2.2整式的加减(2)——求多项式的值教案 【新人教版七年级上册数学】
新人教版初中数学七年级上册《第二章整式的加减:2.1整式:多项式》公开课教案_0
课题多项式学情分析教学对象是七年级学生,学习本节之前,已经经历有理数的运算,知道字母代数的重要意义,能够用字母表示简单数量关系,知道单项式相关概念,在章前引入时对多项式已有初步感知,加之七年级学生还沿袭着小学生的思维特点,直觉思维占主导地位,模仿能力较强,是多项式的次数及多项式按序排列.因此,可以通过与单项式的比较引导学生认识多项式的关键特征,从而认识多项式的概念.三维目标知识与技能1.能结合具体情景了解多项式的概念,能分析简单问题的数量关系,并用多项式表示2.能准确迅速地确定一个多项式的项数和次数。
3. 能正确区分单项式和多项式。
4.能用多项式表示实际问题中的数量关系。
过程与方法经历多项式、整式概念的形成和运用过程,知道多项式项、次数的确定方法,进一步培养学生分析问题、解决问题的能力。
情感、态度与价值观体会多项式、整式的实际背景,进一步感受字母表示数的意义。
进一步培养学生积极思考的学习态度,合作交流意识,重点结合具体情景认识多项式、整式相关概念,准确确定多项式的次数和项数难点确定多项式的次数和项数并和单项式区分开来。
教学方法以引导发现法、自学辅导法为主,采用师生互动、主动探究的方式让学生直观感受多项式的形成过程。
学法指导本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间。
通过本课的教学,在教师的组织引导下,倡导学生自主学习、尝试学习、探究学习、合作交流学习。
教学资源借助PPT软件展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。
教学评价坚持“及时评价与激励评价相结合,定量化评价与定性化评价相统一”的原则,最大限度地做到面向全体学生,充分关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励测进式点评有机结合,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
人教版-数学-七年级上册-2.2 整式的加减 合并同类项教案
《七年级第二章整式的加减》教案2.2整式的加减(合并同类项)【教学课型】:新课◆课程目标导航【教学目标】:1.知识与技能:理解合并同类项的概念,掌握合并同类项的法则。
2.过程与方法:经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。
渗透分类和类比的思想方法。
3.情感态度与价值观:在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
【教学重点】:重点:正确合并同类项。
【教学难点】:难点:找出同类项并正确的合并。
【教学方法】:分层次教学,讲授、练习相结合。
◆教学过程设计一、复习引入:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。
他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。
问:①他们两次共买了多少本软面抄和多少支水笔?②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?(知识的呈现过程尽量与学生已有的生活实际密切联系,从而能提高学生从事探索活动的投入程度和积极性,激发学生的求知欲。
)二、讲授新课:1.合并同类项的定义:(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所的结果都为(21x +25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。
(板书:合并同类项。
)2.例题:例1:找出多项式3x2y-4xy2-3+5x2y+2xy2+5种的同类项,并合并同类项。
解原式= ()()()22835245335245322222222+-=-++-++=-++-+xy y x xy y x xy xy y x y x根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
人教版七年级数学教案(上)整式的加减_教案(1--8)课时
第二章整式的加减2.1 整式 2.1.1单项式教学目标(1)能用代数式表示实际问题中的数量关系.(2)理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.重、难点与关键1.重点:单项式的有关概念.2.难点:负系数的确定以及准确确定一个单项式的次数.教学过程一、新授6a 2,a 3,2.5x ,vt ,-n .观察上面各式中运算有什么共同特点?上面各式中,数字与字母之间,字母与字母之间都是乘法运算,•它们都是数字与字母的积,例如:6a 2表示6×a 2,a 3表示1×a 3,2.5x 表示2.5×x ,vt 表示1×v ×t ,-n•表示-1×n .像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式.如:-2,a ,13,都是单项式,而1a,1+x 都不是单项. 单项式中的数字因数叫做这个单项式的系数,例如:6a 2的系数是6,a 3的系数是1,-n 的系数是-1,-5ab 的系数是-15. 单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式的系数是1或-1时通常省略不写. 一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x•中字母x 的指数是1,2.5x 是一次单项式;vt 中字母v 与t 的指数和是2,vt 是二次单项式,-a b 2c 中字母a 、b 、c 的指数和是4,-a b 2c 是4次单项式. 二、范例学习例1.用单项式填空,并指出它们的系数和次数. (1)每包书有12册,n 包书有_______册.(2)底边长为a ,高为h 的三角形的面积是______. (3)一个长方体的长和宽都是a ,高是h ,它的体积是_______.(4)一台电视机原价a 元,现按原价的9折出售,这台电视机现在售价为_____元. (5)一个长方形的长为0.9,宽是a ,这个长方形的面积是_________. 三、巩固练习1.下列各式是不是单项式?为什么? (1)x-2y ; (2)-4;(3);(4)55x a bm; (5)-1. 2.判断下列各说法是否正确,错误的改正过来.(1)单项式-xy 2的系数是0,次数是2. (2)单项式27a 2的系数是2,次数是9.(3)单项式-23n x y的系数是-23,次数是n+1.3.请你写出系数为-,含有x 、y ,次数为4的所有单项式.4.课本第56页练习1、2题.四、课堂小结1.什么叫单项式?举例说明.2.单独的一个数或一个字母是单项式吗?xa是单项式吗?为什么? 3.什么叫单项式的系数?什么叫单项式的次数?举例说明. 五、作业布置1.课本第59页至第60页,习题2.1第1、2、8题.2.选用课时作业设计. 作业设计 一、判断题.(对的打“∨”,错的打“×”) 1.x 是单项式.( ) 2.6不是单项式.( ) 3.m 的系数是0,次数也是0.( ) 4.单项式4πxy 的系数是4π,次数是2.( ) 二、填空题.5.x 2yz 的系数是________,次数是________.6.-372ab 的系数是______,次数是_______. 7.如果单项式-2x 2y n 与单项式a 4b 的次数相同,则n=________.8.写出系数为5,含有x 、y 、z•三个字母且次数为4•的所有单项式,•它们分别是_______. 三、选择题.9.下列各式中单项式的个数是( ).3x ,x+1,-212,-1,0.72,42a x xy -. A .2个 B .3个 C .4个 D .5个10.单项式-x 2yz 2的系数、次数分别是( ).A .0.2 B .0.4 C .-1,5 D .1,4 四、解答题.11.苹果的价格比梨贵35%,如果梨的价格是每千克m 元,那么苹果的价格是多少?如果梨的价格比苹果便宜10%,梨的价格仍是每千克m 元,那么苹果的价格是多少?12.买一级肉5千克和买二级肉6千克用的钱同样多,如果一级肉每千克a 元,那么二级肉每千克多少元?如果用买b 千克一级肉的钱去买二级肉,可以买多少千克?个人修改:教学反思:2.1.2 多项式教学目标使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数. 重、难点与关键1.重点:多项式以及有关概念.2.难点:准确确定多项式的次数和项. 教学过程一、复习提问1.什么叫单项式?举例说明.2.怎样确定一个单项式的系数和次数?-237ab c的系数、次数分别是多少? 3.列式表示下列问题:(1)一个数比数x 的2倍小3,则这个数为________. (2)买一个篮球需要x (元),买一个排球需要y (元),买一个足球需要z (元),买3个篮球,5个排球,2个足球共需________元.(3)如图1,三角尺的面积为________.(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米.(1) (2)上面列出的式子2x-3,3x+5y+2z ,12ab-πr 2,x 2+2x+18,它们是单项式吗?这些式子有什么共同特点?与单项式有什么关系?2x-3可看作2x 与-3的和:3x+5y+2z 可以看作单项式3x 、5y 与2z 的和;同样12ab-πr 2看作12ab 与-πr 2的和,x 2+2x+18可以x 2、2x 、18的和.二、新授请同学们阅读课本第57页有关内容,并回答下列问题.1.几个单项式的和叫做_________; 2.在多项式中,每个单项式叫做_________; 3.在多项式中,不含字母的项叫做_________;4.在多项式中,_____________________,叫做这个多项式的次数. 5.多项式的次数与单项式的次数有什么区别?6(1)多项式的次数与单项式的次数概念不同,但又有联系,•首先求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.(2)一个多项式的最高次项可以不唯一,次高项也可以不唯一,•如,•多项式3x 2y-12xy 2+x 2-xy-5中,最高次项为3x 2y 和-12x y 2,二次项也有2项,x 2和-xy ,•这个多项式为二次五项式.单项式和多项式统称为整式,例如:100t ,6a 3,vt ,-n ,2x-3,3x+5y+2z 等都是整式. 三、范例学习例1.用多项式填空,并指出它们的项和次数. (1)温度由t ℃下降5℃后是_______℃.(2)甲数x 的13与乙数y 的12的差可以表示为_________. (3)如课本图2.1-3,圆环的面积为________.(4)如课本图2.1-4,钢管的体积是________.例2.一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、•乙两条船在静水中的速度分别是20千米/时和35千米/时,•则它们在这条河流中的顺水行驶和逆水行驶的速度各是多少? 四、巩固练习1.下列式子中,哪些是单项式?哪些是多项式?哪些是整式? 3x ,2x-1,13m +,-ab ,-5,2x-1,3m-4n+m 2n . 2.判别正误:(1)多项式-x 2y+2x 2-y 的次数2.( )(2)多项式-12-a+3a 2的一次项系数是1.( ) (3)-x-y-z 是三次三项式.( ) 3.课本第59页练习. 4.课本第61页第10题. 五、课堂小结1.什么叫做多项式?多项式是整式吗?整式是多项式吗? 2.什么叫多项式的项?什么叫做常数项?举例说明? 3.什么叫做多项式的次数?六、作业布置 1.课本第60页,习题2.1第2、3、4、5、6、7题作业设计一、填空题.1.式子-35ab ,229,32x y x +,-a 2bc ,1,x 3-2x+3,3a ,1x +1中,单项式的是______,多项式的是_______.2.多项式-23x y+2x-3是_______次_______项式,最高次项的系数是______,常数项是________. 3.2x 2-3x y 2+x-1的各项分别为________. 二、选择题.4.一个五次多项式,它任何一项的次数( ).A .都小于5B .都等于5C .都不小于5D .都不大于5 5.下列说法正确的是( ). A .x 2+x 3是五次多项式 B .3a b+不是多项式C .x 2-2是二次二项式 D .xy 2-1是二次二项式 三、列式表示.6.n 为整数,不能被3整除的整数表示为________.7.一个三位数,十位数字为x ,个位数字比十位数字少3,•百位数字是个位数字的3倍,则这个三位数可表示为________.8.某班有学生a 人,若每4人分成一组,有一组少2人,则所分组数是________.9.如图所示,阴影部分的面积表示为________.10.用火柴棒按图4的方式搭塔式三角形.(1)观察填表:(2)照这样下去,搭起的大三角形一条边用了n根火柴棒,这样的小三角形有多少个?个人修改:教学反思:2.1.3整式教学目标1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
人教版 七年级数学上册课件:2.2整式的加减--化简求值
数学
七年级
上册
2.2 整式的加减 (第2课时--化简求值)
学习目标: (1)会利用合并同类项将整式化简求值; (2)会运用整式的加减解决简单的实际问题; (3)初步尝试利用整体代入的思想解决问题.
学习重点: 利用合并同类项将整式化简求值.
例1 下列各题计算的结果对不对?如果不对 请指出错在哪里? (1) 3a 2b 5ab ( 2) 5 y 2 2 y 2 3
例3 (1)水库中水位第一天连续下降了a 小时,每小时平均 下降2cm;第二天连续上升了a 小时,每小时平均上升 0.5cm,这两天水位总的变化情况如何?
例3 (2)某商店原有5袋大米,每袋大米为x千克. 上午卖出3袋,下午又购进同样包装的大米4袋. 进货后这个商店有大米多少千克?
例4 用式子表示十位上的数是a,个位上的数是b 的两位数,再把这个两位数的十位上的数与个位 上的数交换位置,计算所得数与原数的和,所得 数与原数的和能被11整除吗?
(3) 2ab 2ba 0 ( 4) 3 x 2 y 5 xy 2 2 x 2 y
例2 2 2 2 2 x - 5 x + x + 4 x - 3 x -2 的值, (1)求多项式
1 其中 x = 2
;
1 2 1 2 (2)求多项式 3a+abc- c -3a+ c 的值, 3 3 1 c -3 其中 a - , b 2 , 6
作业布置
• P70页第4 .5 .6题
例5 已知m是绝对值最小的有理数,且a 与 3a x b3 是同类项,
m 1
b y 1
求: 2 x 2 3 xy 6 x 2 3mx 2 mxy 9my 2 的值
例6 若 a
初中七年级数学《整式的加减》教案3篇
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
人教版七年级上册数学第二章2.2整式的加减
化简
(1)12(x – 0.5) =12x – 12×0.5 =12x – 6
(2)5(1 1 x) 5
51 5 1 x 5
5 x
(3)– 5a+(3a – 2) – (3a – 7)
= – 5a + 3a – 2 – 3a + 7
=(3-5)a+(2-1)b = -2a+b 当a=-2,b=1时,原式=-2×(-2)+1=5
(2)3x-4x2+7-3x+2x2+1,其中x = -3.
解: 3x-4x2+7-3x+2x2+1 =(-4+2)x2+ (3-3)x+ (7+1) = -2x2+8
当x = -3时,原式 = -2×(-3)2+8 = -10
(1)2 h后两船相距多远? (2)2 h后甲船比乙船多航行多少km?
解:顺水航速 = 船速 + 水速 =(50+a)km/h 逆水航速 = 船速 - 水速 =(50-a)km/h
(1)2h小时后两船相距(单位:km)
2(50+a)+2(50-a) =100+2a+100-2a
=200
(2)2h后甲船比乙船多航行(单位:km)
= – 5a + 5
(4)1(9 y 3)(2 y 1)
3
19y 132y1
3
3
5y
飞机的无风航速为a km/h,风速为20km/h。飞
机顺风飞行4h的行程是多少?飞机逆风飞行3h的 行程是多少?两个行程相差多少?
解:飞机顺风飞行4h的行程是 4(20+a)km 飞机逆风飞行3h的行程是 3(a-20)km
人教版七年级数学上册:2.2《整式的加减》表格式教案设计
2.2 整式的加减教学知识技术:理解同类项的观点,并能正确鉴别同类项。
过程方法:掌握归并同类项的法例,能进行简单同类项的归并。
目标感情态度:运用类比的数思想方法,发展学生研究能力,问题的抽象归纳能力。
教课要点归并同类项法例。
教课难点对同类项观点的理解以及归并同类项法例的应用。
教课准备多媒体教课方法互动沟通法、小组商讨法教课流程创建情境导入新课→合作沟通解读研究→应用迁徙稳固提升→总结反省拓展升华教学互动设计一、创建情境导入新课【问题 1】我们到动物园观光时 , 发现老虎与老虎关在一个笼子里 , 鹿与鹿关在另一个笼子里 . 为何不把老虎与鹿关在同一个笼子里呢?商场里又为何把各样物件摆放在不一样的柜台上?这些说明什么知识道理?【问题 2】青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。
列车在冻土地段的行驶速度能够达到 100 千米 / 时,在非冻土地段的行驶速度能够达到 120 米/ 时,请依据这些数据回答以下问题:在西宁到拉萨路段,列车经过非冻土地段所需时间是经过冻土地段所用时间的 2.1 倍,假如经过冻土地段需要t 小时,你能用含t 的式子表示这段铁路的全长吗?学生活动:剖析已知量与未知量之间的数目关系。
二、合作沟通解读研究学生思虑并回答:100 t +252t【问题 3】式子 100 t +252 t能化简吗?依照是什么?研究 1( 1)运用有理数的运算律计算:100 2 252 2,100 (2) 252 (2).( 2)依据( 1)中的方法达成下面的运算,并说明此中的道理.100t 252t.研究 2( 1)100t252t() t( 2)3x22x2() x2( 3)3ab24ab 2()设计企图学生畅所欲言。
指引学买卖识到“归类”存在于生活中。
在详细情境顶用整式表示问题中的数目关系,利用实质问题吸引学生的注意力。
提出问题 3,让学生带着这个问题来解决研究1.独立达成研究 1中的( 1),并对(2)进行分组议论 .经过对研究 1 和研究 2 的商讨,引出同类项的观点。
2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册
整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。
七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版
七年级数学上册第二章整式的加减2. 2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版一、教学目标(-)学习目标1 .熟练掌握整式的加减运算法则,并能准确化简求值.2 .体会整体代入法的作用.3 .准确的运用去括号法则、合并同类项法则进行整式的化简求值.(二)学习重点熟练掌握整式的加减运算法则,并能化简求值.(三)学习难点准确的运用整体代入的方法化简求值.体会整体的代入方法的作用.二、教学设计(-)课前设计1 .预习任务整式的化简求值一般先一化简,再求值 .2 .预习自测(1)化简:-(a -h)2+\ 3(a - b)2 - 8(« - b)2 + 7(a - b)2. 2【知识点】合并同类项.【数学思想】整体思想.1 25【解题过程】解:原式=(一 + 13-8 + 7)(0-。
)2 二一(々一。
)2. 2 2【思路点拨】根据同类项,把同类项结合到一起,根据合并同类项,可得答案.9S【答案】—(a-b)2. 2(2)化简:6x2y + 2xy^-3x2y2 -7x-5yx-4y2x2 -6x2y .【知识点】合并同类项.【解题过程】解:原式二—7/),2—3邛—7-【思路点拨】根据合并同类项的法则求解即可.【答案】-7x2r-3^-7x.(3)化简求值:(7〃?。
-4〃?〃 -4,/)一(2"/ 一+ 2/J);其中/7? = ■!■ ; // =-- 22【知识点】去括号、合并同类项.【解题过程】解:原式=7〃/一4〃〃?一4/一2〃72+〃〃?一2万=5m2 -3//Z/Z-6/?2当〃2 =—, 〃 = 一工时,5m2 -36〃-6/ =5x(—)2 - 3x — x(--)-6x(--)2 =— 2 2 2 2 22 2【思路点拨】先化简再代入求值,可以简化计算.【答案】2(4)化简求值:(1〃2_2〃-6)-1(!〃2-4a-7),其中〃=2.3 2 2【知识点】化简求值【解题过程】解:(L『-2«-6)--(—i/2-4a-7) =-a2 -2a-6- — a2+2a + — = — a2-- 3 2 2 3 4 2 12 2i 5 i Q当a = 2时,原式二上x2?—二二一上.12 2 6【思路点拨】先化简再代入求值,可以简化计算.13【答案】—上6(二)课堂设计1 .知识回顾(1)去括号法则是.注意:①去括号,看符号,是“+”不变号,是“一”全变号.②括号前的因数分配到括号内不要漏乘项.③去括号前后项数一致.(2)合并同类项的法则:系数相加,字母和字母的指数不变.(3)整式加减运算实际是,2 .问题探究探究一•活动①(整合旧知,探究整式的化简求值)化简求值:4x?),一[6个一3(4\y-2)-x1] + l,其中x = 2,2学生独立自主的解决,老师巡视,发现学生在解题过程中的不同方法.抽两个不同方法的学生板书(一个是直接代入求值,另一个先化简再求值)师问:比较两解法,哪种方法更简单?生答:先化简再求值更简单一些.师问:你们能总结整式的化简求值的方法步骤吗?生答:先化简,再求值【设计意图】使学生进一步理解掌握整式的加减法则,熟练进行整式的化简求值,掌握化简求值的格式要求.探究二•活动①(大胆操作,探究整体思想代入求值)已知代数式2/+3y + l的值是2,求6r+9)、-7的值.师问:题目没有直接告知x和y的值,如何求值呢?引导学生观察与思考.【设计意图】让学生初步认识整体思想的作用.・活动②(集思广益,证明整体代入的方法)师问:注意观察条件和结论中含字母的部分的系数有何特征?生答:成倍数关系师问:这类型的题目用什么方法求值呢?法一、由条件向结果转化V 2x2+3y + \ = 2,则3(2x2+3y + l) = 3x2,则6』+9y + 3 = 6, A 6x2+9y = 3. ・•.把6/ + 9 y作为整体带入6/ + 9 y - 7得值是-4法二、由结果向条件转化6/+9),一7:3(2/+3乃一7,再由2丁+3y + l = 2得2/+3y = 1,・••原式二—4 【设计意图】让学生认识到整体带入的数学思想使运算化简更简便.探究三运用整式的加减化简求值・活动①i i 3 1 ?例L 求Lx — 2(x —:y2) +(—, x + =),2)的值,其中工=—2,),=二.2 3 2 3 3【知识点】整式的化简求值.1 1 3 1【解题过程】解:ix-2(x-ir)+(--x+ir)2 3 2 31 个2)3 1 ,=—x-2x + — ~ — x + - y2 3, 2 3.= -3x+y2当x = -2, y = g时,原式二(一3)乂(一2) + ($2=6 + [=62.【思路点拨】先化简,再求值.4【答案】6-.9练习:先化简,再求值:12(。
人教版七年级数学教材上册《整式的加减》全章教案
第一学时 整式(1)学习内容:教科书第54—56页,2.1整式:1.单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。
4、练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。
2、判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数 和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
人教版初中数学课标版七年级上册第二章2.2 整式的加减教案
人教版初中数学课标版七年级上册第二章 2.2 整式的加减教案2.2.1 整式的加减教学目标1.知识与技能(1)了解同类项、合并同类项的概念,会判断两个单项式是否是同类项。
(2) 掌握合并同类项法则,能正确合并同类项2.过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。
3.情感态度与价值观掌握规范解题步骤,养成良好的学习习惯。
重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项.2.难点:多字母同类项的合并.3.关键:正确理解同类项概念和合并同类项法则.教学过程一、创设问题情境,引入新课(1)展示一幅图片,谁能告诉大家有关青藏铁路的信息?(2)今天我们一起学习有关青藏铁路的问题青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t小时,则这段铁路的全长是多少?(单位:千米)解:这段铁路的全长是:100t+120×2.1t即 100t+252t2. 类比数的运算,如何化简100t+252t,并说明你的道理。
思路点拨:教师引导,启发学生类比数的运算,逆用乘法分配律。
对比:100×2+252×2 100t+252t=(100+252) ×2 =(100+252)t=(4-8)x 2 +(2+3)x+(7-2) (分配律)=-4x 2+5x+5把多项式中的同类项合并成一项,叫做合并同类项。
问题:合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?(学生交流,教师归纳)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
注意:1.若两个同类项的系数互为相反数,则两项的和等于零,如:-3ab 2+3ab 2=(-3+3)ab 2=0×ab 2=0。
新人教版初中数学七年级上册《第二章整式的加减:2.2整式的加减:合并同类项》公开课教案_1
课题:2.2 整式的加减(1)合并同类项第一课时一、三维目标1、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项.(2)能先合并同类项化简后求值.经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.3、情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用.二、 教学重、难点与关键(1)重点:掌握合并同类项法则,熟练地合并同类项.(2)难点:多字母同类项的合并.(3)关键:正确理解同类项概念和合并同类项法则..三、 教学过程,1、引入新课实际生活中,我们身边的同一类事物有很多,为了需要,往往我们要将它们进行分类。
又哪位同学愿意给大家举个例子呢?你会做吗?(1) 卓玛从家里带了3朵花到教室,尼玛从家里带了2朵花到教室。
请问现在教室里到底有几朵花?(2) (2)扎西家里有12头奶牛,有3只绵羊。
请问扎西家共有几头奶牛?2、讲授新课1.试一试 ?312532752222=+=+=+y x ab ab ab aa a2.导学提纲:(议一议)观察下列各单项式,把你认为相同类型的式子归类,并说出分类依据。
0.3ab 2 、 -4a 2b 、9xy 、 -xy -ab 2观察0.3ab 2,-ab 2中都含有相同字母a 和b ,并且相同字母a 的指数都是1, 相同字母b 的指数是2;而9xy 和 –xy 都含有相同字母x 和y,且相同字母x 指数都是1,相同字母y 指数都是1.3、归纳: 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项.4. 练习。
判断下列各组中的两项是否是同类项,不是同类项的请说明原因:(1) -5ab 3与3a 3b( ) (2)3xy 与3x( )(3)0.5ab 与2ba ( )(4)53与35 ( )(5)x 3与53 ( ) (6) -5m 2n 3与2n 3m 2( )理解同类项应注意:两个相同:所含字母相同,相同字母的指数相同。
七年级上册数学导学案:2.2整式的加减2
七年级上册数学第二章导学案第五学时整式的加减(2)学习内容:学习目的和要求:1.理解合并同类项的概念,掌握合并同类项的法则。
2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。
3.渗透分类和类比的思想方法。
4.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
学习重点和难点:重点:正确合并同类项。
难点:找出同类项并正确的合并。
一、自主学习1、问题:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。
他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。
问:①他们两次共买了多少本软面抄和多少支水笔?②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?2.合并同类项的定义:【提示】(讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。
二、合作探究1、找出多项式3x2y-4xy2-3+5x2y+2xy2+5种的同类项,并用交换律、结合律、分配律合并同类项。
根据以上合并同类项的实例,讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
2、下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4;(4)9a2b-9b a2=0。
3、合并下列多项式中的同类项:①2a2b-3a2b+0.5a2b;②a3-a2b+a b2+a2b-a b2+b3;③5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4。
【提示】(用不同的记号如横线、双横线、波浪线等标出各同类项,会减少运算错误,当然熟练后可以不再标出。
【人教版】七上数学:2.2《整式的加减》(3课时)教学设计
2.2整式的加减(第1课时)教学目标:1.理解同类项的概念.2.掌握合并同类项法则,会进行简单的同类项合并.3.运用类比数学思想方法,发展学生探究能力、问题的抽象概括能力.教学重点:合并同类项法则难点:对同类项概念的理解,合并同类项法则的探究过程.教法:互动探究法学法:小组研讨法教学过程:复习(1)举例说明什么是多项式,多项式的次数、多项式的项、常数项.学生活动:学生抢答一、情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h ,在非冻土地段的行驶速度是120 km/h ,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h ,你能用含t 的式子表示这段铁路的全长吗?学生合作探究:分析已知量和未知量之间的数量关系.教师总结:依题意可列出非冻土地段所需时表示为t 1.2,根据路程=时间⨯速度,铁路全长是t t 1.2120100⨯+,即t t 252100+.那么t t 252100+能够化简吗?下面我们就来学习今天的新知识——同类项问题2:(1)运用运算律计算:22522100⨯+⨯= ,()()22522100-⨯+-⨯= ;(2)根据(1)中的方法完成下面的运算,并说明其中的道理:t t 252100+= .学生活动:在独立完成的基础上,小组合作探究.师生合作探究:前面我们学习过特殊到一般的方法解决问题,本题22522100⨯+⨯可看作,t t 252100+中当t 取多少时的算式?()()22522100-⨯+-⨯呢?类比它们的关系,t t 252100+也能用运算律来化简吗?教师总结:运用分配律可得(1)题中()2352225210022522100⨯=⨯+=⨯+⨯,()()()()()2352225210022522100-⨯=-⨯+=-⨯+-⨯(2)题t t 252100+有与(1)题相同的结构,其中t 代表一个因数,因此也可以用分配律得()t t t 252100252100+=+.本题利用类比方法,推导出运算律同样适用于含字母因数的式子,为下面的同类项概念的引入做准备.问题3:填空:(1)=-t t 252100( )t ;(2)=+2223x x ( )2x ;(3)=-2243ab ab ( )2ab .上述运算式有什么特点,你能多中得出什么规律?学生活动:独立完成的基础上,小组合作交流.教师总结:利用分配律可得()t t t t 152252100252100-=-=-,()2222323x x x +=+,()2224343ab ab ab -=-.观察(1)中的多项式的项t 100和t 152-,它们含有相同的字母t ,并且字母的指数都是1;(2)中多项式的项23x 、22x 都含有相同的字母x ,并且x 的指数都是2;(3)中多项式的项23ab 、24ab -,它们都含有字母a 、b ,并且a 都是1次的,b 都是2次的.象t 100与t 152-,23x 与22x ,23ab 与24ab -这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项系数的和,且字母部分不变.问题 4.你能化简多项式28372422--+++x x x x 吗?若能,请你把最后结果中的各项按照某个字母的指数从大到小或者从小到大的顺序排列.学生活动:小组合同探究,结合前面的结论,来寻求解决问题的途径与方法.师生合作探究:多项式中有同类项吗?能利用交换律、结合律合并同类项吗?教师总结:因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.2732842837242222-+++-=--+++x x x x x x x x()()()55427328422++-=-+++-x x x x最后结果是按照x 的指数从大到小(降幂)的顺序排列,其中5是常数项,相对于x ,可以看作“没有指数”.最后结果也可以按照x 的指数从小到大(升幂)的顺序,写成2455x x -+.二、范例学习例1:合并下列各式的同类项:(1)2251xy xy -; (2)22222323xy xy y x y x -++-;(3)222244234b a ab b a --++学生活动:在独立完成的基础上,小组交流,讨论解题过程以及结果的合理性.师生合作探究:利用运算律,先合并同类项,结果按照某个字母的升幂或降幂排列.教师总结:(1)22225451151xy xy xy xy =⎪⎭⎫ ⎝⎛-=-; (2)()()22222223232323xy y x xy xy y x y x -++-=-++-22xy y x +-=(3)()()ab b b a a b a ab b a 243444423422222222+-+-=--++()()ab b ab b a 224344222+-=+-+-=例2:(1)求多项式23452222--++-x x x x x 的值,其中21=x . (2)求多项式22313313c a c abc a +--+的值,其中3,2,61-==-=c b a . 学生活动:小组合作探究,先完成(1)题,教师评讲完后,再做下一题.师生合作探究:一种方法是直接把x 的值代入多项计算,第二种是把多项式经过合并同类项,再带入x 的值计算,两种方法更简便?教师总结:先化简,再代入求值.(1)()()2245312234522222--=-+-+-+=--++-x x x x x x x x . 当21=x 时,原式25221-=--=. (2)()abc c abc a c a c abc a =⎪⎭⎫ ⎝⎛+-++-=+--+222313133313313. 当3,2,61-==-=c b a 时,原式()13261=-⨯⨯-. 上面的问题使学生进一步熟悉合并同类项法则,也使学生看到将多项式适当化简后可以简化计算.例3:(1)水库水位第一天连续下降了a h ,每小时平均下降到2cm ;第二天连续上升了a h ,每小时平均上升了0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?学生活动:小组合作探究.师生合作探究:(1)水位有升降区别,那么用什么数来表示这种变化?总的水位变化,显然是这两天水位变化的和.(2)大米量变化上午卖出理+下午购进量,这里的卖出与购进怎么表示?教师总结:(1)a a a 5.15.02-=-(cm )(2)x x x x 6435=+-(kg )三、巩固拓展练习1 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”(1)x 3与xm 3是同类项( )(2)ab 2 与ab -是同类项( )(3)22yx 与 y x 23是同类项( )(4)23ab 与c ab 23是同类项( )(5)23与32是同类项( )练习21.若m y x 3-与n x y 221是同类项,则m = ,n = .2.若22252xy y mx y x -=+,则m = .3.当21=x 进,多项式765155222--++-x x x x x 的值为 .参考答案:×,√,√,×,√,2,3,-12.四、课堂总结(1)本节课学了哪些主要内容?(2)你能举例说明同类项的概念吗?(3)举例说明合并同类项的方法.(4)本节课主要运用了什么思想方法研究问题?五、作业教科书第65页练习题第1、2、3、4题板书设计例1 例2 例32.2 整式的加减(第2课时)教学目标:1.理解去括号法则.2.会利用去号法则将整式化简.3.经历类比带有括号的有理浸透的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.教学重点:去括号法则,准确应用法则进行化简.教学难点:去括号法则的理解;括号前面是负号时,去括号后各项符号的变化.教法:互动探究法.学法:小组研讨法.教学过程:复习:1.什么是同类项?2.怎样进行合并同类项?一、情况引入问题:在格尔木到拉萨路段,如果列车通过冻土地段需要u h ,那么它通过非冻土地段的时间是(5.0-u )h.于是冻土地段的路程是u 100km ,非冻土地段的路程是()5.0120-u km.因此,这段铁路的全长(单位:km )是 ,冻土地段与非冻土地段相差(单位:km ) 学生合作探究:先自主完成,小组交流合作教师总结:()5.0120100-+u u ①,②()5.0120100--u u ②,式子①,②都带有括号,类比数的运算,它们应如何化简?这就是我们将要学习的内容——去括号利用分配律,可以去括号,再合并同类项,得()60220601201005.0120100-=-+=-+u u u u u()6020601201005.0120100+-=+-=--u u u u u上面两式中()601205.0120-+=-+u u ③()601205.0120+-=--u u ④比较③,④两式,你能发现骈括号时符号变化的规律吗?学生活动:小组合作探究师生合作探究:去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.特别地,()3-+x 与()3--x 可以看作1与此同时1分别乘()3-x .二、范例学习例4化简下列各式:(1)()b a b a -++528;(2)()()b a b a 23352---.学生活动:自方主完成教师总结:先去括号,再合并同类项解(1)()b a b a b a b a b a +=-++=-++13528528;(2)()()()b a b a b a b a 6335233522---=---b a a b a b a 353633522++-=+--=.例5两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h ,水流速度是a km/h .(1)2 h 后两船相距多远?(2)2 h 后甲船比乙船多航行多少km ?学生活动:小组合作交流师生合作探究:顺水速度=静水速度+水流速度=(50+ a )km/h逆水速度=静水速度-水流速度=(50- a )km/h教师总结:2 h 后两船相距2(50+ a )+2(50- a )=200.2 h 后甲船比乙船多航行2(50+ a )-2(50- a )=4 a.三、巩固拓展1.(1)()122-+-+y x = ;(2)()b a +--35= .(3)实数a 、b 、c 数轴上的对应点如下图,化简c c b b a a ----++= . 0c ba2.化简: (1)()5.012-x ; (2)⎪⎭⎫ ⎝⎛--x 5115 (3)()()73235---+-a a a ; (4)()()123931++-y y . 学生活动:先独立完成,后小组合作交流教师总结: 1. 224-+-y x 、b a -+-35、0;2. 612-x 、5-x 、55+-a 、14+y四、课堂总结1.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.五、作业教科书第70页习题2.2第3、4题板书设计2.2整式的加减第二课时去括号问题例4例52.2整式的加减(第3课时)教学目标:1.让学生从实际问题中去体会进进行整式加减的必要性,掌握并能灵活运用整式加减的运算法则.2.培养学生的观察、分析、归纳、总结以及概括能力.3.认识到数学是解决实际问题和进行交流的重要工具.教学重点:整式加减的运算法则教学难点:概括整式加减的运算法则并灵活、准确地运用法则.教法:互动探究法学法:小组研讨法教学过程:复习:去括号法则教师总结:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.一、情境引入如图,用火柴棍拼成一排正方形图形,如果图形中含有1、2、3或4个正方形,分别需要多少根火柴棍?如果图形中含有n个正方形,需要多少根火柴棍?学生合作探究:小组合作探究师生合作探究:有几种求解方法教师总结:方法一:第一个正方形用4根火柴棍,每增加一个正方形增加3根火柴棍,搭n 个正方形就需要[4+3(n -1)]根火柴棍.方法二:把每一个正方形都看成用4根火柴棍搭成的,然后再减去多算的火柴棍,得到需要[4n -(n -1)]根火柴棍.方法三:第一个正方形可以看成是3根火柴棍加1根火柴棍搭成的,此后每增加一个正方形就增加3根,搭n 个正方形共需要(3n +1)根火柴棍.想一想:这三种方法的结果是否一样?上几节课学习了合并同类项、去括号等内容,它们是进行整式加减运算的基础.二、范例学习例6计算:(1)()()y x y x 4532++-;(2)()()b a b a 5478---学生活动:学生独立完成教师总结:先去括号,再合并同类项解:(1)()()y x y x 4532++- (2)()()b a b a 5478---y x y x 4532++-= b a b a 5478+--=y x +=7 b a 24-=完成课本69页练习第1题例7 笔记本的单价是x 元,圆珠笔的单价是y 元。
2022年人教版七年级数学上册第二章整式的加减教案 整式的加减(第2课时)
第二章有理数的加减2.2 有理数的加减第2课时一、教学目标【知识与技能】能运用运算律探究去括号法则,并且利用去括号法则将整式化简.【过程与方法】经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.【情感态度与价值观】培养学生主动探究、合作交流的意识,严谨治学的学习态度.二、课型新授课三、课时第2课时,共3课时。
四、教学重难点【教学重点】去括号法则,准确应用法则将整式化简.【教学难点】括号前面是“-”号去括号时,括号内各项变号容易产生错误.五、课前准备教师:课件、直尺、去括号法则等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课小明在求多项式6a–5b与多项式8a–4b的差时,列出算式(6a–5b)–(8a–4b). 但小明想:这种含括号的式子该如何计算呢?(出示课件2)(二)探索新知1.师生互动,探究去括号法则(出示课件4)教师问1:请同学们完成下面的题目:计算:-12×(14−13),你有几种方法?学生回答:两种方法,一种是先计算括号内的部分,再相乘;另一种是利用乘法分配律。
教师问2:思考:–7(3y–4)=?这个式子又该怎么计算呢师生讨论后认为:利用分配律,可以去括号,得:-7×3y+(-7)×(-4)=-21y+28教师:需要注意:出示课件5-6,师生一起解答问题教师问3:观察计算过程,你能发现去括号时符号变化的规律吗?师生一起总结:(出示课件7)去括号法则:1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.教师问4:讨论比较+(x-3)与-(x-3)的区别?学生回答:+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).教师问5:利用分配律,可以将式子中的括号去掉:+(x-3)与-(x-3).学生回答:利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3 (括号没了,括号内的每一项都没有变号)-(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号)教师问6:去括号时要注意什么呢?师生共同讨论后解答如下:去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.例.化简下列各式:(出示课件9)(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).(3)(2x2+x)–[4x2–(3x2–x)].师生共同解答如下:解:(1)原式=8a+2b+5a–b=13a+b;(2)原式=(5a–3b)–(3a2–6b)=5a–3b–3a2+6b=–3a2+5a+3b;(3)原式=2x2+x–(4x2–3x2+x)=2x2+x–(x2+x)=2x2+x–x2–x=x2.总结点拨:(出示课件10)1.当括号前面有数字因数时,可应用乘法分配律将这个数字因数乘以括号内的每一项,切勿漏乘.2.当含有多重括号时,可以由内向外逐层去括号,也可以由外向内逐层去括号.每去掉一层括号,若有同类项可随时合并,这样可使下一步运算简化,减少差错.例:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.问:(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?(出示课件12)师生共同解答如下:解:(1)顺水速度=船速+水速=(50+a)km/h,逆水速度=船速–水速=(50–a)km/h.2小时后两船相距(单位:km)2(50+a)+2(50–a)=100+2a+100–2a=200.(2)2小时后甲船比乙船多航行(单位:km)2(50+a)–2(50–a)=100+2a–100+2a=4a.例:先化简,再求值,已知x=-4,y=1.(出示课件15)2求5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y-xy 2的值.师生共同解答如下:5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y-xy 2=5xy 2当x =–4,y =12 时,原式=5×(–4)×(12)2= –5.总结点拨:在化简时要注意去括号时是否变号;在代入时若所给的值是负数、分数、有乘方运算的,代入时要添上括号.(三)课堂练习(出示课件17-21)1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=3,y=3B .x= –4,y= –2C .x=2,y=4D .x=4,y=22. 下列去括号的式子中,正确的是( )A. a 2–(2a –1)= a 2–2a –1B. a 2+(–2a –3)= a 2–2a+3C. 3a – [5b – (2c –1)]= 3a –5b +2c –1D. –(a +b) + (c –d)= –a – b –c+d3.不改变代数式的值,把代数式括号前的“–”号变成“+”号,a-(b-3c)结果应是( )A.a+(b –3c)B. a+(–b –3c)C. a+(b+3c)D. a+(–b+3c)x 2-2y x 2+2y4. 已知a–b= –3,c+d=2,则(b+c)–(a–d)的值为()A.1B.5C.–5D.–15. 已知a2+2a=1,则3(a2+2a)+2的值为__________.6. 化简下列各式:(1)8m+2n+(5m–n);(2)(5p–3q)–3(p2-2q ).7. 先化简,再求值:2(a+8a2+1–3a3)–3(–a+7a2–2a3),其中a=–2.参考答案:1.C 解析:A. x=3、y=3时,输出结果为32+2×3=15;B. x= –4、y= –2时,输出结果为(–4)2–2×(–2)=20;C. x=2、y=4时,输出结果为22+2×4=12;D. x=4、y=2时,输出结果为42+2×2=20.2.C3.D4.B5.5 解析:因为a2+2a=1,所以3(a2+2a)+2=3×1+2=5.6. 解:(1)8m+2n+(5m–n);=8m+2n+5m-n=13m+n(2)(5p–3q)–3(p2-2q ).=5p-3q-(3p2-6q)=5p-3q-3p2+6q=-3p2+5p+3q7. 解:原式=–5a2+5a+2a=–2时,原式=–28.(四)课堂小结今天我们学了哪些内容:1.去括号时要将括号前的符号和括号一起去掉;2.去括号时首先弄清括号前是“+”还是“-”;3.去括号时当括号前有数字因数应用乘法分配律,切勿漏乘.(五)课前预习预习下节课(2.2)67页到69页的相关内容。
七年级数学《整式的加减》教案
七年级数学《整式的加减》教案七年级数学《整式的加减》教案一数学活动一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示方法和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,发展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有2012个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课教师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和积极性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,经常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中积极思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.教师准备几何画板软件供学生使用,同时采用多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有2012个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.教师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+19=4×2+1 … n×2+1 表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.七年级数学《整式的加减》教案二教学目标知识与技能理解同类项的概念,在具体情景中,认识同类项.过程与方法通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.情感、态度与价值观初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点重点理解同类项的概念.难点根据同类项的概念在多项式中找同类项.教学过程一、复习引入师:同学们,在上新课之前,我们先来做几个题目.1.教师读题,指名回答.(1)5个人+8个人=;?(2)5只羊+8只羊=.?2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课1.同类项的定义:师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a 可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解教师读题,指名回答.例1判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)例2游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.例3指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.答案(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.例4k取何值时,3xky与-x2y是同类项?答案要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.例5若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)答案改变2ab2c3的系数即可,与其本身也是同类项.五、课堂小结理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时合并同类项教学目标知识与技能理解合并同类项的概念,掌握合并同类项的法则.过程与方法经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.情感、态度与价值观在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.教学重难点重点正确合并同类项.难点找出同类项并正确的合并.教学过程一、情境引入师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?学生完成,教师点评.二、讲授新课合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解例1找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.答案原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.例2下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9ba2=0.(通过这一组题的训练,进一步熟悉法则)例3求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.答案3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.答案略四、课堂小结1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时去括号、添括号教学目标知识与技能去括号与添括号法则及其应用.过程与方法在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.情感、态度与价值观让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点重点去括号和添括号法则.难点当括号前是“-”号时的去括号和添括号.教学过程一、创设情境,引入新课还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为4n-(n-1).?4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+3n.?搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?生:相等.师:那么我们怎样说明它们相等呢?学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一去括号师:在代数式里,如果遇到括号,那么该如何去括号呢?我们再看看以前做过的习题.七年级数学《整式的加减》教案三一、教学内容解析:1.本节课选自:新人教版数学七年级上册§2.2.1节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。
人教版七年级上册第二章2.2.2求多项式的值教学设计
人教版七年级上册第二章2.2.2 求多项式的值教学设计一、教学目标1.理解多项式的定义和基本性质;2.学会求多项式在给定数值处的值;3.掌握对多项式进行加减乘运算和化简的方法;4.能够解决包含多个多项式运算的问题。
二、教学内容本节主要教授求多项式在给定数值处的值,并掌握对多项式进行加减乘运算和化简的方法。
三、教学重难点1.掌握求多项式在给定数值处的值的方法;2.掌握对多项式进行加减乘运算和化简的方法。
四、教学准备1.教师准备:多项式的定义和性质的讲解材料、多项式运算的例题、课堂练习题;2.学生准备:笔、纸。
五、教学过程1. 导入与引入(5分钟)•引导学生复习上节课的内容,复习多项式的定义和基本性质。
2. 讲解求多项式的值的方法(15分钟)1.通过例题引导学生理解求多项式在给定数值处的值的方法;2.讲解通过代入法求多项式的值的步骤,并进行实例演示;3.引导学生通过课堂练习进行巩固。
3. 讲解多项式的加减运算(20分钟)1.指导学生掌握多项式的加法和减法运算的方法;2.通过例题演示多项式的加法和减法运算,并解析运算步骤;3.引导学生通过课堂练习进行巩固。
4. 讲解多项式的乘法运算(20分钟)1.指导学生掌握多项式的乘法运算的方法;2.通过例题演示多项式的乘法运算,并解析运算步骤;3.引导学生通过课堂练习进行巩固。
5. 讲解多项式的化简(15分钟)1.介绍多项式的化简概念和目的;2.讲解多项式的化简方法,并进行实例演示;3.引导学生通过课堂练习进行巩固。
6. 综合应用与拓展(20分钟)1.给出具体问题,引导学生分析问题并运用多项式运算解决问题;2.鼓励学生总结多项式运算的方法和技巧。
7. 小结与布置作业(5分钟)1.小结本节课的学习内容,强调重点和难点;2.布置课后作业,要求学生复习课堂所学知识,并完成相应练习。
六、教学反思本节课主要讲解了求多项式在给定数值处的值的方法以及多项式的加减乘运算和化简的方法。
七年级数学上册 第2章 整式的加减 2.1 整式 课时3 多项式教案 (新版)新人教版-(新版)新人
第二章整式的加减2.1 整式课时3 多项式【知识与技能】理解并掌握多项式及多项式的项和次数的概念,能准确地找出多项式的项和次数.【过程与方法】通过观察、讨论、自主探究,提高学生的概括能力.【情感态度与价值观】培养学生自主探索知识和合作交流的能力.多项式、多项式的项和次数、整式的概念.求多项式的次数.多媒体课件出示问题:观察一列数1,4,9,16,25,…,第6个数是多少?第n个数呢?你能用含n的式子表示第n个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n个数呢?你能用含n的式子表示第n个数吗?学生思考得出答案,第一列第6个数是36,第n个数是n2;第二列第6个数是37,第n个数是n2+1.我们知道,n2是一个单项式,而n2+1不是单项式,那么它属于哪一类式子呢?这就是我们今天要解决的问题.(引入新课,板书课题)一、思考探究,获取新知活动1:说一说.(1)若一个长方形的长与宽分别为a,b,则此长方形的周长是;(2)若某班有男生x人,女生21人,则这个班共有学生人;(3)鸡兔同笼,若鸡有a只,兔有b只,则共有头个,脚只.答案:(1)2(a+b)(2)(21+x)(3)(a+b)(2a+4b)活动2:观察以上所得出的四个式子与上节课所学的单项式有何区别.小组讨论后,派代表回答,师生共同归纳多项式的相关概念:多项式:几个单项式的和叫作多项式.多项式的项和次数:每个单项式叫作多项式的项,不含字母的项叫作常数项.例如,多项式3x2-2x+5有三项,它们是3x2,-2x,5,其中5是常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,叫作这个多项式的次数.例如,多项式3x2-2x+5是一个二次三项式.二、典例精析,掌握新知例2一条河流的水流速度为2.5千米/时,如果船在静水中的速度为x千米/时,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两条船在静水中的速度分别是20千米/时和35千米/时,那么它们在这条河流中顺水行驶和逆水行驶的速度分别是多少?【解】船在这条河流中顺水行驶的速度为(x+2.5)千米/时,逆水行驶的速度为(x-2.5)千米/时.甲船顺水行驶的速度为20+2.5=22.5(千米/时),逆水行驶的速度为20-2.5=17.5(千米/时).乙船顺水行驶的速度为35+2.5=37.5(千米/时),逆水行驶的速度为35-2.5=32.5(千米/时).点拨:先用多项式表示实际问题中的数量关系,再将多项式中的字母表示的数代入计算,即可求出相应的值.整式:单项式与多项式统称整式.1.多项式及多项式的项、次数的概念.2.对比单项式和多项式,总结出单项式与多项式统称整式.教材P59习题2.1第2,3,4,5题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2整式的加减(2)——求多项式的值
【学习目标】1.进一步理解合并同类项的概念,掌握合并同类项的法则。
2. 经历概念的形成过程和法则的探究过程。
体会数学的简洁美。
【学习重难点】重点:利用合并同类项知识,求多项式的值。
难点:找出同类项并正确的合并。
【学习过程】
一、创设问题情境:
1、教师这里有一小袋硬币。
哪位同学能帮我数一下这一共有多少钱?
2、为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。
他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。
问:
①他们两次共买了多少本软面抄和多少支水笔? ②若设软面抄的单价为每本x 元,水笔的单价为每支y 元,则这次活动他们支出的总金额是多少元? 二、自主学习与合作探究: (一)自学提纲:
请同学们围绕着“怎样求多项式的值?为什么要合并同类项?”这些问题,自学课文第65页例题2开始到66页“练习”为止。
(二)、自学检测:(课文P66页练习)
(三)、知识点归纳:
1. 用数值代替多项式里的字母,按多项式指明的运算,计算后所得的结果,
叫做多项式的值。
2.求多项式的值的步骤是:
这样可以使得运算简便。
三、巩固与拓展
例1:其中 2
2
2
232252 1.x xy y xy x xy y -+--+-+22
, 1.7
x y ==-解:
例2:已知是同类项,求多项式的值。
x 52x y 1a b 2a b 3+-与323311
x xy y 436
-+解:
例3:当x=1时,多项式px 3+qx+1的值为
2011,则,当x=-1时,多项式px 3+qx+1的值为多少? 解:
四、当堂检测 1.计算
解:(1)
2. 求下列多项式的值。
(1)其中 (2)其中 2
2
2
732256,x x x x x ---++ 2.x =-5234
1.a b b a -+--1,
2.a b =-=
3. 某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷。
列式表示水稻种植面积和玉米种植面积一共是多少。
五、小结与反思
1我的收获是 2、还有没解决的问题是 六、课外作业:
1.多项式-3x 2y-10x 3+6x 3y+3x 2y-6x 3y+7x 3-2的值( )
A 、与x 、y 都有关;
B 、只与x 有关;
C 、只与x 有关;
D 、与x 、y 都无关。
2.当a=-1时,式子-5a n -a n +8a n -3a n -a n+1(n 是正整数)等于( ) A 、-2; B 、-2或0; C 、0; D 、1或-1. 3.已知
是同类项,则多项式的值为( ) 63m n
12x y x y 3
-
与29m 5mn 17--A 、-1; B 、-2; C 、-3; D 、-4.
4. 窗户形状如图,其上部是半圆,下部是边长相同的四个小正方形,已知下部小正方形的边长为a ㎝.计算
(1)窗户的面积;(2)窗框的总长.
5. 一种笔记本售价为2.3元/本,如果买100本以上(不含100本),售价为2.2元/本.列示表示买n 本笔记本所需钱数(注意对n 的大小要有所考虑)。
请同学们讨论下列问题: (1)按照这种售价规定,会不会出现多买比少买反而付钱少的情况? (2)如果需要买100本笔记本,怎样购买能省钱?
选作。