2020中国海洋大学数学科学学院考研招生考试大纲
中国海洋大学《线性代数》2019-2020学年第二学期期末试卷A
中国海洋大学全日制本科课程期末考试试卷2020年 春季学期 考试科目:线性代数 学院:数学科学学院 试卷类型: A 卷 命题人: 审核人:_____________考试说明:本课程为闭卷考试,共_4_页,只可携带考场规定的必需用品。
符号说明:)(A r 表示矩阵A 的秩,O 表示零矩阵。
一、填空题(共6题,每题3分,共18分)1. 若21321,,,,ββααα都是4维列向量,且已知4阶行列式,,,,1321m =βαααn =3221,,,αβαα,则4阶行列式=+)(,,,21123ββααα___________.2.已知n 阶方阵A 满足:,)(3)(22I A I A +=-其中I 为n 阶单位矩阵,则=+-1)3(I A __________________.3.已知321,,ααα是4元非齐次线性方程组b Ax =的3个解向量,且系数矩阵的秩3)(=A r ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3210,4321321ααα,则b Ax =的一般解=ξ__________________.4.设B A ,均为4阶方阵,**B A ,分别为B A ,的伴随矩阵,已知,3)(,4)(==B r A r 则=*))((AB r _____________.5. 设3阶方阵⎪⎪⎪⎭⎫ ⎝⎛----=021020110A ,方阵B 与A 相似,I 为单位矩阵,*B 为B 的伴随矩阵,则B 的特征值为____________,=-*I B 3____________. 6.已知矩阵⎪⎪⎭⎫⎝⎛=214a A 只有一个线性无关的特征向量,则=a _________,A 是否可对角化?_______(是/否).二、选择题(共 6 题,每题 3 分,共 18 分)1.设n 维向量I a a a ,0,00<⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α是n 阶单位矩阵,TT a I B I A αααα1,+=-=,已知A 与B 互为逆矩阵,则=a ( ).A 3- .B 1- .C 1 .D 2- 2.已知向量组4321,,,αααα线性无关,则( ).A 14433221,,,αααααααα++++线性无关 .B 14433221,,,αααααααα----线性无关 .C 14433221,,,αααααααα-+++线性无关 .D 14433221,,,αααααααα--++线性无关3.若B A ,均是n 阶非零方阵,且O AB =,则A 和B 的秩( ).A 必有一个等于0 .B 都小于n .C 一个小于n ,一个等于n .D 都等于n4.设A 是一3阶方阵,将A 的第一行加到第二行得到方阵B ,令**B A ,分别为B A ,的伴随矩阵,则( ).A 将*A 的第二列乘以1-倍加到第一列得到*B .B 将*A 的第二列乘以1-倍加到第一列得到*-B .C 将*A 的第二行乘以1-倍加到第一行得到*B .D 将*A 的第二行乘以1-倍加到第一行得到*-B5.已知n 阶方阵A 的伴随矩阵O A ≠*,若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,则齐次线性方程组0=Ax 的基础解系( ) 不存在 含有一个非零解向量.C 含有两个线性无关的解向量 .D 含有三个线性无关的解向量6.设A 是一个4阶实对称方阵且O A A =+2,若1)(=A r ,则A 相似于( ).A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0111 .B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0011 .C ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0111 .D ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0001 三、计算题(共 3 题,共 26 分)1.(6分)已知111121424051211-=A ,计算242322212M M M M --+-,其中ij M 是A 中元素ij a 的余子式。
2020考研数一考纲(可编辑修改word版)
2020 年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150 分,考试时间为180 分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8 小题,每小题4 分,共32 分填空题 6 小题,每小题4 分,共24 分解答题(包括证明题)9 小题,共94 分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:1x→∞lim x→0sin x= 1xlim⎛1+⎝1 ⎫x⎪=e⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径x2考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a, b) 内,设函数f (x) 具有二阶导数.当f'(x)>0时,f(x)的图形是凹的;当f'(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.32.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握4换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.59.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算6两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[ l, l] 上的傅里叶级数函数在[0, l] 上的正弦级数和余弦级数考试要求71.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sin x ,cos x ,ln(1+x) 及(1+x )的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-l, l] 上的函数展开为傅里叶级数,会将定义在[0, l] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求81.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:y(n) = f (x), y '= f (x, y') 和y '= f ( y, y') .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数9一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空10间及其相关概念n 维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.114.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.12概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数F (x) =P{X ≤x}(-∞<x <+∞) 的概念及性质,13141 2 1 2 会计算与随机变量相联系的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布 B (n , p ) 、几何分布、超几何分布、泊松(Poisson )分布 P () 及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布U (a , b ) 、正态分布 N (, 2 ) 、指数分布及其应用,其中参数为(> 0) 的指数分布 E () 的概率密度为⎧⎪e -x , f (x ) = ⎨若x > 0, ⎩⎪ 0, 若x ≤ 0.5. 会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布 N (,; 2 ,2; ) 的概率密度,理解其中参数的概率意义.4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容2分布t 分总体个体简单随机样本统计量样本均值样本方差和样本矩布 F 分布分位数正态总体的常用抽样分布考试要求1516 ∑ 1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为S 2 = 1 n n -1 i =1 ( X i - X )22. 了解2 分布、t 分布和 F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1. 理解参数的点估计、估计量与估计值的概念.2. 掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.17。
2020中国海洋大学水产学院考研招生考试大纲
2020年硕士研究生招生考试大纲005 水产学院目录初试考试大纲 (2)340 农业综合知识二 (2)416、816 普通动物学与普通生态学 (7)417 普通生态学与鱼类学 (11)612 生物化学A (14)835 基础生物学 (15)复试考试大纲 (17)F0501 细胞生物学 (17)F0502 水产养殖学综合考试 (18)F0503 渔具渔法学 (22)F0504 渔业生物学 (24)F0505 水产专业综合考试 (25)初试考试大纲340 农业综合知识二一、考试性质《农业知识综合二》是中国海洋大学农业推广(渔业领域)专业硕士研究生入学初试考试的专业基础课程。
二、考查目标《农业知识综合二》侧重于动物生产类综合知识的考查。
考试内容应主要涵盖动物生理学、动物遗传学、动物营养学与饲料学等课程。
要求考生认识生命活动的基本规律,理解和掌握相关生理学、遗传学、营养学基础知识、基本理论和基本方法,能够分析、判断和解决有关实际问题。
考试旨在三个层次上测试考生对动物生理基础、动物遗传学基础、动物营养学等知识掌握的程度和运用能力。
三个层次的基本要求分别为:1、熟悉记忆:动物生理学、遗传学和营养学名词记忆方面的考核。
2、分析判断:利用动物生理学、遗传学和营养学原理分析判断某一具体观点和问题;3、综合运用:利用动物生理学、遗传学和营养学综合分析具体实践问题。
三、考试形式1、试卷满分及考试时间:本试卷满分为150分,考试时间为180分钟。
2、答题方式:答题方式为闭卷、笔试。
试卷由试题、答题卡和答题纸组成,选择题和判断题的答案必须涂写在答题卡上,其他题目的答案必须写在答题纸相应的位置上。
3、试卷结构①《动物生理学》考核比例为33.3%,分值为50分;②《动物遗传学》考核比例为33.3%,分值为50分;③《动物营养与饲料》考核比例为33.3%,分值为50分。
四、考试内容(一)动物生理学1、细胞生理学细胞膜结构与跨膜物质转运、跨膜信号转导、生物电现象与兴奋性、肌肉收缩。
中国海洋大学979热工学与流体力学综合2020年考研专业课初试大纲
979热工学与流体力学综合
一、考试性质
热工学与流体力学综合是能源与动力工程类专业硕士研究生招生考试的专业理论课程。
作为选拔性考试,具有较高的信度、效度、必要的区分度和适当的难度。
二、考查目标
重点考核学生对工程热力学、传热学和流体力学基本定律和基本原理的掌握,常用工质的热物理性质的了解,有关图表及计算公式的综合运用。
对典型热力工程和热力循环的计算和分析能力,对热量传递的工程问题的分析能力和热量传递工程计算方法。
掌握流体运动学的基本概念和动力学的基本方程,并能熟练运用连续方程、能量方程、动量方程解决工程实际问题。
掌握能源合理利用及其高效转换的基本观念。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。
试卷结构:选择20%,计算题80%
四、考试内容
(一)基本概念
1、主要内容:
(1)热力系。
(2)热力状态和平衡状态。
2020年考研数学二考试大纲解析-考试范围
2020年考研数学二考试大纲解析|考试范围展开全文本书严格按照最新版“全国硕士研究生招生考试数学(二)考试大纲”进行编写,根据“数学(二)”的考试科目分为高等数学、线性代数两部分,对每一章节的知识点都进行详细地阐述,紧扣考试大纲,突出重点难点,指导考生快速掌握知识点,轻松应考。
第1部分高等数学第1章函数、极限、连续一、函数1.函数的概念设数集,则称映射为定义在D上的函数,简记为,其中x称为自变量,y称为因变量,D称为定义域.记作,即.函数值的全体所构成的集合称为函数的值域,记作或,即.2.函数的表示法表格法、图形法、解析法(公式法)二、函数的性质1.有界性(1)上界:若,对,有,则称函数在I上有上界,而称为函数在I上的一个上界.(2)下界:若,对有,则称函数在I上有下界,而称为函数在I上的一个下界.(3)有界:若对,,总有,则称在I上有界.2.单调性(1)单调递增:当时,.(2)单调递减:当时,.3.周期性(1)定义:(为正数).(2)最小正周期:函数所有周期中最小的周期称为最小正周期.4.奇偶性的定义域关于原点对称,则:(1)偶函数:,图形关于轴对称.(2)奇函数:,图形关于原点对称.三、特殊函数1.复合函数形如(其中)的函数称为复合函数.复合函数要注意其定义域.2.分段函数对于自变量的不同取值范围,对应法则用不同式子来表示的函数称为分段函数.3.反函数(1)定义设函数是单射,则它存在逆映射,映射称为函数的反函数.(2)性质①当在D上是单调递增函数,在上也是单调递增函数;②当在D上是单调递减函数,在上也是单调递减函数;③的图像和的图像关于直线对称.4.隐函数如果变量满足一个方程,在一定条件下,当取区间I任一值时,相应地总有满足该方程的唯一的存在,则称方程在区间I确定了一个隐函数.四、初等函数1.基本初等函数的性质和图像(1)幂函数①表达式:;②定义域:使有意义的全体实数构成的集合;③单调性:a.当n>0时,图象过点(0,0)和(1,1),在区间上是增函数;b.当n<0时,图象过点(1,1),在区间上是减函数.(2)指数函数①表达式:;②定义域:R;③值域:;④过定点:(0,1);⑤单调性:a.当时,在R单调递增;b.当时,在R上单调递减.⑥图像图1-1 指数函数图像(3)对数函数①表达式:;②定义域:;③值域:R;④过定点:(1,0);⑤当时,;⑥单调性:。
数学科学学院中国海洋大学
如对您有帮助,欢迎下载支持,谢谢!011 数学科学学院目录一、初试考试大纲: 0617 数学分析 0856 高等代数 (5)432 统计学 (7)二、复试考试大纲: (11)计算方法 (11)实变函数 (12)数学物理方程 (14)概率论与数理统计 (15)概率论与数理统计(应用统计) (17)数理统计 (18)计量经济学 (20)一、初试考试大纲:617 数学分析一、考试性质数学分析是数学相关专业硕士入学初试考试的专业基础课程。
二、考试目标本考试大纲制定的依据是根据教育部颁发的《数学分析》教学大纲的基本要求,力求反映与数学相关的硕士专业学位的特点,客观、准确、真实地测评考生对数学分析的掌握和运用情况,为国家培养具有良好数学基础素质和应用能力、具有较强分析问题与解决问题能力的高层次、复合型的数学专业人才。
本考试旨在测试考生对一元函数微积分学、多元函数微积分学、级数理论等知识掌握的程度和运用能力。
要求考生系统地理解数学分析的基本概念和基本理论;掌握数学分析的基本论证方法和常用结论;具备较熟练的演算技能和较强的逻辑推理能力及初步的应用能力。
三、考试形式(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成,所有题目的答案必须写在答题纸相应的位置上。
考生不得携带具有存储功能的计算器。
(三)试卷结构一元函数微积分学、多元函数微积分学、级数理论及其他(隐函数理论、场论等)考核的比例均约为1/3,分值均约为50分。
四、考试内容(一) 变量与函数1、实数:实数的概念、性质,区间,邻域;2、函数:变量,函数的定义,函数的表示法,几何特征(有界函数、单调函数、奇偶函数、周期函数),运算(四则运算、复合函数、反函数),基本初等函数,初等函数。
(二) 极限与连续1、数列极限:定义(ε-N语言),性质(唯一性,有界性,保号性,不等式性、迫敛性),数列极限的运算,数列极限存在的条件(单调有界准则(重要的数列极限en nn=+∞→1)1(lim),迫敛性法则,柯西收敛准则);2、无穷小量与无穷大量:定义,性质,运算,阶的比较;3、函数极限:概念(在一点的极限,单侧极限,在无限远处的极限,函数值趋于无穷大的情形(ε-δ, ε-X语言));性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性);函数极限存在的条件(迫敛性法则,归结原则(Heine 定理),柯西收敛准则);运算;4、两个常用不等式和两个重要函数极限(1sinlim=→xxx,exxx=+∞→)11(lim);5、连续函数:概念(在一点连续,单侧连续,在区间连续),不连续点及其分类;连续函数的性质与运算(局部性质及运算,闭区间上连续函数的性质(有界性、最值性、零点存在性,介值性、一致连续性),复合函数的连续性,反函数的连续性);初等函数的连续性。
(完整版)2020考研数一考纲
2020年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两12个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和3法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton —Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容4多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).563.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l 上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.78.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握x e ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价8分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.9四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.10六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求11121.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容13多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre —Laplace )定理 列维—林德伯格(Levy-Lindberg )定理考试要求1.了解切比雪夫不等式.142.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧α分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.15。
中国海洋大学341农业知识综合三2020年考研专业课初试大纲
初试考试大纲
341农业知识综合三
一、考试性质
《农业知识综合三》是中国海洋大学信息科学与工程学院农业工程与信息技术专业硕士研究生招生考试初试笔试科目。
二、考查目标
要求考生比较系统地理解和掌握计算机基础,数据库技术及网络技术,能够运用计算机技术的基本原理和方法分析、判断和解决有关农业生产实践中的实际问题。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。
试卷结构:计算机基础50分,数据库技术与应用50分,网络技术与应用50分。
四、考试内容
(一)计算机基础
内容包括计算机系统的基本概念、数制的转换及二进制运算基础、计算机运行的基本原理、算法相关概念、多媒体及图形图像相关基础知识等。
(二)数据库技术与应用
内容包括数据库的分类、关系数据库的基本概念、三级模式及两级映像、E-R图、范式的定义及分类以及基本SQL语句的使用。
1。
中国海洋大学本科生课程大纲-数学科学学院
四、教学进度
序号
第一章 1.1-1.3
第二章 2.1-2.2
专题 或主题
MATLAB 入门
MATLAB 编程与 作图
计划 课时
8
16
主要内容概述
MATLAB 桌面(安装与运行) 数据和变量 数组及其运算 关系与逻辑运算 建模试验:贷款利率模型 程序设计(分支、循环结构) MATLAB 作图(二维平面曲线图、三维空 间曲线图、三维空间曲面图) 动画、游戏制作(简介)
三、学习要求 要完成所有的课程任务,学生必须: (1)按时上课,认真听讲,积极参与课堂讨论、和上机练习。本课程将包含较多
的上机练习、小组讨论等课堂活动。 (2)认真对待并完成规定的上机任务。由于本课程实践性强,学生个人能力有差
别,因此上机任务极有可能无法在课堂上完成,因此需要学生能够利用课下时间,继 续完成布置的上机任务。这些任务能加深对课程内容的理解、促进独立查阅资料和解 决问题的能力培养。上机任务的完成情况,是平时成绩的关键组成部分。
中国海洋大学本科生课程大纲
课程名称 课程属性
数学实验基础 Foundation of Mathematics Experiments
工作技能
2020中国海洋大学管理学院考研招生考试大纲
2020年硕士研究生招生考试大纲012 管理学院目录初试考试大纲 (1)342 农业知识综合四 (1)865 农业经济学 (3)866 管理学A (5)950 管理学基础 (6)复试考试大纲 (9)F1201会计专业综合(含财务会计、财务管理、审计学) (9)F1202 企业管理学 (15)F1203 旅游学理论与实践 (16)F1204 技术经济学原理 (18)F1205 财务管理专业综合(含财务管理基础、公司财务、财务会计) (19)F1206农经专业综合 (25)F1207 农村发展学 (27)初试考试大纲342 农业知识综合四一、考试性质农业综合知识四是农业硕士专业学位农业管理领域入学初试考试的专业基础课程。
二、考查目标本考试大纲依照全国农业推广专业学位研究生教育指导委员会制定的《2012年全日制农业推广硕士专业学位研究生入学考试<农业知识综合>科目命题指导意见》,力求反映农业硕士专业学位的特点,科学、准确、规范地测评考生关于农村发展与管理综合知识,具体考察涵盖农业经济学、农村社会学、农业政策学等课程,要求考生理解和掌握相关课程基础知识和基本理论,具备较强运用基本理论和方法分析、判断和解决有关农业和农村发展的实际问题。
三、考试形式1、试卷满分及考试时间本试卷满分为150分,考试时间为180分钟2、答题方式答题方式为闭卷、笔试。
3、试卷结构农业经济学的比例为50%-60%;农业政策学的比例为20%-30%;农村社会学的比例为20%-30%。
四、考试内容(一)农业经济学要求考生理解和掌握农业经济学的基本概念、基础知识、基本理论和基本方法,能够运用基本理论和基本方法分析和解读农业和农村中出现的经济现象和经济问题,并能够跟进与理解最新的农业经济研究进展与相关农村经济政策。
1.农业与农业经济学农业概念与特征、农业的类型、农业的贡献、农业的功能、农业新理念等。
2.农业生产要素农业生产要素构成与特征、农业土地要素、农业劳动力要素、农业技术要素、农业资本要素、农业信息、农业资源利用。
中国海洋大学011数学科学学院
011 数学科学学院一、学院简介数学科学学院源于1930年国立青岛大学理学院数学系,1979年经教育部批准设立了应用数学专业(全国首批五所院校之一)并获准建立数学系,经过多年发展,现已形成以数学理论研究为基础、以海洋科技中的数学应用为特色,结构优化、布局合理的教学研究型学院。
学院拥有一支高水平的师资队伍,现有教职工73人,其中教授12人(博士导师5人)、副教授15人,具有博士学位者52人。
学院下设数学系、信息与计算科学系、大学数学教研中心、数学研究所和应用数学研究中心等教学和科研机构,并建有设备先进的数学实验室和数学建模实验室。
数学科学学院拥有数学和统计学两个一级学科硕士学位授权点。
数学包括基础数学、计算数学、概率论与数理统计、应用数学和运筹学与控制论5个二级学科硕士点,研究方向主要包括:格上拓扑与非经典推理、复分析及其应用、非线性泛函分析、数值代数、海洋数学建模及数值解法、智能计算、动力系统、非线性偏微分方程、泛函微分方程、随机数据分析、高等统计学及其应用、控制理论及其应用、组合数学、图论与组合最优化等。
统计学包括的研究方向有:数理统计、计算统计、应用统计和风险管理4个方向,涉及的应用领域有:海洋科学与技术中的统计方法及相关理论,信号与图像处理中的统计方法,经济与金融数据的统计分析。
近年来,学院在上述领域的理论和应用研究中取得了一批具有重要学术影响和特色的学术成果,主持、承担和完成了40多项国家和省部级以上科研项目;国际学术交流也日益活跃,与美国、加拿大、巴西、芬兰、日本、韩国、香港等10余个国家和地区的同行建立了良好稳定的合作关系。
二、招生专业目录联系电话:66787215 联系人:李长军注:1、初试考试科目为学校自命题科目的请在科目名称名后面标注“※”,若不标注视为采用教育部统考试题。
2、招生专业须按专业代码由小到大次序排列。
三、复试方式和内容1、复试方式:笔试与面试相结合。
复试内容包括:思想政治品德考核、专业科目笔试、面试(各学科所涉及的专业课程)、英语听力与口语测试、心理素质测试和体检等。
中国海洋大学950 管理学基础2020年考研专业课初试大纲
950 管理学基础
一、考试性质
管理学基础是工商管理学科硕士研究生入学考试的专业基础课程。
具体适用于包括会计学(专业代码120201)、企业管理(专业代码120202)、旅游管理(专业代码120203)、技术经济及管理(专业代码120204)、财务管理(专业代码1202Z1)等五个专业。
二、考查目标
本考试大纲的制定力求反映工商管理学科硕士学位的特点,科学、准确、规范地测评考生管理学的基本素质和综合能力,具体考察考生对管理基本理论、管理主要职能的掌握与运用,为国家培养具有良好职业道德和职业素养、具有较强分析问题与解决问题能力的高层次、应用型、复合型的高级管理专业人才。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。
试卷结构:简答60%,论述40%。
四、考试内容
(一)管理学理论
1.管理综述
管理活动起源、管理职能与性质、管理者角色与技能、管理学对象与方法
2.管理思想流变
中国传统管理思想、西方传统管理思想、西方现代管理思想变
1。
中国海洋大学《线性代数》2019-2020学年第一学期期末试卷A
3.设向量组 1 (1, 2 , 5 )T ,2 (3, 2 , 1)T ,3 (3, 10 , 17 )T ,4 (2, 0 , 2)T ,
求该向量组的一个极大线性无关组,并将其余向量用它们线性表示。(8 分)
4.若 n 阶方阵 A 满足 A2 A 。(1)证明: A 的特征值是 1 或 0;
4x2
a 2 x3
0
求 a 的值及所有公共解.
六、(12 分)
设二次型
f (x1, x2 , x3 )
X T AX
x12
2
x
2 2
4x1x3
2x32 ,利用正交
变换法将二次型 f 化为标准型,并写出正交矩阵.
优选专业年级
2.设 a1, a2 , a3 是三个不同的数, A 1 a2 a22 ,则 r( A)
.
1 a3
a32
1 2 2
3.
设矩阵
A
4
3
t
,若存在
B
O
,使
AB
O
,则
t
.
3 1 1
4.设 A 是 4 阶矩阵,秩 r( A) 3 ,则 A X 0 的基础解系含有几个解______.
5. , , 1, 2 , 3 均为 4 维列向量,已知 A 1 2 3 4 ,
姓名
学号
符号说明: r( A) 表示矩阵 A 的秩, A* 表示矩阵 A 的伴随矩阵, In 表示 n 阶单
位矩阵, AT 表示矩阵 A 的转置矩阵, Aij 是 A 的元素 aij 的代数余子式.
一、填空 (18 分)
1. 设 A 为 3 阶矩阵,且 A 2 ,则 (2 A)1 A =
.
1 a1 a12
中国海洋大学F1101 综合考试2021年考研专业课初试大纲
复试考试大纲F1101综合考试(包含①实变函数、②计算方法、③常微分方程)闭卷考试,满分为100分,其中实变函数40%、计算方法30%、常微分方程30%。
考试时间:120分钟。
复试内容大纲如下:①实变函数一、考试性质实变函数是数学相关专业硕士研究生入学考试复试笔试科目。
二、考察目标实变函数是近代分析数学的基础,是数学分析的延续与拓广。
考试以考察基本知识为主,考核对重要定理的理解和应用。
旨在测试考生对集合论、可测集、可测函数、可积函数等基本定义概念的理解和掌握。
要求考生理解实变函数的基本概念和基本理论;掌握其基本论证方法和常用结论;具备较强的逻辑推理能力及初步的应用能力。
三、考试形式闭卷考试,本部分满分为40分。
试卷结构:客观题和简答题约占50%,证明题约占50%。
4、考试内容(一)集合论1.集合的各种运算,上、下限集的定义2.集合的对等,集合的基数,集合的可列性;3.开集、闭集、完全集、稠密集、稀疏集的概念及其性质;点集的内部、导集、闭包、边界;Cantor三分集的结构和性质;4.点到集合的距离,集合间的距离。
(二)可测集1.外测度、测度和可测集的概念及其性质,集合可测性的判别方法;2.开集、闭集的可测性,以及它们与可测集之间的联系。
(三)可测函数1.可测函数的概念及其性质;2.函数可测性的判别方法,其与简单函数的联系;3.可测函数列几种收敛性之间的关系(包括处处收敛、几乎处处收敛、一致收敛、近一致收敛、测度收敛);4.可测函数和连续函数的联系5.叶果洛夫(Egoroff)定理、里斯(Riesz)定理、鲁津(Rusin)定理的含义及应用;(四)Lebesgue积分1.Lebesgue积分的定义及其性质,函数可积性的判定;2.积分收敛定理(勒维(Levi)定理,法杜(Fatou)定理和Lebesgue控制收敛定理,Vitali定理)及应用;3.Riemann积分与Lebesgue积分之间的区别和联系; Fubini定理。
中国海洋大学《线性代数》2019-2020学年第二学期期末试卷B
中国海洋大学全日制本科课程期末考试试卷2020年 春季学期 考试科目:线性代数 学院:数学科学学院 试卷类型: B 卷 命题人: 审核人:_____________考试说明:本课程为闭卷考试,共_3_页,只可携带考场规定的必需用品。
符号说明:)(A r 表示矩阵A 的秩,O 表示零矩阵。
一、填空题(共6题,每题3分,共18分)1.设n A T ,,101ααα=⎪⎪⎪⎭⎫⎝⎛-=为正整数,则=-nA aI __________________,其中I 为3阶单位矩阵.2.已知n 阶方阵A 满足:,)(3)(22I A I A +=-其中I 为n 阶单位矩阵,则=--1)(I A __________________.3.设⎪⎪⎪⎭⎫ ⎝⎛--=11334221t A ,B 为3阶非零矩阵,且O AB =,则=t ________,若⎪⎪⎪⎭⎫ ⎝⎛--=471b ,则非齐次方程组b Ax =的一般解=ξ__________________.4.设3阶方阵A 的特征值依次为1,2,1-,B 与A 相似,则=-+-*I B B 2)31(1___________,其中I 为3阶单位矩阵。
5.设3阶方阵A 的特征值互不相同,且0=A ,则A 的秩=)(A r _________.6.设二次型Ax x x x x f T=),,(321的秩为1,且A 的行元素之和为3,则f 在正交变换Qy x =下的标准形为_____________.二、选择题(共 6 题,每题 3 分,共 18 分)1.若21321,,,,ββααα都是4维列向量,且4阶行列式,,,,3121m =αβααn =3212,,,αβαα,则4阶行列式=+)(,,,21123ββααα( ).A n m - .B m n - .C )(n m +- .D n m +2.已知向量组321,,ααα线性无关,向量1β可由321,,ααα线性表出,向量2β不能由321,,ααα线性表出,则对于任意常数k ,必有( ).A 21321,,,ββααα+k 线性无关 .B 21321,,,ββααα+k 线性相关 .C 21321,,,ββαααk +线性无关 .D 21321,,,ββαααk +线性相关3.设B A ,为3阶方阵,**==B A B A ,,3,2分别为B A ,的伴随矩阵,令⎪⎪⎭⎫ ⎝⎛=O BA OC ,则C 的伴随矩阵=*C ( ).A ⎪⎪⎭⎫⎝⎛**O A B O32 .B ⎪⎪⎭⎫⎝⎛--**A O O B 32 .C ⎪⎪⎭⎫⎝⎛--**O A B O 32 .D ⎪⎪⎭⎫⎝⎛--**O A B O 23 4.设A 是一3阶方阵,将A 的第一列与第二列交换得B ,再把B 的第二列加到第三列得C ,则满足C AQ =的可逆矩阵Q 为( ).A ⎪⎪⎪⎭⎫ ⎝⎛101001010 .B ⎪⎪⎪⎭⎫ ⎝⎛100101010 .C ⎪⎪⎪⎭⎫ ⎝⎛110001010 .D ⎪⎪⎪⎭⎫⎝⎛1000011105.设B A ,为满足O AB =的任意两个n 阶非零矩阵,则必有( ).A A 的列向量组线性相关,B 的行向量组线性相关 .B A 的列向量组线性相关,B 的列向量组线性相关 .C A 的行向量组线性相关,B 的行向量组线性相关 .D A 的行向量组线性相关,B 的列向量组线性相关6.设),,,(4321αααα=A 是4阶方阵,若T)0,1,0,1(是齐次线性方程组0=Ax 的一个基础解系,则0=*x A 的基础解系可为( ).A 21,αα .B 31,αα .C 321,,ααα .D 432,,ααα三、计算题(共 3 题,共 26分)1.(8分)计算n 阶行列式111111111111 n n n n ----2.(8分)若X 满足X B AX =+,其中⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=350211,101111010B A ,求X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年硕士研究生招生考试大纲011 数学科学学院目录初试考试大纲 (2)432 统计学 (2)617 数学分析 (5)856 高等代数 (10)复试考试大纲 (13)F1101综合考试 (13)①实变函数 (13)②计算方法 (14)③常微分方程 (16)F1102概率论与数理统计(统计学) (18)F1103概率论与数理统计(应用统计) (19)初试考试大纲432 统计学一、考试性质统计学是中国海洋大学应用统计硕士专业学位研究生招生考试初试科目。
二、考查目标统计学是阐述现代统计基础理论和基本方法的一门学科。
实际应用十分广泛。
内容包括统计调查、数据整理与展示、概率论基础、参数估计、假设检验、方差分析、回归分析、非参数方法、时间序列、统计指数等方面的内容。
本科目的考试旨在考查考生对统计学的基本原理和基本方法及各种调查研究、数据整理、展示,并结合数据资料进行定性分析和定量分析的掌握与理解能力。
统计学考试主要从如下三方面测评考生在统计学方面的基本素质:1、基本概念和基本理论的理解、掌握;2、基本解题能力和数据分析与展示能力;3、综合运用统计理论知识分析问题、解决问题的能力。
三、考试形式(1)考试形式及考试时间:闭卷考试,答题方式为笔试。
满分为150分,考试时间为180分钟。
(2)试卷分值构成:基础知识和基本概念理解部分约占分值25%;运用所学知识经过基本分析解决问题部分约占分值35%;综合运用基本理论和方法分析问题与解决问题部分约占分值40%。
(3)题型包括:选择题,填空题,简答题,计算分析题等。
四、考试内容(一)统计中的几个基本概念1、统计数据的类型:分类数据,顺序数据,数值型数据。
2、总体和样本:总体,样本,参数和统计量,变量及类型。
(二)数据的搜集1、数据来源:数据的间接来源,数据的直接来源。
2、调查数据:概率抽样,非概率抽样,搜集数据的基本方法。
3、实验数据。
4、数据的误差:抽样误差,非抽样误差,误差的控制。
(三)数据的图表展示1、数据的预处理:审核,筛选,排序,数据透视表。
2、品质数据的整理与图示:分类数据和顺序数据的整理与图示。
3、数值型数据的整理与展示:数据分组,数值型数据的图示(直方图,茎叶图,箱线图,线图,散点图,雷达图)。
(四)数据的概括性度量1、集中趋势的度量:分类数据(众数),顺序数据(中位数和分位数),数值数据(各种平均数,众数,中位数)。
2、离散程度的度量:分类数据(异众比率),顺序数据(四分位差),数值数据(极差,平均差,方差,标准差,离散系数,变异系数)。
3、偏态与峰态的度量:偏态及其计算公式,峰态及其计算公式。
(五)概率与概率分布1、随机事件及其概率。
2、概率的性质与运算法则:基本性质,条件概率,全概率公式和贝叶斯公式。
3、离散型随机变量及其分布:二项分布,泊松分布,期望,方差。
4、连续型随机变量的概率分布:密度和分布函数,正态分布,指数分布,均匀分布,期望,方差。
(六)统计量及其抽样分布1、统计量:统计量的概念,常用统计量,次序统计量,充分统计量。
2、关于分布的几个概念:抽样分布,渐进分布。
3、由正态分布导出的几个重要分布:卡方分布,t分布,F分布。
4、样本均值的分布与中心极限定理。
5、样本比例的抽样分布。
6、两个样本平均值之差的分布。
7、关于样本方差的分布。
(七)参数估计1、参数估计的基本原理。
2、一个总体参数的区间估计。
3、两个总体参数的区间估计。
4、样本量的确定。
(八)假设检验1、假设检验的基本问题。
2、一个总体参数的检验。
3、两个总体参数的检验。
(九)分类数据分析1、分类数据与卡方统计量。
2、拟合优度检验。
3、列联分析:独立性检验。
4、列联表中的相关测量。
(十)方差分析1、方差分析的基本概念:基本思想,基本假定,问题的一般提法。
2、单因素方差分析。
3、双因素方差分析。
(十一)一元线性回归1、变量间关系的度量。
2、一元线性回归:回归模型,参数的最小二乘估计,回归直线的拟合优度,显著性检验,回归分析结果的评价。
3、利用回归方程进行预测:点估计,区间估计。
4、残差分析。
(十二)多元线性回归1、多元线性回归模型。
2、回归方程的拟合优度。
3、显著性检验。
4、多重共线性。
5、利用回归方程进行预测。
6、变量选择和逐步回归。
(十三)时间序列分析和预测1、时间序列及其分解。
2、时间序列的描述性分析。
3、时间序列预测的程度。
4、平稳序列的预测。
5、趋势型序列的预测。
6、季节型序列的预测。
7、复合型序列的分解预测。
(十四)指数1、指数的概念和分类。
2、总指数编制方法:简单指数,加权指数。
3、指数体系。
4、指数综合评价。
五、是否需使用计算器允许携带无存储功能的计算器。
617 数学分析一、考试性质数学分析是数学、统计学硕士研究生招生初试考试的专业基础课程。
二、考查目标根据教育部颁发的《数学分析》教学大纲的基本要求,力求反映与数学相关的硕士学位的特点,客观、准确、真实地测评考生对数学分析的掌握和运用情况,为国家培养具有良好数学基础素质和应用能力、具有较强分析问题与解决问题能力的高层次、复合型的数学专业人才。
测试考生对一元函数微积分学、多元函数微积分学、级数理论等知识掌握的程度和运用能力。
要求考生系统地理解数学分析的基本概念和基本理论;掌握数学分析的基本论证方法和常用结论;具备较熟练的演算技能和较强的逻辑推理能力及初步的应用能力。
三、考试形式闭卷考试,满分为150分,考试时间为180分钟。
试卷结构:一元函数微积分学、多元函数微积分学、级数理论及其他(隐函数理论、场论等)考核的比例均约为1/3,分值均约为50分。
四、考试内容(一) 变量与函数1、实数:实数的概念、性质,区间,邻域;2、函数:变量,函数的定义,函数的表示法,几何特征(有界函数、单调函数、奇偶函数、周期函数),运算(四则运算、复合函数、反函数),基本初等函数,初等函数。
(二) 极限与连续1、数列极限:定义(ε-N 语言),性质(唯一性,有界性,保号性,不等式性、迫敛性),数列极限的运算,数列极限存在的条件(单调有界准则(重要的数列极限e n nn =+∞→1)1(lim ),迫敛性法则,柯西收敛准则); 2、无穷小量与无穷大量:定义,性质,运算,阶的比较;3、函数极限:概念(在一点的极限,单侧极限,在无限远处的极限,函数值趋于无穷大的情形(ε-δ, ε-X 语言));性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性);函数极限存在的条件(迫敛性法则,归结原则(Heine 定理),柯西收敛准则);运算;4、两个常用不等式和两个重要函数极限(1sin lim 0=→x x x ,e xx x =+∞→)11(lim ); 5、连续函数:概念(在一点连续,单侧连续,在区间连续),不连续点及其分类;连续函数的性质与运算(局部性质及运算,闭区间上连续函数的性质(有界性、最值性、零点存在性,介值性、一致连续性),复合函数的连续性,反函数的连续性);初等函数的连续性。
(三)实数的基本定理及闭区间上连续函数性质的证明1、概念:子列,上、下确界,区间套,区间覆盖;2、关于实数的基本定理:六个等价定理(确界存在定理、单调有界定理、区间套定理、致密性定理、柯西收敛原理、有限覆盖定理);3、闭区间上连续函数性质的证明:有界性定理的证明,最值性定理的证明,零点存在定理的证明,反函数连续性定理的证明;一致连续性定理的证明。
(四)导数与微分1、导数:来源背景,定义(在一点导数的定义、单侧导数、导函数),导数的几何意义,简单函数的导数(常数、正弦函数、对数函数、幂函数),求导法则(四则运算,反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程所表示函数的求导法则);2、微分:定义,运算法则,简单应用;3、高阶导数与高阶微分:定义,运算法则。
(五)微分学基本定理及导数的应用1、中值定理:费马(Fermat)定理,中值定理(罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理);2、泰勒公式及应用(近似计算,误差估计);3、导数的应用:函数的单调性、极值和最值,函数凸性与拐点,平面曲线的曲率,七种待定型与洛必达(L’Hospital)法则;(六)不定积分1、不定积分:概念,基本公式,运算法则,计算(换元积分法、分部积分法、有理函数积分法,其他类型积分)。
(七)定积分1、定积分:来源背景,概念,函数可积的必要条件,达布上、下和,定积分存在的充要条件,可积函数类(闭区间上的连续函数,分段连续函数,单调有界函数),定积分的性质,定积分的计算(基本公式、换元公式、分部积分公式);2、变上限定积分:定义,性质。
(八)定积分的应用1、定积分在几何上的应用:平面图形的面积,曲线的弧长,截面已知的立体体积,旋转体的体积,旋转曲面的面积;2、定积分在物理上的应用:功、压力、引力;3、微元法。
(九)数项级数1、预备知识:上、下极限;2、级数的敛散性:无穷级数收敛、发散等概念,柯西收敛原理,收敛级数的基本性质;3、正项级数:定义,敛散判别(基本定理,比较判别法,柯西判别法,达朗贝尔判别法,柯西积分判别法);4、任意项级数:绝对收敛级数与条件收敛级数的概念和性质,交错级数与莱布尼兹判别法,阿贝尔(Abel )判别法与狄利克雷(Dirichlet )判别法。
(十)反常积分1、反常积分:无穷限的反常积分的概念、性质,敛散判别法(柯西收敛原理,比较判别法,狄利克雷判别法、阿贝尔判别法);无界函数的反常积分的概念、性质,敛散判别法。
(十一)函数项级数、幂级数1、函数项级数的一致收敛性:函数项级数以及函数列的概念,函数项级数以及函数列一致收敛的概念,一致收敛判别法(柯西收敛原理,优级数判别法,狄利克雷判别法与阿贝尔判别法);一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性);2、幂级数:阿贝尔第一、第二定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质(连续性,可积性,可微性),泰勒(Taylor )级数与几种常见的初等函数的幂级数展开。
(十二)傅里叶级数1、傅里叶级数:引进,三角函数系的正性, 傅里叶系数与傅里叶级数,以π2为周期的函数的傅里叶级数展开,以L 2(0>L )为周期的函数的傅里叶级数展开,奇偶函数的傅里叶级数展开,傅里叶级数收敛定理的证明。
(十三)多元函数的极限与连续1、平面点集:邻域,点列的极限,开集,闭集,区域,平面点集的几个基本定理;2、二元函数:概念,二重极限和二次极限,连续性(连续的概念、连续函数的局部性质及有界闭区域上连续函数的整体性质)。
(十四)偏导数和全微分1、偏导数和全微分:偏导数的概念,几何意义;全微分的概念;二元函数的连续性、可微性,偏导存在的关系;复合函数微分法(链式法则);由方程组所确定的函数(隐函数)的求导法;2、偏导数的应用:空间曲线的切线与法平面,曲面的切平面与法线;方向导数与梯度;泰勒公式。