九年级上数学期中测试题
人教版九年级上册数学期中试卷【含答案】
人教版九年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。
A. y = x²B. y = |x|C. y = x³D. y = sin(x)3. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。
A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的方差为4,则这组数据的平均数是()。
A. 4B. 2C. 0D. 无法确定5. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长是()。
A. 16B. 26C. 28D. 36二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 在直角坐标系中,所有第一象限的点的坐标都是正数。
()3. 一个等边三角形的三个角都是60度。
()4. 任何两个负数相乘的结果都是正数。
()5. 一个数的立方根只有一个。
()三、填空题(每题1分,共5分)1. 一个正方形的边长为5,则它的面积是______。
2. 若一组数据的平均数为10,则这组数据的总和是______。
3. 在直角坐标系中,点A(3, 4)到原点的距离是______。
4. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是______。
5. 2³的值是______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述勾股定理的内容。
3. 请简述因式分解的定义。
4. 请简述概率的定义。
5. 请简述直角坐标系中,点的坐标表示的意义。
五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,求这个长方形的面积和周长。
2. 已知一组数据的平均数为15,数据个数为5,求这组数据的总和。
3. 在直角坐标系中,点A(2, 3)和点B(5, 7)之间的距离是多少?4. 若一个等腰三角形的底边长为12,腰长为13,求这个三角形的面积。
无锡市锡山区锡山高级中学实验学校2023-2024学年九年级上学期期中数学试题
省锡中实验学校2023—2024学年度第一学期初三数学期中测试一、选择题(每题3分,共30分)1.sin60°的值等于()A.12B.1C.32D.32.已知O 的半径为4,3OP =,则点P 与O 的位置关系是()A.点P 在O 内B.点P 在O 上C.点P 在O 外D.不能确定3.在△ABC 中,∠C =90°,AC =1,BC =2,则cos A 的值是()A.12B.5C.55D.2554.如图,AB 是O 的直径,CD 是O 的弦,如果35ACD ∠=︒,那么BAD ∠为()A .35°B.55°C.65°D.75°5.在⊙O 中,弦AB 所对的圆心角的度数为80°,则弦AB 所对的圆周角的度数为()A.40B.160oC.80 或160oD.40 或1406.在下列命题中,正确的是()A.任何三角形有且只有一个内切圆B.三点确定一个圆C.三角形的内心到三角形的三个顶点的距离相等D.垂直于半径的直线一定是这个圆的切线7.已知A ∠是锐角,且cosA =34,那么锐角A 的取值范围是()A.030A ︒<∠<︒B.3045A ︒<∠<︒C.4560A ︒<∠<︒D.6090A ︒<∠<︒8.如图,AB 是半O 的直径,点C 是 AB 的中点,点D 为 BC 的中点,连接AD ,CE AD ⊥于点E .若1DE =,则AE 的长为()A.3B.22C.21+ D.322+9.如图,ABC 中660BC A =∠=︒,,点O 为ABC 的重心,连接AO BO CO 、、,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持BAC ∠的大小不变,则线段AO 的长度的取值范围为()A.232OA <≤B.332OA ≤≤C.323OA ≤≤ D.223OA <≤10.如图,在ABC 中,90BAC ∠=︒,CE 平分ACB ∠,BD CE ⊥,垂足为点D ,连结AD .下列结论:①若30ABC ∠=︒,则BD AD >;②若=45ABC ∠︒,则4ACE BDE S S = ;③若1sin 3ABC ∠=,则ABC ABD S S =△△;④若tan ABC m ∠=,则2CE m BD =⋅.正确的有()A.①③B.②③C.②④D.③④二、填空题(每空3分,共24分)11.已知α是锐角,4tan 5α=,则cos α=____°12.一个人从山下沿30︒角的坡路登上山顶,共走了50m ,那么这山的高度是_____m .13.圆内接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D =_____°.14.已知圆锥的母线长为8cm ,底面圆的半径为3cm ,则圆锥的侧面展开图的面积是_____cm 2.15.如图,点O I 、分别是锐角ABC 的外心、内心,若648CAB OAC ∠=∠=︒,则BCI ∠=______°16.如图,边长为2的正方形ABCD 中心与半径为2的O 的圆心重合,E 、F 分别是AD BA 、的延长线与O 的交点,则图中阴影部分的面积是_____.17.将点()3,3A -绕x 轴上的点G 顺时针旋转90°后得到点'A ,当点'A 恰好落在以坐标原点O 为圆心,2为半径的圆上时,点G 的坐标为________.18.如图,在四边形ABCD 中,9086BAD BCD BC CD ∠+∠=︒==,,,1sin 4BCD ∠=,连接AC BD ,,当ABD △是以BD 为腰的等腰三角形时,则AC 的值为____.三、解答题(10小题,共96分)19.计算:(1)2033cos 30π-+(2)21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭20.在Rt ABC △中,90ACB A B C ∠=︒∠∠∠,、、的对边分别是a b c 、、,已知32b c =,斜边上的高3CD =(1)求tan A 的值;(2)求BD 的长.21.如图,在O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧 BC上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦18cm BC =,求图中劣弧 BC 的长.(结果保留π)22.如图,在矩形ABCD 中,32AB BC ==,,H 是AB 的中点,将CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP .(1)求AP 的长;(2)求tan DCP ∠的值.23.如图,在等边ABC 中,点M N 、分别在AB AC 、边上.(1)在BC 边上求作点P ,使60MPN ∠=︒;(尺规作图,不写作法,保留作图痕迹,请找出所有满足条件的点.)(2)若95AB BM ==,,设CN a =,若要使得(1)中只能作出唯一的点P ,则=a .24.如图,点C 在O 的直径AB 的延长线上,点D 是O 上一点,过C 作CE AC ⊥,交AD 的延长线于点E ,连接,CD DB ,且CD CE =.(1)求证:直线DC 与O 相切;(2)若15AB =,1tan 2BDC ∠=,求CE 的长.25.如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知 2.5BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角=45ADC ∠︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.5DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)26.如图,在矩形ABCD 中,6cm 12cm AB BC ==,,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.各自到达终点后停止运动.设运动时间为t 秒.(1)在运动过程中,当2t =时,PQ =;(2)在运动过程中,当45DPQ ∠=︒时,求t 的值;(3)在运动过程中,当以Q 为圆心,QP 为半径的圆,与矩形ABCD 的边共有4个公共点时,请直接写出t 的取值范围.27.已知平面直角坐标系中,以原点O 为圆心,5为半径的O 交y 轴的正半轴于点P ,小刚同学用手中的三角板(90308B ACB AB ∠=︒∠=︒=,,)进行了如下的实验操作:(1)如图1,将三角板的斜边放置于x 轴上,边AB 恰好与O 相切于点D ,则切线长AD =;(2)如图2,将三角板的顶点A 在O 上滑动,直角顶点B 恰好落在x 轴的正半轴上,若BC 边与O 相切于点M ,求点B 的坐标;(3)请在备用图上继续操作:将三角板的顶点A 继续在O 上滑动,直角顶点B 恰好落在O 上且在y 轴右侧,BC 边与y 轴的正半轴交于点G ,与O 的另一交点为H ,若1PG =,求GH 的长.28.在平面直角坐标系xOy 中,对已知的点A ,B ,给出如下定义:若点A 恰好在以BP 为直径的圆上,则称点P 为点A 关于点B 的“联络点”.(1)点A 的坐标为()2,1-,则在点()11,2P ,21,12P ⎛⎫ ⎪⎝-⎭-,()32,1P -中,O 关于点A 的“联络点”是______(填字母);(2)直线112y x =-+与x 轴,y 轴分别交于点C ,D ,若点C 关于点D 的“联络点”P 满足1tan 2CPD ∠=,求点P 的坐标;(3)T e 的圆心在y ,点M 为y 轴上的动点,点N 的坐标为()4,0,在T e 上存在点M 关于点N 的“联络点”P ,且PMN 为等腰三角形,直接写出点T 的纵坐标t 的取值范围.省锡中实验学校2023—2024学年度第一学期初三数学期中测试一、选择题(每题3分,共30分)1.sin60°的值等于()A.12B.1C.2D.【答案】C 【解析】【分析】根据特殊角的三角函数值直接解答即可.【详解】根据特殊角的三角函数值可知:sin60°=32故选:C .【点睛】此题比较简单,只要熟记特殊角的三角函数值即可解答.2.已知O 的半径为4,3OP =,则点P 与O 的位置关系是()A.点P 在O 内B.点P 在O 上C.点P 在O 外D.不能确定【答案】A 【解析】【分析】本题考查了点与圆的位置关系,(r 为圆半径,d 为点到圆心距离),当r d >,点在圆内;当r d <,点在圆内;当r d =,点在圆上;据此作答即可.【详解】解:∵O 的半径为4,3OP =,∴43>∴点P 在O 内故选:A3.在△ABC 中,∠C =90°,AC =1,BC =2,则cos A 的值是()A.12B.C.55D.255【答案】C 【解析】【分析】根据勾股定理求出斜边AB 的值,在利用余弦的定义直接计算即可.【详解】解:在Rt △ACB 中,∠C =90°,AC =1,BC =2,∴222125AB AC BC =+=+=,∴15cos 55AC A AB ===,故选:C .【点睛】本题主要考查直角三角形中余弦值的计算,准确应用余弦定义是解题的关键.4.如图,AB 是O 的直径,CD 是O 的弦,如果35ACD ∠=︒,那么BAD ∠为()A.35°B.55°C.65°D.75°【答案】B 【解析】【分析】本题考查了圆周角定理,连接BD ,先利用直径所对的圆周角是直角可得90ADB ∠=︒,再利用同弧所对的圆周角相等可得35ABD ∠=︒,然后利用直角三角形的两个锐角互余进行计算即可解答.【详解】解:连接BD AB 是O 的直径,90ADB ∴∠=︒,35ACD ∠=︒ ,35ACD ABD ∴∠=∠=︒,9055BAD ABD ∴∠=︒-∠=︒,故选:B .5.在⊙O 中,弦AB 所对的圆心角的度数为80°,则弦AB 所对的圆周角的度数为()A .40B.160oC.80 或160oD.40 或140【答案】D【解析】【分析】根据题意画出图形,分类讨论,根据圆周角定理计算即可.【详解】解:当点C在优弧AB上时,由圆周角定理得,∠ACB=12∠AOB=40°,当点C在劣弧AB上时,∵四边形ACBC′是⊙O的内接四边形,∴∠AC′B=180°-∠ACB=140°,∴弦AB所对的圆周角的度数为40°或140°,故选D.【点睛】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.在下列命题中,正确的是()A.任何三角形有且只有一个内切圆B.三点确定一个圆C.三角形的内心到三角形的三个顶点的距离相等D.垂直于半径的直线一定是这个圆的切线【答案】A【解析】【分析】此题考查了三角形的内切圆与内心,圆与切线的判定,熟练运用确定圆的条件的性质是本题的关键.【详解】A、任何三角形有且只有一个内切圆,则A正确;B、不共线的三点确定一个圆,则B错误;C、三角形内心到三边的距离相等,则C错误;D、过半径的外端垂直于半径的直线是圆的切线,则D错误.故选A7.已知A ∠是锐角,且cosA =34,那么锐角A 的取值范围是()A.030A ︒<∠<︒B.3045A ︒<∠<︒C.4560A ︒<∠<︒D.6090A ︒<∠<︒【答案】B 【解析】【分析】本题考查的是锐角三角函数的定义,熟知锐角三角函数的余弦函数值随角增大而减小是解答此题的关键.先求出cos30︒,cos 45︒及cos60︒的近似值,然后得出结论即可.【详解】解:3cos300.92︒=≈ ,2cos 450.72︒=≈,1cos 600.52︒==,又∵解:3cos300.92︒=≈ ,2cos 450.72︒=≈,1cos 600.52︒==,又∵53c 4os 0.7A ∠==,余弦函数随角增大而减小,∴133242<<3045A ∴︒<∠<︒.故选:B .8.如图,AB 是半O 的直径,点C 是 AB 的中点,点D 为 BC 的中点,连接AD ,CE AD ⊥于点E .若1DE =,则AE 的长为()A.3B.22C.21+ D.322+【答案】C 【解析】【分析】本题考查了圆周角定理及推论、等腰直角三角形的判定与性质、勾股定理;连接AC ,BC ,CD ,在EA 上取一点T ,使得ET EC =,连接CT ,证明DCE △和ETC △是等腰直角三角形,求出2TA TC ==,可得结论.【详解】解:如图,连接AC ,BC 、CD .∵AB 是直径,∴90ACB ∠=︒,∵ AC BC=,∴AC CB =.∴45CAB ABC ∠=∠=︒.∵ CDDB =,∴122.52CAD DAB BAC ∠=∠==︒∠.∵ AC AC =,∴45∠=∠=︒ADC ABC .∵CE DE ⊥,∴90CED ∠=︒.∴45ECD EDC ∠=∠=︒.∴1EC DE ==,在EA 上取一点T ,使得1ET EC ==,连接CT ,∴2CT =.∵45ETC TAC ACT ∠=︒=∠+∠,∴22.5TAC TCA ∠=∠=︒.∴2AT TC ==,∴21AE AT TE =+=+.故选:C .9.如图,ABC 中660BC A =∠=︒,,点O 为ABC 的重心,连接AO BO CO 、、,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持BAC ∠的大小不变,则线段AO 的长度的取值范围为()A.232OA <≤B.32OA ≤≤C.323OA ≤≤D.223OA <≤【答案】D【解析】【分析】本题考查了三角形的重心,等边三角形的判定与性质,作ABC 的外接圆O ',延长AO 交BC 于D ,因此点A 在 BAC上运动,由三角形重心的性质得到D 是BC 的中点,当AD BC ⊥时,AD 长最大,求出3363322AD BC ==⨯=,推出333AD <≤,得到2233333AO ⨯<≤⨯,即可得解,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】解:如图,作ABC 的外接圆O ',延长AO 交BC 于D ,,BAC ∠ 的大小不变,∴点A 在 BAC 上运动(不与B C 、重合),O 是ABC 的重心,D ∴是BC 的中点,当AD BC ⊥时,AD 长最大,AD ∴垂直平分BC ,AB AC ∴=,60BAC ∠=︒ ,ABC ∴ 是等边三角形,3363322AD BC ∴===,A 不与BC 、重合,12BC AD ∴<,333AD ∴<≤O 是ABC 的重心,23AO AD ∴=,2233333AO ∴⨯<≤⨯,223AO ∴<≤,故选:D .10.如图,在ABC 中,90BAC ∠=︒,CE 平分ACB ∠,BD CE ⊥,垂足为点D ,连结AD .下列结论:①若30ABC ∠=︒,则BD AD >;②若=45ABC ∠︒,则4ACE BDE S S = ;③若1sin 3ABC ∠=,则ABC ABD S S =△△;④若tan ABC m ∠=,则2CE m BD =⋅.正确的有()A.①③B.②③C.②④D.③④【答案】D【解析】【分析】①延长BD ,CA 交于点G ,证明BD DG =,根据直角三角形斜边中线的性质得AD BD =,可作判断;②如图2,过点E 作EF BC ⊥于F ,设AE x =,则,2BF EF x BE ===,2AB AC x x ==,证明△BDE ∽△CAE ,利用相似三角形面积的比等于相似比的平方可作判断;③根据1sin 3EF AC ABC BE BC ∠===,设,3,EF a BE a ==,则AE EF a ==,证明Rt Rt ACE FCE ≌,得2AC CF a ==,根据三角形面积公式进行计算可作判断;④延长,BD CA 交于点G ,证明AEC AGB ∽,列比例式,并结合三角函数可作判断.【详解】①如图1,延长BD ,CA 交于点G ,∵30,90ABC BAC ∠=︒∠=︒,∴60ACB ∠=︒,∵CE 平分ACB ∠,∴30ACD BCD ∠=∠=︒,在Rt BDC 中,90,30BDC BCD ︒︒∠=∠=,∴60DBC ∠=︒,∴ GBC 是等边三角形,∵CD BG ⊥,∴BD DG =,Rt BAG 中,12AD BG BD ==,故①错误;②如图2,过点E 作EF BC ⊥于F ,∵CE 平分ACB ∠,90BAC ∠=︒,∴AE EF =,∵90,45BAC ABC ∠=︒∠=︒,∴AB AC =,同理得BEF △是等腰直角三角形,∴BF EF =,设AE x =,则,2BF EF x BE x ===,2AB AC x ==,∴()22222422CE AE AC x x x x =+=+++,∵DEB AEC ∠=∠,90BDE EAC ∠=∠=︒,∴BDE CAE ∽△△,∴222(422)()222ACE BDES CE x S BE x ∆∆+⋅===+,∴(22)ACE BDE S S =+ ,故②错误;③如图3,过点E 作EF BC ⊥于F ,∵1sin 3EF AC ABC BE BC ∠===,设,3,EF a BE a ==,则AE EF a ==,∴.22BF a =,∵90,EAC CFE CE CE ∠=∠=︒=,AE EF =,∴Rt Rt (HL)ACE FCE ≌,∴AC CF =,∵222AB AC BC +=,∴()()22232a a AC a AC++=+∴2AC CF a ==.延长,BD CA 交于点G ,∵,GCD BCD CD BG ∠=∠⊥,∴CBD G ∠=∠,∴32,CG CB a BD DG ===,∴22AG a =,∴21112422222ABD ABG S S a a a =⋅=⨯⨯⨯= ,2124222ABC S a a a =⋅⋅= ,∴ABC ABD S S =△△.故③正确;④如图4,延长,BD CA 交于点G ,∵90,BDE CAE DEB AEC ∠=∠=︒∠=∠,∴ACE DBE ∠=∠,∵90EAC BAG ︒∠=∠=,∴AEC AGB ∽,∴CE AC BG AB=,由③知:2BG BD =,∵tan AC ABC m AB ∠==,∴2CE m BD=,∴2CE m BD =⋅.故④正确;本题正确的结论有:③④.故选:D .【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,等腰直角三角形判定和性质,含30°角的直角三角形的性质,三角函数,三角形相似的判定和性质等知识,解决问题的关键是正确作辅助线.二、填空题(每空3分,共24分)11.已知α是锐角,4tan 5α=,则cos α=____°【答案】54141【解析】【分析】此题考查了求锐角的三角函数值.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值.【详解】如图:由a 4tan 5b α==,设45a x x ==,b ,则c ==,故5b cos c x α===12.一个人从山下沿30︒角的坡路登上山顶,共走了50m ,那么这山的高度是_____m .【答案】25【解析】【分析】本题考查了解直角三角形的应用一坡度坡角问题,根据含30︒角所对的直角边等于斜边的一半计算即可求解,掌握含30︒角的直角三角形的性质是解题的关键.【详解】解:根据题意可得,山的高度15025m 2=⨯=,故答案为:25.13.圆内接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D =_____°.【答案】120【解析】【分析】根据圆内接四边形对角互补,求出∠A 与∠B ,∠C 的度数即可得出答案.【详解】解:设∠A 、∠B 、∠C 分别为2x 、3x 、7x ,根据圆内接四边形对角互补有2x+7x =180°,解得,x =20°,∴∠B =3x =60°,∴∠D =180°﹣∠B =120°,故答案为:120.【点睛】此题主要考查了圆内接四边形对角互补的性质,根据已知得出,∠A+∠C=3x+7x=180°是解题关键.14.已知圆锥的母线长为8cm ,底面圆的半径为3cm ,则圆锥的侧面展开图的面积是_____cm 2.【答案】24π【解析】【分析】先求出底面周长,再根据公式求解即可.【详解】解:底面半径为3cm ,则底面周长=6πcm ,∴侧面面积=12×6π×8=24πcm 2.故答案为:24π.【点睛】此题考查了扇形面积计算公式,圆的周长计算公式,熟记扇形面积公式是解题的关键.15.如图,点O I 、分别是锐角ABC 的外心、内心,若648CAB OAC ∠=∠=︒,则BCI ∠=______°【答案】25【解析】【分析】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角,也考查了三角形外心的性质和圆周角定理,连接OC ,先计算出8OAC ∠=︒,再根据三角形外心的性质得到OA OC =,则利用等腰三角形的性质和三角形内角和可计算出164AOC ∠=︒,接着根据圆周角定理得到82ABC ∠=︒,则利用三角形内角和可计算出50∠=°ACB ,然后根据三角形内心的性质得到BCI ∠的度数.【详解】解:如图,连接OC ,,648CAB OAC ∠=∠=︒ ,8OAC ∴∠=︒,点O 是锐角ABC 的外心,OA OC ∴=,8OCA OAC ∴∠=∠=︒,180164AOC OCA OAC ∴∠=︒-∠-∠=︒,1822ABC AOC ∴∠=∠=︒,18050ACB CAB ABC ∴∠=︒-∠-∠=︒,点I 是锐角ABC 的内心,1252BCI ACB ∴∠=∠=︒,故答案为:25.16.如图,边长为2的正方形ABCD 中心与半径为2的O 的圆心重合,E 、F 分别是AD BA 、的延长线与O 的交点,则图中阴影部分的面积是_____.【答案】3π-【解析】【分析】本题主要考查了圆面积的计算、正方形的性质、全等形的性质等知识点,正确添加常用辅助线、构造全等图形成为解题的关键.如图:延长DC CB ,交⊙O 于M ,N ,连接OF ,过点O 作OH AB ⊥于H ,再根据垂径定理、勾股定理、三角形的面积公式可得31DAF S =- ,然后再根据阴影部分的面积()14O ADF ABCD S S S -- 正方形即可解答.【详解】解:如图:延长DC CB ,交⊙O 于M ,N ,连接OF ,过点O 作OH AB ⊥于H .在Rt OFH △中,2222213F O O H F H =--,∵112AH BH AB ===,∴31AF FH AH =-=-∴()112313122DAF S AD AF =⋅=⨯⨯-=- ,∴图中阴影部分的面积()()()21122231344O ADF ABCD S S S ππ=--=⋅-⨯--=- 正方形.故答案为3π-.17.将点()3,3A -绕x 轴上的点G 顺时针旋转90°后得到点'A ,当点'A 恰好落在以坐标原点O 为圆心,2为半径的圆上时,点G 的坐标为________.【答案】()32,0-+或()32,0--##()32,0--或()32,0-+【解析】【分析】设点G 的坐标为(,0)a ,过点A 作AM x ⊥轴交于点M ,过点A '作A N x '⊥轴交于点N ,由全等三角形求出点A '坐标,由点A '在2为半径的圆上,根据勾股定理即可求出点G 的坐标.【详解】设点G 的坐标为(,0)a ,过点A 作AM x ⊥轴交于点M ,过点A '作A N x '⊥轴交于点N ,如图所示:∵()3,3A -,∴3AM =,3GM a =+,∵点A 绕点G 顺时针旋转90°后得到点A ',∴AG A G '=,90AGA '∠=︒,∴90AGM NGA '∠+∠=︒,∵AM x ⊥轴,A N x '⊥轴,∴90AMG GNA '∠=∠=︒,∴90AGM MAG ∠+∠=︒,∴MAG NGA '∠=∠,在AMG 与GNA ' 中,AMG GNA MAG NGA AG GA ∠=∠⎧⎪∠=∠'='⎨'⎪⎩,∴()AMG GNA AAS '≅ ,∴3GN AM ==,3A M GM a '==+,∴3ON a =+,∴(3,3)A a a '++,在Rt ONA ' 中,由勾股定理得:222(3)(3)2a a +++=,解得:32a =-+或32a =--,∴()32,0M -+或()32,0M --.故答案为:()32,0-+,()32,0--.【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.18.如图,在四边形ABCD 中,9086BAD BCD BC CD ∠+∠=︒==,,,1sin 4BCD ∠=,连接AC BD ,,当ABD △是以BD 为腰的等腰三角形时,则AC 的值为____.【答案】213或7373213【解析】【分析】分BD BA =和BD AD =两种情况进行解答;①当BD BA =时,如图1:过点B 作BH AD ⊥于H ,过点C 作CE CD ⊥,在CE 上截取142CE BC ==,连接BE ,先证BAD BCE ∽ 可得ABD CBE BDA BEC ∠=∠∠=∠,,进而证ABC 和DBE 全等,即AC DE =,然后在Rt DCE V 中,利用勾股定理求出DE 即可;②当BD AD =时,如图2:过点D 作DN AB ⊥于N ,过点C 作CM CD ⊥,在CM 上截取216CM BC ==,连接BM ,先证ABD CBM ∽ 可得ABD CBM ∠=∠,进而证ABC DBM ∽ 可得12BC DM AB BD ==:::,则12BC DM =,然后在Rt DCM 中利用勾股定理求出DM 即可.【详解】解:∵ABD △是以BD 为腰的等腰三角形,∴有以下两种情况:①当BD BA =时,如图1:过点B 作BH AD ⊥于H ,过点C 作CE CD ⊥,在CE 上截取142CE BC ==,连接BE ,∵BD BA BH AD =⊥,,∴290BAD BDA AD AH BAD ABH ∠=∠=∠+∠=︒,,,∵90BAD BCD ∠+∠=︒,∴ABH BCD ∠=∠,∵1sin 4BCD ∠=,∴1sin 4AH ABH AB ∠==,∴42AB AH AD ==,∴12AD AB =::,∵142CE BC ==,∴12BC CE =::,∴AD AB BC CE =::,∵CE CD ⊥,∴90BCE BCD ∠+∠=︒.∵90BAD BCD ∠+∠=︒,∴BAD BCE ∠=∠,又∵AD AB BC CE =::,∴BAD BCE ∽ ,∴ABD CBE BDA BEC ∠=∠∠=∠,,∴BDA BEC BDA BCE ∠=∠=∠=∠,∴8BC BE ==,∵ABD CBE ∠=∠,∴ABD DBC CBE DBC ∠+∠=∠+∠,即ABC DBE ∠=∠,在ABC 和DBE 中,,,BD BA ABC DBE BC BE =∠=∠=,∴()SAS ABC DBE ≌,∴AC DE =,在Rt DCE V 中,64CD CE ==,,由勾股定理得:22213DE CD CE =+=;即213AC =②当BD AD =时,如图2:过点D 作DN AB ⊥于N ,过点C 作CM CD ⊥,在CM 上截取216CM BC ==,连接BM ,∵BD AD DN AB =⊥,,∴290DAB DBA AB AN ADN BAD ∠=∠=∠+∠=︒,,,又∵90BAD BCD ∠+∠=︒,∴ADN BCD ∠=∠,∵1sin 4BCD ∠=,∴1sin 4AN ADN AD ∠==,∴42AD AN AB ==,∴12AB AD =::,∵216CM BC ==,∴12BC CM =::,∴AB AD BC CM =::,∵CM CD ⊥,∴90BCM BCD ∠+∠=︒,又∵90BAD BCD ∠+∠=︒,∴BAD BCM ∠=∠,又∵AB AD BC CM =::,∴ABD CBM ∽ ,∴ABD CBM ∠=∠,∴ABD CBM DAB BCM ∠=∠=∠=∠,∴216BM CM BC ===,∵ABD CBM ∠=∠,∴ABD DBC CBM DBC ∠+∠=∠+∠,即ABC DBM ∠=∠,∵1212AB BD BC BM ==::,::,∴AB BD BC BM =::,∴ABC DBM ∽ ,∴12BC DM AB BD ==:::,∴12BC DM =在Rt DCM 中,616CD CM ==,,由勾股定理得:DM ==,∴12BC DM ==综上所述:AC 的长为故答案为或【点睛】本题主要考查了全等三角形的判定和性质、相似三角形的判定和性质,锐角三角函数等知识点,正确地添加辅助线构造全等三角形和相似三角形以及分类讨论思想的应用是解题的关键和难点.三、解答题(10小题,共96分)19.计算:(1)20cos 30π-+(2)21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭【答案】(1)72(2)8【解析】【分析】本题考查实数的运算,掌握负整数指数幂、零指数幂的性质并牢记特殊角的三角函数值是解决问题的关键.(1)将01π=,cos302= 代入原式,运算结果即可.(2)将tan 451︒=代入原式,运算结果即可.【小问1详解】解:20cos 30π-+312=-+72=【小问2详解】解:21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭415=-+8=20.在Rt ABC △中,90ACB A B C ∠=︒∠∠∠,、、的对边分别是a b c 、、,已知32b c =,斜边上的高CD =(1)求tan A 的值;(2)求BD 的长.【答案】(1)2(2)152【解析】【分析】本题主要考查了解直角三角形,勾股定理,熟知解直角三角形的方法是解题的关键.(1)先求出23b c =,进而利用勾股定理求出53BC c =,再根据正切的定义可得答案;(2)先解Rt ADC 得到2155AD =,再解Rt ABC △,得到2cos 3A =,则可解Rt ADC ,得到3155AC =,进而求出91510AB =,则152BD AB AD =-==.【小问1详解】解:在Rt ABC △中,9032ACB b c =︒=∠,,∴23b c =,∴2253BC AB AC c =-=,∴5tan 2BC A AC ==;【小问2详解】解:在Rt ADC 中,5tan 2CD A AD ==,∴2155AD =,在Rt ABC △中,2cos 3AC A AB ==,∴在Rt ADC 中,315cos 5AD AC A ==,∴3915210AB AC ==,∴915215151052BD AB AD =-=-=.21.如图,在O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧 BC上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦18cm BC =,求图中劣弧 BC 的长.(结果保留π)【答案】(1)60︒(2)43πcm【解析】【分析】(1)连接OB ,结合垂径定理得到»»AB AC =,根据“同圆或等圆中,等弧所对的圆心角为圆周角的两倍”得到AOB ∠和AOC ∠之间的关系,进而求出AOC ∠的度数;(2)要求劣弧 BC的长,需要知道圆的半径以及弧所对圆心角的度数,由垂径定理得到BE 的长,进而在Rt BOE 中利用勾股定理求出OE 的长,利用弧长公式进行计算即可解决问题.【小问1详解】解:连接OB ,∵OA BC ⊥,∴»»AB AC =,∴AOC AOB ∠=∠,由圆周角定理得,260AOB ADB ∠=∠=︒,∴60AOC AOB ∠=∠=︒.【小问2详解】解:∵OA BC ⊥,∴192BE BC ==,在Rt BOE 中,60AOB ∠=︒,∴2OB OE =,∴2239BE OB OE OE =-==,∴33cm OE =,63cm OB =.∴劣弧 BC 的长()120π6343πcm 180⨯==.【点睛】本题考查了垂径定理,圆周角定理,勾股定理等知识点,能熟记垂径定理是解此题的关键.22.如图,在矩形ABCD 中,32AB BC ==,,H 是AB 的中点,将CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP .(1)求AP 的长;(2)求tan DCP ∠的值.【答案】(1)95(2)724【解析】【分析】此题重点考查矩形的性质、轴对称的性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.(1)连接PB ,由四边形ABCD 是矩形,32AB BC ==,,H 是AB 的中点,得出52CH =,由折叠得点P 与点B 关于CH 对称,PH BH AH ==,CH 垂直平分PB ,HPB HBP ∠=∠,证明90APB ∠=︒得出AP CH ∥,PAB BHC ∠=∠,得出3cos cos 5AP PAB BHC AB=∠=∠=,即可得出答案;(2)作PE CD ⊥于点E ,交AB 于点F ,则2EF BC ==,90BFE ∠=︒,90AFP ∠=︒,求出3cos 5AF PAB AP =∠=,4sin sin 5PF PAB BHC AP =∠=∠=,得到2725AF =,3625PF =,从而得到1425PE =,即可得出答案.【小问1详解】解:如图,连接PB ,,四边形ABCD 是矩形,32AB BC ==,,H 是AB 的中点,90ABC ∴∠=︒,1322AH BH AB ===,222235222CH BH BC ⎛⎫∴=+=+ ⎪⎝⎭,由折叠得点P 与点B 关于CH 对称,PH BH AH ==,CH ∴垂直平分PB ,HPB HBP ∠=∠,1180902APB HPB HPA HBP HAP ∴∠=∠+∠=∠+∠=⨯︒=︒,AP BP ⊥ ,CH BP ⊥,C AP H ∴∥,PAB BHC ∠=∠∴,332cos cos 552AP BH PAB BHC AB CH ∴=∠=∠===,3393555AP AB ∴==⨯=,AP ∴的长是95;【小问2详解】解:如图,作PE CD ⊥于点E ,交AB 于点F ,,90FEC ECB FBC ∠=∠=∠=︒ ,∴四边形BCEF 是矩形,2EF BC ∴==,90BFE ∠=︒,90AFP ∴∠=︒,324cos sin sin 5552AF PF BC PAB PAB BHC AP AP CH ∴=∠==∠=∠===,,3392755525AF AP ∴==⨯=,4493655525PF AP ==⨯=,274832525CE BF AB AF ∴==-=-=,361422525PE EF PF =-=-=,14725tan 482425PE DCP CE ∴∠===,tan DCP ∴∠的值为724.23.如图,在等边ABC 中,点M N 、分别在AB AC 、边上.(1)在BC 边上求作点P ,使60MPN ∠=︒;(尺规作图,不写作法,保留作图痕迹,请找出所有满足条件的点.)(2)若95AB BM ==,,设CN a =,若要使得(1)中只能作出唯一的点P ,则=a .【答案】(1)见解析(2)8120【解析】【分析】本题考查了作图—复杂作图,等边三角形的性质、相似三角形的判定与性质,解题的关键是熟练掌握以上知识点并灵活运用,正确的作出图形.(1)以A 为圆心,AN 为半径画弧,交AB 于点D ,作DMN 的外接圆,交BC 于1P 、2P ,即可完成作图;(2)证明11BMP CP N ∽,可得11CP MB BP CN =,设1BP x =,则19CP x =-,可得59x x a -=,从而得到2950x x a +=-,由只能作出唯一的点P ,得到该方程有两个相等的实数根,由此进行计算即可得出答案.【小问1详解】解:以A 为圆心,AN 为半径画弧,交AB 于点D ,作DMN 的外接圆,交BC 于1P 、2P ,如图,1P 、2P 即为所求,,如图,连接DN ,1MP ,1NP ,2NP ,2MP ,,由作图可得:AD AN =,ABC 是等边三角形,=60B ∠︒,AB AC ∴=,AB AD AC AN ∴-=-,即BD CN =,B DNC ∴∥,60MDN B ∴∠=∠=︒,由圆周角定理可得:1260MP N MP N MDN ∠=∠=∠=︒;【小问2详解】解:如图,,160MP N ∠=︒ ,11120MPB CP N ∴∠+∠=︒,ABC 是等边三角形,60A B C ∴∠=∠=∠=︒,9BC AB ==,11120BMP MPB ∴∠+∠=︒,11BMP CP N ∴∠=∠,11BMP CP N ∴ ∽,11CPMB BP CN ∴=,设1BP x =,则19CP x =-,59xx a -∴=,259a x x ∴=-,2950x x a ∴-+=,只能作出唯一的点P ,∴该方程有两个相等的实数根,()2Δ94150a ∴=--⨯⨯=,8120a ∴=,故答案为:8120.24.如图,点C 在O 的直径AB 的延长线上,点D 是O 上一点,过C 作CE AC ⊥,交AD 的延长线于点E ,连接,CD DB ,且CD CE =.(1)求证:直线DC 与O 相切;(2)若15AB =,1tan 2BDC ∠=,求CE 的长.【答案】(1)证明见解析(2)10【解析】【分析】(1)连接OD ,先根据等腰三角形的性质可得ODA A ∠=∠,CDE E ∠=∠,再根据直角三角形的性质可得90A E ∠+∠=︒,从而可得OD DC ⊥,然后根据圆的切线的判定即可得证;(2)连接OD ,设()0CD CE x x ==>,先求出A BDC ∠=∠,根据正切的定义可得22AC CE x ==,再在Rt COD 中,利用勾股定理求解即可得.【小问1详解】证明:如图,连接OD ,OA OD = ,ODA A ∴∠=∠,CD CE = ,CDE E ∴∠=∠,⊥ CE AC ,90A E ∴∠+∠=︒,90ODA CDE ∴∠+∠=︒,()18090ODC ODA CDE ∴∠=︒-∠+∠=︒,即OD DC ⊥,又OD 是O 的半径,∴直线DC 与O 相切.【小问2详解】解:如图,连接OD ,设()0CD CE x x ==>,15AB = ,11522OA OD AB ∴===,AB 是O 的直径,90ADB ∴∠=︒,90CDE BDC BDE ∴∠+∠=∠=︒,又90A E ∠+∠=︒ ,CDE E ∠=∠,A BDC ∴∠=∠,1tan 2BDC ∠= ,1tan 2CE A AC∴==,22AC CE x ∴==,1522OC AC OA x ∴=-=-,由(1)已证:OD DC ⊥,∴在Rt COD 中,222OD CD OC +=,即2221515222x x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,解得10x =或0x =(不符合题意,舍去),所以CE 的长为10.【点睛】本题考查了圆的切线的判定、等腰三角形的性质、正切、勾股定理、圆周角定理等知识,熟练掌握圆的切线的判定是解题关键.25.如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知 2.5BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角=45ADC ∠︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.5DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)【答案】4米【解析】【分析】通过作垂线构造直角三角形,在Rt △BCN 中,求出CN 、BN ,在Rt △ABE 中用AB 的代数式表示AE ,再根据∠ADC =45°得出CF =DF ,列方程求解即可.【详解】解:过点C 作CN ⊥AB ,CF ⊥AD ,垂足为N 、F ,如图所示:在Rt △BCN 中,CN =BC •sin ∠MBC =2.5×35=1.5(米),BN =BC ×cos 37°=2.5×45=2(米),∵CN ⊥AB ,CF ⊥AD ,MA ⊥AD ,∴四边形AFCN 为矩形,∴CN =AF =1.5,BN +AB =CF ,在Rt △ABE 中,∵∠AEB =53°,∴∠ABE =90°-53°=37°,AE =AB •tan ∠ABE =AB ×tan 37°=34AB ,∵∠ADC =45°,∴CF =DF ,∴BN +AB =AD -AF =AE +ED -AF ,即:2+AB =34AB +4.5-1.5,解得,AB =4(米)答:匾额悬挂的高度AB 的长约为4米.【点睛】本题考查了直角三角形的边角关系,通过作垂线构造直角三角形,利用锐角三角函数表示边,再利用各条边之间的关系,列方程求解是解决问题的常用方法.26.如图,在矩形ABCD 中,6cm 12cm AB BC ==,,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.各自到达终点后停止运动.设运动时间为t 秒.(1)在运动过程中,当2t =时,PQ =;(2)在运动过程中,当45DPQ ∠=︒时,求t 的值;(3)在运动过程中,当以Q 为圆心,QP 为半径的圆,与矩形ABCD 的边共有4个公共点时,请直接写出t 的取值范围.【答案】(1)42cm(2)1517-(3)12613185t <<【解析】【分析】(1)当2t =时,()2cm AP =,()4cm BQ =,()4cm BP =,再由勾股定理进行计算即可;(2)连接DP ,过Q 作QM DP ⊥于M ,过M 作MN AB ⊥于N ,过Q 作QK MN ⊥于K ,根据题意可得:cm AP t =,2cm BQ t =,()6cm BP t =-,由45DPQ ∠=︒,得出PQM 是等腰直角三角形,证明()AAS PMN MQK ≌得出PN MK =,MN QK =,设cm PN MK x ==,则()62t x t x -+=-,得出362t x -=,证明MPN DPA ∽得到1623622tt t =-+,求解即可;(3)当Q 与AD 相切于T 时,Q 与矩形ABCD 的边共有3个公共点,连接QT ,可得()()22626t t -+=,解得125t =,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足125t >;当Q 经过点D 时,Q 与矩形ABCD 的边共有3个公共点,可得()()()2222621226t t t -+=-+,解得61318t =-,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足61318t <-,即可得出答案.【小问1详解】解:当2t =时,()212cm AP =⨯=,()224cm BQ =⨯=,()624cm BP AB AP ∴=-=-=,()22224442cm PQ BP BQ ∴=+=+=,故答案为:42cm ;【小问2详解】解:如图,连接DP ,过Q 作QM DP ⊥于M ,过M 作MN AB ⊥于N ,过Q 作QK MN ⊥于K ,,根据题意可得:cm AP t =,2cm BQ t =,()6cm BP t ∴=-,由作图可知四边形BQKN 是矩形,BN QK ∴=,2cm BQ NK t ==,45DPQ ∠=︒ ,PQM ∴ 是等腰直角三角形,90PMQ ∴∠=︒,PM QM =,90PMN QMK KQM ∴∠=︒-∠=∠,90MNP QKM ∠=︒=∠ ,()AAS PMN MQK ∴ ≌,PN MK ∴=,MN QK =,设cm PN MK x ==,则()2cm MN NK MK t x QK =-=-=,BN QK = ,()62t x t x ∴-+=-,362t x -∴=,()36cm 2t PN -∴=,()3662cm 22t t MN t -+=-=,MPN DPA ∠=∠ ,90MNP A ∠=︒=∠,MPN DPA ∴ ∽,PN MN AP AD ∴=,即1623622t t t =-+,解得:15317t =+(舍去)或15317t =-,t ∴的值为15317-;【小问3详解】解:如图,当Q 与AD 相切于T 时,Q 与矩形ABCD 的边共有3个公共点,连接QT ,,90A B ATQ ∠=∠=∠=︒ ,∴四边形ABQT 是矩形,6cm QT AB PQ ∴===,()()22626t t ∴-+=,解得:0=t (舍去)或125t =,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足125t >;如图,当Q 经过点D 时,Q 与矩形ABCD 的边共有3个公共点,,此时PQ DQ =,()()()2222621226t t t ∴-+=-+,解得:61318t =-或61318t =--(舍去),由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足61318t <-,综上所述,当12613185t <<-时,Q 与矩形ABCD 的边共有4个公共点.【点睛】本题考查了圆的综合应用,涉及勾股定理及应用,全等三角形的判定与性质,相似三角形的判定与性质等知识点,解题的关键是作辅助线,构造全等三角形和相似三角形解决问题.27.已知平面直角坐标系中,以原点O 为圆心,5为半径的O 交y 轴的正半轴于点P ,小刚同学用手中的三角板(90308B ACB AB ∠=︒∠=︒=,,)进行了如下的实验操作:(1)如图1,将三角板的斜边放置于x 轴上,边AB 恰好与O 相切于点D ,则切线长AD =;(2)如图2,将三角板的顶点A 在O 上滑动,直角顶点B 恰好落在x 轴的正半轴上,若BC 边与O 相切于点M ,求点B 的坐标;(3)请在备用图上继续操作:将三角板的顶点A 继续在O 上滑动,直角顶点B 恰好落在O 上且在y 轴右侧,BC 边与y 轴的正半轴交于点G ,与O 的另一交点为H ,若1PG =,求GH 的长.【答案】(1)533(2)()41,0B (3)253-或3【解析】【分析】(1)连接OD ,得出30DOA ∠=︒,根据含30度角的直角三角形的性质,勾股定理即可求得AD 的长;(2)连接OM ,设线段AB 交O 于点E ,过点O 作ON AB ⊥于N ,得出四边形ONBM 是矩形,根据垂径定理以及矩形的性质得出5,3OE NE ==,在Rt NEO 中,勾股定理求得ON ,Rt OMB 中,勾股定理求得OB ,即可求得点B 的坐标;(3)分类讨论,①当G 在P 点上方时,过点O 作OF BC ⊥于点F ,连接AH ,根据90度角所对的弦是直径,得出AH 是O 的直径,进而勾股定理求得HB ,垂径定理求得HF ,在Rt HOF 中,得出OF ,在Rt GFO 中求得FG ,继而根据GH FG HF =-即可求解;②当G 点在P 点下方时,过点O 作OX HB ⊥,同一法证明点,G X 重合,进而垂径定理即可求解.【小问1详解】如图,连接OD ,∵边AB 恰好与O 相切于点D ,∴OD AB ⊥,∵9030B ACB ∠=︒∠=︒,,∴∥OD BC ,∴30DOA ∠=︒,。
山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)
高新区2024-2025学年第一学期九年级数学期中学业水平测试试题(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个实木正方体内部有一个圆锥体空洞,它的左视图是( )A. B. C. D.2.若a4=b3,则ab的值是( )A.34B.43C.12D.1123.对于反比例函数y=﹣6x的图象,下列说法正确的是()A.它的图象分布在一、三象限B.它的图象与坐标轴可以相交C.它的图象经过点(-4,-1.5)D.当x<0时,y的值随x的增大而增大4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则sinB=( )A.35B.45C.√74D.34(第4题图)(第5题图)(第7题图)5.如图,DE∥BC,且EC:BD=2:3,AD=6,则AE的长为()A.1B.2C.3D.46.函数与y=kx与y=kx-k(k≠0)在同一平面直角坐标系中的大致图象是( )7."今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?"这是我国古代数学著作《九章算术》中的"井深几何"问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD ,设井深为x 尺,下列所列方程中,正确的是( )A.5x =0.45B.x5+x=50.4C.x5﹣x=0.45D.x5+x=0.45A. B. C. D.9.根据图①所示的程序,得到了y与x的函数图象,如图②.若点M是y轴正半轴上任意一点,过点;②△OPO的面积为定M作PQ平行x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x值;③x>0时,y随x的增大而增大;④MQ=2PM;⑤∠POO可以等于90°。
其中正确结论是()A.①②⑤ B.②④⑤ C.③④⑤ D.②③⑤(第9题图)(第10题图)10.如图,正方形ABCD中,点E是CD边上一点,连结BE,以为对角线BE作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF ⊥BD;④2BG2=BH·BD,你认为其中正确的有()A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分。
2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)
2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版九年级(九上全册)。
5.难度系数:0.69。
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。
人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
∴不等式mx+n>ax2+bx+c的解集是:x<-1或x>4.
故答案为:x<-1或x>4.
【点睛】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键.
16.24或25##25或24
【解析】
A.2B.3C.-2D.-1
7.a是方程 的一个根,则代数式 的值是()
A. B. C. D.
8.已知抛物线 的对称轴是直线 ,则实数 的值是()
A.2B. C.4D.
9.把二次函数 的图象先向右平移3个单位,再向上平移1个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()
A. B.
C D.
(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;
(2)当矩形场地面积为160平方米时,求AD的长.
22.某商品交易会上,某商场销售一批纪念品,进价时每件为38元,按照每件78元销售,平均每天可售出20件,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每个纪念品降价2元,则平均每天多销售4件.
∴方程ax2+bx+c﹣m=0没有实数根时,
∴抛物线 -m顶点在x轴下方
,
故④正确,
⑤∵对称轴x=﹣1=﹣ ,
∴b=2a,
∵a+b+c<0,
∴3a+c<0,
故⑤正确,
所以正确的选项有②③④⑤,
故选:C.
【点睛】本题考查二次函数图象与系数的关系,一元二次方程根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
2023—2024学年九年级上学期11月期中数学试题+
2023-2024学年九年级上学期11月期中数学试题一、选择题:本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合要求.1.下列与杭州亚运会有关的图案中,中心对称图形是()2.用配方法解方程x2+6x+4=0时,原方程变形为()A.(x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=43.二次函数y=﹣x2的图象向右平移2个单位,向上平移5个单位,则平移后的二次函数解析式为()A.y=﹣(x+2)2+5B.y=﹣(x+2)2﹣5C.y=﹣(x﹣2)2+5D.y=﹣(x﹣2)2﹣54.若关于x的一元二次方程k x2+2x﹣1=0有实数根,则k的取值范围是()A.k≥1且k≠0B.k≥﹣1C.k>﹣1D.k>﹣1且k≠05,如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点A顺时针旋转60°得到△AED,连接BE,则BE 的长为()A.5B.4C.3D.2第5题第7题第9题6.已知二次函数y=3(x﹣1)2+1的图象上有A(1,y1),B(2,y2),C(﹣2,y3)三个点,则y1,y2,y3的大小关系是()A. y1 >y2>y3B.y2>y1>y3C. y3>y1>y2D.y3>y2>y17,如图所示,在⊙O中,直径AB=10,弦DE⊥AB于点C,连接DO.若OC:OB=3:5,则DE的长为()A.3B. 4C. 6D. 88,某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x) 2=256B.256(1﹣x) 2=289C.289(1﹣2x) 2=256D.256(1﹣2x) 2=2899.在直径为10cm的圆柱形油槽内装入一些油后,截面如图,油面宽AB为6cm,当油面宽AB为8cmA.1B.7C.1或7D.3或410.已知抛物线y=ax2+b x+c(a<0),经过点(﹣3,0)(1,0).判断下列结论:①a bc>0;②a﹣b+c<0;③若m是任意实数,则a m2+b≤a﹣bm;④方程ax2+bx+c=﹣1有两个不相等的实数根;⑤无论a、b、c取何值,抛物线定过(,0)其中正确结论的个数()A. 2B. 3C. 4D. 5二、填空题:本大题共6小题,每小题3分,共18分.11.抛物线y=(x﹣2)2﹣5的顶点坐标是_____12.已知关于x的一元二次方程x2﹣3x﹣=0两个根为x1、x2,则x1+x2=____13.已知m 是一元二次方程x2﹣x﹣2=0 的一个根,则2022+m2﹣m=_____14.如图,在平面直角坐标系中,若直线y=m x+n与抛物线y=ax2+b x+c交于A(﹣1,p)、B (2,q)则关于x的不等式m x+n<ax2+b x+c的解集是_____15.如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为_____16.如图,在△ABC中,∠C=90°,∠B=36°,将△ABC绕点A顺时针方向旋转α(0° <α<180°)得到△ABC',BC交AB'于点F,连接BB',则当△BB'F是等腰三角形时,旋转角α=_____第14题第15题第16题三、解答题(一):本大题共 3 小题,每小题7分,共21分。
安徽省安庆市大观区安庆市第四中学2024-2025学年九年级上学期11月期中数学试题
安庆四中2024-2025学年第一学期九年级数学期中考试试卷一.选择题(本大题共10小题,每小题4分,满分40分)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x22.如果,那么的值是()A.B.C.D.3.下列各组中的四条线段成比例的是()A.1,1,2,3B.3,6,4,7C.5,6,7,8D.2,3,6,9 4.对于抛物线y=(x﹣1)2﹣1,下列说法正确的是()A.抛物线的开口向下B.有最大值,最大值是﹣1C.抛物线的顶点坐标是(1,1)D.当x>3时,y随x的增大而增大5.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:那么方程x2+3x﹣5=0的一个近似根是()A.1.4B.1.1C.1.2D.1.36.观察下列每组三角形,不能判定相似的是()7.在反比例函数的图象上有三个点(﹣2,y1),(﹣1,y2),,则y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y3<y2C.y1<y2<y3D.y3<y2<y18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=﹣2,记m=a+b,n=a﹣b,则下列选项中一定成立的是()A.m=n B.m<n C.m>n D.n﹣m<39.如图,在△ABC中,AD是BC边上中线,F是AD上一点,且AF:FD=1:5,连接CF并延长交AB 于E,则AE:EB等于()A.1:6B.1:8C.1:9D.1:1010.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或B.﹣3<n<﹣1或C.n≤﹣1或D.﹣3<n<﹣1或n≥1二.填空题(本大题共4小题,每小题5分,满分20分)11.若点C是线段AB的一个黄金分割点,AB=2,AC>BC,则AC的长为12.已知一条抛物线的形状与抛物线y=2x2+3形状相同,与另一条抛物线y=﹣(x+1)2﹣2的顶点坐标相同,这条抛物线的表达式为.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点为(1,0),则关于x的不等式ax2+bx+c>0的解集为.14.如图,矩形OABC顶点A、C分别在x、y轴上,双曲线分别交BC、AB于点D、E,连接DE并延长交x轴于点F,连接AC.下列结论:①DE∥CA;②S四边形ACDF=k;③若BD=2CD,则AE=2BE;④若点E为DF的中点,且S△AEF=3,则k=12;其中正确的有.(填写所有正确结论的序号)三.解答题(本大题共9小题,满分90分)15.(本题8分)已知线段a、b满足a:b=3:2,且a+2b=42.(1)求线段a、b的长;(2)若线段c是线段a、b的比例中项,求线段c的长.16.(本题8分)如图,在△ABC中,D、E、F分别是AB、BC上的点,且DE∥AC,AE∥DF,,BF=9cm,求EF和FC的长.17.(本题8分)综合与实践:【问题情景】某生物小组探究“酒精对人体的影响”,资料显示,一般饮用低度白酒100毫升后,血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似的用如图所示的图象表示.国家规定,人体血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.【实践探究】(1)求部分双曲线BC的函数表达式;【问题解决】(2)参照上述数学模型,假设某人晚上20:00喝完100毫升低度白酒,则此人第二天早上9:00能否驾车出行?请说明理由.18.(本题8分)如图,等腰直角△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点E是CA 延长线上一点,点F是AB上一点,且∠EDF=45°.(1)求证:△BFD∽△CDE;(2)若BF=3,CE=8,求AB的长.19.(本题10分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,=;(填两数字之比)(2)如图②,在线段AB上找一点P,使=(利用网格和无刻度的直尺作图,保留痕迹,不写作法);(3)如图③,大小4×4的正方形方格中,△ABC的顶点A,B,C都在小正方形的格点上,请在图中画出与△ABC相似且面积不相等的一个三角形.20.(本题10分)已知二次函数y=x2﹣2ax+3﹣2a.(1)当抛物线过点(2,1),①求该抛物线的表达式.②当﹣1<x<4时,求y的范围.(2)若函数图象上有两个不同的点A(x1,y1),B(x2,y2),且x1+x2=﹣2,求证:y1+y2>8.21.(本题12分)综合与实践:利用正方形硬纸板设计制作带盖长方体盒子四边形ABCD是边长均为30cm的正方形硬纸片,“睿智小组”设计出不同方式的带盖长方体包装盒,并画出了示意图(图①,图③)及折合成的带盖长方体盒子(图②、图④),其中,实线表示剪切线,虚线表示折痕(设计、折合及计算过程中,纸板厚度及剪切接缝处损耗忽略不计),请你观察、操作、验证并思考完成该小组提出的问题.设计方案一:如图①,将正方形硬纸片ABCD的四个角分别剪去大小相同的两个正方形和两个长方形(阴影部分所示),再沿虚线折合得到一个底面为长方形MNQP的包装盒(如图②所示).(1)若底面积MNQP为162cm2,求MG的长.设计方案二:如图③,将正方形硬纸板ABCD切去四个全等的等腰直角三角形(阴影部分所示),其中点E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图④所示),形成有一个底面为正方形GHMN的包装盒,设GF=x cm.(2)请直接写出线段BF的长(用含x的代数式表示);(3)求长方体盒子的侧面积为S(cm2)与x的函数关系式.22.(本题12分)如图(1),点P是菱形ABCD对角线BD上的一点,连接AP,以AP为腰在AP的右侧作等腰三角形APE,且使∠APE=∠ABC,AP=PE.(1)当点E在菱形ABCD内,=1时,=;(2)如图(2),当点E在菱形ABCD内,=k(k≠1),其他条件不变时,求值;(3)如图(3),当点E在菱形ABCD外,=,BP=6,菱形ABCD的面积为8,其他条件不变,请直接写出△DCE的面积.23.(本题14分)如图,抛物线y=ax2+bx÷4经过点A(﹣2,0),点B(4,0),与y轴交于点C,过点C作直线CD∥x轴,与抛物线交于点D,作直线BC,连接AC.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD+∠CAO=90°的点E的坐标;(3)点M在y轴上,且位于点C的上方,点N在直线BC上,点P为直线BC上方抛物线上一点,是否存在点N使四边形CMPN为菱形,如果存在,请直接写出点N的坐标.如果不存在,请说明理由.。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 2.下列方程中是一元二次方程的是( )A .21xy +=B .21902x x+-= C .20ax bx c ++= D .20x =3.如图,已知AB∥CD∥EF 且AC∥CE =3∥4,BF =14,则DF 的长为( )A .8B .7C .6D .34.已知二次函数2287y x x =++的图象上有点()12,A y -,()25,B y -,()31,C y -,则1y 、2y 、3y 的大小关系为( )A .123y y y >>B .213y y y >>C .231y y y >>D .311y y y >>5.如图,∥ABC 与∥BEF 位似,点O 是它们的位似中心,其中OE=2OB ,则∥ABC 与∥DEF 的周长之比是( )A .1:2B .1:4C .1:3D .1:96.现要在一个长为40m ,宽为26m 的矩形花园中修建等宽的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为2950m ,那么小道的宽度应是( )A .1mB .1.5mC .2mD .2.5m7.如图,在平面直角坐标系中,线段OA 与x 轴正方向夹角为45︒,且2OA =,若将线段OA 绕点O 沿逆时针方向旋转105︒到线段OA ',则此时点A '的坐标为( )A .1)-B .(-C .(D .(1,8.如图,Rt ABC △中,90C ∠=︒,30A ∠=︒,20AB =,点P 是AC 边上的一个动点,将线段BP 绕点B 顺时针旋转60︒得到线段BQ ,连接CQ ,则在点P 运动过程中,线段CQ 的最小值为( )A .5B .10C .20D .259.已知12x x 、是方程2320x x -+=的两根,则12x x += ,12x x = . A .-3,2 B .-3,-2 C .3 , 2 D .2,310.某数学复习课上,数学老师用几何画板上画出二次函数y =ax 2+bx+c (a≠0)图象如图所示,四名同学根据图象,说出下列结论:李佳:abc <0:王宁:2a ﹣b <0:孙浩:b 2>4ac一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2,你认为其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题 11.若y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数,则m =___.12.已知0是关于x 的一元二次方程22(1)10m x x m -++-=的一个根,则m 的值是______. 13.把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为_________14.如图,小明为了测量高楼MN 的高度,在离点18N 米的点A 处放了一个平面镜,小明沿NA 方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M ,已知小明的眼睛(点B )到地面的高度BC 是1.6米,则高楼MN 的高度是______.15.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为______.16.如图,点A 在数轴的负半轴,点B 在数轴的正半轴,且点A 对应的数是21x -,点B 对应的数是2x x +,已知5AB =,则x 的值为______.17.将二次函数y =x 2﹣5x ﹣6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x+b 与这个新图象有3个公共点,则b 的值为_____.三、解答题18.解方程:(1)2531x x x -=+(2)3(21)42x x x +=+19.如图,在平面直角坐标系中,已知ABC 三个顶点的坐标分别为()()()1,2,3,4,2,6A B C ---.(1)画出ABC 绕点A 顺时针旋转90︒后得到的111A B C △,写出点1C 的坐标.(2)以原点O 为位似中心,在网格内画出将111A B C △三条边放大为原来的2倍后得222A B C △,写出点2B 的坐标.20.已知关于x 的方程2(1)2(1)0x m x m -++-=()求证:无论m 取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.21.如图,在ABC 中,PC 平分ACB ∠,PB PC =.(1)求证:APC ACB;(2)若2AP=,5PC=,求AC的长.22.如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约53米,铅球落地点在B处,铅球运行中在运动员前4米处(即4OC=)达到最高点,最高点高为3米,已知铅球经过的路线是抛物线.根据图示的直角坐标系回答下列问题.(1)求铅球所经过路线的函数表达式.(2)铅球的落地点离运动员有多远?23.如图,在Rt∥ABC中,∥ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA 边上以5cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若∥BPQ和∥ABC相似,求t的值;(2)连接AQ,CP,若AQ∥CP,求t的值.24.如图,抛物线2:3L y ax bx=++与x轴交于A、(3,0)B两点(A在B的左侧),与x轴交于A、B两点,且点B坐标为(3,0)与y轴交于点C,已知对称轴1x=.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围:△能否成为以点P为直角(3)设点P是抛物线L上任一点,点Q在直线:3l x=-上,PBQ顶点的等腰直角三角形?若能,求出符合条件的点P的坐标:若不能,请说明理由.25.商场销售某种电子产品,每个进货价为40元,调查发现,当销售价格为60元时,平均每天能销售100个;当销售价每降价1元时,平均每天多售出10个,该商场要想使得这种电子产品的销售利润平均每天达到2240元.(1)每个电子产品的价格应该降价多少元?(2)在平均每天利润不变的情况下,为尽可能赢得市场,需要让利于顾客,该商场应该将该电子产品按照几折优惠销售?(3)当定价为多少时,商场每天销售该电子产品的利润最大?最大利润是多少?∠=,点P是平面内不与点A、C重合的任意一点,连26.在ABC中,CA CB=,ACBα接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD、BD、CP.(1)如图(1),当60α=︒时,BD CP的值是______,直线BD 与直线CP 相交所成的较小角的度数是______. (2)如图(2),当90α=︒时,请求出BD CP的值及直线BD 与直线CP 相交所成的较小角的度数. (3)如图(3),当90α=︒时,若点E 、F 分别是CA 、CB 的中点,点P 在直线EF 上,请直接写出当点C 、P 、D 在同一直线上时AD CP的值.参考答案1.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】【分析】根据一元二次方程的定义:含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,据此逐项分析即可解题.【详解】解:A、21xy+=含有2个未知数,不是一元二次方程,故A不符合题意;B、2190 2xx+-=含有分式,不是一元二次方程,故B不符合题意;C、20ax bc c++=,当0a=不是一元二次方程,故C不符合题意;D、20x=,是一元二次方程,故D符合题意;故选D.【点睛】本题考查一元二次方程的概念,是基础考点,难度较易,掌握相关知识是解题关键.3.A【解析】【分析】根据平行线分线段成比例定理即可得到结论.【详解】解:由题意:∥AB∥CD∥EF,∥AC∥CE=BD∥DF=3∥4,所以设BD=3x,DF=4x,所以3x+4x=14,即x=2,∥DF=4x=8故答案选:A【点睛】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.4.C【解析】【分析】先求出二次函数y=2x2+8x+7的图象的对称轴,然后判断出A(-2,y1),B(-5,y2),C(-1,y3)在抛物线上的位置,再求解.【详解】解:∥二次函数y=2x2+8x+7中a=2>0,∥开口向上,对称轴为x=-2,∥A(-2,y1)中x=-2,y1最小,B(-5,y2),点B关于对称轴的对称点B′横坐标是2×(-2)-(-5)=1,则有B′(1,y2),因为在对称轴得右侧,y随x得增大而增大,故y2>y3.∥y2>y3>y1.故选:C.【点睛】此题考查二次函数图象上点的坐标特征,关键是掌握二次函数图象的性质.5.A【解析】【分析】利用位似的性质得∥ABC∥∥DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∥∥ABC与∥DEF位似,点O为位似中心.∥∥ABC∥∥DEF,OB:OE= 1:2,∥∥ABC与∥DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.A【解析】【分析】设小道的宽度应为x m,则剩余部分可合成长为(40-2x)m,宽为(26-x)m的矩形,根据矩形的面积计算公式,结合种植花草的面积为950m2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小道的宽度应为x m ,则剩余部分可合成长为(402)m x -,宽为(26)m x -的矩形, 依题意得:(402)(26)950x x --=,解得,11x =,245x =.4540>(不合题意,舍去),1x ∴=.答:小道进出口的宽度应为1米.故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.C【解析】【分析】过点A '作A B x '⊥轴,由旋转可知10545150A Ox ∠=︒+︒='︒,进而可得30A OB '∠=︒,进而根据含30度角的直角三角形的性质求得A B ',勾股定理求得OB ,根据A '在第二象限,即可求得点A '的坐标.【详解】解:如图,过点A '作A B x '⊥轴,由旋转可知10545150A Ox ∠=︒+︒='︒,30A OB '∴∠=︒在Rt A OB '△中,11122A B A O AO ''∴===BO A '在第二象限,A '∴(故选C【点睛】本题考查了坐标与图形,旋转的性质,含30度角的直角三角形的性质,求得30A OB '∠=︒是解题的关键.8.A【解析】【分析】如图,取AB 的中点T ,连接PT ,过点T 作TH∥AC 于H .证明∥TBP∥∥CBQ (SAS ),推出CQ=PT ,根据垂线段最短可知,当点P 与H 重合时,PT 的值最小,最小值=TH=12AT=5.【详解】解:如图,取AB 的中点T ,连接PT ,过点T 作TH∥AC 于H .∥∥ACB=90°,∥A=30°,∥AB=2BC ,∥ABC=60°,∥AT=TB ,∥BC=BT ,∥BP=BQ ,∥CBT=∥PBQ ,∥∥CBT -∥PBC=∥PBQ -∥PBC ,即∥TBP=∥CBQ ,∥∥TBP∥∥CBQ (SAS ),∥CQ=PT ,根据垂线段最短可知,当点P 与H 重合时,PT 的值最小,最小值=TH=12AT=14AB=5,∥CQ 的最小值为5.故选A【点睛】本题考查旋转变换,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.9.C【解析】【分析】根据一元二次方程根与系数的关系,x 1+x 2=−b a ,12cx x a =即可进行作答.【详解】由一元二次方程x 2-3x+2=0,知a=1,b=-3,c=2,又∥x1、x 2是一元二次方程x 2-3x+2=0的两根,∥x 1+x 2=−b a =3,12cx x a ==2.故选C.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握关系式是解题的关键.10.B【解析】【分析】根据二次函数的性质结合图象逐项分析可得解.【详解】解:对称轴在左侧,故ab 同号,c <0,故李佳:abc <0正确;函数对称轴:x =2ba -<﹣1,解得:2a <b ,故王宁:2a ﹣b <0正确;函数和x 轴有两个交点,b 2﹣4ac >0,故孙浩:b 2>4ac 正确;x =﹣3时,y 1<0,而x =1时,y 2>0,故一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2错误;故选B .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.﹣4【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:∥y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数,∥|m|﹣2=2,m ﹣4≠0,解得:m =﹣4 .故答案为:﹣4.【点睛】本题考查了二次函数的定义.二次函数的定义:一般地,形如y =ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y =ax 2+bx+c (a 、b 、c 是常数,a≠0)也叫做二次函数的一般形式.12.-1【解析】【分析】把x=0代入已知方程,列出关于m 的新方程,通过解新方程可以求得m 的值.【详解】解:∥x=0是关于x 的一元二次方程22(1)10m x x m -++-=的一个根,∥m 2-1=0且m -1≠0,即m 2=1且m≠1,解得 m=-1.即m 的值是-1.故答案为:-1.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.23(3)2y x =-+【解析】【分析】按照“左加右减,上加下减”的规律得出即可.【详解】解:23y x =先向上平移2个单位,得到232y x =+,再向右平移3个单位23(3)2y x =-+. 得到抛物线的解析式为23(3)2y x =-+.故答案为:23(3)2y x =-+.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,解题的关键是掌握左加右减,上加下减.14.19.2米【解析】【分析】根据相似三角形的判定定理证明BCA ∥MNA △,再利用相似三角形的性质求解即可.【详解】解:由题意得:BC∥CA ,MN∥AN ,∥∥C =∥MNA =90°,由光的反射原理可得:∥BAC =∥MAN ,∥BCA ∥MNA △, ∥BC AC MN AN =,即118.6 1.5MN =, ∥MN =19.2米.故答案为:19.2米.【点睛】本题考查了相似三角形的判定定理与性质,熟练掌握相似三角形的判定定理及性质是解题的关键.15.24︒【解析】【分析】根据旋转可得AB AB '=,由已知条件AB CB ''=,根据等边对等角可得B AC C '∠=∠,AB B B '∠=∠,根据三角形的外角性质可得2AB B C '∠=∠,根据三角形内角和可得1802BAB B '∠=︒-∠,根据108BAC ∠=︒即可求得C '∠的度数【详解】AB CB ''=B AC C '∴∠=∠2AB B C '∴∠=∠将ABC 绕点A 按逆时针方向旋转得到AB C ''△.AB AB '∴=,C C '∠=∠AB B B '∴∠=∠1802BAB B '∴∠=︒-∠1804C =︒-∠108BAC ∠=︒1802BAC CAB B AB C B ''∴∠=∠+∠=∠+︒-∠18041803C C C =∠+︒-∠=︒-∠24C ∴∠=︒24C '∴∠=︒故答案为:24︒【点睛】本题考查了旋转的性质,三角形内角和定理,三角形的外角性质,掌握旋转的性质是解题的关键.16.-2【解析】【分析】根据数轴上点的位置可得2210x x x -<<+,即可得到()2215AB x x x =+--=,由此解方程,再根据210x -<即12x <进行求解即可. 【详解】解:由数轴上点的位置可得2210x x x -<<+,∥()2215AB x x x =+--=即260x x --=,∥()()230+-=x x ,解得3x =或2x =-,∥210x -<即12x <, ∥2x =-,故答案为:-2.【点睛】本题主要考查了数轴上两点的距离,解一元二次方程,解题的关键在于能够熟练掌握数轴上两点的距离以及解一元二次方程的方法.17.﹣12或﹣734. 【解析】【分析】如图所示,过点B 作直线y=2x+b ,将直线向下平移到恰在点C 处相切,则一次函数y=2x+b 在这两个位置时,两个图像有3个交点,即可求解.【详解】解:如图所示:过点B 的直线y =2x+b 与新抛物线有三个公共点,将直线向下平移到恰在点C 处相切,此时与新抛物线也有三个公共点,令y =x 2﹣5x ﹣6=0,解得:x =﹣1或6,即点B 坐标(6,0),将一次函数与二次函数表达式联立得:x 2﹣5x ﹣6=2x+b ,整理得:x 2﹣7x ﹣6﹣b =0, ∥=49﹣4(﹣6﹣b )=0,解得:b =﹣734, 当一次函数过点B 时,将点B 坐标代入:y =2x+b 得:0=12+b ,解得:b =﹣12, 综上,直线y =2x+b 与这个新图象有3个公共点,则b 的值为﹣12或﹣734; 故答案是:﹣12或﹣734. 【点睛】本题考查的是二次函数与坐标轴的交点,涉及到一次函数、根的判别式、翻折的性质等知识点,画出图像确定临界点在图像上的位置是解答本题的关键.18.(1)115x =-,21x =;(2)123x =,212x =- 【解析】【分析】(1)先移项,然后利用因式分解的方法解一元二次方程即可;(2)先去括号,然后移项合并,最后利用因式分解的方法解一元二次方程即可.【详解】解:(1)∥2531x x x -=+,∥25410x x --=,∥()()5110x x +-=, 解得115x =-,21x =; (2)∥3(21)42x x x +=+,∥26342x x x +=+,∥2620x x --=,∥()()21320x x +-=, 解得123x =,212x =-. 【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法. 19.(1)图见解析,1(3,3)C ;(2)图见解析,1(3,3)C【解析】【分析】(1)画出旋转后的对应顶点,再顺次连接即可;根据点的位置,写出坐标即可;(2)根据位似性质,画出放大后的对应顶点,再顺次连接即可;根据点的位置,写出坐标即可;【详解】解:(1)如图,111A B C △为所求作的三角形,1(3,3)C .(2)如图所示,则222A B C △为所求作的三角形,()22,8B .【点睛】本题考查了平面直角坐标系坐标系中画图,涉及到旋转与位似,解题关键是明确旋转和位似的性质,准确进行画图.20.(1)见详解;(2)4和2【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出Δ=(m -3)2∥0,由此即可证出:无论m 取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.【详解】解:(1)证明:∥∥=[-(m+1)]2-4×2(m -1)=m 2-6m+9=(m -3)2≥0,∥无论m 取何值,这个方程总有实数根;(2)若腰长为4,将x=4代入原方程,得:16-4(m+1)+2(m -1)=0,解得:m=5,∥原方程为x 2-6x+8=0,解得:x 1=2,x 2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∥∥=0,即m=3,此时方程为x 2-4x+4=0,解得:x 1=x 2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【点睛】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ∥0时,方程有实数根”;(2) 分腰长为4和底边长度为4两种情况分别求解.21.(1)见解析;(2)AC 【解析】【分析】(1)利用角平分线及等腰三角形性质,可得出ACP ABC ∠=∠,同时两个三角形有一个公共角,即可得出两个三角形相似;(2)利用(1)中相似三角形的对应边成比例,将已知边代入即可求出答案.【详解】(1)∥PC 平分ACB ∠,PB PC =,∥ACP BCP ∠=∠,BCP ABC ∠=∠,∥ACP ABC ∠=∠.又∥CAP BAC ∠=∠,∥APC ACB ;(2)由(1)可知:APC ACB ,且5PB PC ==,2AP =, ∥257AB AP BP =+=+=,∥AC AP AB AC=, ∥27214AC AB AP =⋅=⨯=,∥AC =【点睛】本题主要考察相似三角形的判定和性质,理解掌握判定定理及性质是解答本题关键. 22.(1)()214312y x =--+;(2)铅球的落地点离运动员有10米远 【解析】(1)根据题意得A 点坐标为(0,53),D 点坐标为(4,3),且D 为抛物线的顶点,故可将抛物线解析式设为顶点式,然后代入A 点坐标求解即可;(2)令0y =,求出x 的值,再根据B 点在x 轴正半轴求出B 点坐标,则OB 的长即为所求.【详解】解:(1)由题意得:A 点坐标为(0,53),D 点坐标为(4,3),且D 为抛物线的顶点, ∥设抛物线的解析式为()243y a x =-+, ∥()250433a =-+, ∥112a =-, ∥抛物线解析式为()214312y x =--+; (2)令0y =,则()2104312x =--+, ∥()2436x -=, 解得10x =或2x =-(因为B 点在x 轴正半轴),∥B 点坐标为(10,0),∥OB=10∥铅球的落地点离运动员有10米远,答:铅球的落地点离运动员有10米远.【点睛】本题主要考查了求二次函数解析式,二次函数与x 轴的交点问题,解题的关键在于能够熟练掌握二次函数的相关知识.23.(1)t的值为1s或3241s;(2)t的值为78s.【解析】(1)根据勾股定理即可得到结论;分两种情况:∥当∥BPQ∥∥BAC时,∥当∥BPQ∥∥BCA 时,根据相似三角形的性质,把BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM∥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,根据∥ACQ∥∥CMP,得出AC:CM=CQ:MP,代入计算即可.【详解】解:(1)∥∥ACB=90°,AC=6cm,BC=8cm,(cm),分两种情况讨论:∥当∥BPQ∥∥BAC时,BP BQ BA BC=,∥BP=5t,QC=4t,AB=10,BC=8,∥584 108t t-=,解得,t=1,∥当∥BPQ∥∥BCA时,BP BQ BC BA=,∥584 810t t-=,解得,t=32 41,∥t=1s或3241s时,∥BPQ∥∥BCA;(2)过P作PM∥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,MC=8-4t,∥PM∥BC,∥ACB=90°,∥PM∥AC,∥∥BPM∥∥BAC,∥BP PM BM BA AC BC==,即51068t PM BM ==, ∥PM=3t ,BM=4t ,MC=8-4t ,∥∥NAC+∥NCA=90°,∥PCM+∥NCA=90°,∥∥NAC=∥PCM ,∥∥ACQ=∥PMC ,∥∥ACQ∥∥CMP , ∥AC CQ CM MP =, ∥64843t t t=-, 解得t=78. 【点睛】本题考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,由三角形相似得出对应边成比例是解题的关键.24.(1)2y x 2x 3=-++;(2)24h ≤≤;(3)能,点P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭【解析】 (1)根据对称性求得A 的坐标,进而待定系数法求二次函数解析式即可;(2)先求得BC 的解析式,再求得抛物线的顶点坐标,根据平移的特点求得h 的范围; (3)根据题意,点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,设2(,23)P m m m -++,(3,)Q n -,分P 点在x 轴的上方和下方两种情况讨论,证明MPQ ≌NBP △,根据6,MN PM PN PM BN =+==分别列出方程,解方程即可求解.【详解】解:(1)抛物线的对称轴为1x =,点B 坐标为(3,0)与y 轴交于点C ,∴(1,0)A -∥抛物线2:3L y ax bx =++过点(1,0),(3,0)A B -∥309330a b a b -+=⎧⎨++=⎩解得12a b =-⎧⎨=⎩ ∴抛物线L 的解析式为:2y x 2x 3=-++(2)抛物线L :2y x 2x 3=-++与y 轴交于点C()0,3C ∴()3,0B设直线BC 的解析式为y kx b =+将()3,0B ,()0,3C 代入303k b b +=⎧⎨=⎩解得13k b =-⎧⎨=⎩∴直线BC 的解析式为3y x =-+()222314y x x x =-++=--+∴顶点坐标为()1,4∴在直线BC 上,1x =时,2y = 平移后所得抛物线的顶点落在OBC 内(包括OBC 的边界),∴当2h =时,抛物线的顶点在直线BC 上,当4h =时,抛物线的顶点在x 轴上,即OB 上∴24h ≤≤(3)能,点P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭, 根据题意,点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,设2(,23)P m m m -++,(3,)Q n -, ∥当P 点在x 的上方时,过点P 作PM l ⊥于M ,过点B 作BN x ⊥轴交MP 的延长线于点N ,如图,∥PBQ △是以点P 为直角顶点的等腰直角三角形∥90,BPQ BP PQ ∠=︒=∥,PM MQ PN BN ⊥⊥∥90PMQ BNP ∠=∠=︒MPQ BPN NBP BPN ∴∠+∠=∠+∠MPQ NBP ∴∠=∠在MPQ 和NBP △中PMQ BNP MPQ NBP BP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MPQ ≌NBP △PM BN ∴=223PM BN m m ∴==-++()3,0B ,3PN m ∴=-,6MN PM PN =+=即22336m m m -+++-=解得121,0m m ==(1,4)P ∴或(0,3)∥当P 点在x 轴下方时,过点P 作PM l ⊥于M ,过点B 作BN x ⊥轴交MP 的延长线于点N ,如图,同理可得MPQ ≌NBP △PM BN ∴=()633PM m m ∴=--=+,223BN m m =--则2323m m m +=--解得12m m ==P ∴,⎝⎭⎝⎭综上所述P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭【点睛】本题考查了二次函数综合,待定系数法求二次函数解析式,二次函数的的平移,等腰直角三角形的性质,全等三角形的性质与判定,坐标与图形,解一元二次方程,第(3)问中,分类讨论,作出辅助线是解题的关键.25.(1)每个电子产品的价格应该降价4元或6元;(2)该商场应该将该电子产品按照九折优惠销售;(3)当x =55时,w 有最大值,最大值为2250元.【解析】【分析】(1)设每个电子产品的价格应该降价x 元,根据每个电子产品的利润乘以销售量,得一元二次方程,求解即可;(2)由(1)所求得的降价额,结合问题的实际意义,可得应降价多少,从而可得打几折优惠;(3)设定价为y 元,商场每天销售该电子产品的利润为w 元,根据题意列出函数关系式,写成顶点式,即可得问题的答案.【详解】解:(1)设每个电子产品的价格应该降价x 元,由题意得:(60﹣x ﹣40)(100+10x )=2240∥(x ﹣4)(x ﹣6)=0∥x 1=4,x 2=6∥每个电子产品的价格应该降价4元或6元.(2)在平均每天利润不变的情况下,为尽可能赢得市场,需要让利于顾客,该商场应该将该电子产品可以降价6元销售:(60﹣6)÷60=0.9∥该商场应该将该电子产品按照九折优惠销售..(3)设定价为y 元,商场每天销售该电子产品的利润为w 元,由题意得:w =(y ﹣40)[100+(60﹣y )×10]=(y ﹣40)(﹣10y+700)=﹣10y 2+1100y ﹣28000=﹣10(y ﹣55)2+2250∥二次项系数为﹣10<0∥当x =55时,w 有最大值,最大值为2250元.【点睛】本题考查了二次函数及一元二次方程在实际问题中的应用,明确成本利润问题的基本关系式及二次函数的性质,是解题的关键.26.(1)1,60︒;(2,45︒;(3)22+【解析】【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:∥如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题;∥如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .CA CB =,60ACB ∠=︒ABC ∴是等边三角形60CAB ∴∠=︒由旋转可得PA=PD ,∥APD=60°∥三角形PAD 是等边三角形60PAD CAB ∠=∠=︒,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆,PC BD ∴=,ACP ABD ∠=∠,AOC BOE ∠=∠,60BEO CAO ∴∠=∠=︒,1BDPC ∴=,线BD 与直线CP 相交所成的较小角的度数是60︒,故答案为1,60︒.(2)如图2中,,90CA CB ACB =∠=︒,将线段AP 绕点P 逆时针旋转90︒得到线段DP ,45,90,CAB CBA APD PA PD ∴∠=∠=︒∠=︒=,45PAD CAB ︒∴∠=∠=,,PAD CAB ∴△△是等腰直角三角形,,DA BA ∴==PAD DAC DAC CAB ∴∠+∠=∠+∠PAC DAB ∴∠=∠,AB AD AC AP ==DAB PAC ∴∆∆,PCA DBA ∴∠=∠,BDABPC AC ==,GHC AHB ∠=∠,45CGH HAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45EFC ABC ︒∴∠=∠=,45PAO ︒∠=,PAO OFH ∴∠=∠,POA FOH ∠=∠,H APO ∴∠=∠,90APC ︒∠=,EA EC =,PE EA EC ∴==,EPA EAP BAH ∴∠=∠=∠,H BAH ∴∠=∠,BH BA ∴=,45ADP BDC ︒∠=∠=,90ADB ︒∴∠=,BD AH ∴⊥,AD DH =∴90ACH ∠=︒12DC AH AD ∴== DA DC ∴=,设=AD a ,则DC AD a ==,2PD =,2AD CP ∴==如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,2PD =,PC a ∴=,2AD PC ∴== 综上所述,AD PC的值为22 【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
新九年级(上)数学期中考试题(含答案)
新九年级(上)数学期中考试题(含答案)一、选择题(每小题 4 分,共 40 分)1、圆内接四边形 A BCD 中,已知∠A =70°,则∠C =( ) A .20°B .30°C .70°D .110°2、⊙O 的半径为 5c m ,点 A 到圆心 O 的距离 O A =3cm ,则点 A 与圆 O 的位置关系为()A .点 A 在圆上B .点 A 在圆内C .点 A 在圆外D .无法确定3、将抛物线 y =x 2+1 向右平移 2 个单位,再向上平移 3 个单位后,抛物线的解析式为()A .y =(x +2)2+4B .y =(x ﹣2)2﹣4C .y =(x ﹣2)2+4D .y =(x +2)2﹣44、若圆锥的母线长是 12,侧面展开图的圆心角是 120°,则它的底面圆的半径为( )A .2B .4C .6D .85.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与 △CDE 对应边的比为 k ,则位似中心的坐标和 k 的值分别为()A .(0,0),2B .(2,2),12C .(2,2),2D .(2,2),3 6、如图,在△ABC 中,点 D 是 A B 边上的一点,若∠ACD =∠B ,AD =1,AC =3,△ADC 的面积为 1,则△ABC 的面积为( ) A .9B .8C .3D .27、如图,若二次函数 y =ax 2+bx +c (a ≠0)图象的对称轴为 x =1,与 y 轴交于 点 C ,与 x 轴交于点 A 、点 B (﹣1,0),则①二次函数的最大值为 a +b +c②a ﹣b +c <0;③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3.其中正确的个数是()A .1B .2C .3D .48、如图,在平行四边形A BCD 中,点E在C D 上,若D E:CE=1:2,则△CEF 与△ABF 的周长比为()A.1:2 B.1:3 C.2:3 D.4:99、圆心角为60°的扇形面积为S,半径为r,则下列图象能大致描述S与r的函数关系的是()A.B.C.D.10、对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m≤13B.m13<C.1312m<≤D.m12≤二、填空题(每题4分,共24 分)11 如图,△ABC 中,点D、E 分别在边A B、BC 上,DE∥AC.若B D=4,DA=2,BE=3,则E C=.12、在二次函数y=-x2 +2x+1的图像中,若y随x增大而增大,则x的取值范围是.13、如图,⊙O 与△ABC 的边A B、AC、BC 分别相切于点D、E、F,如果A B=4,AC=5,AD=1,那么B C的长为.第8题第11 题第13 题14、高4m 的旗杆在水平地面上的影子长6m,此时,旗杆旁教学楼的影长24m,则教学楼高m.15、若关于x的一元二次方程x2 -2x-k = 0 (k 为常数)在- 2 <x <3范围内有解,则k的取值范围是。
河南省南阳市宛城区2023-2024学年九年级上学期期中数学试题(含答案)
2023年秋期期中质量评估检测九年级数学试题卷注意事项:1.本试卷满分120分,考试时间100分钟.2.答题前,考生务必先将自己的姓名、考号、学校等填写在试题卷和答题卡相应的位置.3.考生作答时,将答案涂、写在答题卡上,在本试题卷上答题无效,4.考试结束,将答题卡和试题卷一并交回.一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1.下列关于的方程中,一定是一元二次方程的为( )A .B .C .D .2.下列二次根式中,最简二次根式是( )ABCD3.下列各组中的四条线段成比例的是( )A .B .C .D .4.下列运算正确的是()AB .C . D5.关于的方程的根的情况是( )A .有两个相等实数根B .有两个不相等实数根C .没有实数根D .有一个实数根6.在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点与成位似关系,则位似中心的坐标为( )A .B .C .D .x 2220x xy y ++=2230x x -+=210x x-=20ax bx c ++=4,6,5,10a b c d ====3,2,a b c d ====2,3,4,1a b c d ====2,a b c d ====+=3-=11÷==x 2320x kx --=ABC △DEF △()1,0-()0,0()0,1()1,07.若关于的方程配方后得到方程,则的值为( )A .B .0C .3D .98.如图,在四边形中,,则添加下列条件后,不能判定和相似的是()A .平分 B .C.D .9.在毕业季,3班同学互赠一寸相片留念,据统计,全班送出的相片共计2256张,则这个班有同学( )A .45位B .46位C .47位D .48位10.如图,在等边三角形中,是边上一点,且是边上一动点(两点均不与端点重合),作交边于点.若,当满足条件的点有且只有一个时,则的值为()A .2B .2.5C .3D .4二、填空题(每小题3分,共15分)11有意义,则的取值范围是____________.12.若是一元二次方程的根,则代数式的值为____________.13.用一个的值说明等式”不成立,这个的值可以是____________.14.如图,在某小区内拐角处的一段道路上,有一儿童在处玩要,一辆汽车从被楼房遮挡的拐角另一侧的处驶来(与相交于点),已知米,米,米,米,则汽车从处前行的距离____________米时,才能发现处的儿童.x 260x x c ++=2(3)2x c +=c 3-ABCD ADC BAC ∠=∠ADC △BAC △CA BCD ∠DAC ABC ∠=∠AC CD BC AC =AD CDAB AC=ABC 4,AB D =AB 1,BD P =BC D P 、60,DPE PE ∠=︒AC E CE a =P a x m 2210x x --=22m m -x x =x C A ,,CM DM BD DM BC ⊥⊥DM O 4OM =5CO =3DO =AO =A AB =C15.如图,中,,,点分别为上的动点,将沿折叠,使点们对应点恰好落在边上,当与相似时,的长为____________.三、解答题(共75分)16.(10分)计算:(12.17.(9分)解方程:(1);(2).18.(9分)已知关于的一元二次方程,其中分别为三边的长.(1)如果是方程的根,试判断的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断的形状,并说明理由:(3)如果是等边三角形,试求这个一元二次方程的根.19.(9分)如图,四边形为菱形,在的延长线上,.Rt ABC △90,4C AC ︒∠==3BC =P Q 、AB BC 、PQB PQ B D AC APD △ABC △AP -+(-+-2260x x -=2314x x +=x ()()220a c x bx a c +++-=a b c 、、ABC △1x =-ABC △ABC △ABC △ABCD E AC ACD ABE ∠=∠(1)求证:;(2)当时,求的长.20.(9分)为了满足初中学业水平体育与健康考试的需求,某体育用品专卖店从厂家以单价40元进购了一种排球,如果以单价60元出售,那么每月可售出400个,根据销售经验,销售单价每提高1元,销售量相应减少5个.(1)设销售单价提高x 元,则每个排球获得的利润是____________元,这种排球这个月的销售量是____________个;(2)若该专卖店准备在这种排球销售上一月获利10500元,同时又要使顾客得到实惠,则售价应定为多少元?21.(9分)某校项目式学习小组开展项目活动,过程如下:【项目主题】测量旗杆高度【问题驱动】能利用哪些科学原理来测量旗杆的高度?【组内探究】由于旗杆较高,需要借助一些工具来测量,比如自制的直角三角形硬纸板,标杆,镜子,甚至还可以利用无人机,…,确定方法后,先画出测量示意图,然后实地进行测量,并得到具体数据,从而计算旗杆的高度.【成果展示】下面是同学们进行交流展示时的部分测量方案:方案一方案二测量工具标杆,皮尺自制直角三角板硬纸板,皮尺ABC AEB △∽△6,4AB AC ==AE测量示意图及说明说明:线段表示旗杆,小明的眼睛到地面的距离,点都在同一竖直平面内,测点在同一水平直线上,三点在同一直线上.说明:线段表示旗杆,小明的身高,点都在同一竖直平面内,测点与在同一水平直线上,三点与三点分别在同一直线上.之间的距离之间的距离之间的距离的长度测量数据的长度的长度……请同学们根据上述材料.完成下列任务:任务一:根据上述方案及数据,请你选择一个方案,求出学校旗杆的高度.(结果精确到);任务二:(1)小字选择的测工具是镜子和皮尺,图③是该方案的示意图.其中线段表示学校旗杆,请直接写出需要测量长度的线段有哪些?(2)请写出一条利用小字设计的方案进行测量时的注意事项.22.(10分)阅读与思考:阅读下列材料并完成相应的任务.倍根方程如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.例如,一元二次方程的两个根是3和6,该方程可化简为,则方程就是“倍根方程”.任务:(1)请你再写出一个“倍根方程”____________(要求化成一般形式);AB 1.7m CD =A B C D E F 、、、、、F B D 、、A C E 、、AB 1.7m CD =A B C D E F G 、、、、、、D B A C E 、、C F G 、、B D 、16.8m B D 、16.8m D F 、 1.35m EF 0.50m EF 2.60mCE 0.75mAB 0.1m AB x ()200ax bx c a ++=≠()()360x x --=29180x x -+=29180x x -+=(2)研究发现了此类方程的一般性结论:设其中一根为,则另一个根为,因此,比较系数可得,,且,消去可得倍根方程中系数满足的关系式是____________.(3)若是倍根方程,求的值.23.(10分)【综合与实践】如图1,若顺次连接四边形各边中点所得四边形是矩形,则称原四边形为“中点矩形”,即如果四边形的对角线互相垂直,那么这个四边形称为“中点矩形”.图1 图2 图3 图4(1)如图2,在直角坐标系中,已知.①请在图中标出格点位罚(一点即可),使四边形是中点矩形;②写出(1)中点的坐标____________;③通过计算发现中点矩形的两组对边的平方和之间的数趣关系是____________.(2)如图3,以的边为边,向三角形外作正方形及,连接相交于点.判断四边形是否中点矩形?并说明理由;(3)如图4,在中,分别是的中点,连接.当四边形是中点矩形时,直接写出边的长.2023年秋期期中质量评估检测试卷九年级数学参考答案一、1~10BBDDB ACCDD二、11.; 12.-; 13.(任意负数都可以); 14.即5.75; 15.或.三、16.解:(1)原式t 2t ()()222232ax bx c a x t x t ax atx t a ++=--=-+3b at =-22c at =t 20ax bx c ++=,,a b c ()()()2100x mx n m --=≠222mnm n+ABCD EFGH ABCD xOy ()()()4,0,1,2,4,6A B C D ABCD D ABC △AB AC 、ABDE ACFG CE BG 、O BEGC ABC △3,4,BC AC D E ==、AC BC 、AE BD 、ABED AB 1x ≥-1-1-2342582073=-+;(2)原式17.解:(1)方程左边分解因式,得,所以或,得;(2)整理,得,,,即.18.解:(1)是等腰三角形;(若没写判断结果,但后续说明正确,不扣分)理由:是方程的根,,,是等腰三角形;(2)是直角三角形(注:若没写判断结果,但后续说明正确,不扣分);理由:方程有两个相等的实数根,,是直角三角形;(3)当是等边三角形时,,,可整理为,,解得:.19.(1)证明:四边形为菱形,,,;==22⎡⎤=--⎣⎦()1218=--165=-+=()230x x -=0x =30x -=120,3x x ==23410x x -+=23,4,3,Δ(4)43116124a b c ==-=∴=--⨯⨯=-= 426x ±∴==1211,3x x ==ABC △1x =- ()()2(1)20a c b a c ∴+⨯--+-=20,0,a c b a c a b a b ∴+-+-=∴-=∴=ABC ∴△ABC △ ()()2(2)40b a c a c ∴-+-=2222224440,,b a c a b c ABC ∴-+=∴=+∴△ABC △a b c ==()()220a c x bx a c ∴+++-=2220ax ax +=20,0a x x ≠∴+= 120,1x x ==- ABCD ACD BCA ∴∠=∠,ACD ABE BCA ABE ∠=∠∴∠=∠ ,BAC EAB ABC AEB ∠=∠∴ △∽△(2)解:,.20.解:;.(2)依题意得:,整理得:,解得:.又要使顾客得到实惠,,答:售价应定为70元.21.解:任务一:方案一:过作交于,交于,则四边形,四边形都是矩形,,,即:,解得:; 图① 图②方案二:,,即:,解得:;(1);(2)测量时的注意:多测两次,取其平均数,减小误差.22.解:(答案不唯一);(2);(3),,AB ACABC AEB AE AB∴= △∽△646,4,,96AB AC AE AE ==∴=∴= ()()120x +()4005x -()()20400510500x x +-=2605000x x -+=1210,50x x == 10x ∴=60601070.x ∴+=+=C CH BD ∥EF Q AB H CDFQ CDBH 1.35m,16.8m CQ DF CH BD ∴====,,CQ EQEQ AH CEQ CAH CH AH∴∴= ∥△∽△1.35 2.6 1.716.8 1.7AB -=-12.9m AB =,90.ACG ACG CGA AEF CEF CGA ∠=∠∠=∠=︒∴ △∽△CE EF CG AG ∴=0.750.516.8 1.7AB =-12.9m AB =CD BE DE 、、()21320x x -+=2902b ac -=()()()2100x mx n m --=≠或,解得,方程是倍根方程,或,或.当时,;当时,.综上所述,的值为或.23.解:(1)①图略;②或或;③相等;(2)四边形是中点矩形,理由如下:如图3,连接,设与交于点与交于点,正方形及,,,在和中, 图3,,四边形是中点矩形;(3210x ∴-=0mx n -=121,2n x x m== ()()()2100x mx n m --=≠111224n m ∴=⨯=1212n m =⨯=4m n ∴=m n =4m n =222224221629mn n m n n n ==++m n =22221233mn n m n n ==+222mn m n +2913()5,2D ()6,2()7,2BEGC ,,CG BE EG AC BG ,O AB CE H ABDE ACFG 90,,EAB GAC AG AC AE AB ︒∴∠=∠===EAC EAB BAC GAB GAC BAC ∴∠=∠+∠=∠=∠+∠EAC △BAG △,,.GA AC EAC GAB AE AB =⎧⎪∠=∠⎨⎪=⎩(),EAC BAG SAS ABG AEC ∴∴∠=∠△≌△,90,AHE OHB BOH EAH EC BG ∠=∠∴∠=∴︒∠=⊥ ∴BEGC。
九年级上册数学期中测试题及答案
九年级上册数学期中测试题(总分:120分时间:120分钟)班级:姓名:分数: .一、选择题1.下面图形中,是中心对称图形的是()A. B.C.D.2.方程x2=x的解是()A.x=1 B.x1=﹣1,x2=1 C.x1=0,x2=1 D.x=03.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9C.(x+8)2=23 D.(x﹣8)2=94.将抛物线y=2x2向上平移1个单位,再向右平移2个单位,则平移后的抛物线为()A.y=2(x+2)2+1 B.y=2(x﹣2)2+1 C.y=2(x+2)2﹣1 D.y=2(x﹣2)2﹣15.下列运动形式属于旋转的是()A.钟表上钟摆的摆动B.投篮过程中球的运动C.“神十”火箭升空的运动 D.传动带上物体位置的变化6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0 B.直线x=1C.直线x=﹣2 D.直线x=﹣17.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A.1 B.﹣1 C.2 D.﹣28.有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x个人,列出的方程是()A.x(x+1)=64 B.x(x﹣1)=64C.(1+x)2=64 D.(1+2x)=649.如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°10.如图,在△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为()A.(﹣1,﹣)B.(﹣1,﹣)或(﹣2,0)C.(﹣,1)或(0,﹣2)D.(﹣,1)11.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A.B.C.D.12.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是()A.①②③B.①③④C.①②③⑤D.①③⑤二、填空题13.抛物线y=﹣(x+1)2+2的顶点坐标为.14.方程x2﹣6x+9=0的解是.15.若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是.16.等边△ABC内有一点P,且PA=3,PB=4,PC=5,则∠APB= 度.17.已知二次函数y=3(x﹣1)2+1的图象上有三点A(4,y1),B(2,y2),C(﹣3,y3),则y1、y2、y3的大小关系为.18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=+1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3=+2…按此规律继续旋转,直至得到点P2026为止,则AP2016= .19.如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1,A1的坐标是.(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.(2)如图所示,△A2B2C2即为所求作的三角形.20.已知二次函数当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.21.解方程:(1)x2﹣x=3(2)(x+3)2=(1﹣2x)2.22.先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x ﹣3=0的解.23.将一块正方形铁皮的四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,盒子的容积是400cm3,求原铁皮的边长.24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E 点的坐标.25.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB.(3)如图3,若∠EDF的两边分别交AB、AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE、AB、CF之间的数量关系.九年级上册数学期中测试题(总分:120分时间:120分钟)班级:姓名:分数: .一、选择题1.下面图形中,是中心对称图形的是(D)A. B.C.D.2.方程x2=x的解是(C)A.x=1 B.x1=﹣1,x2=1 C.x1=0,x2=1 D.x=03.用配方法解一元二次方程x2+8x+7=0,则方程可化为(A)A.(x+4)2=9 B.(x﹣4)2=9C.(x+8)2=23 D.(x﹣8)2=94.将抛物线y=2x2向上平移1个单位,再向右平移2个单位,则平移后的抛物线为(B)A.y=2(x+2)2+1 B.y=2(x﹣2)2+1 C.y=2(x+2)2﹣1 D.y=2(x﹣2)2﹣15.下列运动形式属于旋转的是(A)A.钟表上钟摆的摆动B.投篮过程中球的运动C.“神十”火箭升空的运动 D.传动带上物体位置的变化6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为(C)A.直线x=0 B.直线x=1C.直线x=﹣2 D.直线x=﹣17.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为(A )A.1 B.﹣1 C.2 D.﹣28.有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x个人,列出的方程是(C)A.x(x+1)=64 B.x(x﹣1)=64C.(1+x)2=64 D.(1+2x)=649.如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是(A)A.150°B.120°C.90°D.60°10.如图,在△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为(B)A.(﹣1,﹣)B.(﹣1,﹣)或(﹣2,0)C.(﹣,1)或(0,﹣2)D.(﹣,1)11.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是(D)A.B.C.D.12.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是(D)C.①②③D.①③④C.①②③⑤D.①③⑤二、填空题13.抛物线y=﹣(x+1)2+2的顶点坐标为(﹣1,2).14.方程x2﹣6x+9=0的解是x1=x2=3 .15.若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是k≥4 .16.等边△ABC内有一点P,且PA=3,PB=4,PC=5,则∠APB=150 度.17.已知二次函数y=3(x﹣1)2+1的图象上有三点A(4,y1),B(2,y2),C(﹣3,y3),则y1、y2、y3的大小关系为y2<y1<y3.18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=+1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3=+2…按此规律继续旋转,直至得到点P2026为止,则AP2016=1344+672√2 .三、解答题19.如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1,A1的坐标是(6,﹣1).(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.【解答】解:(1)如图所示,△A1B1C1即为所求三角形,点A1的坐标是A1(6,﹣1);故答案为:(6,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形.20.已知二次函数当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.【解答】解:设y=a(x+1)2﹣4则﹣3=a(0+1)2﹣4∴a=1,∴抛物线的解析式为y=(x+1)2﹣4即:y=x2+2x﹣3.四、解答题21.解方程:(1)x2﹣x=3(2)(x+3)2=(1﹣2x)2.【解答】解:(1)x2﹣x﹣3=0,∵a=1,b=﹣1,c=﹣3,∴△=1+12=13>0,∴x=1±√13/2∴x1=1+√13/2;x2=1-√13/2(2)x+3=±(1﹣2x),即x+3=1﹣2x或x+3=2x﹣1,解得:x1=-2/3,x2=4.22.先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x ﹣3=0的解.【解答】解:原式=÷=•==∵a是方程x2+x﹣3=0的解,∴a2+a﹣3=0,即a2+a=3,∴原式=1/3.23.将一块正方形铁皮的四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,盒子的容积是400cm3,求原铁皮的边长.【解答】解:设原铁皮的边长为xcm,依题意列方程得(x﹣2×4)2×4=400,即(x﹣8)2=100,所以x﹣8=±10,x=8±10.所以x1=18,x2=﹣2(舍去).答:原铁皮的边长为18cm.五、解答题24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E 点的坐标.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+bx+c得,解得,c=2,∴抛物线的解析式为y=﹣1/2x2+3/2x+2.(2)存在.如图1中,∵C(0,2),D(,0),∴OC=2,OD=,CD==5/2①当CP=CD时,可得P1(3/2,4).②当DC=DP时,可得P2(3/2,5/2),P3(3/2,-5/2)综上所述,满足条件的P点的坐标为(3/2,4)或(3/2,5/2)或(3/2,-5/2).(3)如图2中,对于抛物线y=﹣1/2x2+3/2x+2,当y=0时,﹣1/2x2+3/2x+2=0,解得x1=4,x2=﹣1∴B(4,0),A(﹣1,0),由B(4,0),C(0,2)得直线BC的解析式为y=﹣1/2x+2,设E则F,EF=﹣=∴-1/2<0,∴当m=2时,EF有最大值2,此时E是BC中点,∴当E运动到BC的中点时,△EBC面积最大,∴△EBC最大面积=1/2×4×EF=1/2×4×2=4,此时E(2,1).25.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB.(3)如图3,若∠EDF的两边分别交AB、AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE、AB、CF之间的数量关系.【解答】解:(1)如图1中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4,∵点D是线段BC的中点,∴BD=DC=1/2BC=2,∵DF⊥AC,即∠CFD=90°,∴∠CDF=30°,又∵∠EDF=120°,∴∠EDB=30°,∴∠BED=90°∴BE=1/2BD=1.(2)如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE+CF=BM+EM+NC﹣FN=2BM=BD=1/2AB.(3)结论不成立.结论:BE﹣CF=1/2AB.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE﹣CF=BM+EM﹣(FN﹣CN)=2BM=BD=1/2AB.。
福建省福州市福清市2023-2024学年九年级上学期期中数学试题(含解析)
2023-2024学年度第一学期九年级校内期中质量检测数学试卷第Ⅰ卷注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.一、选择题(共10小题,每题4分,满分40分,每小题只有一个正确选项)1.各学科的图形都蒀含着对称美,下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.用配方法解方程时,结果正确的是( )A .B .C .D .3.下列一元二次方程中,没有实数根的是( )A .B .C .D .4.抛物线可以由抛物线平移得到,下列平移方法中正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位5.如图,⊙O 是△ABC 的外接圆,若∠ABC=40°,则∠AOC 的度数为( )2410x x -+=()225x -=()223x -=()225x +=()223x +=()()120x x +-=2510x x +-=2(3)1x -=2210x +=()2+21y x =-2y x =A .B 8.如图,抛物线A .B 9.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题何?”其意思是“今有直角三角形的圆形(内切圆)直径是多少?30︒y ax =1x >15.已知抛物线16.如图,在中,!则的长是三、解答题(共9小题,满分17.解方程:18.已知关于的一元二次方程19.福州是一座蕴存着绚丽风光,并拥有深厚人文底蕴的城市.她散落分布着很多历史悠久的古村落.现福州某乡镇景区需要复原一个古代圆抰形木门(示意图)2y ax =-Rt ABC △AD AD 247x x +-x20.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某快递公司今年九月份与十一月份的投递总件数分别为10万件和率.21.高尔夫球是一项具有特殊魅力的运动,该二次函数图象上部分点的横坐标,纵坐标的对应值如下表;1234(1)写出的值________,并画出函数图象;(2)当飞行时间________时,高尔夫球高度达到最高;(3)求高尔夫球飞行高度为时所用的时间.x y x a x =s 15m(1)求作的外接圆:(要求,尺规作图,不写作法.保留作图痕迹)(2)在(1)的条件下,补全图形并证明,连接,过作,交的延长线于点.求证:是的切线.23.如图,在平面直角坐标系中,点的坐标是,在轴上任取一点,完成以下操作步骤:①连接,作线段的垂直平分线,过点作轴的垂线,记,的交点为.②在轴上多次改变点的位置,用(1)的方法得到相应的点,把这些点用平滑的曲线连接起来.观察画出的曲线,猜想它是我们学过的哪种曲线.某数学兴趣小组在探究时发现在轴上取几个特殊位置的点,可以求出相对应的点的坐标;例如:取点,过作轴于点.,在中,根据勾股定理得.________;在的垂直平分线上,解得:________.(1)请帮忙完成以上填空;ABC O OB C CD OB ∥AB D CD O A ()0,2x M AM AM 1l M x 2l 1l 2l P x M P L x M P ()4,0M -P PB y ⊥B ()4,P y ∴-22PM y ∴=Rt PAB 222PA PB AB =+=P AM PA PM ∴=22PM PA ∴=y =()4,5P ∴-(1)求抛物线的解析式;(2)若点为线段上的一个动点,过点时.①求证:四边形是平行四边形:②连接,在抛物线上是否存在,使25.如图,在中,.(1)如图,当时,求证;(2)当点为边的中点时,连接,求的最大值;(3)如图,若,时,求的面积.P AC OCPD AD Q ABC 90ACB ∠=︒1045α︒<<︒BM AE ⊥Q AC MQ MQ 2105α=︒2AE =BCF △参考答案与解析1.C【分析】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【详解】解: A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意,故选:C .2.B【分析】根据完全平方公式,结合等式的性质,进行配方即可.【详解】解:∵,∴,∴,∴,故选:B .【点睛】本题考查了配方法,熟练掌握配方法的求解步骤是解题的关键.3.D【分析】本题考查了一元二次方程 (为常数)的根的判别式,根据一元二次方程根的判别式进行判断即可求解.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.【详解】解:A. ,即,,则原方程有实数根,故该选项不符合题意;B. ,,则原方程有实数根,故该选项不符合题意;C. ,即,,则原方程有实数根,故该选项不符合题意;D. ,,则原方程没有实数根,故该选项符合题意;故选:D .4.B【分析】根据平移的规律“左加右减,上加下减”,将向左平移2个单位再向上平移1个单位即可得,即可求得答案2410x x -+=24133x x -++=2443x x -+=()223x -=20ax bx c ++=0a a b c ≠,,,24b ac ∆=-0∆>Δ0=Δ0<()()120x x +-=220x x --=241890b ac ∆=-=+=>2510x x +-=24254290b ac ∆=-=+=>2(3)1x -=2680x x -+=24364840b ac ∆=-=-⨯=>2210x +=24042180b ac ∆=-=-⨯⨯=-<2y x =()2+21y x =-【详解】解:根据题意将向左平移2个单位再向下平移1个单位即可得,故选B【点睛】本题考查了二次函数的平移,掌握平移规律是解题的关键,理解题意确定平移的方向和距离是关键.5.D【详解】试题分析:由⊙O 是△ABC 的外接圆,若∠ABC=40°,根据圆周角定理,∴∠AOC=2∠ABC=80°.考点:圆周角定理点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.A【分析】本题考查了旋转的性质、坐标与图形变化,得到点和点关于原点对称,熟知关于原点对称的点横坐标和纵坐标相反是解答的关键.【详解】解:点绕原点逆时针方向旋转得到点,点和点关于原点对称,,故选:A .7.C【分析】本题考查了圆的切线的性质、等腰三角形的性质,连接,先根据圆的切线的性质可得,由,再根据等腰三角形的性质可得,即可求得的度数.【详解】解:如图,连接,,,,是的切线,切点为,,,故选:C .8.C【分析】本题考查了二次函数和不等式、二次函数与一次函数的交点,由A 、B 两点的横坐标可知在到1之间直2y x =()2+21y x =-P Q ()1,3P -O 180 Q ∴P Q ()1,3Q ∴-OC 90OCD ∠=︒40BAC ∠︒=40ACO ∠=︒ACD ∠OC OA OC = 40BAC ∠︒=∴40ACO BAC ∠=∠=︒ CD O C ∴90OCD ∠=︒50ACD OCD ACO ∴∠=∠-∠=︒4-所以点是该抛物线上一点,则故④是正确的,故选:C11.或【分析】利用因式分解法求解即可.【详解】解:,因式分解得:,∴或,解得:或,故答案为:或.【点睛】本题考查了解一元二次方程,能够根据方程特点灵活选用不同的解法是解题关键.12.【分析】本题考查了旋转性质,涉及周角为,据此作答,观察出该图形被平分成五部分,这五部分完全重合是解题的关键.【详解】解:因为该图形被平分成五部分,这五部分完全重合,所以每个部分形成的角度:。
辽宁省大连市金州区2024-2025学年九年级上学期11月期中数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷九年级数学2024.11(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中,是关于的一元二次方程的是( )A .B .C .D .2.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .3.下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线4.已知的半径为5,点在外,则的长可能是( )A .3B .4C .5D .65.若关于的一元二次方程有两个不相等的实数根,则的值可以是( )A .B .1C .2D .36.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为,则可列方程为()A .B .C .D .7.如图,为的直径,弦,垂足为点,若的半径为13,,则的长为()x 310x -=23x y +=2210x x +-=410x -=()1,3()1,3--()1,3-()1,3-()3,1O P O OP x 220x x k -+=k 1-x ()21001121x +=()21001%121x +=()10012121x +=()()210010011001121x x ++++=AB O CD AB ⊥E O 24CD =AE(第7题)A .5B .6C .7D .88.抛物线的对称轴是直线,且经过点,则的值为( )A .3B .C .6D .9.如图,在中,,将绕点按逆时针方向旋转得到,点恰好在边上,连接,则的长为( )(第9题)A .8B .C .D .610.如图,在矩形中,,点从点出发以的速度沿向点运动,同时点从点出发以的速度沿向点运动,设经过的时间为的面积为,则下列图象中能大致反映与之间的函数关系的是()(第10题)A .B .C .D .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.一天中,钟表时针从上午6时至上午9时旋转的度数为______.12.若是方程的一个实数根,则代数式的值为______.13.如图,是的切线,为切点,如果,则的长为______.221y x bx =++32x =()1,k k 3-6-Rt ABC △90,60,4ACB A AC ︒︒∠=∠==CAB △C CDE △D AB BEBEABCD 4cm,8cm AB BC ==P A 1cm /s AB B Q B 2cm /s BC C ,x s PBQ △2cm y y x x t =210x x --=22024t t -+,,AB AC BD O ,,P C D 8,5AB AC ==BD(第13题)14.如图是二次函数的部分图象,由图象可知,当时,自变量的取值范围是______.(第14题)15.如图,抛物线:与轴交于两点,点在第四象限的抛物线上,连接,将线段绕点逆时针旋转,得到线段,当点恰好落在轴上时,点的坐标为______.(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明,演算步骤或推理过程)16.(10分)(1)用配方法解方程:;(2)用公式法解方程:.17.(8分)如图所示,在正方形网格中,的顶点均在格点上,请在所给平面直角坐标系中按要求作图.2y ax bx c =++0y >x 223y x x =--x ,A B C BC CB C 90︒CD D y C 269x x -=-22340x x +-=ABC △(第17题)(1)以点为旋转中心,将绕点顺时针旋转得,画出,并写出的坐标;(2)直接写出线段与的关系:______.18.(8分)如图,四边形是的内接四边形,延长相交于点,且.求证:是等腰三角形.(第18题)19.(8分)如图,矩形画框由边框和内衬组成,其中画框的边框宽度相等,画框外框长为,宽为,且边框的面积为整个画框面积的,求这个矩形画框的边框宽度是多少厘米?(第19题)20.(8分)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量(件)与每件售价(元)之间符合一次函数关系,如图所示.(第20题)(1)求与之间的函数关系式,并直接写出自变量的取值范围;(2)设商场销售这种商品每天获利(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?A ABC △A 90︒11ABC △11AB C △11,B C BC 11B C ABCD O ,DC ABE 2ABC E ∠=∠ADE △32cm 20cm 310y x y x x w21.(8分)如图1,是的直径,是弦,是的中点,与交于点,点在延长线上,且.(第21题图1)(1)求证:为的切线;(2)如图2,连接,若,求的长.(第21题图2)22.(12分)如图1,在中,,点是线段上一点(不与点重合),,以为旋转中心,将线段顺时针旋转得到线段,连接.(第22题图1)(1)求(用含的式子表示);(2)求证;;(3)如图2,当时,求的面积.(第22题图2)23.(13分)已知是自变量的函数,当时,称函数为函数的“相关函数”.AB O AC DAB CD AB E F AB CF EF =CF O BD 8,4CF BF ==BD ABC △,90AC BC ACB =∠=︒D AB ,A B ()045ACD αα︒∠=<<︒D DC 90︒DE EB EDB ∠αBE CB⊥2,AD CD ==BCD △1y x 213y xy =+2y 1y例如:函数,当时,则函数是函数的“相关函数”.(1)点在函数的图象上,判断点是否在函数的“相关函数”的图象上,并说明理由;(2)函数的“相关函数”为与的图象交于两点,点在点的左侧,的图象与轴交于点,点在的图象上,其横坐标为.①当点在第一象限时,过点作,垂足为点,当为何值时,线段的长度最大?最大值是多少?②当时,在的图象上,点与点之间部分(含点和点)的最大值与最小值之差为,求关于的函数解析式,并直接写出自变量的取值范围;③在②的条件下,函数图象上的点到直线的距离为时,直接写出自变量的值.(备用图)12y x =22132323y xy x x x =+=⋅+=+2223y x =+12y x =(),A m n 13y x =(),3B m mn +1y 2y 12y x =-+21,y y 2y ,A B A B 2y y C P 2y t P P PQ AB ⊥Q t PQ 0t >2y C P C P h h t t h 4h =72t金普新区2024-2025学年度第一学期期中质量检测九年级数学评分参考(※其他正确解法或证法请参照赋分)一,选择题(本题共10小题,每小题3分,共30分)1.C 2.A 3.C 4.D 5.A 6.A 7.D 8.B 9.C 10.B二、填空题(本题共5小题,每小题3分,共15分)11.;12.2025;13.3;14.;15..三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)解:(2)解:∴方程有两个不相等的实数根∴17.(8分)90︒15x -<<269x x -=-26999x x -+=-+()230x -=30x -=123x x ==22340x x +-=2,3,4a b c ===-()22Δ43424410b ac =-=-⨯⨯-=>x ==12x x ==(1)如图即为所求作.;(2)且18.(8分)证明:∵,,∴,又∵四边形是的内接四边形,∴,又∵,∴,∴,∴,∴是等腰三角形.19.(8分)解:设这个矩形画框的边框宽度是厘米.由题意得,解得,(不符题意,舍去)答:这个矩形画框的边框宽度是2厘米.20.(8分)解:(1)设:与之间的函数关系式为.由图象,把代入得,解得,∴与之间的函数关系式为.(2)∵,∴∵,开口向下,对称轴为直线,∴当随的增大而增大,∴当时,答:当每件商品的售价定为36元时,每天销售利润最大,最大利润是768元.21.(8分)(1)证明:如图1,连接.∵,∴,∵,∴,∵是中点,∴,∴,又∵,∴,()()113,1,2,3B C --11BC B C =11BC B C ⊥2ABC E ∠=∠ABC E BCE ∠=∠+∠E BCE ∠=∠ABCD O 180A DCB ∠+∠=︒180DCB BCE ∠+∠=︒A BCE ∠=∠A E ∠=∠AD ED =ADE △x ()()33222023220110x x ⎛⎫--=⨯⨯- ⎪⎝⎭122,24x x ==y x ()0y kx b k =+≠()()25,70,35,50y kx b =+70255035k b k b =+⎧⎨=+⎩2120k b =-⎧⎨=⎩y x 2120,2036y x x =-+≦≦2x 120y =-+()20w x y=-()()202120x x =--+()2240800x =--+20a =-<40x =2036,x w ≤≤x 36x =()223640800768w =-⨯-+=最大值,OD OC CF EF =ECF CEF ∠=∠OC OD =OCD ODC ∠=∠DAB AD BD =AOD BOD ∠=∠180AOD BOD ∠+∠=︒90BOD ∠=︒∴在中,,又∵,∴,∴,即,∴,又∵是半径,∴是切线.(2)证明:如图2,连接.设,∵,∴,∴,∵由(1)得,,∴在中,根据勾股定理,即,解得,∴,∴在中,根据勾股定理,∴22.(12分)(1)解:∵线段顺时针旋转得到线段,∴,∵,∴,∴,∴,∴,.(2)证明:如图,过点作,交延长线于点.∴,由(1)得,,∴,∴,∴,∵线段顺时针旋转得到线段,Rt EOD △90ODE OED ∠+∠=︒OED CEF ∠=∠90ODE CEF ∠+∠=︒90OCD ECF ∠+∠=︒90OCF ∠=︒OC CF ⊥OC O CF O ,OD OC OE x =8,4CF EF BF ===844EB EF BF =-=-=4,8OC OB OE EB x OF OE EF x ==+=+=+=+90OCF BOD ∠=∠=︒Rt OCF △222OC CF OF +=()()222488x x ++=+2x =46OB OD x ==+=Rt OBD △222OB OD BD +=BD ===DC 90︒DE 90CDE ∠=︒,90AC BC ACB =∠=︒,90A CBA A CBA ∠=∠∠+∠=︒45A CBA ∠=∠=︒45CDB A ACD α∠=∠+∠=+︒()909045EDB CDB α∠=-∠=-︒︒+︒45α=︒-D MD DB ⊥BC M 90MDB ∠=︒45CBA ∠=︒18045M MDB CBA ∠=-∠-=︒∠︒M CBA ∠=∠MD BD =DC 90︒DE∴,∵,∴,即,∴,∴,∴,即.(3)证明:过点作,且使,连接.过点作,垂足为点.∴,∴,即,又∵由(1)得,∴,∴,∴,∵在中,根据勾股定理,∴,∵在中,根据勾股定理,∴,∵,∴是中点,又∵,∴,∴.23.(13分)(1)解:点是在函数的“相关函数”的图象上.∵点在函数的图象上,∴,∵,∴,∴当时,,,90DC DE CDE =∠=︒90MDB CDE ∠=∠=︒MDB CDB CDE CDB ∠-∠=∠-∠MDC BDE ∠=∠()SAS MCD BDE ≌△△45M DBE ∠=∠=︒90CBE CBA DBE ∠=∠+∠=︒BE CB ⊥C CN CD ⊥CN CD =,BN DN C CP AB ⊥P 90DCN ACB ︒∠==∠DCN DCB ACB DCB ∠-∠=∠-∠ACD BCN ∠=∠,AC BC CD CN ===∠45A CBA ∠=∠=︒()SAS ACD BCN ≌△△2,45AD BN A CBN ==∠=∠=︒454590DBN CBA CBN ∠=∠+∠=︒+=︒︒Rt DCN △222CD CN DN +=22220DN =+=Rt DBN △222DB BN DN +=4DB ===,AC BC CP AB =⊥P AB 90ACB ∠=︒()()111243222CP AB AD DB ==+=⨯+=1143622BCD S DB CP =⋅=⨯⨯=△(),3B m mn +1y 2y (),A m n 13y x =3n m =213y xy =+233y x x =⋅+,3x m n m ==2333y m m mn =⋅+=+∴点是在函数的“相关函数”的图象上.(2)解:①∵函数的“相关函数”为,∴,如图,过点作轴,垂足为点,交直线于点.∴,∵把代入得,,把代入得,,∴,∴又∵由题意得,∴,∴,∴,∴,∵,∴,∴,∴,∴,∴在中,根据勾股定理,∴,∴,∵点在的图象上,其横坐标为.∴,∴,∴,∴,∵,开口向下,对称轴为直线,∴当时,(),3B m mn +1y 2y 12y x =-+2y ()21323y xy x x =+=-++223x x =-++()214x =--+P PN x ⊥N AB M 90PNF ∠=︒0x =1y 12y =10y =1y 2x =()()0,2,2,0E F 2OE OF ==90EOF ∠=︒,90OEF OFE OEF OFE ∠=∠∠+∠=︒45OEF OFE ∠=∠=︒18045NMF PNF OFE ∠=-∠-=︒∠︒45PMQ NMF ∠=∠=︒PQ AB ⊥90PQM ∠=︒18045QPM PQM PMQ ∠=-∠-=︒∠︒PMQ QPM ∠=∠PQ QM =Rt DBN △222PQ QM PM +=PM ===PQ PM =P 2y t ()2,23P t t t -++(),2M t t -+231PM t t =-++)223312PQ t t t ⎫=-++=-⎪⎭0a =<3,032t t -<<32t =PQ =最大值②令,∴,∵,抛物线顶点坐标,∴(ⅰ)当时,,∴,(ⅱ)当时,,∴(ⅲ)当时,,∴,综上,.③或.20,3x y ==()0,3C ()2,23P t t t -++()1,401t ≤<22223,3y t t y =-++=最大最小222332h t t t t =-++-=-+12t ≤<224,3y y ==最大最小431h =-=2t ≥2224,23y y t t ==-++最大最小()2242321h t t t t =--++=-+222,011,1221,2t t t h t t t t ⎧-+≤<⎪=≤<⎨⎪-+≥⎩1t =1+。
福建省龙岩初级中学2023-2024学年九年级上学期期中数学模拟试题
2023-2024学年第一学期期中测试九年级数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.下列4个图形中,是中心对称图形但不是轴对称的图形是()A. B. C. D.2.抛物线2(1)2y x=-+的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)3.将抛物线y=2x2平移后得到抛物线y=2x2+1,则平移方式为()A.向左平移1个单位B.向右平移1个单位C.向上平移1个单位D.向下平移1个单位4.已知函数2(3)21y k x x=-++的图象与x轴有交点.则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠35.以3和1-为两根的一元二次方程是()A.²230x x+-= B.23690x x--= C.22460x x--+= D.²230x x-+=6.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>17.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m,求道路的宽.如果设小路宽为m x,根据题意,所列方程正确的是()A.(32)(20)540x x ++= B.(32)(20)540x x --=C.(32)(20)540x x +-= D.()()3220540x x -+=8.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣125x 2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为()A.﹣20mB.10mC.20mD.﹣10m9.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=()A.30°B.45°C.60°D.67.5°10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是()A.2≤DC ≤4B.2≤DC ≤4C.222-≤DC ≤2D.222≤DC ≤222二、填空题(本大题共6小题,每空4分,共24分.)11.在平面直角坐标系中,若点()3A a ,与点()2B b ,关于原点对称,则 a b +=______.12.已知函数()223y a x x =+++是二次函数,则常数a 的取值范围是______.13.如图所示的风车图案可以看做是由一个直角三角形通过五次旋转得到的,那么每次需要旋转的最小角度为__.14.ABC V 为O 的内接三角形,若140AOC ∠=︒,则ABC ∠=_____________15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4cm ,则球的半径为____cm .16.已知二次函数2y -x +x 6=+及一次函数y x m =-+,将该二次函数在x 轴上方的图像沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y x m =-+与新图象有4个交点时,m 的取值范围是______.三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答)17.解方程(1)²20x x +=(2)()()3260x x x +-+=18.如图,已知ABC V 三个顶点的坐标分别为(2,1)A --,(3,3)B --,(1,3)--C ,(1)画出ABC V 向右平移三个单位的对应图形111A B C △,并写出1A 的坐标;(2)画出ABC V 绕点O 顺时针旋转90︒后的图形222A B C △,并写出2A 的坐标.19.已知:关于x 的方程x 2+4x +(2-k )=0有两个不相等的实数根.(1)求实数k 的取值范围.(2)取一个k 的负整数值,且求出这个一元二次方程的根.20.如图,在平面直角坐标系中,抛物线的顶点为(1,4)A -,且与x 轴交于B ,C 两点,点B 的坐标为(3,0).(1)写出C 点的坐标,并求出抛物线的解析式;(2)若一次函数的图象经过A ,B 两点,观察图象直接写出使一次函数值大于二次函数值的x 的取值范围.21.如图,在Rt △ABC 中,∠C =90°,BD 是角平分线,点O 在AB 上,以点O 为圆心,OB 为半径的圆经过点D ,交BC 于点E .(1)求证:AC 是⊙O 的切线;(2)若OB =10,CD =8,求BE 的长.22.商场某种商品平均每天可销售30件,每件盈利50元,现商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x 元,则商场日销售量增加件,每件商品盈利元(用含x 的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?23.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)若这个输水管道有水部分的水面宽16AB =cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径;(2)在(1)的条件下,小明把一只宽12cm 的方形小木船放在修好后的圆柱形水管里,已知船高出水面13cm ,问此小船能顺利通过这个管道吗?24.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且2OF =,3EF =,(1)求抛物线所对应的函数解析式;(2)求ABD 的面积;(3)将AOC 绕点C 逆时针旋转90°,点A 对应点为点G ,问点G 是否在该抛物线上?请说明理由.25.定义:在平面直角坐标系中,图形G 上点P (x ,y )的纵坐标y 与其横坐标x 的差y ﹣x 称为P 点的“坐标差”,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”.(1)①点A (1,3)的“坐标差”为;②抛物线233y x x =-++的“特征值”为;(2)某二次函数()20y x bx c c =-++≠的“特征值”为﹣1,点B (m ,0)与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等.①直接写出m =;(用含c 的式子表示)②求此二次函数的表达式.(3)如图,在平面直角坐标系xOy 中,以M (2,3)为圆心,2为半径的圆与直线y =x 相交于点D 、E ,请直接写出⊙M 的“特征值”为.。
2023~2024学年第一学期期中九年级数学期中练习卷【含答案】
2023-2024学年度第一学期期中练习卷九年级数学(本试卷共6页.全卷满分120分.时间为120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在括号内) 1.下列方程中,是一元二次方程的是( ) A . 2x -y =5B .x +1x=0C .5x 2=1D .y 2-x +3=02.一元二次方程x 2-4x =-4的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.已知1是关于x 的一元二次方程x 2+x +k 2-3k -6=0的一个实数根,则实数k 的值是( ) A .4或-1 B .-4或1C .-1D .4 4.甲、乙两名运动员在6次射击测试中的成绩如下表(单位:环):甲的成绩 6 7 8 8 9 9 乙的成绩596 ?910如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为?)可以是( ) A .6环 B .7环 C .8环 D .9环5.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是( ) A .70° B .120° C .140°D .160°6.如图,△ABC 内接于⊙O ,∠BAC =45°,AD ⊥BC ,垂足为D ,BD =6,DC =4. 则AB 的长( )A .6 2B .10C .12D .6 5 二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置.......上) 7.数据2、4、3、-4、1的极差是 .8.已知x 1,x 2是方程x 2-3x +2=0的实数根,则x 1+x 2- x 1x 2= .(第6题)(第5题)C9.已知⊙O 的半径为6cm ,点P 在⊙O 内,则线段OP 的长 6cm (填“<”、“=”或“>”).10.某公司决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目 创新能力综合知识语言表达测试成绩/分708090将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 分.11.如图,AB 是半圆的直径,P 是AB 延长线上一点,PC 切半圆于点C ,若∠CAB=31°,则∠P = °.12.在⊙O 中,弦AB 的长为4,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,OD ∶CD =3∶2,则⊙O 半径长 .13.一个圆锥的底面半径为3,母线长为4,其侧面积是 .14.某企业2020年盈利3000万元,2022年盈利3662万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程 .15.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE = °.16.如图,在等腰直角三角形ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长 .P(第11题)D EABC(第15题) FG H(第16题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)x 2+2x -3=0; (2)(x -2)2=3x -6. 18.(8分)关于x 的一元二次方程x 2-4x -k -6=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1 =3x 2,求k 的值.19.(6分)如图,在⊙O 中,AB 是非直径的弦,CD 是直径,且CD 平分AB ,并交AB 于点M ,求证:CD ⊥AB ,AC ⌒=BC ⌒,AD ⌒=BD ⌒.(第20题)20.(9分)甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是 分、 分; (2)利用方差判断这两名同学该项测试成绩的稳定性; (3)结合数据,请再写出一条与(1)(2)不同角度的结论.21.(6分)要建一个面积为150 m 2的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35 m .若墙足够长,则养鸡场的长与宽各为多少?(第19题)甲 乙(第21题)墙22.(8分)用直尺和圆规完成下列作图:(不写作法,保留作图的痕迹)(1)如图①,经过A 、B 、C 三点作⊙P ;(2)如图②,已知M 是直线l 外一点.作⊙O ,使⊙O 过M 点,且与直线l 相切.23.(8分)如图,在△ABC 中,AB =AC ,过点A ,C 的⊙O 与BC ,AB 分别交于点D ,E ,连接DE . (1)求证DB =DE ;(2)延长ED ,AC 相交于点P ,若∠P =33°,则∠A 的度数为▲________°.B(第23题)AED CO(第22题) BAClM①②24.(7分)某商店将进价为30元的商品按售价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得12000元的利润,且尽量减少库存,应涨价为多少元?25.(8分)如图,D为⊙O上一点,点C是直径BA延长线上的一点,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线BE交CD的延长线于点E.若BC=12,AC=4,求BE的长.C(第25题)26.(10分)如果关于x的一元二次方程ax2+bx+c=0满足a+b+c=0,那么称这样的方程为“美好方程”.例如,方程x2-4x+3=0,1-4+3=0,则这个方程就是“美好方程”.(1)下列方程是“美好方程”的是▲ ;①x2+2x-3=0 ②x2-3x=0 ③x2+1=0 ④x(x-1)=2(x-1)(2)求证:“美好方程”ax2+bx+c=0总有两个实数根;(3)若美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根,求证:a+c=2 b.27.(10分)(1)证明定理:圆内接四边形的对角互补.已知:如图①,四边形ABCD 内接于⊙O . 求证:∠A +∠C =∠B +∠D =180°.(2)逆命题证明:若四边形的一组对角∠A +∠C =180°,则这个四边形的4个顶点共圆(图②) 可以用反证法证明如下:在图②中,经过点A ,B ,D 画⊙O .假设点C 落在⊙O 外,BC 交⊙O 于点E ,连接DE , ∵四边形ABED 内接于⊙O∴可得 =180°, ∵∠A +∠C =180°,∴∠BED = ,与∠BED >∠C 得出矛盾; 同理点C 也不会落在⊙O 内, ∴A ,B ,C ,D 共圆.(3)结论运用:如图∠BAC =120°,线段AB =83,点D ,E 分别在射线AC 和线段AB 上运动,以DE 为边在∠BAC 内部作等边△DEF ,则BF 的最小值为 .②DCBAO①FCAEBD③2023~2024学年度第一学期期中练习卷 九年级数学数学试卷参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(每小题2分,共20分) 7.8 8. 1 9. <10.77 11.28° 12.5213.12π14.3000(1+x )2=366215.67.5°16.π三、解答题(本大题共11小题,共88分)17.(8分)(1)解:x 2+2x -3=0x 2+2x +1=3+1 ···················································································· 1分 (x +1)2=4 ····························································································· 2分 x +1=±2 ····························································································· 3分 ∴x 1=1, x 2=-3 ················································································ 4分 (2)解:(x -2)2-3(x -2)=0 ············································································ 5分(x -2) (x -2-3)=0 ··············································································· 6分 ∴x 1=2, x 2=5. ·················································································· 8分18.(8分)(1)∵x 2-4x -k -6=0有两个不相等的实数根 ∴(-4)2-4(-k -6) >0…………… …………… 2分 ∴k >-10………………………………………………4分(2)∵x 1,x 2是方程两个实数根∴x 1+x 2=4,x 1x 2=-k -6…………………………………………5分 ∵x 1 =3x 2∴4x 2=4∴x 2=1…………………………………………6分 ∴x 1 =3…………………………………7分 ∴x 1x 2=3=-k -6∴k =-9………………………………………8分题号 1 2 3 4 5 6 答案CAABCD19.(6分)证明:连接OA ,OB , ∵OA =OB,CD 平分AB∴∠AMO =∠BMO =90°,…………………2分 ∴CD ⊥AB ,…………………………3分 ∵CD 是直径,∴AC ⌒=BC ⌒,AD ⌒=BD ⌒. (6)20.(9分)(1)80,80 ··················································································· 2分 (2)方差分别是:s 2甲=(80-80)2+(90-80) 2+(80-80)2+(70-80)2+(80-80)25=40分2 ···································· 4分 s 2乙=(60-80)2+(70-80) 2+ (90-80)2+(80-80)2+(100-80)25=200分2 ································ 6分 由s 2甲<s 2乙可知,甲同学的成绩更加稳定. ·························································· 7分 (3)甲同学的成绩在70,80,90间上下波动,而乙的成绩从60分到100分,呈现上升趋势,越来越好,进步明显. ·················································································· 9分21.(6分)解 :设养鸡场的宽为x m ,则长为(35-2x )m ,由题意得: x (35-2x )=150…………………………………2分整理得:2x 2-35x +150=0…………………………………3分 解得:x 1=10,x 2=152.…………………………………4分当x 1=10时,35-2 x 1=15;当x 2=152时,35-2 x 2=20.……………………5分答: 养鸡场长为15 m ,宽为10 m 或长为20 m ,宽为152………………………6分 22.(本题8(1)(4分)(2)(lD(第20题)23.(本题8分)(1)∵AB=AC,∴∠B=∠C,又∵四边形AEDC为⊙O的内接四边形,∴∠AED+∠C=180°,∵∠BED+∠AED=180°,∴∠BED=∠C∴∠BED=∠B∴DB=DE.··························································································6分(2)38° ·······························································································8分24.(7分)解:设涨价x元,根据题意得:(50-30+x)(500-10x)=12000.…………………………3分解得:x1=10,x2=20. …………………………5分∵要尽量减少库存,∴x2=20(舍). …………………………6分答:涨价10元.…………………………7分25.(8分)证明:(1)连接OD.∴∠ADO=∠OAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠ABD+∠BAD=90°,∵∠CDA=∠CBD,∴∠CDO=∠CDA+∠ADO=90°,即CD⊥OD. ················································································ 3分分(43.∵BE2+BC2=EC∴x 2+122=(x+42.∴x=43.即BE的长为43.·········································································· 8分26.(10分)(1)①④…………………………………2分(2)证明:∵ax2+bx+c=0是“美好方程”∴a+b+c=0………………3分∴b=-a-c………………4分判别式b 2-4 ac=(-a-c)2-4 ac=c2-2 a c+a2=(c-a)2≥0………………5分∴“美好方程”ax2+bx+c=0总有两个实数根.………………6分(3)证明:方法一:∵美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根∴(c-a)2-4(b-c) (a-b) =0…………………………………7分∴c2-2 a c+a2-4 ab+4 b2+4 a c-4 b c=0∴c2+2 a c+a2-4 ab-4 b c+4 b2=0…………………………………8分∴(c+a)2-4(a+c) b+4 b2=0∴(c+a-2 b)2=0…………………………………9分∴c+a-2 b=0,即a+c=2 b.…………………………………10分方法二:将x=1代入美好方程(b-c)x2+(c-a)x+(a-b)=0左右两边,左边=右边从而得出x=1是方程的解。
人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
数学试题 第1页(共10页) 数学试题 第2页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2022--2023学年度第一学期期中测试卷 九年级 数学(满分:120分 时间:100分钟)题号 一 二 三 总分 分数一、选择题 (共12题,每题3分,共36分) 1.如图所示图形不是中心对称图形的是( )A .B .C .D .2.下列一元二次方程中没有实数根的是 ( ) A .2240xx +-= B .2440xx -+=C .2250xx --= D .2340xx ++=3.将一元二次方程:2850x x --=化成2()x a b +=的形式正确的是( )A .2(4)21x += B .2(4)11x -= C .2()421x -= D .2(8)69x -=4.一元二次方程20x x -=的根是()A .1x=,21x= B .11x =,21x =- C .1x=,21x=-D .121x x ==5.将二次函数y=x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( ) A .()2y x 13=-+B .()2y x 13=++C .()2y x 13=-- D .()2y x 13=+-6.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( ) A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -= D .22000(1)2420x +=7.已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或48.已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m <2B .m≤2C .m <2且m≠1D .m≤2且m≠19.在同一直角坐标系中,一次函数y =ax +c 和二次函数2y ax c =+的图象大致为( )A .B .C .D .10.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5yx=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123yy y << B .312yy y << C .132yy y << D .231yy y <<11.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是( )数学试题第3页(共10页)数学试题第4页(共10页)……○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○………………A.34°B.36°C.38°D.40°12.如图,抛物线2y ax bx c=++的对称轴为直线1x=,与x轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是()A.0abc>B.20a b-=C.方程20ax bx c++=的两个根为3和1-D.当1x<时,y随x的增大而减小二、填空题(共6题,每题3分,共18分)13.当x_________时,3x-在实数范围内有意义.14.已知点A(a,3)与点B(4,b)关于原点对称,则a-b的值是_________.15.抛物线23(2)1y x=++的顶点坐标是__________.16.在直角坐标平面中,将抛物线22(1)y x=+先向上平移1个单位,再向右平移2个单位,那么平移后的抛物线表达式是____________. 17.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是_______cm.18.已知x2-4x-2=0,求3x2-12x+202的值_____________.三、解答题(共6题,共46分)19.(6分)先化简,再求值22113263x x xxx x++-⎛⎫÷-⎪--⎝⎭其中5x=20.(6分)解方程.(1)2210x x+-=;(2)22530x x-+=.21.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE,(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.数学试题 第5页(共10页) 数学试题 第6页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(8分)如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出A 1的坐标; (2)请画出△ABC 关于原点对称的△A 2B 2C 2,并写出A 2的坐标; (3)请画出△ABC 以点B 为旋转中心,沿逆时针旋转90°后△A 3B 3C 3.23.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商品每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?(3)当这种商品售价定为多少元时,该商品所获的利润最大?最大利润是多少?24.(10分)如图,对称轴为直线x =﹣1的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标;(2)已知a =1,C 为抛物线与y 轴的交点:①若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标; ②在抛物线的对称轴上找出一点Q ,使BQ +CQ 的值最小,并求出点Q 的坐标.参考答案及评分标准一、选择题 (共12题,每题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCAADADBCCB数学试题 第7页(共10页) 数学试题 第8页(共10页)……○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○………………二、填空题 (共6题,每题3分,共18分) 13.3x ≥ 14.-1 15.(2,1)- 16.22(1)1y x =-+ 17.5 18.208三、解答题(共6题,共46分) 19.(6分) 解:22113263x x x x x x ++-⎛⎫÷- ⎪--⎝⎭ ()()()213132333x x x x x x x +-⎡⎤-=÷-⎢⎥---⎣⎦()()221313233x x x x x x +--+=÷-- ()()2213231x x x x +-=⋅-- ()()()()2132311x x x x x +-=⋅-+- ()121x x +=-当x =5时,原式=()516325184+===-. 2O.(6分) 解:(1)2210x x +-=,221x x ∴+=,则22111xx ++=+,即2(1)2x +=,12x ∴+=±,112x ∴=-+,212x =--;(2)22530x x -+=,(1)(23)0x x ∴--=,则10x -=或230x -=, 解得11x=,2 1.5x =.21.(8分)解:(1)∵△ABC 是等边三角形, ∴∠BAC =60°,AB =AC .∵线段AD 绕点A 顺时针旋转60°,得到线段AE , ∴∠DAE =60°,AE =AD . ∴∠BAD +∠EAB =∠BAD +∠DAC . ∴∠EAB =∠DAC . 在△EAB 和△DAC 中,AB ACEAB DAC AE AD ⎧⎪∠∠⎨⎪⎩===, ∴△EAB ≌△DAC . ∴∠AEB =∠ADC .(2)如图,∵∠DAE =60°,AE =AD , ∴△EAD 为等边三角形. ∴∠AED =60°,又∵∠AEB =∠ADC =105°. ∴∠BED =45°. 22.(8分)数学试题 第9页(共10页) 数学试题 第10页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________解(1)如图所示△A 1B 1C 1为所求作的图形,A 1(2,-4); (2)如图所示△A 2B 2C 2为所求作的图形,A 2(-2,-4); (3)如图所示△A 3B 3C 3为所求作的图形.23.(8分)解】(1)由题意得60×(360-280)=4800(元). 即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x 元,由题意得(360-x -280)(5x +60)=7200, 解得x 1=8,x 2=60.要更有利于减少库存,则x =60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元. (3)设总利润为W 元,则W =(360-x -280)(5x +60)=-5( x -34)2+10580, 360-34=326, 则当降价34元,即售价326元时,总利润最大为10580元. 24.(10分)解(1)∵抛物线的对称轴为直线x =﹣1,点A 的坐标为(﹣3,0), ∴点B 的坐标为(﹣1×2﹣(﹣3),0),即(1,0).(2)∵a =1,点A 的坐标为(﹣3,0),点B 的坐标为(1,0), ∴抛物线的解析式为y =(x +3)(x ﹣1)=x 2+2x ﹣3, 又∵点C 为抛物线与y 轴的交点, ∴点C 的坐标为(0,﹣3). ①设点P 的坐标为(x ,x 2+2x ﹣3), ∵S △POC =4S △BOC , ∴12|x |•OC =4×12OB •OC ,即|x |=4, ∴x =±4,∴点P 的坐标为(﹣4,5)或(4,21).②连接AC ,交抛物线对称轴于点Q ,此时BQ +CQ 的值最小,如图所示.设直线AC 的解析式为y =mx +n (m ≠0),将A (﹣3,0)、B (0,﹣3)代入y =mx +n ,得:303m n n -+=⎧⎨=-⎩,解得:13m n =-⎧⎨=-⎩, ∴直线AC 的解析式为y =﹣x ﹣3. 当x =﹣1时,y =﹣1×(﹣1)﹣3=﹣2, ∴点Q 的坐标为(﹣1,﹣2).。
2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)
2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:冀教版九年级上册。
5.难度系数:0.65。
第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是21.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是,坝高BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .508.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .1210.如图,直线y kx =与双曲线my x =相交于点A 和B ,已知点A 的坐标为()4,1,则不等式m kx x³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .612.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .513.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .914.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为 .三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.21.(本小题满分9分)某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.班级平均数众数中位数方差九(1)班7.6——8 3.84九(2)班8.410—— 3.84请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.23.(本小题满分10分)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)25.(本小题满分12分)如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x =>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x =>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.26.(本小题满分13分)在ABC V 中,45A Ð=°,AC =D 为AB 边上一动点,45CDF Ð=°,DF 交BC 边于F .探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。
河北省邯郸市第十一中学2024-2025学年九年级上学期期中数学试题
河北省邯郸市第十一中学2024-2025学年九年级上学期期中数学试题一、单选题1.下列表达式中,x 为自变量,y 是x 的二次函数的是()A .2y ax bx c =++B .221y x x =-+-C .34y x =-D .21y x x=+2.下面的图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3.图象的对称轴是y 轴的二次函数是()A .2(1)y x =-B .22(1)y x =+C .222y x =-D .2(1)y x =-+4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为()A .28︒B .34︒C .56︒D .62︒5.抛物线2(0)y ax bx c a =++≠中,y 与x 的部分对应值如下表:x …1346…y…8182018…下列结论中,正确的是()A .抛物线开口向上B .对称轴是直线4x =C .当>4x 时,y 随x 的增大而减小D .当 4.5x <时,y 随x 的增大而增大6.若点()3P m m --,关于原点对称的点在第二象限,则m 的取值范围为()A .3m >B .03m <<C .0m <D .0m <或3m >7.二次函数24y x x c =-+的最小值是0,那么c 的值等于()A .2B .4C .2-D .88.二次函数y =ax 2+bx +c 的部分图象如图,则下列说法正确的有()①abc >0;②2a -b =0;③a -b +c ≥am 2+bm +c ;④当x <1时,y >0;⑤9a -3b +c =0A .2个B .3个C .4个D .5个9.如图,在正方形方格中,A ,B ,C ,D ,E ,P 均在格点处,则点P 是下列哪个三角形的外心()A .ACE △B .ABD △C .ACD D .BCE10.如图,以()1,4-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是()A .23x <<B .34x <<C .45x <<D .56x <<11.如图,在平面直角坐标系xOy 中,已知点()0,4A ,()4,4B -,()6,2C -都在M 上,则原点O 到M 上一点的最短距离为()A .2B .C .2D .212.如图,O 是正五边形ABCDE 的内切圆,分别切AB ,CD 于点M ,N ,P 是优弧MN 上的一点,则MPN ∠的度数为()A .55︒B .60︒C .72︒D .80︒二、填空题13.如图,三角形OAB 绕点O 逆时针旋转75︒到三角形OCD 的位置,已知45AOB ∠=︒,则AOD ∠=.14.如图,将边长相等的正六边形ABCDEF 和正五边形ABGHK 的AB 边重合叠放在一起,则GBC ∠的度数是.15.如图,已知⊙O 是△ABC 的内切圆,切点为D 、E 、F ,如果AE=2,CD=1,BF=3,则内切圆的半径r.16.如图,在ABC V 中,90C ∠=︒,10cm AB =,8cm BC =,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运到(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为2cm .三、解答题17.如图,AB 是O 的直径,点C ,D 在O 上,若66DAB ∠=︒,求ACD ∠的度数.18.如图,在平面直角坐标系中,Rt ABC △的三个顶点分别是()3,2A -,()0,4B ,()0,2C .(1)将ABC V 以点C 为旋转中心旋转180︒,画出旋转后对应的111A B C △,平移ABC V ,对应点2A 的坐标为()0,4-,画出平移后对应的222A B C △;(2)若将111A B C △绕某一点旋转可以得到222A B C △,请直接写出旋转中心的坐标.19.已知抛物线2234y x kx k =-++.(1)若抛物线的顶点在x 轴上,求k 的值;(2)若1x >时,y 随x 的增大而增大,求k 的取值范围.20.“筒车”是一种以水流作动力,取水灌田的工具.如图,“筒车”盛水筒的运行轨迹是以轴心O 为圆心的圆,已知圆心O 始终在水面上方.且当圆被水面截得的弦A 为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦A 从原来的6米变为8米时,则水面下盛水筒的最大深度为多少米?21.足球训练中,小军从球门正前方8米的A 处射门,球射向球门的路线呈抛物线.当球离球门的水平距离为2米时,球达到最高点,此时球离地面3米.现以O 为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式;(2)已知球门高OB 为2.4米,通过计算判断球能否射进球门(忽略其他因素).如图,直线AB 、BC 、CD 分别与⊙O 相切于E 、F 、G ,且AB ∥CD ,OB =6cm ,OC =8cm .求:22.∠BOC 的度数;23.BE +CG 的长;24.⊙O 的半径.25.(1)如图1,O 是等边ABC V 内一点,连接OA OB OC 、、,且345OA OB OC ===,,,将BAO 绕点B 顺时针旋转后得到BCD △,连接OD .求:①旋转角的度数;②线段OD 的长;③求BDC ∠的度数.(2)如图2所示,O 是等腰直角()90ABC ABC ∠=︒ 内一点,连接OA OB OC 、、,将BAO 绕点B 顺时针旋转后得到BCD △,连接O D .当OA OB OC 、、满足什么条件时,90ODC ∠=︒?请给出证明.26.综合与探究二次函数23y ax bx =+-的图象与x 轴交于()1,0A ,()3,0B 两点,与y 轴交于点C ,顶点为M .(1)求该二次函数的表达式,并写出点M 的坐标;(2)如图1,D 是该二次函数图象的对称轴上一个动点,当BD 的垂直平分线恰好经过点C 时,求点D 的坐标;(3)如图2,P 是该二次函数图象上的一个动点,连接OP ,取OP 的中点Q ,连接QC ,QM ,CM ,当CMQ △的面积为6时,直接写出点P 的坐标.。
河北省邯郸市鸡泽县2024-2025学年九年级上学期期中考试数学试题 (含答案)
河北省邯郸市鸡泽县2024~2025学年九年级上学期期中考试数学试题(冀教版)一、选择题(共16题;共42分)1.(3分)一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数B.中位数C.平均数D.方差2.(3分)方程x2﹣2x﹣3=0经过配方法化为(x+a)2=b的形式,正确的是( )A.(x﹣1)2=4B.(x+1)2=4C.(x﹣1)2=16D.(x+1)2=163.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是( )A.16(1﹣x)2=9B.16(1﹣x2)=9C.9(1﹣x)2=16D.9(1+x2)=164.(3分)若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠05.(3分)在平行四边形ABCD中AN=13NB,则S△ADM:S四边形CMNB为( )A.5:9B.5:19C.4:19D.4:96.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,不能判定△ABC∽△ADE的是( )A.∠C=∠E B.∠B=∠ADE C.ABAD =ACAED.ABAD=BCDE7.(3分)凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB 的距离之比为5:4,则物体被缩小到原来的( )A .45B .25C .49D .598.(3分)如图,在△ABC 中,AB =AC ,E 为BC 边上的一点,BE :CE =1:2,D 为AE 的中点,连接BD 并延长交AC 于F ,则CF :AF 的值为( )A .1:2B .1:3C .3:2D .3:19.(3分)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sin α米C .30tan α米D .30cos α米10.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( )A .34B .43C .35D .4511.(2分)如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x和 y 2=4x 的图象交于点A 和点B .若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A.1B.2C.3D.412.(2分)如图,已知点A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是( )A.2∠C B.4∠B C.4∠A D.∠B+∠C13.(2分)如图,ΔABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为( )A.4π―8B.2πC.4πD.8π―814.(2分)如图,在平面直角坐标系中,以坐标原点O为位似中心,在y轴右侧作△ABO放大2倍后的位似图形△CDO,若点B的坐标为(―1,―2),则点B的对应点D的坐标为( )A.(2,4)B.(3,4)C.(3,5)D.(4,3)15.(2分)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为( )米.A.5B.4C.3D.216.(2分)某品牌自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是( )A.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水B.水温下降过程中,y与x的函数关系式是y=400xC.水温从20℃加热到100℃,需要7minD.水温不低于30℃的时间为77min3二、填空题(共3题;共8分)17.(2分)一元二次方程x2=2x的根是 .18.(2分)如图是一边长为6的菱形纸片ABCD,将纸片沿EF折叠,使点D落在边BC上,点A,D的对应点分别为点G,H,GH交AB于点J.若AE=1.4,CF=2,则EJ的长是 19.(4分)如图1 是一款重型订书机,其结构示意图如图2 所示.其主体部分为矩形EFGH,由支撑杆CD 垂直固定于底座AB 上,且可以绕点 D 旋转.压杆MN 与伸缩片PG 连接,点M 在HG 上,MN 可绕点M 旋转,PG⊥HG ,DF=8 cm,GF=2cm,不使用时,EF∥AB,G 是PF 中点,且点 D 在NM 的延长线上,则MG= cm,使用时如图3,按压MN 使得MN∥AB,此时点F 落在AB 上,若CD=2 cm,则压杆MN 到底座AB 的距离为 cm三、解答题(共7题;共70分)20.(9分)4月,某校初2021级800名学生进行了一次政治测试(满分:50分).测试完成后,在甲乙两班各抽取了20名学生的测试成绩,对数据进行整理分析,并给出了下列信息:甲班20名同学的测试成绩统计如下:41,47,43,45,50,49,48,50,50,49,48,47,44,50,43,50,50,50,49,47.乙班20名同学的测试成绩统计如下:组别40<x≤4242<x≤4444<x≤4646<x≤4848<x≤50频数11a69其中,乙班20名同学的测试成绩高于46,但不超过48分的成绩如下:47,48,48,47,48,48.甲乙两班抽取的学生的测试成绩的平均数、中位数、众数如表所示:班级平均数中位数众数甲班47.548.5c乙班47.5b49(1)(3分)根据以上信息可以求出:a=_____,b=_____,c=_____;(2)(3分)你认为甲乙两个班哪个班的学生政治测试成绩较好,请说明理由(理由写出一条即可);(3)(3分)若规定49分及以上为优秀,请估计该校初2021级参加此次测试的学生中优秀的学生有多少人?21.(9分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF与⊙O相切.(1)(5分)求证:EF =EC ;(2)(4分)若D 是OA 的中点,AB =4,求BF 的长.22.(9分)火灾是最常见、最多发的威胁公众安全和社会发展的主要灾害之一,消防车是消防救援的主要装备.图1是某种消防车云梯,图2是其侧面示意图,点D ,B ,O 在同一直线上,DO 可绕着点O 旋转,AB 为云梯的液压杆,点O ,A ,C 在同一水平线上,其中BD 可伸缩,套管OB 的长度不变,在某种工作状态下测得液压杆AB =3m ,∠BAC =53°,∠DOC =37°.(1)(5分)求BO 的长.(2)(4分)消防人员在云梯末端点D 高空作业时,将BD 伸长到最大长度6m ,云梯DO 绕着点O 顺时针旋转一定的角度,消防人员发现铅直高度升高了3m ,求云梯OD 旋转了多少度.(参考数据:sin 37°≈35,tan37°≈34,sin53°≈45,tan53°≈43,sin64°≈0.90,cos64°≈0.44)23.(9分)某水渠的横断面是以AC 为直径的半圆O ,图1表示水渠正好盛满了水,点D 是水面上只能上下移动的浮漂,AB 是垂直水面线的发光物体且从点B 发出光线,测得∠BDA 、∠BCA 分别为60°,30°,已知AD =1m .(1)(5分)求AC 的长;πm,求DN (2)(4分)如图2,把水渠中的水放掉一部分,得到水面线为MN,若AM的长为940);的长(tan27°=1224.(10分)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)(4分)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)(3分)求出图中a的值;(3)(3分)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.(11分)如图1,已知∠ABC=60°,点O在射线BC上,且OB=4.以点O为圆心,r(r>0)为半径作⊙O,交直线BC于点D,E.(1)(2分)当⊙O与∠ABC只有两个交点时,r的取值范围是________.(2)(9分)当r=22时,将射线BA绕点B按顺时针方向旋转α(0°<α<180°).①若BA与⊙O相切,求α的度数为多少;②如图2,射线BA与⊙O交于M,N两点,若MN=OB,求阴影部分的面积.26.(13分)如图1,将Rt△ABC的顶点C放在⊙O上,边BC与⊙O相切于点C,边AC与⊙O交于点D.已知∠BCA=60°,∠B=90°,BC=6,⊙O的直径为8.(1)(4分)如图1,过点O作OM⊥CD于点M,求CM的长度;(2)(9分)从图1的位置开始,将△ABC绕点C顺时针旋转,设旋转角为α(0°≤α≤360°).①如图2,当α=20°时,边BC与⊙O的另一交点为E,求CE的长度;②如图3,当AC经过圆心O时,试判断AB与⊙O之间的位置关系,并说明理由;③在旋转过程中,直接写出点O到边AB的距离h的取值范围.答案1.D2.A3.A4.C5.C6.D7.A8.D9.C10.D11.A12.A13.A14.A15.C16.D17.x1=0,x2=218.2.819.4;15+2220.(1)3,48,50(2)甲班的成绩较好,理由:甲乙两班的平均数相等、甲班的中位数、众数都比乙班的大(3)估计该校初2021级参加此次测试的学生中优秀的学生有380人21.(1)证明:连接OF,则OF=OB,∵EF与⊙O相切于点F,∴EF⊥OF,∴∠OFE =90°,∴∠EFC +∠OFB =180°―∠OFE =90°,∵CD ⊥AB ,∴∠CDB =90°,∴∠C +∠B =90°,∵∠OFB =∠B ,∴∠EFC =∠C ,∴EF =EC .(2)解:连接AF ,∵AB 是⊙O 的直径,∴∠AFB =∠CDB =90°,∴∠B =∠B ,∴△AFB ∽△CDB ,∴BF BD =AB CB,∵D 是OA 的中点,AB =4,∴OA =OB =12AB =2,OD =AD =12OA =1,∴BD =OB +OD =2+1=3,∵CD =AB =4,∴CB =BD 2+CD 2=32+42=5,∴BF =AB ⋅BD CB =4×35=125,∴BF 的长是125.22.(1)解:如图,过点B 作BE ⊥OC 于点E ,在Rt △ABE 中,∠BAC =53°,AB =3m ,∴BE =AB ⋅sin∠BAE =3×sin 53°≈3×45=125,在Rt △BOE 中,∠BOE =37°,BE =125,∵sin∠BOE =BE OB ,∴OB =BE sin ∠BOE=12535=4.答:OB =4m .(2)解:如图,过点D 作DF ⊥OC 于点F ,旋转后点D 的对应点为D ′,过点D ′作D ′G ⊥OC 于点G ,过点D 作DH ⊥D ′G 于点H ,在Rt △FOD 中,OD =OB +BD =4+6=10,∠DOF =37°,∴DF =OD ⋅sin 37°≈10×35=6m ,∴D ′G =D ′H +HG =3+6=9m ,在Rt △D ′OG 中,O D ′=10m ,D ′G =9m ,∴sin ∠D ′OG =D ′G D ′O =910,∴∠D ′OG ≈64°,∴∠D ′OD =64°―37°=27°,即云梯OD 大约旋转了27°.23.(1)解:∵∠BAD=90°,AD=1,∠BDA=60°,∴∴AB=AD•tan60°=1×3=3, ∴AC =AB tan30°=3(2)解:连接OM ,设∠AOM=n°∵AM =n ×π×32180=940π∴∠AOM=n°=27°∵AC ∥MN ,∴∠AOM=∠OMN=27°过点O 作OE ⊥MN 于E 点,∴ME=EN ,∵tan∠OMN =OE ME =12,∴ME=2OE ∵O M 2=O E 2+M E 2, ∴OE =3105,ME =355过D 作DD '⊥AC 于点D ',∴DD '∥OE ,∵AC ∥MN ,∴四边形DD 'OE 是平行四边形, ∴DE =D ′O =12, ∴DN =355+1224.(1)当0≤x≤8时,y =10x+20;当8<x≤a 时,y =800x;(2)a =40;(3)李老师要在7:38到7:50之间接水25.(1)0<r ≤23或r >4(2)①15°或105°;②2π―426.(1)解:连接OC ,∵边BC 与⊙O 相切于点C ,∴∠OCB =90°,又∵∠BCA =60°,∴∠OCM =30°,∴OM =12OC =12×4=2,∴CM =OC 2―OM 2=42―22=23,(2)解:①如图,连接OC 、OE ,α=20°时,∠OCB =70°,∵OE =OC ,∴∠OEC =∠OCB =70°,∴∠EOC =180°―∠OEC ―∠OCB =40°,∴CE 的长度为40π×4180=8π9;②AB 与⊙O 相切,理由为:过点O 作OF ⊥AB 于点F ,∵∠BCA =60°,∠B =90°,∴∠A =30°,∴AC =2BC =2×6=12,∴AO =8,∴OF =12AO =12×8=4=OC ,∴AB 与⊙O 相切;③h 的取值范围为2≤ℎ≤10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)数学期未考试试卷
一、精心选一选(每题3分,共45分)
1
、图中所示几何体的俯视图是
( )
2、
5 点A (
11,x y ),B (22,x y )是
(0)
k
y k x =
>图像上的两点,若1
20x x <<,则有( ) A 、1
20y y << B 、210y y << C 、120y y << D . 210y y <<
3、如图,△ABC 中,D 是AB 上的点,不能判定△ACD ∽△ABC 的是以下条件中的( )
A 、∠ACD =∠
B B 、∠AD
C =∠ACB C 、AC 2
=AD ·AB D 、AD ∶AC =CD ∶BC
4、一个家庭有两个孩子,两个都是女孩的概率是 ( ) A .
2
1 B .
31 C .4
1
D . 无法确定。
5.下列方程中是关于x 的一元二次方程的是( )
A. 2210x x +=
B. 20ax bx c ++=
C. (1)(2)1x x -+=
D.
223250x xy y --= 6、已知2是方程022
32
=-a x 的一个根,则2a -1的值是( )
A 、3
B 、4
C 、5
D 、6
7、若分式1
3
22+--x x x 的值为0,则x 的值为( )
A 、-1
B 、3
C 、-1或3
D 、-3或1 8、已知正比例函数)0(11≠=k x k y 与反比例函数)0(22
≠=
k x
k y 的图象有一个交点(-2, -1),则它们的另一个交点坐标是( )A 、(2,1) B 、(-2,-1) C 、(-2,1) D 、(2, -1) 9.菱形ABCD 的对角线AC 、BD 交于点O ,∠BAD =120º,AC =4,则它的面积是( ) A .16 3 B .16 C .8 3 D .8
10.如图,若要使平行四边形ABCD 成为菱形,则需要添加的条件是( ) A .AB =CD B .AD =BC C .AB =BC D .AC =BD
11.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 且交BC 于E , AD=6cm,则OE 的长为( ) A 、6cm B 、4cm C 、3cm D 、2cm
第11题
D
C
B A
12.若ab>0,则一次函数y=ax+b与反比例函数
ab
y
x
在同一坐标系数中的大致图象是()
A. B. C. D.
13、在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()
A. 3:2 B. 3:1 C. 1:1 D. 1:2
14、如图,矩形AOBC的面积为4,反比例函数y=x
k
的图象的一支经过矩形对
角线的交点P,则该
反比例函数的解析式是()
A.y=x
4
B.y=x
2
C.y=x
1
D.y=x2
1
15.如下左图(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;
②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()
15.如下右图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则
B、C两点的坐标分别是()
A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)
二、填空(本大题共6小题,每小题3分,共18分). 16、若点(m,n)在反比例函数)0(≠=
k x
k
y 的图象上,其中m,n 是方程x 2-2x -8=0的两根,则k= . 17、某钢铁厂去年1月份钢产量为4万吨,三月份钢产量为4.84万吨,那么2、3月份平均每月的增长率是 .
18.(2014年四川资阳,第15题3分)如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为 .
18
19. (2014•泰州)正方向ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 等于 cm .
20、将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则△EBG 的周长是 cm
21、已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为
22、(1)在△ABC 中,AB =AC ,∠A =36º,BD 平分∠ABC 交AC 于点D .若AC =2,求AD 的长
23、如图,四边形ABCD 是矩形,直线l 垂直平分线段AC ,垂足为O ,直线l 分别与线段AD 、CB 的延长线交于点E 、F 。
(1)△ABC 与△FOA 相似吗?为什么?
(2)试判定四边形AFCE 的形状,并说明理由。
24、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500kg ,经市场调查发现,在进货价不变的情况下,每涨价1元,日销售量将减少20kg ,现该商场要保证每天盈利6000元, 同时又要使顾客得到实惠,那么每千克应涨价多少元?
25. 活动课上同学们玩数字游戏:小丽的袋子里有分别标有的数字1和2的两张卡片;小兵的袋子里有分
别标有的数字1,2,3的三张卡片。
老师随机分别从两人袋子各抽一张卡片。
(1) 用a 、b 表示老师从小丽小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a ,b )
的所有取值;(2)求(a ,b )表示坐标的点在函数
x y 2
图象上的概率;
26.如图,在△ABC 中,ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.
(1)①当t=2.5s 时,求△CPQ 的面积;
②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;
(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.
26、已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处. (1)如图1,已知折痕与边BC 交于点O ,连结AP 、OP 、O A .
①求证:△OCP ∽△PDA ;②若△OCP 与△PDA 的面积比为1:4,求边AB 的长; (2)若图1中的点P 恰好是CD 边的中点,求∠OAB 的度数;
(3)如图2,在(1)的条件下,擦去折痕AO 、线段OP ,连结BP .动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN =PM ,连结MN 交PB 于点F ,作ME ⊥BP 于点E .试问当点M 、N 在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求出线段EF 的长度.
27、如图(1),已知,矩形ABCD 的边AD=3,对角线长为5,将矩形ABCD 置于直角坐标系内,点C 与原点O 重合,且反比例函数的图象的一个分支位于第一象限. (1)、求图(1)中,点A 的坐标是多少?
(2)、若矩形ABCD 从图(1)的位置开始沿x 轴的正方向移动,每秒移动1个单位,1秒后点A 刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.
(3)矩形ABCD 继续向x 轴的正方向移动,AB 、AD 与反比例函数图象分别交于P 、Q 两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC 的面积S 1、△QDC 的面积S 2与t 的函数关系式,并求当t 为何值时, S 2=7
10
S 1 ?
28、如图,已知A (﹣4,),B (﹣1,2)是一次函数
y =kx +b 与反比例
函数y
=(m ≠0,m <0)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D . (1)求一次函数解析式及m 的值;
(2)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?
(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.
(2。