人教版八年级数学上册课件:41~42页

合集下载

新人教版八年级数学上册第11章全等三角形精品课件ppt

新人教版八年级数学上册第11章全等三角形精品课件ppt

证明:在△ABC和△DEC中,
A
B
CA CD
1
2
1 C
2
CB CE
E
D
∴△ABC≌△DEC(SAS). ∴AB=DE.
从例2可以看出:因为全等三角形的对应边相等,对应角相等,所 以,证明分别属于两个三角形的线段相等或者角相等的问题,常 常通过证明这两个三角形全等来解决.
Copyright 2004-2009 版权所有 盗版必究
Copyright 2004-2009 版权所有 盗版必究
2.提问:由刚才活动得出的结论,满足什么条件的两个 三角形全等? 3.将两边和它们的夹角的数据改换成另一组,再与同 学一起按新数据画三角形.通过对所画三角形的比较, 你能得出什么结论?
Copyright 2004-2009 版权所有 盗版必究
EBCDA12CA′B′DC′EBA
(3).连接B′C′.
E
C
C′
5.总结定理:如果两个三角形的两
边和它们的夹角对应相等,那么这
A
B A′
B′ D
两个三角形全等.这个定理可以简写为“边角边”或“SAS”.
6.注意:有上述活动,我们可以得出“边边角”无法判定两个三
角形全等.
Copyright 2004-2009 版权所有 盗版必究
教学重难点
教学重点:三角形全等的判定定理二. 教学难点:利用三角形全等的判定定理二解题.
Copyright 2004-2009 版权所有 盗版必究
教学过程设计
活动一.动手探索,归纳结论. 1.探究3.学生分组活动:画一个三角形,使它的两条边长分别 是1.5cm,2.5cm,其中一个角是30°. 画好后同桌两人讨论:两个三角形的两条边和其中一边的对 角对应相等时,这两个三角形全等吗? 有的组说全等,有的组说不全等,让各组派代表说说做法,比 较有什么不同,老师总结,有三种做法: (1)两条边长分别是1.5cm,2.5cm,并且长为1.5cm的这条边所 对应的角是 30°,这种做法得出的结论是:不全等. (2)两条边长分别是1.5cm,2.5cm,并且长为2.5cm的这条边所 对应的角是30°,这种做法得出的结论也是:不全等. (3)两条边长分别是1.5cm,2.5cm,这两条边的夹角为30°,这 样做出的两个三角形全等.

人教版数学八年级上册全套ppt课件(共1200页)

人教版数学八年级上册全套ppt课件(共1200页)

由以上讨论可知,可以围成底边长是4cm的等腰三角形.
例4 如图,D是△ABC 的边AC上一点,AD=BD, 试判断AC 与BC 的大小.
三角形的分类 问题1:观察下列三角形,说一说,按照三角形内角 的大小,三角形可以分为哪几类?
锐角三角形、 直角三角形、 钝角三角形.
问题2:你能找出下列三角形各自的特点吗?
三边均 不相等
有两条 边相等

顶角 底角
三条边 均相等
不等边三角形
等腰三角形
等边三角形
底边
总结归纳
➢三条边各不相等的三角形叫做不等边三角形 ; ➢有两条边相等的三角形叫做等腰三角形; ➢三条边都相等的三角形叫做等边三角形.
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形? A
定义:由不在同一条直线上的三条线段
首尾顺次相接所组成的图形叫作三角形.
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫作三角形的内角,简称三角
例3 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
三角形的三边关系
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B

人教版八年级上册数学《三角形的边》三角形说课研讨复习教学课件

人教版八年级上册数学《三角形的边》三角形说课研讨复习教学课件

则三边长为6cm,10cm,10cm,可以围成三角形。
②若腰长为6cm,则底边长为14cm。
则三边长为6cm,6cm,14cm,则两边之和小于第三边,所以不
能围成三角形。
拓展提升
若a,b,c是△ABC的三边长,化简|a-b-c|+|b
-c-a|+|c+a-b|.
解:根据三角形的三边关系,两边之和
大于第三边,得
一个三角形,若不符合就不可能构成一个三角形。
解:(1)设底边长为xcm,则腰长为2xcm,
x+2x+2x=18,可得:x=3.6cm
所以三边长分别为3.6cm、7.2cm、7.2cm。
(2)若4cm的边长为腰长,则底边长为18-2×4=10cm,
由于4+4=8<10,所以不能围成三角形。
若4cm的边长为底边长,则腰长为
的形状。
课堂互动
Classroom Interaction
课后回顾
01
02
03
“ THANKS

任何两边的和大于第三边,任何两边的差小于第三边。
知识巩固
1.下列长度的三根小木棒能构成三角形的是( D)
A.2cm,3cm,5cm
B.7cm,4cm,2cm
C.3cm,4cm,8cm
D.3cm,3cm,4cm
解析:A、因为2+3=5,所以不能构成三角形,故A错误;
B、因为2+4<6,所以不能构成三角形,故B错误;
人教版 数学八年级上册
中物理
第十一章 三角形
11.1.1 三角形的边(课堂测试)
第二课时
课堂测试(概念理解)
1.右图中有多少个三角形?
△ABE, △ABC,△BCE, △BCD ,△CDE

人教版八年级数学上册教学课件三角形全等的判定2

人教版八年级数学上册教学课件三角形全等的判定2

AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C (
全等三角形 对应角相等 )
课堂小结
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
谈谈本节课你有思哪路些分析收获以结现合有及图条形件存找,在隐证含准的条备件条困和件惑?
边边边 应 用
书写步骤
∴ ∠A=∠C (
)
B 有两个角对应相等的两个三角形
E
满足这六个条件可以保证△ABC ≌△DEF
有没有更简单的办法呢?
探索新知
思考 如果只满足这些 条件中的一部分,那么 能保证
△ABC ≌△DEF′吗?
互动探究
一个条件可以吗?
1. 有一条边相等的两个三角形 不一定全等 2. 有一个角相等的两个三角形 不一定全等
活,用智慧点亮人
生!
2、分别以A、B为圆心,4㎝和3㎝长为半径画弧,两弧交于点C;
为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据了,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的
真,让知识服务生 角度吗?
2、分别以A、B为圆心,4㎝和3㎝长为半径画弧,两弧交于点C; (简写为“边边边”或“SSS”)
情景问题
为了庆祝国庆节,老师要求同学们回家制 作三角形彩旗(如图),那么,老师应提 供多少个数据了,能保证同学们制作出来 的三角形彩旗全等呢?一定要知道所有的 边长和所有的角度吗?
新课导入
通过上节课的学习,大家知道:两个三角 形全等时,三条对应边相等,三组对应角相 等,那么判定两个三角形全等,是否一定需 要满足六个条件呢?如果只满足上述六个条 件中的一部分,是否也能保证两个三角形全 等呢?从这节课开始,我们来探究全等三角 形的判定.

人教版八年级数学上册《轴对称》PPT优秀课件

人教版八年级数学上册《轴对称》PPT优秀课件
阴影部分的面积和为6
3.如图,已知△ABC中,AH⊥BC于H,∠C=35°, 且AB+BH=HC,求∠B的度数。
解:在CH上截取DH=BH,连接 AD,如图 ∵BH=DH,AH⊥BC,AH=AH ∴△ABH≌△ADH(SAS)∴AD=AB
D
∵AB+BH=HC,而BH=DH 又∵CD+DH=HC ∴AD=CD ∴∠C=∠DAC, 又∵∠C=35° ∴∠B=∠ADB=70°.
M
如果两个图形关于某条直线对称,那么 对称轴是任何一对对应点所连线段的垂 直平分线。
轴对称图形的对称轴,是任何一对对应 点所连直线的垂直平分线。
N
做一做 : 1.(1)图中三角形④与哪些三角形成轴对称?
(2)整个图形是轴对称图形吗?它们共有几 条对称轴?
12
43
(1)1和3 (2)是 2条
2.如图,△ABC是轴对称图形,且直线AD是 △ABC的对称轴,点E,F是线段AD上的任意两 点,若△ABC的面积为12,求图中阴影部分的 面积之和.
轴对称。
◆ 这条直线叫做对称轴。
◆ 折叠后重合的点叫对应点,也叫对称点。
对比:
定义 联系 区别 注意
轴对称图形
两个图形成轴对称
如果一个平面图形延一条直线折叠 ,直线两旁的部分可以相互重合,
这个图形就叫做轴对称图形
把一个图形沿着某一条直线折 叠,如果它能够与另一个图形 重合,那么称这两个图形关于
这条直线成轴对称
第13章 轴对称
轴对称
目录
01 观察发现 02 得出结论 03 产生思考 04 再得结论 05 练习巩固 06 头脑风暴
观察这些图像有什么共同特点?
结论:如果一个平面图形延 一条直线折叠,直线两旁的 部分可以相互重合,这个图

八年级数学上册ppt课件 人教版

八年级数学上册ppt课件 人教版
八年级数学上册ppt课件 人教版
人教版 八年级数学上册
八年级数学上册ppt课件 人教版
说教 材
说课 标
说建 议
说课标
四个领域的内容标准 数与代数 空间与图形 实践
与综合应用 统计与概率
课程标准
课程理念
1. 人人学有价值的数学 2. 人人都能获得必需的数学 3. 不同的人在数学上得到不同的发展
1知识与技能目标 2数学思考 3解决问题 4情感与态度
1实数 了解平方根 算术平方 根 立方根的表示 运算 2实数与无理数 实数与数轴 上的点一一对应
1会进行简单的 整式乘法运算
2会推导乘法公 式 进行计算
3会用提公因式 法 公式法 进行 因式分解 1全等的概念 全等的条件 体
会证明步步有据
2认识轴对称 他的基本性质
3作对称图形
4欣赏轴对称图形
具 体 目 标
第十四章一次函数
变量
函数
像函 数 的 图
变量与 函数


一次

函数


一次函数
一 次 函 数
八上第十五章 整式的乘除知识树
同底数幂 的乘法
幂的乘方
(a平b)方a(差b公)式a2b2(a完b)全2平a2 方公2a式bb2
零指数和负 整数指数幂
积的乘方
乘法公式
单项式乘 幂的乘法运算 以单项式
单项式乘 以多项式
教材 的 处 理
围绕重点知识学习
用好教材中的例题和 习题
注意实验猜想 推理归纳
基过 础程 与与 能结 力果
关注学生获得知识的 过程与方法
联系学生实际操作能 力联系
学生的生活经验积累
说建议

人教版八年级上册数学课件:12.2角边角-角角边

人教版八年级上册数学课件:12.2角边角-角角边

知识梳理: 三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
知识梳理: 三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或“SAS”)
②已有什么;
= =
③还缺什么。 B
EC
F
名师课件免费课件下载优秀公开课课 件人教 版八年 级上册 数学课 件:12. 2角边 角-角角 边
名 人师 教课 版件 八免 年费 级课 上件 册下 数载 学优 课秀 件公 :1开2.课2角课 边件角人教-角版角八边年 级上册 数学课 件:12. 2角边 角-角角 边
A∠BB∥=D∠EE (ASA)
或∠A=∠D (AAS)
或 AC=DF (SAS)
名师课件免费课件下载优秀公开课课 件人教 版八年 级上册 数学课 件:12. 2角边 角-角角 边
名师课件免费课件下载优秀公开课课 件人教 版八年 级上册 数学课 件:12. 2角边 角-角角 边
已知:
练习:
如图∠B=∠DEF, BC=EF, 求证:ΔABC≌ ΔDEF
到目前为止,我们一共探索出判定三 角形全等的四种规律,它们分别是:
1、边边边 (SSS) 2、边角边 (SAS) 3、角边角 (ASA) 4、角角边 (AAS)
名师课件免费课件下载优秀公开课课 件人教 版八年 级上册 数学课 件:12. 2角边 角-角角 边
判定3: 两角和它们的夹边对应相等的两个三角形全等, 名师课件免费课件下载优秀公开课课件人教版八年级上册数学课件:12.2角边角-角角边 简写成“角边角”或“ASA”。

人教版八年级数学上册第11章数学活动镶嵌课件

人教版八年级数学上册第11章数学活动镶嵌课件
好漂亮的地板!这 是怎么铺设的?一点空 隙也没有.
结合刚才欣赏的美丽图案,你能说说你的理解吗?
(1)用于拼接的图案都是平面图形; (2)拼接处没有空隙,没有重叠的现象; (3)铺成的图案把一个平面完全覆盖.
想一想
铺地板的学问
砖与砖严丝合缝,不留空隙,把地面全部覆盖不重叠.
❖平面镶嵌:用一些不重叠摆放的多边形
正六边形
你还能找到能镶嵌的其他正 多边形吗?
1.要用正多边形镶嵌成一个平面的关键:这种 正多边形的一个内角的倍数是否是360°.
2 .在正多边形里只有正三角形、正四边形、正 六边形可以镶嵌,而其他的正多边形不可镶 嵌.
探究2:用边长相等的两种正多边形
镶嵌,哪两种正多边形能镶嵌成一个平 面图案?
讨论
60°
150° 150°
3
1
2
4 3
1
2
探究3:
用几个形状、大小相同的任意三 角形能镶嵌成一个平面图案吗?四 边形呢?
2 31
3
1
2
3
1
2
3
1
2
23
1
1
32
23
1

3
1
2
3
1
2
∵ ∠1+∠2+∠3=180° ∴2(∠1+∠2+∠3)=360°
所以 任意三角形能镶嵌成平面图案
2 34
1 43
1
2
4
把平面的一部分完全覆盖,叫做用多边 形覆盖平面或平面镶嵌.
利用镶嵌可以得到一些绚丽 多彩的图案
探究1:仅用一种正多边形镶
嵌,哪些正多边形能单独镶嵌成 一个平面图案?
(1)用边长相同的正三角形能否镶 嵌?

人教版数学八年级上册 11.4 数学活动 -平面图形的镶嵌 课件(共45张PPT)

人教版数学八年级上册 11.4 数学活动 -平面图形的镶嵌 课件(共45张PPT)
作镶嵌 ( 能 )
6 4. 用任意三角形镶嵌平面时,同一顶点处应摆放 ( )个 4 三角形;用任意四边形镶嵌平面时,同一顶点处应摆放( )
个四边形. 5、下面四种正多边形中,用同一种图形不能平面镶嵌的是
( C ).
A
B
C
D
六、升华知识 深化认识
说说你的 收获
通过这节课的学习你有哪些收获? 你还有什么体会吗?
我们都来做个有心人,多 思考、多研究,把学过的数学 知识应用于生活,解决生活中 的实际问题,使我们的生活更 加美好!

本 课 到 此 结 束
教学后记
90°
4. 正六边形
用边长相同的正五边形不能镶嵌
你正五能边说形的说内角道不理能 吗?
组成360°的角。
13 2
∠1+∠2+∠3=?
活动一实验结论:
1.能镶嵌的图形在一个拼接点处的特点: 各角之和等于360º
2.要用正多边形镶嵌成一个平面的关键
是看:这种正多边形的一个内角的倍数 是否是360°,在正多边形里,正三角 形的每个内角都是60°,正四边形的每 个内角都是90°,正六边形的每个内角 都是120°,这三种多边形的一个内角 的倍数都是360°,而其他的正多边的 每个内角的倍数都不是360°
某一种地砖镶嵌地面,可供选择的地砖共有( )C
A.1种 B.2种 C.3种 D.4种
边长为a的正方形与下列边长为a的正多边形组合起来,
不能镶嵌成平面的是( )B
①正三角形;②正五边形;③正六边形;④正八边形
A. ① ②
B. ② ③
C. ① ③
D. ① ④
课堂练习
3、形状、大小完全相同的任意三角形、四边形 能否单独

新人教版八年级数学上册全册课件

新人教版八年级数学上册全册课件

巩固并运用“三角形两边的和大于第三边”
追问 解决这类问题我们通常用哪两条线段的和与 第三条线段做比较就可以了?为什么?
用较小两条线段的和与第三条线段做比较; 若较小两条线段的和大于第三条线段,就能保证 任意两条线段的和大于第三条线段.
巩固并运用“三角形两边的和大于第三边”
例2 用一条长为18 cm的细绳围成一个等腰三角 形.(1)如果腰长是底边的2倍,那么各边的长是多 少?
△BDC.
B
C
课堂练习
练习2 下列说法正确的有_(__4_)___. (1)锐角三角形是三条边都不相等的三角形; (2)直角三角形不是等腰三角形; (3)等腰三角形是等边三角形; (4)等边三角形是等腰三角形.
探索与证明三角形三边的关系
问题3 如图,任意画一个△ABC,一只小虫从点 B 出发,沿三角形的边爬到点C,它有几条路线可以选 择?各条线路的长一样吗?你能运用所学知识解释你的 结果吗?你能由此推出三条边之间有怎样的关系?
三边都不相等的三角形
三角形
底边和腰不相等的等腰三角形
等腰三角形 等边三角形
理解三角形的分类
追问 按边分类后的特殊三角形之间有什么关系? 它们的边和角怎样命名?
课堂练习
练习1 图中有几个三角形?用符号表示这些三角 形.
图中有5个三角形. A
D
三角形的表示为:
△ABE, △ABC,
E
△BEC, △EDC,
八年级 上册
11.1 与三角形有关的线段 (第2课时)
课件说明
• 在已学过的过直线外一点作已知直线的垂线、线段的 中点、角的平分线等知识的基础上,本节课学习与三 角形有关的三种重要线段及三角形的稳定性.
课件说明

人教版八年级数学上册 第11章 第3节 多边形及其内角和 课件(共40张PPT)

人教版八年级数学上册 第11章 第3节 多边形及其内角和 课件(共40张PPT)

D
这种探索方法你掌握了吗?请完成下表
多边形的 边数
3
4
5
6
7

n
从一个顶 点出发对 角线数 分成的三 角形个数
0
1
1
2
2
3
3 4
4 5

n-3
n-2
180° 180° 180° 180° 多边形的 (n-2) ×180 180° … ×2 ×3 ×4 ×5 内角和
n边形的内角和等于(n-2).180°
多边形外角和
探索
(1)什么是三角形的外角?外角有什么性 质? (2)类似地,在多边形中找出 外角
E D C
多边形的一边与另一边的 延长线的夹角,叫做多边 形的外角。
A
B
F
(2)四边形的外角和等于多少度?
C
3 4 2 1
B
D
A
思考:任何一个外角和它相邻的内角有 什么关系?
四边形的四个外角加上与它们相邻的内 角总和是多少?
6、一个多边形的每个内角都比相邻的外 角3倍多20度,求这个多边形的边数, 7、两个多边形的边数比是1:2,两个多边形的 内角和为1440度,求这两个多边形的边数,
1. 三角形三个内角的度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一个内 角为 ( C ) A、30O B、45O C、60O D、90O 2.一个正多边形每一个内角都是120o,这个 多边形是( C ) A、 正四边形 B、正五边形 C、正六边形 D、正七边形
探究活动:
A E D
B E

如图, ∠A=45°, ∠B=2 ° ∠C=30 ° ,则 ∠D= 100 ° 。

新人教版八年级数学上册第14章一次函数精品课件ppt

新人教版八年级数学上册第14章一次函数精品课件ppt
我们现在已经知道了正比例函数关系式的特点,那么 它的图象有什么特征呢?
Copyright 2004-2009 版权所有 盗版必究
活动三.共同探究,理解知识 1.例题.画出下列正比例函数的图象,并进行比较,寻找两个 函数图象的相同点与不同点,考虑两个函数的变化规律. 1.y=2x 2.y=-2x
学生通过活动,了解正比例函数图象特点及函数变化规 律,让学生自己动手、动口、动脑,经历规律发现的整个过 程,从而提高各方面能力及学习兴趣.并能正确画图、积极 探索、总结规律、准确表述.
x -3 -2 -1 0 1 2 3 y 6 4 2 0 -2 -4 -6
画出图象如图(1). (2)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应 值:画出图象如图(2).
Copyright 2004-2009 版权所有 盗版必究
(3)分析比较两个图象的共同点和不同点 1)共同点:都是经过原点的直线. 2)不同点:函数y=2x的图象从左向右呈上升状态,即随着x的 增大y也增大;经过第一、三象限.函数y=-2x的图象从左向 右呈下降状态,即随x增大y反而减小;经过第二、四象限.
一九九六年,鸟类研究者在芬兰给一只燕鸥뼈မ鸟) 套上标志环.4个月零1周后人们在2.56万千米外的澳 大利亚发现了它. (1)这只百余克重的小鸟大约平均每天飞行多少千米 (精确到10千米)? (2)这只燕鸥的行程y(千米)与飞行时间x(天)之间有 什么关系? (3)这只燕鸥飞行1个半月的行程大约是多少千米?
Copyright 2004-2009 版权所有 盗版必究
活动四.自己动手,课堂练习
在同一坐标系中,画出下列函数的图象,并对它们进行
比较.(1)y=0.5x
(2)y= -0.5x

人教版八年级数学上册全册课件

人教版八年级数学上册全册课件
人教版八年级数学上册全册课件
11.2 与三角形有关的角
人教版八年级数学上册全册课件
阅读与思考 为什么要证明
人教版八年级数学上册全册课件
11.3 多边形及其内角和
第十一章 三角形
人教版八年级数学上册全册课件
11.1 与三角形有关的线段
人教版八年级数学上册全册课件
信息技术应用 画图找规律
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
小结
人教版八年级数学上册全册课件 目录
0002页 0103页 0168页 0243页 0348页 0381页 0434页 0466页 0493页 0641页 0760页 0798页 0828页 0891页 0953页 1043页 1073页
第十一章 三角形 信息技术应用 画图找规律 阅读与思考 为什么要证明 数学活动 复习题11 12.1 全等三角形 信息技术应用 探究三角形全等的条件 数学活动 复习题12 13.1 轴对称 信息技术应用 用轴对称进行图案设计 实验与探究 三角形中边与角之间的不等关系 数学活动 复习题13 14.1 整式的乘法 阅读与思考 杨辉三角 数学活动
人教版八年级数学上册全册课件
信息技术应用 探究三角形全等 的条件
人教版八年级数学上册全册课件
12.3 角的平分线的性质
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
人教版八年级数学上册全册课件
复习题11
人教版八年级数学上册全册课件
第十二章 全等三角形
人教版八年级数学上册全册课件
1பைடு நூலகம்.1 全等三角形
人教版八年级数学上册全册课件
12.2 三角形全等的判定

人教版八年级数学上册全等三角形精品课件PPT

人教版八年级数学上册全等三角形精品课件PPT


2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件

人教版八年级上册数学-“斜边、直角边”课件

人教版八年级上册数学-“斜边、直角边”课件

画图思路
A
新课讲解
N A′
B
C M B′
C′
(4)连接A′B′
思考:通过上面的探究,你能得出什么结论?
知识要点
★“斜边、直角边”判定方法 ▼文字语言:
“SSA”可以判定两个直 角三角形全等,但是“边 边”指的是斜边和一直角 边,而“角”指的是直角.
斜边和一条直角边对应相等的两个直角三角形
全等(简写成“斜边、直角边”或“HL”).
第十二章 全等三角形
12.2 全等三角形的判定
第4课时 斜边、直角边
学习目标
一、基本目标 【知识与技能】 1.会运用“边边边”证明三角形全等. 2.会根据“边边边”作一个角等于已知角. 【过程与方法】 经历探索三角形全等条件的过程,体验由操作、归纳得出结论的过程. 【情感态度与价值观】 通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于 探索的良好品质以及发现问题的能力. 二、重难点目标 【教学重点】 掌握两个三角形全等的判定条件——“边边边”. 【教学难点】 探索三角形全等的条件的过程.
B
▼几何语言:
在Rt△ABC和Rt△ A′B′C′ 中,
A
C
AB=A′B′,
B′
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′C′ (HL).
A′
C′
新课讲解
判一判 判断满足下列条件的两个直角三角形是否全等,不
全等的画“×”,全等的注明理由.
(1)一个锐角和这个角的对边对应相等.(AAS )
2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点
E ,AD、CE交于点H,已知EH=EB=3,AE=4,
则 CH的长为( A )

人教版八年级上册数学第十一章三角形教材分析课件(43张)

人教版八年级上册数学第十一章三角形教材分析课件(43张)
分成周长差为4cm的两个三角形,求△ABC各边的长.

* 20
11.1.2三角形的高、中线与角平分线
三角形的中线 ------等积三角形剖分问题
三等分
……

* 21
11.1.2三角形的高、中线与角平分线
三角形的中线 ------等积三角形剖分问题
一、课程学习目标:
新的学习目标
• 3.了解三角形重心的概念。
• 4.了解直角三角形的概念,探索并掌握直 角三角形的性质定理:直角三角形的两个 锐角互余。掌握两个锐角互余的三角形是 直角三角形。
二、本章在中考中的要求:
•1.基本要求:了解三角形的有关概念;了解三 角形的稳定性;会按边或角对三角形进行分类; 理解三角形内角和、外角和及三边关系;会画三 角形的主要线段;知道三角形的重心.了解多边 形及正多边形的概念;了解多边形的内角和与外 角和公式;了解直角三角形的概念,探索并掌握 直角三角形的性质定理:直角三角形的两个锐角 互余。掌握两个锐角互余的三角形是直角三角形 。
五、重点、难点及四基:
• 3.基础知识:与三角形有关的线段,有关 的角,多边形的有关概念,多边形的内角 和与外角和公式.
• 4.基本技能:会根据三条线段的长度判断 它们能否构成三角形,会画出任意三角形 的高、中线、角平分线.会证明三角形内 角和定理及推论,能灵活运用三角形的边 与角知识进行线段、角度的计算。
3.由邻补角的定义和三角形内角和定理推导外角的性 质定理.
(1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的外角和为360

* 33
11.2.2三角形的外角 例1.已知:如图,CE是△ABC的外角∠ACD的平分线,且CE交BA 的延长线于点E.证明:∠BAC>∠B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档