09-13全国大学生高等数学竞赛真题及答案(非数学类)-无答案

合集下载

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届大学生高等数学竞赛真题及答案非数学类14页

历届大学生高等数学竞赛真题及答案非数学类14页

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛试题解答及评分标准非数学类

全国大学生数学竞赛试题解答及评分标准非数学类

全国大学生数学竞赛试题解答及评分标准非数学类Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sin n ππ==……(2分);原式lim 1exp lim ln 1sin nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦………………………………………………………………………………………(2分);14exp lim exp n n n e →∞⎛⎫⎛⎫=== ⎝⎝……(2分) 2.证明广义积分0sin xdx x +∞⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分)而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分)将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y yx''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值。

2009-2011年全国大学生高等数学竞赛真题及答案(非数学类).

2009-2011年全国大学生高等数学竞赛真题及答案(非数学类).

2009年第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)(x+y)ln(1+yxdy=____________,其中区域D由直线x+y=1与两) 1.计算⎰⎰D-x-y坐标轴所围成三角形区域.⎛0解令x+y=u,x=v,则x=v,y=u-v,dxdy=det 1⎝(x+y)ln(1+y)ulnu-ulnvD1⎫⎪dudv=dudv,⎪-1⎭⎰⎰D-x-yxdy=⎰⎰10-uudv==⎰(⎰10ulnu-uulnu-uu22⎰udv-u-u-u⎰ulnvdv)du-u(ulnu-u)du=⎰-udu (*)令t=-u,则u=1-t2,du=-2tdt,u2=1-2t2+t4,u(1-u)=t2(1-t)(1+t),24(*)=-2⎰(1-2t+t)dt=2⎰102315⎤16⎡24(1-2t+t)dt=2⎢t-t+t⎥=3515⎣⎦02.设f(x)是连续函数,且满足f(x)=3x2-解令A=A=⎰20f(x)dx-2, 则f(x)=____________.⎰20f(x)dx,则f(x)=3x-A-2,2⎰20(3x-A-2)dx=8-2(A+2)=4-2A,2解得A=432。

因此f(x)=3x-103。

3.曲面z=x22+y-2平行平面2x+2y-z=0的切平面方程是__________.x22解因平面2x+2y-z=0的法向量为(2,2,-1),而曲面z=2+y-2在2(x0,y0)处的法向量为(zx(x0,y0),zy(x0,y0),-1),故(zx(x0,y0),zy(x0,y0),-1)与(2,2,-1)平行,因此,由zx=x,zy=2y知2=zx(x0,y0)=x0,2=zy(x0,y0)=2y0,即x0=2,y0=1,又z(x0,y0)=z(2,1)=5,于是曲面2x+2y-z=0在(x0,y0,z(x0,y0))处的切平面方程是2(x-2)+2(y-1)-(z-5)=0,即曲面z=2x+2y-z=0的切平面方程是2x+2y-z-1=0。

大学生数学竞赛非数试题及答案

大学生数学竞赛非数试题及答案

大学生数学竞赛(非数学类)试卷及标准答案一、填空(每小题5分,共20分).(1)计算)cos1(cos1lim0xxxx--+→= .(2)设()f x在2x=连续,且2()3lim2xf xx→--存在,则(2)f= .(3)若txx xttf2)11(lim)(+=∞→,则=')(tf.(4)已知()f x的一个原函数为2ln x,则()xf x dx'⎰= .(1)21. (2) 3 . (3)tet2)12(+. (4)Cxx+-2lnln2.二、(5分)计算dxdyxyD⎰⎰-2,其中110≤≤≤≤yxD,:.解:dxdyxyD⎰⎰-2=dxdyyxxyD)(21:2-⎰⎰<+⎰⎰≥-22:2)(xyDdxdyxy-------- 2分=dyyxdx x)(221-⎰⎰+dyxydxx)(12102⎰⎰--------------4分分.三、(10分)设)](sin[2xfy=,其中f具有二阶导数,求22dxyd.解:)],(cos[)(222xfxf xdxdy'=---------------3分)](sin[)]([4)](cos[)(4)](cos[)(222222222222xfxfxxfxfxxfxfdxyd'-''+'=-----7分姓名:身份证号:所在院校:年级:专业:线封密密封线左边请勿答题,密封线外不得有姓名及相关标记.=)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.15分)已知3123ln 0=-⋅⎰dx e e a x x ,求a 的值. )23(23ln 0xa x e d e -----------3分 令t e x =-23,所以dt t dx e e aaxx⎰⎰--=-⋅231ln 02123---------6分=a t 231233221-⋅-------------7分=]1)23([313--⋅-a ,-----------9分由3123ln 0=-⋅⎰dx e e a x x ,故]1)23([313--⋅-a =31,-----------12分即3)23(a -=0-----------13分 亦即023=-a -------------14分所以3=a -------------15分.10分)求微分方程0=-+'x e y y x 满足条件e yx ==1的特解.解:原方程可化为xe y x y x=+'1-----------2分这是一阶线性非齐次方程,代入公式得⎥⎦⎤⎢⎣⎡+⎰⋅⎰=⎰-C dx ex e e y dxx xdx x 11----------4分 =⎥⎦⎤⎢⎣⎡+⋅⎰-C dx e x e ex x xln ln ----------5分 =[]⎰+C dx e x x 1-----------6分 =)(1C e xx+.---------------7分 所以原方程的通解是)(1C e xy x+=.----------8分所在院校:年级:专业:线封密再由条件e yx ==1,有C e e +=,即0=C ,-----------9分因此,所求的特解是xe y x=.----------10分.六(10分)、若函数()f x 在(,)a b 内具有二阶导数,且12()()()f x f x f x ==,其中123a x x x b <<<<,证明:在13(,)x x 内至少有一点ξ,使()0f ξ'=。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x D d d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令vx u y x ==+,,那么vu y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v u uv u u u u u〔*〕令u t -=1,那么21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得。

因此。

3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面22=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

2009年全国大学生数学竞赛非数学专业类试卷及答案

2009年全国大学生数学竞赛非数学专业类试卷及答案

xf ( x) − ∫ f (u )du x2
( x ≠ 0) …………………………………….……(8 分)
由导数定义有
g ′(0) = lim
x →0

x
0
f (u )du x
2
= lim
x →0 x
f ( x) A ……………………………………….……(11 分) = 2x 2 f ( x) ∫ f (u)du = A − A = A = g ′(0) , = lim − lim 0 2 x →0 x →0 x x 2 2


二、 (5 分)求极限 lim( x →0 的正整数.
评阅人
e x + e2 x + n
+ e nx
e
) x ,其中 n 是给定
e e x + e2 x + 解:原式 = lim exp{ ln( x →0 x n = exp{lim
x →0
+ enx
)}
e(ln(e x + e 2 x + x
n −1 x 由已知条件可知 un′ ( x) − un ( x) = x e 是关于 un ( x) 的一个一阶常系
数线性微分方程,故其通解为 封 所在院校:
dx − dx x un ( x) = e ∫ ( ∫ x n −1e x e ∫ dx + c) = e x ( + c) , ……………..…..(6 分) n n
…….……….……(15 分)
姓名:
第 3 页( 共 6 页)


五、 ( 10 分 ) 已 知
y1 = xe x + e 2 x

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

0
n
n1
0
n0
n0
n1

f (t)dt f (n) 1 f (t)dt ,
0
0
n0

f (n) xn2 ,
n0
n0
ln 1
1
lim x lim x 1
x1 1 x x1 1
f (t)dt
xt2 dt
t2 ln 1
e x dt
0
0
0
1
et2 dt
10
1 , 12
0
0
3
a2
1
x
4
dt
4 a(1 a)
1
x
3dt
4 (1 a)2
1
x
2dt
0
3
0
9
0
1 a2 1 a(1 a) 4 (1 a)2
5
3
27

V (a) 1 a2 1 a(1 a) 4 (1 a)2
5
3
27

V (a) 2 a 1 (1 2a) 8 (1 a) 0,
det
0 1
11 dudv dudv ,
D
(x
y) ln(1 1 x y
y) x dxdy
D
u
ln
u u ln 1u
vdudv
1
(
u
ln
u
u
dv
u
u
ln vdv)du
0 1u 0
1u 0
1 u2 ln u u(u ln u u) du
0 1u
1u
1
u2
du (*)
0 1u
L

09-13全国大学生高等数学竞赛真题及答案(非数学类) 无答案

09-13全国大学生高等数学竞赛真题及答案(非数学类) 无答案

2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,xx e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+⎪⎝⎭。

第13届非数学类决赛试题参考解答

第13届非数学类决赛试题参考解答

第十三届全国大学生数学竞赛决赛试题及参考解答(非数学类, 2023年3月25日)一、 填空题(本题满分30分,每小题6分)(1)已知a 和b 均为非零向量,且1=|b |,a 和b 的夹角,4π=a b ,则极限0||||limx x x→+−=a b a .【解】 利用条件:1=|b |,,4π=a b,得|||cos ,|⋅==a b a b |a b a ,所以222222||2||x x x x ++⋅+++a b a a b b a a .因此00||||lim lim x x x x →→+−=a b ax →. (2)极限20ln(1)lim 2xx x x →+−=. 【解】 利用L ’Hospital 法则,得2ln(1)1lim2x x x x →−+=,所以 222[ln(1)]ln(1)00ln(1)ln(1)lim 2lim 1x x x xx x x x x x x x e x x −+−+→→+−+−=+=.(3)积分=.【解】 作变换sec x θ=,则3344sec tan d d sec tan 3412ππππθθθπππθθθ===−=∫∫.(4)设函数()=y y x 由参数方程222,11=++t t x yt t 确定,则曲线()=y y x 在点23,处的曲率κ=.【解】 易知,对应点23,的参数=t . 利用参数方程求导法则,得2d 2d 1=−y t x t ,223223d 2(1)d (1)+=−y t x t . 所以,当=t时,d d =−y x ,223223d 2(1)227d (1)+==−×−y t x t ,因此曲线()=y y x 在23,处的曲率2κ.(5)设D是由曲线1=及两坐标轴围成的平面薄片型物件,其密度函数为(,)ρ=x y ,则薄片物件D 的质量=M .【解】d =+∫∫DMx y . 利用二重积分的对称性,得2(1203d 3d 3d =∫∫∫DM x y x yx .作变量代换:=t ,得1222013d 6(1)d 5==−=∫∫M x t t x . 二、(本题满分12分) 求区间[0,1]上的连续函数()f x ,使之满足1()1(1)()d (1)()d x xf x x yf y y x y f y y =+−+−∫∫.【解】 根据题设条件及等式可推知,函数()f x 在[0,1]上二阶可导,且(0)(1)1f f ==. ------------ 4分对等式两边求导,得1()()d (1)()(1)()d (1)()xxf x yf y y x xf x y f y y x x f x ′=−+−+−−−∫∫1()d (1)()d x xyf y y y f y y =−+−∫∫,再对上式两边求导得 ()()(1)()()f x xf x x f x f x ′′=−−−=−,即 ()()0f x f x ′′+=. ------------ 4分这是二阶常系数齐次线性微分方程,易知其通解为 12()cos sin f x C x C x =+.分别取0x =和1x =代入上式,得11C =,21cos11tan sin12C −==,因此所求函数为 1()cos tan sin 2f x x x =+⋅ (01)x ≤≤. ------------ 4分三、 (本题满分12分) 设曲面∑是由锥面x =,平面1x =,以及球面2224x y z ++=围成的空间区域的外侧表面,计算曲面积分: 222()()d d ()d d d d f x I x y z y z x z y f xz y x z y f Σ=++ +++ ∫∫ , 其中()f u 是具有连续导数的奇函数.【解】 设2()f y P x x +=,2()f z Q y x +=,2()f z R z y +=,则[](()()2)P Q Rx y z y x y xy f yz zf ′′+∂∂∂++=+++∂∂∂. 因为奇函数()f u 的导数是偶函数,所以()()f xy f yz ′′+关于y 是偶函数.------------ 4分记Ω是以Σ为边界曲面的有界区域,根据Gauss 公式,并结合三重积分的对称性,得d d d 2d d d P Q R Ix y z x x y z x y z ΩΩ∂∂∂=++= ∂∂∂ ∫∫∫∫∫∫ ------------ 4分222410cos 2d d cos sin d ππϕθϕρϕρϕρ⋅∫∫∫44017cos sin 16d 4cos 22ππππϕϕϕπϕ=−=−=∫. ------------ 4分四、 (本题满分12分) 设()f x 是以2π为周期的周期函数,且,00,0()f x x x x ππ<< = −≤≤,试将函数()f x 展开成Fourier 级数,并求级数121(1)n n n −∞=−∑之和.【解】 函数()f x 在点(21)(012)x k k π=+=±±,,, 处不连续,在其他点处连续,根据收敛定理可知,()f x 的Fourier 级数收敛,并且当(21)x k π≠+时级数收敛于()f x ,当(21)x k π=+时级数收敛于(0)(0)22f f πππ−−++=.------------ 4分下面先计算()f x 的Fourier 系数. 0011()d d 2a f x x x x ππππππ−===∫∫,且 2011(1)1()cos d cos d n n a f x nx x x nx x n ππππππ−−−===∫∫,1,2,n = , 1011(1)()sin d sin d n n b f x nx x x nx x n πππππ+−−===∫∫,1,2,n = ,因此当(,)x ∈−∞+∞,且,3,x ππ≠±± 时,有121(1)1(1)()cos sin 4n n k f x nx nx n n ππ+∞= −−−=++∑. ------------ 4分 注意到0x =是()f x 的连续点,代入上式得21(1)104n n n ππ∞=−−+=∑, 即 2211(21)8n n π∞==−∑. 又22222111111111(21)(2)84n n n n n n n n π∞∞∞∞====+=+−∑∑∑∑,由此解得22116n n π∞==∑. 最后可得 1222222111(1)111(21)(2)84612n n n n n n n πππ−∞∞∞==−=−=−⋅=−∑∑∑. ------------ 4分【注】 对于最后一步,若只给出结果1221(1)12n n n π−∞=−=∑,则可得2分.五、(本题满分12分) 设数列{}n a 满足:12a π=,11sin 1n n n a a a n +=−+,1n ≥. 求证:数列{}n na 收敛.【解】 利用不等式:3sin 6x x x x −<<02x π <<.首先,易知1160n n a a a π+<<<< (2)n ≥. ------------ 4分故由题设等式得1(1)sin n n n n n n a na a a na +++−>,所以{}n na 是严格递增数列. ------------ 4分其次,由于31122221(1)sin 111(1)()()6()6n n n n n n n n n n n a na a a a a na n a na na na n +++−−−<=<⋅≤+, 所以 12111111(1)6nn k k kk a ka k a k ==+ −< + ∑∑,即 2112111111(1)666n k n a a a n a k π=+−<<⋅+∑,解得 1121(1)16n a n a a π++<−.这就证明了数列{}n na 严格递增且有上界,因而收敛. ------------ 4分六、(本题满分10分)证明:b a a b a b a b +≤+≤+,其中0>a ,0b >,1a b +=.【证】 不妨设1012a b <≤≤<,考虑函数1()x x f x a b −=+,如能证明()f x 在区间(0,]b 上单调减少,则有1()()()2f b f f a ≤≤,不等式得证. ------------ 3分对于(0,]∈x b ,因为1()ln ln x x f x a a b b −′⋅−⋅,221()ln ln 0x x f x a a b b −′′=⋅+⋅>,所以()()f x f b ′′<,故只需证()0f b ′≤,即ln ln baa ab b ⋅≤⋅或ln ln a ba b a b a b≤.------------ 4分容易证明ln xx是(0,]e 上的单调增函数,问题归结为证0a b a b e <<≤,这等价于证ln ln 11a b a b <−−,而这由函数ln 1xx−在(0,1)上单调增加即得. ------------ 3分 【注】 补证函数ln ()1xg x x=−在(0,1)上单调增加. 利用ln(1)x x +<(0)x >,有2111()1ln 1(1)0(1)′=−−+−> −g x x x x , 所以()g x 在(0,1)上单调增加.七、 (本题满分12分) 设)(=ij A a 为n 阶实矩阵,12,,,ααα n 为A 的n 个列向量,且均不为零. 证明:矩阵A 的秩满足2T1()αα=≥∑niii i ia r A .【证】 注意到用非零常数乘矩阵的列向量不改变矩阵的秩()r A ,故可设T 1αα=i i ,1,2,,= i n ,所以只需证明21()=≥∑n iii r A a ,也即T 21()()α=≥∑ni i i r A e .其中T (0,,0,1,0,,0)= i e 是第i 个分量为1其余分量均为0的n 维列向量.------------ 4分令()=r A k ,则由12,,,ααα n 的任一极大无关组并利用Schmidt 正交化方法,可得标准正交向量组12,,,βββ k . 易知,向量组12,,,ααα n 与12,,,βββ k 等价.对任意1,2,,= i n ,令1αβ==∑ki j j j x ,则由12,,,βββ k 的标准正交性可知,Tβα=j ji x ,1,2,,= j k ,所以T 1()αβαβ==∑ki j i j j ,于是T 1T T()()βααβ==∑ii i kj i j j e e .------------ 4分根据 Cauchy-Schwarz 不等式,并注意到T 2T 1()1βααα===∑kj i i ij ,可得 2T 2T T 222T T 1111T ()())(()()()βαβαβαββ==== =≤=∑∑∑∑k k k k j i j j i j j j i i i j j j i i e e e e ,22T2TT1111()()()()αβββ=======≤∑∑∑∑n k nkj j j i ii i j i j k r eA e .------------ 4分。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

第一届全国大学生数学竞赛预赛试卷(非数学类)2009一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=,dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(22-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,那么v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,那么21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f , 解得。

因此。

3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,那么.解:方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故,即,因此二、〔5分〕求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解:因 故 因此三、〔15分〕设函数)(x f 连续,⎰=10d )()(t xt f x g ,且,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解:由与函数)(x f 连续知,0)(limlim )(lim )0(000===→→→xx f x x f f x x x 因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,,故 当0≠x 时,这说明)(x g '在0=x 处连续.四、〔15分〕平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:〔1〕⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;〔2〕2sin sin 25d d π⎰≥--Ly y x ye y xe .证:因被积函数的偏导数连续在D 上连续,故由格林公式知 〔1〕y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 与y 是对称的,即知 因此 〔2〕因 故 由知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、〔10分〕x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,那么x x e e y y 212-=--与x e y y -=-13都是二阶常系数线性齐次微分方程的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''与 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、〔10分〕设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令 得 即 因此七、〔15分〕)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且, 求函数项级数之与.解 即由一阶线性非齐次微分方程公式知 即 因此 由知,0=C , 于是下面求级数的与:令 那么 即由一阶线性非齐次微分方程公式知 令0=x ,得C S ==)0(0,因此级数的与 八、〔10分〕求-→1x 时, 与等价的无穷大量.解令2)(t x t f =,那么因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减。

09-13全国大学生高等数学竞赛真题及答案(非数学类)-无答案

09-13全国大学生高等数学竞赛真题及答案(非数学类)-无答案

09-13全国大学生高等数学竞赛真题及答案(非数学类)-无答案2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++??y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足?--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,?d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)??-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π?≥--Ly y x ye y xe .五、(10分)已知xxe xe y 21+=,xxe xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.2010年第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分)(1)设22(1)(1)(1),nn x a a a =+++ 其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知xxe xe y 21+=,xxe xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分)(1)设22(1)(1)(1),nn x a a a =+++ 其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+⎪⎝⎭。

(3)设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰。

(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂。

(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离。

二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <。

三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ。

四、(15分)设10,,nn n k k a S a =>=∑证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散。

五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤,其中(0,c b a <<<密度为1)绕l 旋转。

(1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值。

六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422()cxydx x dyx y ϕ++⎰ 的值为常数。

(1)设L 为正向闭曲线22(2)1,x y -+=证明422()0;cxydx x dyx y ϕ+=+⎰ (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422()cxydx x dyx y ϕ++⎰ 。

2011年 第三届全国大学生数学竞赛预赛试卷一. 计算下列各题(本题共3小题,每小题各5分,共15分)(1).求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;(3)已知()2ln 1arctan tt x e y t e ⎧=+⎪⎨=-⎪⎩,求22d y dx 。

二.(本题10分)求方程()()2410x y dx x y dy +-++-=的通解。

三.(本题15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=。

四.(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值。

五.(本题16分)已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z≥)取上侧,∏是S 在(),,Px y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦。

计算:(1)(),,S zdS x y z ρ⎰⎰;(2)()3Sz x y z dS λμν++⎰⎰六.(本题12分)设f(x)是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11nn n aa ∞-=-∑绝对收敛。

七.(本题15分)是否存在区间[]0,2上的连续可微函数f(x),满足()()021f f ==, ()()201,1fx f x dx ≤≤⎰、?请说明理由。

第四届全国大学生数学竞赛预赛试卷一、(本大题共5小题,每小题6分共30分)解答下列个体(要求写出要求写出重要步骤)(1) 求极限1)!(lim n n n ∞→(2) 求通过直线⎩⎨⎧=+-+=+-+034550232:z y x z y x l 的两个互相垂直的平面1π和2π,使其中一个平面过点)1,3,4(-。

(3) 已知函数byax ey x u z +=),(,且02=∂∂∂yx u 。

确定常数a 和b ,使函数),(y x z z =满足方程02=+∂∂-∂∂-∂∂∂z yzx z y x z(4) 设函数)(x u u =连续可微,1)2(=u ,且udy u x udx y x )()2(3+++⎰在右半平面与路径无关,求),(y x u 。

(5) 求极限dt tt tx x x x cos sin lim 13+⎰++∞→二、(本题10分)计算dx x e x sin 20-∞+⎰三、求方程50121sin 2-=x xx 的近似解,精确到0.001.四、(本题12分)设函数)(x f y =二阶可导,且0)(>''x f ,0)0(=f ,0)0(='f ,求u x f u f x x 330sin )()(lim →,其中u 是曲线)(x f y =上点))(,(x f x P 处的切线在x 轴上的截距。

五、(本题12分)求最小实数C ,使得满足1)(10=⎰dx x f 的连续函数)(x f 都 有C dx x f ≤⎰)(10六、(本题12分)设)(x f 为连续函数,0>t 。

区域Ω是由抛物面22y x z += 和球面2222t z y x =++)0(>z 所围起来的部分。

定义三重积分 dv z y x f t F )()(222++=⎰⎰⎰Ω求)(t F 的导数)(t F ''七、(本题14分)设n n a ∑∞=1与n n b ∑∞=1为正项级数,证明:(1)若()01lim 11>-++∞→n nn n n b b a a ,则级数n n a ∑∞=1收敛; (2)若()01lim 11<-++∞→n n n n n b b a a ,且级数n n b ∑∞=1发散,则级数n n a ∑∞=1发散。

第五届全国大学生数学竞赛预赛试卷一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn π→∞+.2.证明广义积分sin xdx x+∞⎰不是绝对收敛的 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

4.过曲线)0y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标。

二、(满分12)计算定积分2sin arctan 1cos xx x e I dx xππ-⋅=+⎰三、(满分12分)设()f x 在0x =处存在二阶导数()0f '',且()lim0x f x x→=。

证明 :级数11n f n∞=⎛⎫⎪⎝⎭∑收敛。

四、(满分12分)设()()(),0f x f x a x b ππ'≤≥>≤≤,证明()2sin baf x dx m≤⎰五、(满分14分)设∑是一个光滑封闭曲面,方向朝外。

给定第二型的曲面积分()()()33323I x x dydz y y dzdx z z dxdy ∑=-+-+-⎰⎰。

试确定曲面∑,使积分I 的值最小,并求该最小值。

六、(满分14分)设()()22a aCydx xdyI r xy-=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向。

求极限()lim a r I r →+∞七(满分14分)判断级数()()1111212n n n n ∞=+++++∑ 的敛散性,若收敛,求其和。

相关文档
最新文档