导数的概念及计算
导数的定义与计算
导数的定义与计算导数是微积分中的重要概念,用于描述函数在某一点上的变化率。
它在数学和科学领域有着广泛的应用,可以帮助我们理解和解决各种问题。
本文将介绍导数的定义与计算方法。
一、导数的定义导数表示函数在某一点上的瞬时变化率。
我们以函数 f(x) 为例进行说明。
函数 f 的导数在点 x 处的定义如下:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim 表示极限,h 为一个无穷小量,表示 x 的增量。
导数的定义表示当 x 的增量无穷小时,f(x) 在该点上的变化率。
二、导数的计算1. 基本函数的导数计算对于简单的函数,我们可以利用导数定义来计算其导数。
以下是一些常见函数的导数计算公式:常数函数导数为 0:f(x) = c,则 f'(x) = 0,其中 c 为常数。
幂函数导数为其指数乘以常数:f(x) = x^n,则 f'(x) = nx^(n-1),其中 n 为常数。
指数函数导数为其自身乘以常数:f(x) = a^x,则 f'(x) = ln(a)*a^x,其中 a 为常数。
对数函数导数为其自身的倒数:f(x) = log_a(x),则 f'(x) = 1 /(x*ln(a))。
三角函数导数:正弦函数导数为余弦函数:f(x) = sin(x),则 f'(x) = cos(x)。
余弦函数导数为负的正弦函数:f(x) = cos(x),则 f'(x) = -sin(x)。
其他三角函数的导数计算与此类似。
2. 导数的性质导数具有一些重要的性质,我们可以利用这些性质来计算复杂函数的导数。
导数的加法规则:若 f(x) 和 g(x) 都是可导函数,则 [f(x) + g(x)]' = f'(x) + g'(x)。
导数的乘法规则:若 f(x) 和 g(x) 都是可导函数,则 [f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)。
导数的定义与计算
导数的定义与计算导数是微积分中的重要概念,它用于描述函数在某一点处的变化率。
本文将介绍导数的定义和计算方法。
一、导数的定义在数学中,导数可以通过极限的方法来定义。
设函数y=f(x),若函数在点x处的导数存在且有限,则导数表示为f'(x),它表示函数f(x)在点x处的变化率。
导数可以理解为函数在某一点的瞬时变化率。
通过导数,我们可以研究函数的变化趋势、拐点、极值等重要性质。
二、导数的计算方法导数的计算方法有多种,下面将介绍一些常见的计算方法。
1. 函数可导情况下的基本运算法则(1)常数法则:若c为常数,则导数(常数)=0。
(2)幂函数法则:若f(x)=x^n,其中n为常数,则导数f'(x)=nx^(n-1)。
(3)指数函数法则:若f(x)=a^x,其中a为常数,则导数f'(x)=a^x*ln(a)。
(4)对数函数法则:若f(x)=log_a(x),其中a为常数,则导数f'(x)=1/(x*ln(a))。
(5)三角函数法则:若f(x)=sin(x),则导数f'(x)=cos(x)。
2. 导数的基本运算法则(1)和差法则:若f(x)=u(x)+v(x),则导数f'(x)=u'(x)+v'(x)。
(2)积法则:若f(x)=u(x)v(x),则导数f'(x)=u'(x)v(x)+u(x)v'(x)。
(3)商法则:若f(x)=u(x)/v(x),则导数f'(x)=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。
(4)复合函数法则:若f(x)=g(h(x)),则导数f'(x)=g'(h(x))*h'(x)。
3. 使用导数计算函数的极值为了找到函数的极值点,我们可以先求得函数的导数,然后解方程f'(x)=0。
解得的x值即为函数的极值点。
三、导数的应用导数是微积分的基本工具,它在许多实际问题中具有广泛的应用。
导数的概念和定义
导数的概念和定义导数的概念和定义导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在实际应用中,导数可以用来求解函数的最大值、最小值、拐点等问题。
本文将从以下几个方面详细介绍导数的概念和定义。
一、导数的基本概念导数是函数在某一点处的变化率,也可以理解为函数在该点处的切线斜率。
具体地说,设函数y=f(x),则它在x=a处的导数定义为:f'(a) = lim (f(x) - f(a)) / (x - a) (x → a)其中,“lim”表示极限,“(x-a)”表示自变量x沿着无限接近于a但不等于a的方向逼近时所取得的差值,“f(x)-f(a)”表示因变量y沿着这个方向所取得的差值。
二、导数的几何意义从几何角度来看,函数在某一点处的导数等于该点处切线斜率。
具体地说,设函数y=f(x),则它在x=a处切线斜率k为:k = lim (f(x) - f(a)) / (x - a) (x → a)当自变量x沿着无限接近于a但不等于a的方向逼近时,切线斜率k即为导数f'(a)。
因此,导数可以用来描述函数在某一点处的变化率。
三、导数的符号表示通常情况下,我们用f'(a)来表示函数y=f(x)在x=a处的导数。
其中,f'表示函数的导数运算符,被称为“d/dx”或“dy/dx”。
四、导数的计算方法求解函数在某一点处的导数需要使用极限运算。
具体地说,可以通过以下几种方法来计算函数在某一点处的导数:1. 使用极限定义法:根据导数的定义公式,将自变量沿着无限接近于该点但不等于该点的方向逼近,并求出其极限值。
2. 使用公式法:对于常见函数(如幂函数、指数函数、对数函数等),可以直接使用其导数公式进行计算。
3. 使用运算法则:对于复合函数和多项式函数等复杂函数,可以使用求导法则(如加减乘除法则、链式法则等)进行计算。
五、导数存在的条件有些函数在某些点处可能不存在导数。
具体地说,一个函数在某一点处存在导数需要满足以下两个条件:1. 函数在该点附近存在连续性;2. 函数在该点附近存在斜率有限的切线。
大学数学导数
大学数学导数数学导数是高等数学中的重要概念,广泛应用于各个领域,如物理学、经济学、工程学等等。
导数被定义为函数在某一点处的变化率,它描述了函数在该点附近的局部性质。
本文将从导数的定义、计算方法、应用以及一些相关的概念和定理进行讨论。
一、导数的定义在微积分中,导数常用符号 "f'(x)" 或 "dy/dx" 表示,它表示函数 f(x) 在点 x 处的导数。
导数可以通过以下极限定义来计算:f'(x) = lim (h->0) [f(x+h) - f(x)] / h二、导数的计算方法计算导数的方法有多种,其中最常用的方法是使用导数的基本性质和常见函数的导数公式。
以下是一些常见函数的导数公式:1. 常数函数的导数为 0。
2. 幂函数的导数计算可以使用幂函数的求导法则。
3. 指数函数的导数为自身的常数倍。
4. 对数函数的导数可以使用对数函数的求导法则。
5. 三角函数和反三角函数的导数公式。
三、导数的应用导数在实际应用中起着重要的作用。
以下是一些常见的应用:1. 确定函数的最大值和最小值。
2. 描述物理学中的运动和变化。
3. 经济学中的边际分析。
4. 工程学中的优化问题。
四、相关概念和定理1. 导数为零的点被称为函数的驻点。
在驻点处,函数的斜率为零。
2. 函数在某一区间内递增或递减的条件是其导数在该区间内恒为正或恒为负。
3. 函数在一个点的导数存在,则函数在该点连续。
4. 导数的和差、常数倍和乘积法则,以及链式法则等。
总结:导数是高等数学中重要的概念,它描述了函数在某一点附近的局部性质和变化率。
本文介绍了导数的定义、计算方法、应用以及一些相关概念和定理。
在实际应用中,导数有着广泛的应用,如确定函数的最值、描述物理学中的运动和变化、边际分析等。
通过掌握导数的概念和计算方法,我们可以更好地理解和应用数学在各个领域中的作用。
导数的运算法则公式
导数的运算法则公式1. 导数的概念导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
对于函数f(x),其在x点的导数表示为f'(x),可以理解为x点处的瞬时变化率。
2. 导数的意义导数有很多实际应用,例如物理学中的速度和加速度,经济学中的边际效应等,都可以通过导数来计算。
此外,导数还可以用于求解函数的极值和函数的图像特征等问题。
3. 导数的计算导数的计算有多种方法,最基本的方法是使用极限定义。
对于f(x)在x点的导数f'(x),可以用以下极限定义来计算:f'(x) = lim (f(x + h) - f(x)) / h, h->0其中,h为一个无限趋近于0的数。
这个公式的意思是将x点的函数值和x+h点的函数值的差,除以h的值,即得到函数在x点的变化率。
随着h趋近于0,这个差值越来越接近于瞬时变化率,也就是导数。
除了极限定义外,还有一些常见函数的导数公式,如下:(1) 常数函数f(x) = c的导数为0,即f'(x) = 0;(2) 幂函数f(x) = x^n的导数为f'(x) = nx^(n-1);(3) 指数函数f(x) = a^x的导数为f'(x) = a^x·ln(a);(4) 对数函数f(x) = logₐx的导数为f'(x) = 1/(x·ln(a))。
另外,还有一些重要的导数计算法则,如下:(1) 基本运算法则:导数具有线性性质,即(f(x)±g(x))' =f'(x)±g'(x);(2) 乘法法则:(f(x)·g(x))' = f'(x)·g(x) + f(x)·g'(x);(3) 商法则:(f(x)/g(x))' = (f'(x)·g(x) - f(x)·g'(x)) / [g(x)]^2;(4) 复合函数法则:(f(g(x)))' = f'(g(x))·g'(x)。
导数的定义与求导法则
导数的定义与求导法则导数是微积分中非常重要的概念,它用于描述函数在某一点上的变化率。
在计算导数时,我们可以使用导数的定义和求导法则来求解。
本文将详细介绍导数的定义和常用的求导法则。
一、导数的定义导数的定义是通过函数的极限来描述函数在某一点上的变化率。
设函数f(x)在点x_0处可导,则它的导数f'(x_0)的定义如下:f'(x_0) = lim(x→x_0) (f(x)-f(x_0))/(x-x_0)上述定义可以理解为函数f(x)在点x_0处的切线斜率。
这个切线斜率可以帮助我们了解函数在该点附近的变化情况。
二、导数的求导法则为了方便计算导数,我们可以利用一些常用的求导法则。
下面是一些重要的求导法则:1. 常数法则:若C为常数,则(d/dx) C = 0,即常数的导数等于0。
2. 幂函数法则:若f(x) = x^n,其中n为常数,则(d/dx) x^n =n·x^(n-1)。
3. 指数函数法则:若f(x) = a^x,其中a为常数,则(d/dx) a^x =a^x·ln(a)。
4. 对数函数法则:若f(x) = log_a(x),其中a为常数,则(d/dx)log_a(x) = 1/(x·ln(a))。
5. 基本初等函数法则:对于常见的基本初等函数,我们可以通过已知函数的导数来求解其他函数的导数,如常数函数、指数函数、对数函数、三角函数等。
6. 和、差、积、商法则:对于多个函数之和、差、积、商,我们可以通过将其化简为基本初等函数的形式来计算导数。
7. 链式法则:对于复合函数,我们可以利用链式法则来求导。
设y=f(u)和u=g(x),则复合函数y=f(g(x))的导数为(dy/dx) =(dy/du) · (du/dx)。
在实际应用中,我们可以根据具体情况选择合适的求导法则来进行计算。
三、导数的应用导数在数学和物理中有广泛的应用。
以下是一些常见的应用:1. 函数的极值点:导数可以帮助我们判断函数的极大值和极小值点。
导数的定义与计算方法
导数的定义与计算方法导数是微积分中的重要概念之一,用于研究函数的变化率和曲线的切线斜率。
本文将从导数的定义入手,介绍导数的计算方法,并给出一些例题来帮助读者更好地理解和应用导数。
一、导数的定义在数学上,给定一个函数y=f(x),其导数定义为函数在某一点x处的变化率。
导数可以用极限来表示,即:f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx其中f'(x)表示函数f(x)在点x处的导数,Δx为自变量的增量。
导数的值可以表示函数在该点的切线斜率,即函数曲线在该点处的速率。
二、导数的计算方法导数的计算方法有多种,下面列举几种常见的:1. 基本导数公式对于常见的基本函数,存在一些导数的基本公式,如:- 常数函数导数为零:d/dx(c) = 0,其中c为常数;- 幂函数导数为功率减一:d/dx(x^n) = nx^(n-1),其中n为常数;- 指数函数导数等于自身:d/dx(e^x) = e^x;- 对数函数导数为倒数:d/dx(ln(x)) = 1/x。
通过应用基本导数公式,可以计算更复杂函数的导数。
2. 导数的四则运算规则对于已知的函数f(x)和g(x),导数的四则运算规则如下:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- 商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2以上规则为导数的基本运算规则,可以根据需要进行组合和推广。
3. 链式法则如果函数y=f(g(x))是由两个函数复合而成,那么它的导数可以用链式法则来计算。
链式法则可以表示为:d/dx(f(g(x))) = f'(g(x)) * g'(x)通过链式法则,可以求解更复杂的复合函数的导数,进一步扩展了导数的计算方法。
导数的定义和求导规则
导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
导数的概念导数公式与应用
导数的概念导数公式与应用一、导数的概念导数是微积分中的重要概念之一,表示函数在其中一点处的变化率。
具体来说,对于函数f(x),在点x处的导数可以用极限表示为:f'(x) = lim┬(Δx→0)〖(f(x+Δx) - f(x))/Δx 〗其中,Δx表示自变量x的一个增量。
导数表示了在自变量x发生微小变化的过程中,函数f(x)相应地发生的变化。
二、导数的公式1.常数的导数公式:如果f(x)=c是一个常数函数,其中c是常数,则f'(x)=0。
这是因为无论x如何变化,函数的值始终保持不变。
2.幂函数的导数公式:如果f(x)=x^n,其中n是任意实数,则f'(x)=nx^(n-1)。
3.指数函数的导数公式:如果f(x)=a^x,其中a>0且a≠1,则f'(x)=a^xln(a)。
这个公式表明指数函数的导数与指数函数的底数有关。
4.对数函数的导数公式:如果f(x)=logₐ(x),其中a>0且a≠1,则f'(x)=1/((xln(a))。
5.三角函数的导数公式:- sin(x)的导数:(sin(x))'=cos(x)。
- cos(x)的导数:(cos(x))'=-sin(x)。
- tan(x)的导数:(tan(x))'=sec^2(x)。
6.反三角函数的导数公式:- arcsin(x)的导数:(arcsin(x))'=1/√(1-x^2)。
- arccos(x)的导数:(arccos(x))'=-1/√(1-x^2)。
- arctan(x)的导数:(arctan(x))'=1/(1+x^2)。
以及其他常用函数的导数公式,如指数函数、对数函数的复合函数求导法则等。
三、导数的应用导数作为一种变化率的度量,有许多实际应用。
1.切线与法线:通过计算函数的导数,可以求得函数曲线在特定点处的导数值,从而得到曲线上该点处的切线方程。
导数的定义与计算方法
导数的定义与计算方法导数是微积分中的重要概念,用于描述函数的变化率。
本文将介绍导数的定义以及计算方法,帮助读者更好地理解导数的概念和运用。
一、导数的定义导数是函数在某一点处的变化率。
数学上,对于函数f(x),其在点x处的导数记为f'(x),可以通过以下极限定义得到:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示自变量x的增量。
这个极限定义可以理解为当自变量x的增量趋近于0时,函数f(x)在点x处的变化率。
二、导数的计算方法导数的计算方法可以根据函数的具体形式来进行。
下面介绍几种常见的计算方法:1. 可导函数的导数计算法则- 常数法则:如果f(x) = c,其中c为常数,则f'(x) = 0。
- 幂函数法则:如果f(x) = x^n,其中n为常数,则f'(x) = n * x^(n-1)。
- 指数函数法则:如果f(x) = e^x,则f'(x) = e^x。
- 对数函数法则:如果f(x) = log_a(x),其中a为常数且a > 0,则f'(x) = 1 / (x * ln(a))。
- 三角函数法则:如果f(x) = sin(x),则f'(x) = cos(x);如果f(x) = cos(x),则f'(x) = -sin(x)。
- 复合函数法则:如果f(x) = g(h(x)),则f'(x) = g'(h(x)) * h'(x),其中g'表示函数g的导数。
2. 基本初等函数的导数以下是一些基本初等函数的导数计算公式:- (sin x)' = cos x- (cos x)' = -sin x- (tan x)' = sec^2 x- (cot x)' = -csc^2 x- (sec x)' = sec x * tan x- (csc x)' = -csc x * cot x- (log_a x)' = 1 / (x * ln a)- (e^x)' = e^x3. 导数的加法、减法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的和、差、常数倍的导数可以通过以下法则计算:- (f(x) + g(x))' = f'(x) + g'(x)- (f(x) - g(x))' = f'(x) - g'(x)- (k * f(x))' = k * f'(x),其中k为常数4. 导数的乘法、除法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的乘积和商的导数可以通过以下法则计算:- (f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)- (f(x) / g(x))' = [f'(x) * g(x) - f(x) * g'(x)] / (g(x))^2,其中g(x) ≠ 0以上是导数的一些基本计算方法,能够满足大多数函数的求导需求。
导数的基本概念和计算
导数的基本概念和计算导数是微积分学中的重要概念,用于描述函数在某一点的变化率。
它具有广泛的应用,例如在物理学、工程学和经济学等领域。
本文将介绍导数的基本概念和计算方法,旨在帮助读者更好地理解和运用导数。
一、导数的定义导数描述了函数在某一点的瞬时变化率。
对于函数f(x),在某一点x处的导数记作f'(x)或者dy/dx,可以用以下极限定义表示:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,h表示自变量x的增量。
导数的几何意义是函数曲线在该点的切线斜率。
二、导数的计算根据导数的定义,我们可以通过求极限的方法来计算导数。
下面是一些常用的导数计算规则。
1. 常数法则:对于常数c,导数为0,即d(c)/dx = 0。
2. 幂函数法则:对于函数f(x) = x^n,其中n是常数,导数为d(x^n)/dx = n*x^(n-1)。
这是求导数的基本法则之一。
3. 和差法则:对于两个函数u(x)和v(x),其导数满足(d(u+v)/dx) = du/dx + dv/dx。
4. 乘法法则:对于两个函数u(x)和v(x),其导数满足(d(uv)/dx) = u * dv/dx + v * du/dx。
5. 除法法则:对于两个函数u(x)和v(x),其导数满足(d(u/v)/dx) = (v * du/dx - u * dv/dx)/(v^2)。
6. 复合函数法则:对于复合函数f(g(x)),其导数满足(d(f(g(x)))/dx) = (df/dg) * (dg/dx),其中df/dg表示f对于g的导数,dg/dx表示g对于x的导数。
三、导数的应用导数在数学和实际应用中具有广泛的用途。
下面是一些常见的导数应用示例。
1. 函数极值:函数的极值点对应于函数曲线的斜率为零的点。
通过求函数的导数,我们可以确定函数的极值点。
2. 切线和法线:导数也可以用来求函数曲线在某一点的切线和法线方程。
高数导数的概念
高阶导数在研究函数的极值、拐点、曲线的弯曲程度等方面有重要 应用。
导数的物理应用
定义
导数是微积分的基本概念之一, 它描述了函数值随自变量变化的 速率。在物理学中,导数可以用 来描述物理量随时间或空间的变 化率。
计算方法
通过物理定律和公式,可以推导 出各种物理量的导数,从而得到 它们的变化率。
应用
应用
导数在经济学中有广泛的应用,如边际分析、最优化问题、需求弹性等都需要用到导数。
THANKS
感谢观看
导数可以用来求函数的极值,通过求导并 令导数为0,可以找到函数的极值点。
VS
详细描述
首先求出函数的导数,然后令导数等于0, 解出对应的自变量值,这些点就是函数的 极值点。在极值点处,函数可能会取得极 大值或极小值。
利用导数求曲线的切线方程
总结词
详细描述
利用导数可以求出曲线上某一点的切线方程, 通过求导可以找到切线的斜率。
导数的几何意义
总结词
导数的几何意义是切线的斜率,表示函数图像在某一点的切 线。
详细描述
在二维平面坐标系中,函数图像上某一点的切线斜率即为该 点的导数值。导数大于零表示切线斜率为正,函数在该点处 单调递增;导数小于零表示切线斜率为负,函数在该点处单 调递减。
导数的物理意义
总结词
导数的物理意义是描述物理量随时间变化的速率。
通过解这个导数方程,可以得到该变 量的导数。
03
导数的应用
利用导数研究函数的单调性
总结词
导数可以用来判断函数的单调性,通过导数的正负来判断函数在某区间内的增减性。
详细描述
如果函数在某区间的导数大于0,则函数在此区间内单调递增;如果导数小于0,则函数在此区间内单调递 减。
导数的概念及运算知识点讲解(含解析)
导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。
导数的概念几何意义与运算
导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。
对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。
导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。
导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。
二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。
特定点处的切线斜率表示了函数在该点的变化速度。
2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。
导数的正负性能够直观地反映函数的增减趋势。
3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。
导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。
三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。
2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。
3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。
四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。
二次导数s''(t)则表示在时间t的瞬时加速度。
导数定义与计算方法
导数定义与计算方法导数是微积分中非常重要的概念之一,它与函数的变化率以及切线有着密切的关系。
本文将介绍导数的定义及其计算方法,以帮助读者更好地理解和应用导数。
一、导数的定义导数是函数在某一点上的变化率,它可以用极限的概念来定义。
对于给定函数f(x),如果存在一个极限lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx 〗,则称该极限为函数f(x)在点x处的导数,记作f'(x),也可以表示为dy/dx 或y'。
二、导数的计算方法导数的计算方法主要包括以下几种常见的情况:1. 基本函数的导数- 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。
- 幂函数的导数可以通过幂函数的求导公式来计算,即d/dx(x^n) = nx^(n-1),其中n为常数。
- 指数函数e^x的导数为e^x。
- 对数函数ln(x)的导数为1/x。
2. 基本运算法则- 和差法则:导数的和等于导数的和,即d/dx(f(x)+g(x)) = f'(x) +g'(x)。
- 常数倍法则:导数的常数倍等于常数倍的导数,即d/dx(c*f(x)) = c*f'(x),其中c为常数。
- 乘法法则:导数的乘积等于函数一的导数乘以函数二加上函数一乘以函数二的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
- 除法法则:导数的商等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/g^2 (x)。
3. 高阶导数- 导数的导数称为高阶导数,可通过对导数再次求导来计算。
例如f''(x)表示f'(x)的导数,f'''(x)表示f''(x)的导数,以此类推。
4. 链式法则- 当函数具有复合形式时,可以使用链式法则来计算导数。
导数的概念及其计算
x 0
lim
f ( x0 x) f ( x0 ) . x
(2)导数的几何意义:函数 y=f(x)在点 x0 处的导数 f′(x0),就是曲线 y=f(x)在点 P(x0,y0)处的切线的 斜率 . (3)导数的物理意义:函数 s=s(t)在点 t0 处的导数 s′(t0),就是物体的运动方程为 s=s(t)在时刻 t0 时的 瞬时 速度 v.即 v=s′(t0).
x 0
探究提高 由导数的定义可知,求函数 y=f(x)的导数的 一般方法是: (1)求函数的改变量 Δy=f(x+Δx)-f(x); Δy f(x+Δx)-f(x) (2)求平均变化率Δx= ; Δx Δy y (3)取极限,得导数 lim Δx.
x0
变式训练 1 过曲线 y= f (x)= x3 上两点 P(1,1)和 Q(1+ Δ x,1+Δ y)作曲线的割线, 求出当 Δ x= 0.1 时割线的 斜率,并求曲线在点 P 处切线的斜率.
2.曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”的区别与联系 (1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点, 切线斜率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以是切点,也可以不是切点,而且这样的 直线可能有多条.
基础自测 1. 已知函数 f ( x) =13-8 x+ 2 x , 且 f ' ( x0 ) =
2
3 2 4,则 x0 的值为________.
解析
f ' ( x) =-8+2 2x,
f ' ( x0 ) =-8+2 2 x0 =4,∴ x0 =3 2.
导数的定义与求导法则详解
导数的定义与求导法则详解导数是微积分中的重要概念之一。
在数学中,导数用来描述函数在某一点的变化率。
它不仅可以帮助我们了解函数的性质,还可以应用于各种实际问题的求解。
本文将详细介绍导数的定义以及常用的求导法则。
一、导数的定义导数的定义是基于极限的概念,即函数在某一点的导数等于该点的函数值与自变量趋于该点时函数值之差的比值的极限。
用数学符号表示如下:若函数f(x)在点x_0处导数存在,记为f'(x_0)或dy/dx|x=x_0,已知函数在该点处连续,则导数的定义为:f'(x_0) = lim┬(Δx→0)〖(f(x_0+Δx)-f(x_0))/Δx 〗导数可以理解为函数图像在某点处的切线斜率,当导数为正时,函数递增;当导数为负时,函数递减;当导数为零时,函数取得极值。
二、导数的求导法则求导法则是用来计算函数的导数的一组规则。
根据导数的定义,可以推导得到以下常用的求导法则:1. 基本常数法则:常数的导数为0,即d/dx(c)=0,其中c为常数。
2. 变量的幂法则:对于任意的实数n,导数d/dx(x^n)=nx^(n-1),其中x为自变量。
3. 求和差法则:导数是线性运算,对于任意的可导函数f(x)和g(x),有d/dx(f(x)±g(x))=d/dx(f(x))±d/dx(g(x))。
4. 乘法法则:对于可导函数f(x)和g(x),有d/dx(f(x)⋅g(x))=f'(x)⋅g(x)+f(x)⋅g'(x)。
5. 商法则:对于可导函数f(x)和g(x),有d/dx(f(x)/g(x))=(f'(x)⋅g(x)-f(x)⋅g'(x))/[g(x)]^2。
6. 复合函数法则:若y=f(g(x)),其中f(u)和g(x)都是可导函数,则d/dx(y)=d/dx(f(g(x)))=f'(g(x))⋅g'(x)。
7. 反函数法则:若y=f(x)的反函数为x=g(y),则g'(y)=[1/f'(x)],其中f'(x)≠0。
高中数学教材知识点:导数的定义及其计算
高中数学教材知识点:导数的定义及其计算一、知识概述导数是高中数学中重要的概念之一,是微积分学中的基本内容。
导数的定义为:若函数y=f(x)在x0处有导数,则该导数称为函数f(x)在点x0处的导数,记为f'(x0)。
导数可理解为函数在某一点处的瞬时变化率,是函数曲线在该点处的斜率。
二、知识详解1.导数的定义函数y=f(x)在x0处的导数用极限表示为:f'(x0)=lim(h→0)(f(x0+h)-f(x0))/h其中,x0为自变量,h为一个极小的实数,f(x0)和f(x0+h)为函数f(x)在x0处和x0+h处的函数值。
2.导数的计算常见的导数计算方法包括:基本导数公式法、对数求导法、复合函数求导法、高阶导数求法等。
(1)基本导数公式法通过对基本函数的导数公式的掌握,可以求出大部分函数的导数。
常见的基本导数公式如下:函数导数常数函数 0幂函数 x^n的导数为nx^(n-1)指数函数 a^x的导数为a^xlna对数函数 loga(x)的导数为1/(xlna)三角函数 sinx的导数为cosx,cosx的导数为-sinx,tanx的导数为sec^2x(2)对数求导法a^x和loga(x)是互相反函数,利用两者的关系可以在求出一者导数的基础上得出另一者的导数。
具体公式如下:(a^x)'=lna*a^x(loga(x))'=1/(xlna)(3)复合函数求导法对于复合函数,通过链式法则可以求出导数。
链式法则公式如下:若y=f(u),u=g(x),则y对x的导数为:dy/dx=dy/du * du/dx(4)高阶导数函数f(x)的高阶导数为其导数的导数,可表示为f'(x)、f''(x)、f'''(x)……三、常见问题解答1.导数有什么应用?导数可以用来求函数的极值、函数的最大值和最小值、函数的凹凸性、函数的图像和曲线的切线等。
2.什么情况下函数没有导数?若函数在某一点处存在间断点或者没有定义,则函数在该点处没有导数。
导数的定义和计算方法
导数的定义和计算方法导数是微积分学中的重要概念,它描述了函数在某一点处的变化率。
在这篇文章中,我们将介绍导数的定义和计算方法,并且探讨一些相关的概念和性质。
一、导数的定义导数的定义可以由两种方式来描述:几何上的观点和代数上的观点。
1. 几何上的观点:对于给定的函数f(x),在某一点x=a处的导数可以理解为函数曲线在该点切线的斜率。
具体地说,导数为f(x)在x=a处的极限值,表示了函数在该点附近的局部变化率。
2. 代数上的观点:导数也可以通过函数的极限定义进行计算。
函数在x=a处的导数可以定义为以下极限:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗其中,h为自变量的增量。
二、导数的计算方法导数的计算方法取决于函数的形式和性质。
下面列举了几种常见函数的导数计算方法:1. 常数函数:对于常数函数f(x) = c,其中c为常数,它的导数为0。
2. 幂函数:幂函数f(x) = x^n,其中n为正整数,它的导数为f'(x) = nx^(n-1)。
3. 指数函数:指数函数f(x) = e^x,它的导数为f'(x) = e^x。
指数函数的导数与函数本身相等,这是指数函数的一个重要性质。
4. 对数函数:对数函数f(x) = ln(x),其中x>0,它的导数为f'(x) = 1/x。
对数函数的导数可以通过对数函数的定义和导数的定义进行求解。
5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。
它们的导数分别为:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)这些导数可以通过三角函数的性质和导数的定义进行计算。
三、导数的性质和应用导数具有一些重要的性质,这些性质有助于我们计算和应用它们:1. 可导性:如果函数在某一点处的导数存在,则称函数在该点处可导。
可导性是导数的重要性质之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:导数的概念及计算
一、学习目标:
1.了解导数概念的实际背景及导数的几何意义;
2.能根据导数定义求常见函数的导数,能利用给出的基本初等函数导数公式和导数的四则
运算法则求简单函数的导数。
二、重点、难点:
函数在某点处的切线方程与郭某点的切线方程的研究 三、知识梳理:
1.导数的概念
(1)平均变化率及瞬时变化率
(1)f (x )从x 1到x 2的平均变化率是 .
(2)f (x )在x =x 0处的瞬时变化率是
.
(2)f (x )在x =x 0处的导数
函数y =f (x )在x =x 0处的瞬时变化率,即当0x ∆→时,函数从0x 到0x x +∆的平均
变化率的 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或 ,即f ′(x 0)= .
(3)导函数
(4)导数的几何意义
函数f (x )在x =x 0处的导数就是曲线y =f (x )在点P(x 0,f (x 0))处的 ,即曲线
y =f (x )在点P(x 0,f (x 0))处的切线的斜率k =f ′(x 0),切线方程为
2.基本初等函数的导数公式
3.导数运算法则
(1)[f (x )±g (x )]′= ; (2)[ f (x )·g (x )]′= ; (3)⎣⎡
⎦⎤
f (x )
g (x )′= (g (x )≠0).
四、 典型例题:
例1:求下列函数的导数.
(1)y =(1-x)(1+
1x
);(2)y =ln x x ;(3)y =x xe ;(4)y =tan x .
例2: 求下列函数在x =x 0处的导数.
(1)f (x )=e x 1-x +e x
1+x
(x 0=2);(2)f (x )=x -x 3+x 2ln x x 2(x 0=1).
例3: 已知曲线y =1
x
.(1)求曲线在点P (1,1)处的切线方程;(2)求曲线过点Q (1,0)的切线方程;
(3)求满足斜率为-1
3
的曲线的切线方程.
例4:已知点P 在曲线y =4
e 1
x +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 (A ))4
,
0(π
(B ))2,4[ππ (C )]43,2(ππ (D )),4
3[ππ
五、达标训练:
1.曲线y =sin x sin x +cos x -12在M (π
4,0)处的切线的斜率为( )
A .-12 B.12 C .-22 D.2
2
2.已知函数f (x )=1
3x 3-x 2+ax +b 的图象在点P (0, f (0))处的切线方程为y =3x -2.
求实数a ,b 的值.
【收获总结】。