北师大版数学六年级下册《圆柱的表面积》PPT课件
圆柱的表面积(教案)-2023-2024学年六年级下册数学北师大版
请谈谈你对圆柱表面积计算在实际生活中的应用的理解。
答案:
圆柱表面积计算在实际生活中有广泛的应用,如计算家具的体积和建筑物的表面积等。例如,在装修时,可以通过计算家具的表面积来选择合适的油漆和材料;在建筑施工时,可以通过计算建筑物的表面积来计算所需的涂料和材料。
例题5:
请根据圆柱表面积计算的公式和方法,解决一个实际问题。
2. 学生的学习兴趣、能力和学习风格:六年级的学生对数学问题充满好奇心和探索欲望,喜欢通过动手操作和实际问题来学习数学。他们具备一定的逻辑思维能力和空间想象力,能够通过观察和思考来理解数学概念。在学习风格上,他们喜欢合作学习和小组讨论,能够积极参与课堂活动。
3. 学生可能遇到的困难和挑战:在理解圆柱的表面积计算公式时,学生可能会对圆的周长和面积的计算方法不够熟悉,导致计算过程中出现错误。另外,学生可能对圆柱的侧面积和底面积的计算方法不够清晰,需要教师进行详细的解释和示例。此外,学生在解决实际问题时,可能需要更多的指导和启发,以帮助他们更好地运用所学知识。
4. 请谈谈你对圆柱表面积计算在实际生活中的应用的理解。
5. 请根据圆柱表面积计算的公式和方法,解决一个实际问题。
例题1:
一个圆柱的半径是3厘米,高是5厘米,请计算其侧面积和底面积。
答案:
侧面积 = 2πrh = 2π * 3cm * 5cm = 30πcm²
底面积 = πr² = π * 3cm² * 3cm² = 27πcm²
(7)家校联系:教师与家长保持沟通,了解学生在家的学习情况,共同关注学生的学习进步。
(8)评价反馈:教师对学生进行及时的评价和反馈,鼓励学生的优点,指出不足之处,帮助学生提高。
教学过程设计
1. 导入新课(5分钟)
数学六年级下册-《圆柱的表面积》知识讲解 圆柱侧面积的计算方法
六年级下册-打印版
圆柱侧面积的计算方法
知识回顾长方形的面积=长×宽,用字母表示为S=ab;正方形的面积=边长×边长,用字母表示为S=a2。
问题导入怎样计算圆柱的侧面积呢?
过程讲解
1.回顾圆柱的侧面展开图(如下图)
沿高展开后得到的长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。
2.推导公式
圆柱的侧面积=长方形的面积
=长×宽
↓↓
=圆柱的底面周长×高
3.圆柱侧面积计算公式的字母表达式
通常情况下,圆柱的侧面积用字母S表示,圆柱的底面周长用字母C表示,圆柱的高用字母h表示。
圆柱侧面积计算公式的字母表达式为S=Ch。
归纳总结
圆柱的侧面积=底面周长×高,用字母表示为S=Ch。
圆柱表面积公式推导
把一个圆柱在平坦的桌面上 滚动,那么滚动的路线是( B ). A 圆弧 B长方形 C圆形
一台压路机的滚 筒宽1.2米,直径为 0.8米。如果它滚动 10周,压路的面积 是多少平方米?
如果一段圆柱形的木头,截成两截, 它的表面积会有什么变化呢?
一根圆柱形木材长20分米, 把截成4个相等的圆柱体. 表面积增加了18.84平方分米. 底面的面积是( 3.14平方分米 )
全课小结
这节课你学到了什么?
圆柱的侧面积=底面周长×高
S侧=ch
圆柱的表面由上、下两个底面和一个侧面组成。
圆柱的表面积=侧面积+两个底面的面积
(1)侧面积:2 ×3.14 ×10 ×30=1884(平方厘米)
(2)底面积:3.14 ×102 =314(平方厘米)
(3)表面积:1884+314 × 2=2512(平方厘米)
说一说该求哪部分的面积。
北师大版六年级数学下册
圆柱的表面积
教学目标
1. 能根据具体情境,灵活运用圆柱表面积的 计算方法解决生活中一些简单的问题,使学生 感受到数学与生活的密切联系 2. 通过想象、操作等活动,知道圆柱侧面展 开后可以是一个长方形,加深对圆柱特征的认 识,发展空间观念。 3. 结合具体情境和动手操作,探索圆柱侧面 积的计算方法,掌握圆柱侧面积和表面积的计 算方法,能正确计算圆柱的侧面积和表面积。
帽子只有帽顶,说明它只有一个底面。 (1)帽子的侧面积:3.14 ×20 ×28=1758.4(平方厘米) (2)帽顶的面积:3.14 ×(20÷2) 2=314(平方厘米) (3)需要面料:1758.4+314=2072.4≈ 2073(平方厘米)
答:做这顶帽子到少需要2073平方厘米。
《圆柱体的表面积》ppt课件
一个圆柱的高是18厘米,底 例1: 面半径是5厘米,它的表面 积是多少?
例2:一顶圆柱形厨师帽,高28厘米,
帽顶直径20厘米,做这样一顶帽子 需要用多少面料?
(得数保留整十平方厘米) 问:求表面积还是总面积?
答案:2073平方厘米
一顶厨师帽,高28cm,帽顶直径20cm, 做这样一顶帽子至少需要用多少面 料?(得数保留整十平方厘米)
S表=S侧+2S底=345.4(cm2)
两个圆柱的侧面积相等,表面积不相等。
说一说: 该求哪部分的面积?
茶 叶
做茶叶桶所需铁皮面积
加油啊!
做一个无盖水桶 所需铁皮面积
加油啊!
往井的内壁和底面抹水泥, 求抹水泥部分的面积。
加油啊!
做一个笔筒所需塑料面积
加油啊!
圆柱在木板上滚过的轨迹是什么形状?
S表 = S侧 + 2S底
3、在日常生活中,我们可以利用圆柱的 侧面积计算公式和表面积计算公式,解 决那些问题?
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
《圆柱、圆锥、圆台的表面积》课件
h2
l2
r' 1
l2
r 1
r 1
r2
S圆柱侧 __ S圆锥侧 __S圆台侧 __
S圆柱表 __S圆 锥表 __ S圆台表 __
20
2.一个圆柱形锅炉的底面半径为 1m ,侧面展开
图为正方形,则它的表面积
为_________ .
3.以直角边长为1的等腰直角 三角形的一直角边为轴旋转, 所得旋转体的表面积为
S柱侧 2 rl
S锥侧 rl S台侧 (rl rl)
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有 什么关系?
r O
r’=r
l 上底扩大
O
r 'O ’ l r’=0
rO
上底缩小
l rO
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
做一做
圆台侧面积公式
S侧 (r ' r) l
小结:柱体、锥体、台体的表面积
圆柱S 2r(r l)
圆柱、圆锥、 圆台
r r 圆台S (r2 r2 rl rl)
r 0
圆锥 S r(r l)
棱柱、棱锥、 棱台
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
1 .课本习题1.3 A组1,2;
2 .探究性作业:斜四棱柱的侧面展 开图及表面积
北京奥运会场馆图
相信自己:一定行!!
复习回顾
矩形面积公式:S ab
三角形面积公式:S 1 ah
圆面积公式: S r2 2
圆周长公式: C 2 r
扇形面积公式:S 1 rl 2
梯形面积公式:S 1 (a b)h 2
第二单元 圆柱的表面积拓展(课件)-2021-2022学年数学六年级下册
两个底面积和:3.14x2²x2=25.12(平方厘米) 侧面积251.2-25.12=226.08(平方厘米) 高:226.08÷(3.14x2x2)=18(厘米) 答:圆柱的高是18厘米。
课下练一练
1. 一个圆柱的表面积是 3140 平方厘米,这个圆柱的底面半径是高的 4 :1 , 这个圆柱的侧面积是多少?
拓展3
如图是一块长方形铁皮,利用图中的阴影部分,刚好能做成一个圆柱形油桶。 (接头处忽略不计),这个油桶的表面积是多少平方分米?
提示:做成圆柱形油桶后,阴影长方形是油桶的侧面,两个圆分 别是油桶的两个底面,所以油桶的表面积就是这个阴影长方形的 面积和两个圆的面积之和。 圆的周长就是阴影长方形的长,圆的直径的 2 倍就是阴影长方形 的宽,且圆的周长与圆的直径的和就是这块长方形铁皮的长,即 3.14×圆的直径+圆的直径=16.56 分米
2.下的机器零件是由三个圆柱组成的,三个圆柱的高都是 4 厘米,底面半径从 上到下分别是2 厘米,4 厘米,6 厘米,这个机器零件的表面积是多少平方厘米?
小圆柱侧面积:3.14x2x2x4=50.24(平方厘米) 中圆柱侧面积:3.14x4x2x4=100.48(平方厘米) 大圆柱表面积:3.14x6²x2+3.14x6x2x4=376.8(平方厘米) 机器零件的表面积:50.24+100.48+376.8=527.52(平方厘米) 答:这个机器零件的表面积是527.52 平方厘米。
长方形的宽(圆柱的高)是多少分米? 188.4÷12.56=15(分米)
答:它的高是 15 分米。
请你练一练
1. 一个圆柱的侧面积是 251.2 平方厘米,底面半径是 4 厘米,这个圆柱 的高是多少厘米?
六年级数学下册 圆柱的表面积4课件 北师大版
=72π÷8π
=9(cm) 答:它的高是9 cm。
创新与实践:
应用本节课你所学到 的知识,结合生活中 实际问题,能否编写 一道你认为合理的应 用题并与同学交流。
北师大版六年级数学下册
1.理解圆柱的侧面积和表面积的含义。 2.掌握圆柱侧面积和表面积的计算方法。 3 .能灵活运用求表面积、侧面积的有 关知识解决一些实际问题。
计算下面圆的周长和面积。
(1)d=6cm
周长:6×3.14=18.84(cm) (6÷2)2×3.14=28.26(cm2) 面积:
(2) r=5dm
底面周长×高
S表面积=2πr×h + 2×πr2
计算各圆柱的表面积。(图中单位:cm)
牛刀小试:
①用一张长8cm、宽5 cm的长方形 纸围成一个圆柱体,这个圆柱体的 侧面积是( 40)cm2。
②一根10米长的圆柱形排水钢管, 量得横截面圆的半径是0.2米,如 果在钢管的表面喷上防锈油漆,喷 漆面积是( 4π )平方米。
1.一个圆柱体的侧面展开是个边长9.42 cm的正方形,这个圆柱体的表面积是 多少cm2?(得数保留两位小数)
解:9.42×9.42+3.14(9.42÷3.14÷2)2×2
Hale Waihona Puke =88.728+14.13
≈102.86( cm2 )
答:这个圆柱体的表面积是102.86 cm2。
挑战自我:
2.一个圆柱体的侧面积是72π cm2, 底面半径4 cm,它的高是多少?
应用与实践
现在有一个罐头厂计划 用铁皮制作一批底面半 径5厘米,高10厘米的 圆柱形罐头盒。你能不 能帮厂长算一算制作一 个至少需要多少平方厘 米铁皮?
北师大版小学数学六年级下册 总复习2-5 立体图形的表面积和体积 教学课件
尊敬谢老师,服谢从任课老师大管理。 家
不做与课堂教学无关的事,保持课堂良好纪 律秩序。
听课时有问题,应先举手,经教师同意后, 起立提问。
上课期间离开教室须经老师允许后方可离开。
上课必须按座位表就坐。
5×5×6=150(平方厘米) 答:做出这个化妆品盒至少需要150平方厘米纸板。
一个游泳池从里面量长是80米,宽是60米,深是
2.5米,在它的内壁四周和底部涂抹水泥,如果每平
方米需要水泥6千克,那么一共需要水泥多少千克?
(80×2.5×2+60×2.5×2+80×60)×6
=(400+300+4800)×6 =5500×6 =33000(千克) 答:一共需要水泥33000千克。
变,则体积扩大到原来的( 4 )倍。
7.把12立方分米的水倒入一个长3分米、宽2分米、
高4分米的长方体玻璃缸内,水面距缸口有( 2 ) 分米。
8.一个正方体的棱长总和是60厘米,那么它的表
面积是( 150 )平方厘米,体积是( 125 )立方厘米。
9.把一根长48厘米的铁丝做成一个长方体的框架
(接头处不计)。已知长、宽、高的比为3∶2∶1, 则这个长方体最大一个面的面积是( 24 )平方 厘米。
10.一个圆柱的侧面展开图是正方形,已知它的底 面周长是31.4厘米,则它的高是( 31.4 )厘米。
二、我是聪明的小法官
1.两个圆柱的侧面积相等,它们的底面周长也一
定相等。 ( × )
2.正方体、长方体、圆柱体都可以用它们各自
的底面积乘高求得体积。( √ )
3.圆柱体的底面半径扩大到原来的2倍,高也扩大
六年级下册数学《圆柱的表面积》
用18.84 cm作底面周长,需要直径是6 cm的底面; 用12.56 cm作底面周长,需要直径是4 cm的底面。
返回作业2
(1)帽子的侧面积: 3.14×20×30=1884(cm2)
(2)帽顶的面积: 3.14×(20÷2)2=314(cm2)
(3)需要用的面料: 1884+314=2198≈2200(cm2)
答:做这样一顶帽子至少要用2200 cm²的面料。
3.14×20×30+3.14×(20÷2)2
=1884+314 =2198(cm2) 答:做这样一顶帽子至少要用2200 cm²的面料。
在池的四壁与下底面抹上水泥,抹水泥部分的面 积是多少平方米?
3.14
3 2
2
3.14
3
2
ห้องสมุดไป่ตู้
25.905
m2
答:抹水泥部分的面积是25.905 m²。
教材第23页练习四第5题。 5.某种饮料罐的形状为圆柱形,底面直径为6cm,
高为12cm,将24罐这种饮料按如图所示的方式 放入箱内,这个箱子的长、宽、高至少是多少 厘米?
长:6×6=36(cm) 宽:6×4=24(cm) 答:这个箱子的长是36cm、宽是24cm、高是12 cm。
教材第23页练习四第6题。 6.求下面各图形的表面积。
5cm
15cm 6dm 12cm
10cm
6dm
长方体的表面积: 10 ×10 ×2 + 10×15 × 4 =800(cm2 ) 正方体的表面积:
的布用得多?
黑布:3.14
20
10
《圆柱的认识》ppt课件
底面、侧面和高等元素
01
02
03
底面
圆柱的两个底面是相等的 圆,它们平行且在同一平 面内。
侧面
圆柱的侧面是一个曲面, 它连接着两个底面。
高
圆柱的高是两个底面之间 的距离,它表示圆柱的竖 直高度。
圆柱与长方体关系
形状差异
圆柱与长方体在形状上有明显差异, 圆柱具有弯曲的侧面和圆形的底面, 而长方体则由六个矩形面组成。
应用场景
圆柱和长方体在实际生活中都有广泛 的应用。例如,圆柱形的容器、管道 和柱子等,长方体的箱子、建筑物和 家具等。
体积计算
虽然形状不同,但圆柱和长方体都可
以通过相应的公式来计算体积。圆柱
的体积公式为V=πr²h,长方体的体积
公式为V=lwh。
02
圆柱表面积计算方法
侧面积计算公式
01
圆柱侧面积 = 底面周长 × 高
《圆柱的认识》ppt课件
目录
• 圆柱基本概念与性质 • 圆柱表面积计算方法 • 圆柱体积计算方法 • 圆柱在日常生活中的应用 • 圆柱相关数学问题探讨 • 总结回顾与拓展延伸
01
圆柱基本概念与性质
圆柱定义及特点
圆柱定义
圆柱是由两个平行且相等的圆面以 及连接这两个圆面的曲面所围成的 几何体。
圆柱特点
已知圆柱底面直径和高, 需先将直径转换为半径 后代入公式求解。
已知圆柱底面积和高, 可直接使用底面积乘以 高求解。
04
已知圆柱侧面积和高, 需通过侧面积公式反推 出底面半径后代入体积 公式求解。
与其他几何体体积比较
与立方体比较
当圆柱的高等于直径时,其体积 最大,超过同等尺寸的立方体。
北师版六年级下册数学第1单元 圆锥与圆锥 圆柱的表面积
圆柱的表面积第一课时教学目标:知识与能力:使学生认识圆柱的特征,认识圆柱侧面的展开图。
过程与方法:通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。
情感态度和价值观::通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。
教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。
每位学生准备好制作圆柱的材料。
教学重点:使学生认识圆柱的特征。
教学难点:理解圆柱侧面展开是长方形,并理解长和宽与圆柱之间的关系。
教法:引导法学法:自主探究教学过程:一、复习我们已经认识了长方体和正方体。
谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。
)正方体呢?谁能说一说我们学习了长方体和正方体的哪些知识?二、新授今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、初步印象同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?(圆柱是由2个圆,1个曲面围成的。
)2、小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?3、交流和汇报(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。
展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。
高有无数条。
高有时也可用长、厚、深代替。
4、举例说明进一步明确特征教师:既然大家对圆柱已有了进一步的了解,那么在生活中那些物体是圆柱呢?(学生举例,再让学生自己判断。
当有一个学生说粉笔是圆柱时,教师可让学生进行讨论。
)5、运用知识进行判断下面哪些图形是圆柱?哪些不是?说明理由。
6、制作圆柱三、练习第二课时教学目标:知识与能力:能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系过程与方法:通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
底面周长
长方形的长=圆柱的底面周长,长方形的宽=圆柱的高。
圆柱的侧面积=底面周长×高
S侧=Ch=πd·h=2πr·h
圆柱的表面由上、下两 个底面和一个侧面组成。
圆柱的表面积=侧面积+两个底面的面积
(1)侧面积:2 ×3.14 ×10 ×30=1884(平方厘米)
北师大版六年级数学下册
圆柱的表面积
1. 能根据具体情境,灵活运用圆柱表面积的 计算方法解决生活中一些简单的问题,使学生 感受到数学与生活的密切联系 2. 通过想象、操作等活动,知道圆柱侧面展 开后可以是一个长方形,加深对圆柱特征的认 识,发展空间观念。 3. 结合具体情境和动手操作,探索圆柱侧面 积的计算方法,掌握圆柱侧面积和表面积的计 算方法,能正确计算圆柱的侧面积和表面积。
62.8+12.56=75.36(平方分米)
计算下现各圆柱的表面积。 (单位:厘米)
一台压路机的滚 筒宽1.2米,直径为 0.8米。如果它滚动 10周,压路的面积 是多少平方米?
基础题 (1)一个圆柱形水池底面直径为8米,池深为2米, 如果在水池底面和四周抹上水池,抹水泥的面积 有多少平方米? (2)一间大厅里有2根同样的支撑顶棚的圆柱, 圆柱高6米,底面直径1米,要在圆柱表面涂上红 色油漆,则涂油漆的 面积是多少平方米? (3)一个圆柱的侧面积是376.8平方分米,高是 10分米,它的底面积是多少平方分米?
要牢记下面的计算公式
• 1、圆的面积计算公式:
•
S = πr2
r
• 2、圆的周长计算公式:
• •
C = πd C = 2πr
3、长方形面积计算公式:
b
S = ab
a
做一个圆柱形纸盒,至少需要用 多大面积的纸板?(接口处不计)
这是要求圆柱 的表面积。
圆柱的底面积 容易求,圆柱 的侧面积怎么 求呢?
如果一段圆柱形的木头,截成两截, 它的表面积会有什么变化呢?
(2)底面积:3.14 ×102 =314(平方厘米)
(3)表面积:1884+314 × 2=2512(平方厘米)
做一个无盖的圆柱形铁皮水桶,高是5分米。 底面直径4分米,至少需要多大面积的铁皮?
水桶没有盖,说明它只有一个底面。
(1)水桶的侧面积:
3.14 ×4 ×5=62.8(平方分米) (2)水桶的底面积: 3.14 ×(4÷2) 2=12.56(平方分米) (3)需要铁皮: