中,学生学习兴趣浓厚,特别是刚开始的春游场面,引起了学生的浓厚兴趣.本节所列例题及相关问题,均是生活中学生较熟悉的事物,在小组交流合作学习中,气氛热烈,每个学生都争着发表自己的见解,这种场面是以前教学中很少见到的.但是通过本节课的教学发现:学生的语言表达能力还有待大力提高,本节虽然做了一些努力,还是做得不够.设计意图:本节教学设计,旨在通过学生熟悉的生活情景来激发学生的学习兴趣和学习积极性,以小明一家春游事例为主线,用故事的方式来学习这节内容.让学生在故事中去学习和探索,在学习中去听故事,意在牢牢抓住学生的注意力,使其始终处于兴奋的学习状态,达到良好的学习效果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案:第六章变量之间的关系一、教学目标1.经历探索具体情境中两个变量之间关系的过程,进一步发展符号感和抽象思维.2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量.3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力.4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.5.体验从运动变化的角度认识数学对象的过程,发展对数学的认识.二、课时安排建议1小车下滑的时间~~~~~~~~~~~~~1课时2变化中的三角形~~~~~~~~~~~~~1课时3温度的变化~~~~~~~~~~~~~~~1课时4速度的变化~~~~~~~~~~~~~~~1课时回顾与思考~~~~~~~~~~~~~~~~1课时三、教学建议1.创设丰富的现实情境,使学生在对变化规律的丰富经历中理解变量之间的相依关系.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论函数的有关概念.教师可以充分利用教科书中提供的问题,也可以根据学生实际创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论.2.注重使学生亲身经历探索现实世界变化规律的过程.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实验或实践其他可操作性的实验,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对函数思想的理解,必须使他们对函数的多种表示——数值表示、解析表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表达.当学生运用语言进行表达时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.四、评价建议1.关注对学生探索现实世界变化规律的过程的评价.在本章的学习中,学生花费了较多的时间经历从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程的考查应当成为评价的首要方面.对这一方面评价的重点显然不是记忆概念的准确性和使用技能、法则的熟练程度,而是对以下诸方面的考查:从事活动的投入程度,从表格、关系式、图象中获取信息的准确性和广泛性,对具体情境中变量之间关系的敏感性,运用语言等描述变量之间关系的合理性等.例如,在对学生探索小车下滑时间与支撑物高度关系的过程进行评价时,可以关注以下几个方面:学生是否积极地进行活动,并在活动中进行独立思考;能否从实际操作或表格中意识到下滑时间与支撑物高度之间存在着相依关系;能否从表格中获取尽可能多的信息;能否运用自己的语言描述下滑时间与支撑物高度之间的关系等.2.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对函数性质本身(如单值对应、三种表达形式)进行讨论.§6.1 小车下滑的时间一、[教学目标]1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。
二、[教学过程]本节课设计了七个教学环节:情境引入、分组实验、合作探究、概念介绍、练习提高、课堂小结、布置作业。
第一环节情境引入活动内容:我们生活在变化的世界中,很多东西都在发生变化,请学生列举一些日常生活中经常发生变化的事物。
如:随年龄的增长,身高、体重都发生了变化;随着时间的变化汽车行驶的路程也在变化;烧一壶水10分钟水开了……活动目的:通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力。
第二环节分组实验(1)支撑物高度为70厘米时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10厘米,t的变化情况相同吗?(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?活动目的:动手实验,只能让学生体会数据的来源,而通过问题的探讨,可以让这些数据在学生现有的认知基础上得到升华。
问题(1)、(2)、(3)很容易得到解决,问题(4)是进行预测,对学生来说有一定难度,鼓励学生充分进行交流,培养他们从表格获取信息的能力。
第四环节概念介绍活动内容: 在“小车下滑的时间”中:支撑物的高度h 和小车下滑的时间t 都在变化,它们都是变量。
其中小车下滑的时间t 随支撑物的高度h 的变化而变化。
支撑物的高度h 是自变量,小车下滑的时间t 是因变量。
活动目的:通过实验,理解变量、自变量、因变量这些概念,对于解决日常生活中变化的事物很有帮助。
第五环节 练习提高活动内容:0.01亿):(1)如果用x 表示时间,y 表示我国人口总数,那么随着x 的变化,y 的变化趋势是什么?(2)X 和y 哪个是自变量?哪个是因变量?(3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?(4)你能根据此表格预测2009年时我国人口将会是多少?上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
4.(2)第5排、第6排各有多少个座位?(3)第n 排有多少个 座位?请说明你的理由。
活动目的:对本环节知识进行巩固练习。
第六环节 课堂小结活动内容:师生互相交流总结本节所学的知识,从表格中获取信息;用表格表示变量之间的关系;对变化趋势进行预测。
活动目的:鼓励学生谈本节的收获和体会,验收他们的学习效果。
第七环节布置作业1.小练习2.课外实验:点燃一支蜡烛,记录蜡烛的长度和燃烧时间(每3分钟)之间的关系。
三、[板书设计].其,小车下滑的时间t3倍、4倍,6周岁、图6-2图6-32厘米① 操作多媒体,演示“三角形的变化”② 问题探究:(1) 问题:决定一个三角形面积的因素有哪些?(2) 课件演示:(高一定)变化中的三角形(如图)活动目的:先直观感受三角形面积的变化,为下一环节的探究作了铺垫。
第三环节:诱导探究 活动内容:(1)提出思考问题:如果△ABC 底边BC 上的高是6厘米。
当三角形的顶点C 沿底边BC 所在直线向点B 运动时,三角形的面积发生了怎样的变化?(2)提出思考问题:在这个变化过程中,三角形ABC 中的哪些因素在改变?(3)提出思考问题:这个变化过程中,自变量、因变量各是什么?(4)问题思考:如果三角形的底边长为 x (厘米),那么三角形的面积 y (厘米2)可以表示为 ________________。
(5)学生先独立思考,然后分组讨论。
(6) 列出关系式活动目的:鼓励学生大胆去讨论、思考、尝试,教师及时点拨、评价学生探索的结果,帮助学生认识自我,建立信心。
第四环节:体会归纳活动内容:(1)同学们能根据要求填写下列的表格吗?2)的关系式填表:通过填表、探究,同学们能说出用关系式表达变量间变化关系的优势在哪些方面吗?活动目的:运用表格填写具体的数据,让学生体会到自变量和因变量的数值对应关系,通过对三角形的面积和底边的变化规律的探索,让学生体会到“关系式”表达变量间的变化关系的优势,形象直观的多媒体动画“机器图”,更让学生联想到关系式好比数字处理器。
第五环节:变式探究活动内容:组织、引导学生探究“问题变式”,鼓励学生归纳总结“问题变式”的学习体会,注意学生的学习过程对于学生在探索的过程中给予肯定性的评价。
1.师生互动:课件演示可以任意改变形状的圆锥,通过拖动圆锥,观察圆锥的体积由哪些因素决定。
2.问题一:如图所示,圆锥的底面半径是2厘米,当圆锥的高由小到大变化时,圆锥的体积也随之而发生了变化。
(1)在这个变化过程中,自变量是________,因变量是_________。
(2)如果圆锥的高为h (厘米),那么圆锥的体积V(厘米3)与h 的关系式是____________。
(3)当高由1 厘米变化到10厘米时,圆锥的体积由________厘米3变化到_______厘米3。
问题二:如图所示,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥体积也随之而发生了变化。
(1)在这个变化过程中,自变量是____________,因变量是_____________(2)如果圆锥底面半径为r (厘米),那么圆锥的体积V (厘米3)与 r 的关系式是(3)当底面半径由1 厘米变化到10厘米时,圆锥的体积由______厘米3变化到活动内容:在三角形面积探索的基础上,进行圆锥体积的探索,进一步熟悉用关系式表达变量之间的关系。
第六环节:课堂练习活动内容:1.在地球某地温度T (℃)与高度d (m )的关系可以近似的用15010d T -=来表示。
根据这个关系式,当d 的值分别是0,200,400,600,800,1000时,计算相应的T 值,并用表格表示所得结(1)梯形面积 y 与上底长 x 之间的关系式是什么?(2)用表格表示当 x 从 10 变到 20 时(每次增加1),y 的相应值;(3)当 x 每增加 1 时,y 如何变化?说说你的理由。
(4)当 x =0时,y 等于什么?此时它表示的什么?活动目的:对新学知识进行巩固,并培养学生应用数学知识的能力。