城市轨道交通结构抗震设计规范
城市轨道交通结构抗震设计规范
5.7.12 场地或场地附近有滑坡、滑移、崩塌、塌陷、泥石流、采空区等不良 地质作用时,应进行专门勘察,分析评价在地震作用时的稳定性。
抗震设计要点
工程场地勘察
4.1.2 城市轨道交通结构的场地与地基的勘察和评价应至少包括下列内容: 1 确定场地土的类型和场地类别; 2 对可能产生滑坡、塌陷、崩塌和采空区等的岩土体,进行地震作用下的地基稳定 性评价; 3 对判别为液化的土层,根据液化等级提出处理方案;当不进行抗液化处理时,应 计入液化效应的影响对土层的设计参数进行修正; 4 划分场地抗震地段类别。
《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.5 工程场地覆盖层厚度应按下列要求确定: 1 应按地面至剪切波速大于500m/s 且其下卧各岩土的剪切波速均不小于500m/s 的土层 顶面的距离确定; 当地面5m 以下存在剪切波速大于相邻上层土剪切波速2.5 倍的土层,且其下卧岩土 的剪切波速均不小于400m/s 时,可按地面至该土层顶面的距离确定; 对剪切波速大于500m/s 的孤石、透镜体,应视同周围土层;
设防标准和设防目标
多水准设防: 抗震设防烈度,一个地区抗震设防依据的地震烈度,一般情况下可采用《中国地震 区划图》规定的50年超越概率10%的地震基本烈度。
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求: 1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要 求确定;
提
纲
抗震减灾法规与技术标准 设防标准和设防目标
轨道交通地下结构抗震设计要点
复杂结构的抗震设计的难题
地铁抗震ppt——反应位移法
c.顶底板土体剪切弹簧刚度:KSB =Kv/3 d.侧墙土体剪切弹簧刚度:KSS =KH/3 式中 土体的变形系数:ED=2(1+ν)G ν:土体泊松比 G:土体的动剪切刚度(一维土层地震反应分析得到)
中铁第四勘察设计院集团有限公司
二、反应位移法
• • • • • 2、日本相关资料中的计算方法: 2)结构地震时的惯性力: fi miui (将位移对时间求两次导) 3)结构周围剪力: 顶、底板处的剪力:
中铁第四勘察设计院集团有限公司
结构构件
抗震设防类别 性能要求 设计计算方法 一、地下建筑抗震在相关规范中的规定 特殊设防类 I II I 线性反应谱方法 非线性时程分析方法 线性反应谱方法
表3.3.1 地震反应计算方法
高架区间结构
《城市轨道交通结构抗震设计规范(报批稿)》 重点设防类、 II 振动特性简单的结构:弹塑性反应谱方法 标准设防类 (GBXXXX-XXXX) III 振动特性复杂的结构:非线性时程分析方法
• 第3.6.1条:地铁建筑结构应进行设防烈度作用下的内力和 变形分析,并假定结构和构件处于弹性工作状态。 • 第3.6.2条:进行设防烈度作用下的内力和弹性变形分析时, 可根据结构特点采用弹性时程分析法,等代地震荷载法或 反应位移法计算。 • 第3.6.3条:进行罕遇地震作用下的内力和弹塑性变形分析 时,可根据结构特点采用弹塑性时程分析法,或简化方法 计算结构的弹塑性变形。
规范》执行;
• C、抗震设计荷载组合应按《建筑抗震设计规范》规定执行。
荷载 组合验算工况 抗震荷载作用下构件强度验算 抗震荷载作用下结构变形验算 重力荷载代表值 永久 可变 偶然荷载 地震 人防
序号
荷载
1.2 1.0
城市轨道交通结构抗震设计规范
《建筑抗震设防分类标准》GB50223
《中国地震动参数区划图》GB18306
《工程场地地震安全性评价》 GB17741
《建筑抗震设计规范》GB 50011
《岩土工程勘察规范》GB50021
《 地铁设计规范》GB 50157
《混凝土结构设计规范》 《钢结构设计规范》 《地基基础设计规范》 ………
a
法规与标准
大跨度桥梁和车站的主体结构。
a
设防标准和设防目标
多水%的众值烈度,重现期50年——多遇地震(小震)
第二设防水准:50年超越概率约10%的众值烈度,重现期475年,为《中国地震区 划图》规定的地震基本烈度,即抗震设防烈度——设防地震(中震);
第三设防水准:50年超越概率约2-3%的众值烈度,重现期1642-2475年——罕遇
城市轨道交通结构抗震设计规范(GB50909-2014)
地下结构
袁勇
a
HPC Lab
Cases Challenges Solutions Summary
Risks from Earthquake
a
2
HPC Lab
Cases Challenges Solutions Summary
Damages from Earthquake
法规与标准
第四章 地震灾害预防
第三十五条 新建、扩建、改建建设工程,应当达到抗震设防要求。
重大建设工程和可能发生严重次生灾害的建设工程,应当按照国务院有关规定进行 地震安全性评价,并按照经审定的地震安全性评价报告所确定的抗震设防要求进行 抗震设防。建设工程的地震安全性评价单位应当按照国家有关标准进行地震安全性 评价,并对地震安全性评价报告的质量负责。
2 重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按现行国家标准《中国地震动参数区划图》GB18306 规定的本 地区抗震设防要求确定;对进行过工程场地地震安全性评价的,应采用经 国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应 低于本地区抗震设防要求确定的地震作用;
地铁车站抗震设计分析
地铁车站抗震设计分析摘要:地铁地下结构是城市重要的公共基础设施,对城市生命和经济具有重大意义,因此对地铁地下结构进行抗震设计是非常必要的。
本文以某标准两层车站为计算模型,采用反应位移法和时程分析法两种方法进行地铁车站结构地震反应计算,并结合相关规范对计算结果进行了分析讨论,为类似工程及地下结构抗震研究具有一定的参考意义。
引言随着城市化的不断发展,为解决交通拥挤及效率问题,我国各大城市地铁建设迅猛发展。
地铁工程是城市重要的社会公共基础设施,其结构复杂且一旦损坏难以修复,会造成重大的经济损失。
而地铁等地下结构在地震中遭受重大震害的情况已有先例,如1985年墨西哥Ms8.1级地震造成的地铁隧道和车站结构破坏、1995年日本阪神Ms7.2级地震引起神户市大开地铁车站的严重破坏[1-3],因此对地下结构进行抗震分析是十分必要的。
众多学者对地铁等地下结构的抗震理论及规范进行了研究。
刘晶波等[4]阐述了地下结构抗震分析的五个关键问题,包括动力分析模型、结构-地基系统动力相互作用问题分析方法、地铁地下结构地震破坏模式和抗震性能评估方法、抗震构造措施,和地铁区间隧道穿越地震断层的设计方案及工程措施。
侯莉娜等[5]将《城市轨道交通结构抗震设计规范》和地上民用建筑抗震设计规范进行了对比分析,指出地铁地下结构可遵循“两水准、两阶段”的设计思路及地下结构抗震设计地震动参数应与其设计基准期一致等。
陈国兴等[6]对地下结构震害、动力离心机和振动台模型试验,以及工程师在地下结构抗震分析中可能用到的有效设计与分析方法等方面涉及的重要问题进行了简要和全面的回顾。
本文结合某标准两层车站的工程实例,阐述地铁地下结构抗震反应分析方法,并对计算结果进行分析,为城市地下结构抗震评估提供一定参考。
1.车站抗震反应分析概况1.1工程概况车站结构型式为地下两层两跨箱型框架结构,明挖法施工,标准段宽为20.1m,基坑开挖深度约为17m。
标准段剖面图如图1所示。
城市轨道交通结构抗震设计规范
城市轨道交通结构抗震设计规范目录1.前言2.设计要求3.地震参数4.基础设计5.结构设计6.施工要求前言城市轨道交通是大城市中重要的公共交通方式。
地震对于轨道交通结构的安全稳定性具有很大的影响。
为此,我们制定了这份城市轨道交通结构抗震设计规范,以确保轨道交通设施在地震情况下的安全运行。
设计要求1.所有轨道交通结构在设计时必须考虑地震影响。
2.设计应遵守现行的国家标准和规范,同时考虑当地地震情况和实际情况。
3.设计中必须严格遵守相关要求和规定,并且必须得到相关部门的批准和验收。
地震参数1.设计应当考虑设施所在地的地震地表加速度反应谱。
2.设计应当结合地震波的某些规律进行地震动分析,以求得所需的地震力和地震反应。
基础设计1.设计时必须考虑地震对基础的影响,更具体地,应该考虑地震所产生的地基液化和基础沉降情况。
2.基础应该具有足够的稳定性和抗震能力,设计时应当考虑突发事故或高强度地震的情况。
结构设计1.对于轨道交通设施,应当考虑其耐震等级,以便在发生地震时保证设施的稳定性并减少人员和设备的损失。
2.设计中应当涵盖整个轨道交通结构,包括车站、隧道和桥梁等。
3.设计中应当考虑各种不同类型地震所产生的影响,并且针对这些影响采取相应的措施。
施工要求1.施工过程中应当注意专业技术,确保设计规范的实施。
2.施工中应当将地震安全考虑到整个过程中,包括材料的选用和施工方式。
3.设计方案应与施工方案紧密结合,施工中的所有环节应当符合设计规范中的要求。
结论这份城市轨道交通结构抗震设计规范能够在轨道交通结构地震安全提供指导。
在设计和施工过程中,应当确保设计规范的实施,施工细节要注意,以确保轨道交通设施在发生地震时的安全性和稳定性。
轨道交通工程地下车站结构抗震设计
轨道交通工程地下车站结构抗震设计张有桔;王飞;沈洪波【摘要】综合抗震设计相关规范规定,结合抗震专项设计的要求,在分析抗震设防类别、等级及烈度、论证对象的判定基础上,明确基于性能要求的抗震设防目标,重点论述抗震专项设计中常用的反应位移法和时程分析法,通过对典型车站的抗震分析,说明抗震专项设计中主要计算过程和结论,以期为同类工程设计提供参考依据。
【期刊名称】《工程与建设》【年(卷),期】2016(030)003【总页数】4页(P361-364)【关键词】轨道交通;地下车站;抗震设计;设防目标;反应位移法;时程分析法【作者】张有桔;王飞;沈洪波【作者单位】安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088;安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088;安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088【正文语种】中文【中图分类】U231.4;TU352城市轨道交通已经成为城市极为重要的交通基础设施,所以通过抗震设计,使轨道交通工程具有合理的抵抗地震破坏作用的能力,确保城市轨道交通结构的地震安全,尽可能减轻轨道交通结构因地震导致性能降低给城市轨道交通的正常运行造成障碍,对城市交通秩序、城市经济和人们社会活动、生命及财产安全都是非常重要的。
文献[1-5]规定,对抗震设防地区的城市轨道交通结构必须进行抗震设计。
本文重点从抗震设防类别、等级及烈度、论证对象的判定、抗震设防目标和抗震论证方法等方面,阐述合肥市城市轨道交通常见的地下车站结构抗震专项设计思路和方法。
根据文献[1]要求,城市轨道交通结构应根据其使用功能的重要性分为标准设防类(丙类)、重点设防类(乙类)和特殊设防类(甲类)3个抗震设防类别。
对于一般日平均客流量未超过50万人次的大型综合枢纽车站,抗震设防分类均为重点设防类(乙类)。
对重点设防类地下车站结构,其设防标准应满足文献[2]规定的本地区抗震设防要求确定;对进行过地震安全性评价的,应采用经国家地震工作主管部门批准的建设工程抗震设防要求确定,但不应低于本地区抗震设防要求确定的地震作用。
轨道交通工程地下车站结构抗震设计
轨道交通工程地下车站结构抗震设计摘要:随着我国城市化进程的不断加快,人们生活质量和周边环境也发生了翻天覆地变化。
随着城市人口数量的增长,城市腰痛压力越来越大,轨道交通工程地下车站的出现有助于环节交通压力。
但轨道交通不仅要满足运输功能,还要有一定安全性和抗震能力。
本文以A市B地下车站为例,展开地下车站抗震设计分析,分析结果可作为后续地下车站抗震设计相关参考。
关键词:轨道交通工程;地下车站;结构;抗震设计引言现代化城市建设过程中,城市轨道交通不仅要具备良好的运输能力,还要在设计方面充分考虑其抗震性能和安全性。
地下车站结构施工要严格按照国家规定相关抗震设计标准进行设计,如此不仅能提升地下车站抗震性能,还能为日后城市的健康、可持续发展奠定良好基础。
一、抗震设防目标(一)抗震设防类别、烈度与等级根据《城市轨道交通结构抗震设计规范》的相关要求,城市轨道交通结构应划分为:标准设防类;重点设防类;特殊设防类,三个抗震设防类别。
标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行国家标准《中国地震动参数区划图》GB 18306规定的本地区抗震设防要求确定;重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地震作用应按现行国家标准《中国地震动参数区划图》GB18306规定的本地区抗震设防要求确定;对进行过工程场地地震安全性评价的。
应采用经国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应低于本地区抗震设防要求确定的地震作用;特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高于本地区抗震设防要求确定[1]。
抗震设防地震动峰值加速度与抗震设防地震动分档和抗震设防烈度之间对应关系如表1所示。
表1:抗震设防地震动峰值加速度与抗震设防地震动分档和抗震设防烈度之间对应关系(二)论证对象的判定根据住房和城乡建设部印发的《市政公用设施抗震设防专项论证技术要点(地下工程篇)》的相关规定,轨道交通地下车站建筑面积超过10000㎡的可以判定该地下车站工程可以作为单体工程进行抗震专项论证分析。
轨道交通地铁防灾设计技术要求规范-(防灾)
轨道交通地铁防灾设计技术要求设计原则1.防灾设计应严格遵循国家有关政策方针,从全局出发,积极采用行之有效的技术措施,方便使用,经济合理。
2.轨道交通线的防灾主要指对火灾、水淹、地震、雷击等灾害的防范措施。
3.防灾设计应贯彻“预防为主、防消结合”的方针,尤其是采取防火措施,防止和减少火灾危害。
4.轨道交通线防火灾设计按同一时期内发生一次来考虑。
区间火灾按两座风井间滞留一列列车设计,列车火灾规模按10.5MW设计。
5.结构设计按六度地震烈度进行抗震验算,并按七度采取相应抗震构造措施,以提高结构和接头处的整体抗震能力。
6.隧道洞口雨水设计重现期采用50年。
7.设计选用有关消防器材和设备,必须是经国家法定检测部门检测合格的产品,并具有当地公安消防部门批准的准销证。
8.防灾设计主要有建筑消防、水消防系统、气体灭火系统、事故通风与排烟、供电设备及照明防灾、车辆防灾、区间隧道防灾、防灾通信、防灾报警与设备监控系统、电扶梯及安全门防灾等组成。
设计规范《地铁设计规范》(GB50157-2013)《建筑设计防火规范》(GBJ16-87)(修订本)《高层民用建筑设计防火规范》(GB50045-2014)《汽车库、修车库、停车场设计防火规范》(GB50067-97)《火灾自动报警系统设计规范》(GBJ116-88)《铁路给水排水设计规范》(TBJ10-85)《自动喷水灭火系统设计规范》(GB50084-2001)《建筑灭火器配置设计规范》(GBJ140-90)(1997年版)《洁净灭火剂灭火系统标准》(NFPA 2001 1996年)《轨道车辆防火措施》(DIN5510:2009)《载客列车设计与构造防火通用规范》(BS6853:1999)哈尔滨市消防部门现行有关规定和标准。
车站建筑防灾1.地下车站、出入口、风亭的建筑结构均按一级耐火等级考虑。
防灾设计严格按《地铁设计规范》第二十章执行,地上建筑工程耐火等级按国家现行有关规范执行,并需得到市消防处认可。
轨道交通地下车站结构抗震性能化设计分析
轨道交通地下车站结构抗震性能化设计分析摘要:近年来,我国的城市化进程有了很大进展,轨道交通工程建设也越来越多。
地下铁路是大城市发展的必需,其作为城市交通的骨干,能够很好的缓解交通压力,提高交通效率。
我国地震灾害发生频繁,地下铁路结构抵抗地震破坏作用的能力非常重要,直接关系着城市交通秩序和人民生命财产安全。
我国目前地铁建设发展比较迅速,关于地下结构的设计规范逐渐完善,但是对于地下结构抗震方面相关的研究还相对较少。
因而对地铁地下结构的抗震设计与分析十分有必要。
关键词:地铁;地下车站;抗震设计;反应位移法引言城市轨道交通车站在地面以上的称之为高架车站,车站具有一般地面建筑的特征和交通建筑的形态。
其作为城市主要的交通网,承担着城市交通的主要功能,其结构自身荷载大,安全等级高,结构抗震要求严格。
1抗震设防标准(1)对轨道工程中的地下车站结构和相关的地面附属结构比如是交通控制中心建筑,整体设计要大于等于100年;(2)地下车站中支护结构为永久性构建,保证刚度的条件下,要保证有100年的使用年限。
2抗震性能分析方法概述实际工程中,主要通过数值模拟对地下结构的抗震性能进行理论分析。
常用的数值模拟方法可分为以反应位移法、反应加速度法为代表的拟静力法,和以反应谱方法、时程分析法为代表的动力分析法两类。
反应位移法根据一维土层地震反应分析得到土层相对位移,由土层变形计算得到内力,并以地基弹簧的形式施加静荷载于结构上,从而获得结构的响应。
反应加速法通过一维土层地震反应分析获得的动力响应,计算得到不同深度处水平有效惯性加速度,并将其按体积力的方式作用与结构上,最终得到结构的响应。
拟静力法缺陷在于静力计算所得内力一般较实际动力值偏大,且对地震波的等效处理往往难以符合其不规则动态传播的实际情况。
反应谱方法相对于拟静力法增加反映了地震的频谱特性,但仍然无法考虑地震力持续作用的影响,其本质上属于一种修正的拟静力分析方法。
动力时程分析法可以全面地表达地震动强度、频谱特性和持续时间三大要素,分析具有过程性,更加符合实际情况,其缺陷在于计算时有较多的物理参数难以准确设定,且计算成本较大。
城市轨道交通结构抗震设计规范
.
3
HPC Lab
Safety of Underground Structures under Earthquake
.
提纲
抗震减灾法规与技术标准 设防标准和设防目标 轨道交通地下结构抗震设计要点 复杂结构的抗震设计的难题
.
提纲
抗震减灾法规与技术标准 设防标准和设防目标 轨道交通地下结构抗震设计要点 复杂结构的抗震设计的难题
地震(大震)。
.
设防标准和设防目标
多水准设防: 抗震设防烈度,一个地区抗震设防依据的地震烈度,一般情况下可采用《中国地震 区划图》规定的50年超越概率10%的地震基本烈度。
.
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求:
1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要 求确定;
大跨度桥梁和车站的主体结构。
.设防水准:50年超越概率63%的众值烈度,重现期50年——多遇地震(小震)
第二设防水准:50年超越概率约10%的众值烈度,重现期475年,为《中国地震区 划图》规定的地震基本烈度,即抗震设防烈度——设防地震(中震);
第三设防水准:50年超越概率约2-3%的众值烈度,重现期1642-2475年——罕遇
3.1 抗震设防要求 3.1.1 城市轨道交通结构应划分为特殊设防类、重点设防类、标准设防类 三个抗震设防类别。
《建筑抗震设防分类标准》GB50223-2004 第3.0.2条 甲类(特殊设防类):重大建筑工程;地震时可能发生严重次生灾害的建 筑 乙类(重点设防类):地震时使用功能不能中断的建筑或需尽快恢复的生 命线工程 丙类(标准设防类):除甲、乙、丁类建筑以外的建筑 丁类(适度设防类):使用人员稀少可适度降低
轨道交通地铁车站建筑设计技术要求规范--(车站结构)..
车站结构一般规定1.哈尔滨市轨道交通1号线四期工程沿线车站均为地下站,车站结构设计应从各自的建设条件出发,根据城市规划、线路埋深、建筑布置、施工环境、工程水文地质,以及冬季气候等自然条件,按照工程筹划的要求,考虑相邻区间隧道施工工艺和站址地面交通组织的处理方式,本着既遵循技术先进,又安全、可靠、适用、经济的原则选择结构型式和施工方法。
2.车站结构应根据选择的结构型式、施工方法、荷载特性、耐火等级等条件进行设计,满足强度、刚度、稳定性要求,并根据确定的环境类别、环境作用等级、设计使用年限等标准进行耐久性设计,满足抗裂、防水、防腐蚀、防灾等要求.3.车站结构要满足车站建筑、设备安装、行车运营、施工工艺、环境保护等要求,确保车站的正常使用,达到总体规划设计的要求,同时,考虑城市规划引起周围环境的改变对结构的作用。
4.车站结构的净空尺寸应满足地铁建筑限界以及建筑设计、相邻区间施工工艺和其他使用功能的要求。
尚应考虑施工误差、测量误差、结构变形和后期沉降等因素的影响,其值根据地质条件、埋设深度、荷载、结构类型、施工工序等条件并参照类似工程的实测值加以确定。
5.车站结构应具有足够的纵向刚度,并满足地铁长期运营条件下对结构纵向抗裂及抗差异沉降的要求。
换乘车站结构设计应充分考虑上述要求,以减少换乘车站续建工程对已建车站结构的影响。
6.结构设计应以现行国家的相关勘察规范确定的内容和范围,考虑不同施工方法对地质勘探的特殊要求,通过施工中对地层的观测反馈进行验证。
其中暗挖结构的围岩分级按现行《铁路隧道设计规范》(TB10003)确定。
7.对于基坑法、浅埋暗挖法等不同型式的车站结构计算模型应符合实际工况条件,并根据具体情况选用与其相符或相近的现行国家有效规范、规程和标准进行设计。
8.车站抗震设计应根据当地政府主管部门批准的抗震设防烈度,按照相关规范进行设计.9.车站按照当地政府主管部门批准的六级人防标准设防,保证地下车站在规定的人防设防区段具备战时防护和平战转换功能。
轨道交通工程地下车站结构抗震设计分析
轨道交通工程地下车站结构抗震设计分析发布时间:2022-09-22T07:25:21.246Z 来源:《工程建设标准化》2022年第5月10期作者:张强[导读] 随着我国国民经济的高质量发展,城市化逐渐成为目前我国的一项重要环节。
姓名:张强单位名称:天津晟源工程勘察设计有限公司 300143摘要:随着我国国民经济的高质量发展,城市化逐渐成为目前我国的一项重要环节。
城市化的发展,不仅能够确保人们的生活水平得以提高,同时也改善了人们的生活环境,使人民的生活水平进入一个更高的层次。
而在城市化的发展过程中,城市轨道交通工程的建设无疑是一项非常重要的工程项目。
(衔接不上)在轨道交通工程建设过程中,地下车站结构抗震设计是确保轨道交通工程在投入使用的过程中实现稳定运行的保障。
本文通过对轨道交通工程地下车站结构抗震设计进行分析,希望可以为轨道交通工程建设工作提供有效的保障。
关键词:轨道交通工程;地下车站结构;抗震设计;分析引言:城市轨道交通工程的大规模建设,在城市化的发展过程中具有至关重要的作用。
通过对该工程的抗震设计予以科学地把控,就能够使得城市轨道交通工程能够合理抵御地震所带来的破坏,为更好地实现城市轨道交通工程的正常运行打下坚实的技术基础。
通过对抗震设防地区的城市轨道交通工程进行设计,就能够保证城市轨道交通工程的建设工作能够更好地开展,使得城市轨道交通工程能够更好地造福人类。
一、抗震设防目标(一)抗震设防类别,强度以及等级根据我国城市轨道交通建设的相关要求,对城市轨道交通工程进行系统化的分类是尤为重要的一项工作。
其抗震设防类别主要分为以下几种,第一种特殊设防类,第二种重点设防类,第三种标准设防类。
在相对应的分类中,根据车站日流量,来进行消防类别的界定,就可以更好地确定车站结构的整体类型,为更好地开展城市轨道交通的建设工作打下坚实的基础。
除此之外,在开展城市轨道交通工程建设过程中,必须要对车站的抗震强度等影响城市轨道交通工程的因素进行严格的把控,同时在开展施工建设和竣工验收等相关环节的工作时,施工人员需要对工程的抗震能力进行测试,确保施工建设的整体质量能够符合实际的标准,并为更好地开展城市轨道交通工程的建设工作,打下坚实的基础。
城市轨道交通结构抗震设计规范
《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.5 工程场地覆盖层厚度应按下列要求确定: 1 应按地面至剪切波速大于500m/s 且其下卧各岩土的剪切波速均不小于500m/s 的土层 顶面的距离确定; 当地面5m 以下存在剪切波速大于相邻上层土剪切波速2.5 倍的土层,且其下卧岩土 的剪切波速均不小于400m/s 时,可按地面至该土层顶面的距离确定; 对剪切波速大于500m/s 的孤石、透镜体,应视同周围土层;
抗震设计要点
工程场地勘察
《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.6 工程场地类别,应根据土层等效剪切波速和场地覆盖层厚度划分为四类,并应符 合表4.2.6 的规定。当土层等效剪切波速和覆盖层厚度处于表4.2.6 所列场地类别分界线 的界限值附近时,宜按插值方法确定地震作用计算所用的场地特征周期。
设防标准和设防目标
3.1.2 抗震设防类别的划分应符合下列规定:
1 标准设防类:除特殊设防类、重点设防类以外的其他轨道交通结构;
2 重点设防类:除特殊设防类以外的高架区间结构、高架车站主体结构、 区间隧道结构和地下车站主体结构; 3 特殊设防类:在城市轨道交通网络中占据关键地位、承担交通量大的 大跨度桥梁和车站的主体结构。
法规与标准
中华人民共和国主席令 第七号 《中华人民共和国防震减灾法》[1]已由中华人民共和国第十一届全国人民代 表大会常务委员会第六次会议于2008年12月27日修订通过,现将修订后的 《中华人民共和国防震减灾法》公布,自2009年5月1日起施行。
胡锦涛 2008年12月27日 (1997年12月29日第八届全国人民代表大会常务委员会第二十九次会议通过, 2008年12月27日第十一届全国人民代表大会常务委员会第六次会议修订)
地铁车站抗震的高效计算方法—反应位移法
表3.2.4 城市轨道交通结构抗震设防目标
• 《城市等轨级地道震交动水通重准结现构期 抗震抗震设设类计防规分范地(结上报构结抗批构震稿性)地能下要》结求第构3.2.4条:
• 城市E1轨地道震作交用通结构100的抗震特重殊点性设设能防防要类类求不ⅠⅠ应低于表3ⅠⅠ.2.4的规
定。:
标准设防类
Ⅰ
Ⅰ
特殊设防类
• 第3.6.2条:进行设防烈度作用下的内力和弹性变形分析时, 可根据结构特点采用弹性时程分析法,等代地震荷载法或 反应位移法计算。
• 第3.6.3条:进行罕遇地震作用下的内力和弹塑性变形分析 时,可根据结构特点采用弹塑性时程分析法,或简化方法 计算结构的弹塑性变形。
一、地下建筑抗震在相关规范中的规定
I
线性反应谱方法
高•架车《站结城构市重轨标点准道设设防交防类类通、 结构抗II 震设计规振动范特(性简报单批的结稿构):弹》塑第性反3应.3谱.1方条法:
III
振动特性复杂的结构:非线性时程分析方法
• 抗震设计中地震反应的计算方法反宜应位按移表法 3.3.1采用。
特殊设防类
I
反应加速度法 弹性时程分析方法
• 《城市轨道交通结构抗震设计规范(报批稿)》第10.1.1 条:
• 隧道与地下车站结构的抗震设计流程图宜按图10.1.1 进行。
一、地下建筑抗震在相关规范中的规定
《城市轨道交通结构抗震设计规范(报批稿)》 (GBXXXX-XXXX)
• 第10.1.2条:遇有下述情况时,尚应按本规范第6.10 节进 行动力时程分析:
地铁车站抗震的高效计算方法 ——反应位移法
• 目录
一、地下建筑抗震在相关规范中的规定
《建筑抗震设计规范》(GB50011-2010)
地铁抗震反应位移法
中铁第四勘察设计院集团有限公司
一、地下建筑抗震在相关规范中的规定
结论:
结构构件 地震等级
设计计算方法
验算指标
地下标准 车站
E2地震作用 (设防地震)
反应位移法
截面承载力验算、 变形验算
《城市轨道交通结构抗震设计规范(报批稿)》
(GBXXXX-XXXX)
表3.2.4 城市轨道交通结构抗震设防目标
? 《城市等轨级地道震交动水通重准结现构期 抗震抗震设设类计防规分范地(结上报构结批抗构震稿性)地能下》要结求第构3.2.4条:
? 城市E1轨地道震作交用通结构100的抗震特重殊点性设设能防防要类类求不ⅠⅠ应低于表3ⅠⅠ.2.4的规
地铁车站抗震计算方法 ——反应位移法
汇报人:杨龙
中铁第四勘察设计院集团有限公司
?目录
中铁第四勘察设计院集团有限公司
一、地下建筑抗震在相关规范中的规定
《建筑抗震设计规范》 (GB50011-2010)
? 《建筑抗震设计规范》(GB50011-2010)第14.2.4条:
? 地下建筑的抗震验算,尚应符合下列规定:
二、反应位移法
? 1)基本原理
反应位移法假设地下结构地震反应的计算可简化为平面应变问题,其 在地震时的反应加速度、速度及位移等与周围地层保持一致。因天然地 层在不同深度上反应位移不用,地下结构在不同的深度上必然产生位移 差。将该位移差以强制位移形式施加在地下结构上,并将其与其他工况 的荷载进行组合,则可由按静力问题进行计算,来得到地下结构在地震 作用下的动内力和合内力。
地铁设计规范(最新)
《地铁设计规范》(GB50157-2013); 《地下铁道工程施工及验收规范》(GB50299-2003);《混凝土结构设计规范》(GB50010-2010);《混凝土结构工程施工质量验收规范》(GB50204-2002(2011版)) 《建筑结构荷载规范》(GB50009-2012);《建筑抗震设计规范》(GB50011-2010);《铁路工程抗震设计规范》(GB50111-2006)(2009年版);《城市轨道交通结构抗震设计规范》(GB50909-2014);《钢结构设计规范》(GB50017-2003);《铁路隧道设计规范》(TB10003-2005);《铁路隧道施工规范》(TB10204-2002);《铁路工程抗震设计规范》(GB50111-2006(2009 年版));《人民防空工程设计规范》(GB50225-2005);《建筑抗震设计规范》(GB50011-2010);《混凝土结构耐久性设计规范》(GB/T50476-2008);《锚杆喷射混凝土支护规范》(GB50086-2001);《地下工程防水技术规范》(GB50108-2008);《建筑地基基础设计规范》(GB50007-2011);《建筑桩基技术规范》(JGJ94-2008);《建筑基坑支护技术规程》(JGJ120-2012);《建筑边坡工程技术规范》(GB50330-2002);《岩土锚杆(索)技术规程》(CECS22:2005);《地下防水工程质量验收规范》(GB50208-2011);《地铁杂散电流腐蚀防护技术规程》(CJJ 49-1992);《城市轨道交通工程监测技术规范》(GB50911-2013);《爆破安全规程》(GB6722-2003)及(GB6722-2011)《地下铁道工程施工及验收规范》(GB50299-1999)(2003年版);《混凝土结构工程施工质量验收规范》(GB50204-2002)(2011年版);《地下工程防水技术规范》(GB50108-2008);《地下防水工程质量验收规范》(GB50208-2008);《城市轨道交通工程项目建设标准》(建标104-2008);《钢筋机械连接通用技术规程》(JGJ107-2010);《钢筋焊接及验收规程》(JGJ18-2012);。
城市轨道交通结构抗震设计规范GB50909
城市轨道交通结构抗震设计规范GB50909篇一:地震安全性评价详细目录(2015调整后)需开展地震安全性评价确定抗震设防要求的建设工程目录(暂行)(依据《中国地震局关于贯彻落实国务院清理规范第一批行政审批中介服务事项有关要求的通知》中震防发﹝2015﹞59号附件)篇二:城市轨道交通勘察执行主要技术标准城市轨道交通勘察执行主要技术标准1)国家标准《城市轨道交通岩土工程勘察规范》(GB50307-2012)2)国家标准《岩土工程勘察规范》(GB50021-2001)(2009版)3)国家标准《岩土工程基本术语标准》(GB/T50279-2014)4)国家标准《土工试验方法标准》(GB/T50123-1999)5)国家标准《建筑抗震设计规范》(GB50011-2010)6)国家标准《城市轨道交通结构抗震设计规范》(GB50909-2014)7)国家标准《中国地震动参数区划图》(GB 18306-2015)8)国家标准《地铁设计规范》(GB50157-2013)9)国家标准《岩土工程勘察安全规范》(GB50585-2010)10)国家标准《建筑地基基础设计规范》(GB50007-2011)11)国家标准《工程测量规范》(GB50026-2007)12)国家标准《建筑边坡工程技术规范》(GB50330-2013) 13)国家标准《工程岩体分级标准》(GB/T50218-2014)14)国家标准《建筑基坑工程监测技术规范》(GB50497-2009)15)国家标准《城市轨道交通工程测量规范》(GB50308-2008)16)国家标准《工程岩体试验方法标准》(GB/T50266-2013)17)行业标准《铁路工程地质勘察规范》(TB10013-2007)及铁建设[2010] 138号《关于发布铁路工程地质勘察规范局部修订条文的通知》18)行业标准《铁路隧道设计规范》(TB10003-2005,J449-2005)19)行业标准《铁路工程地质钻探规程》(TB10014-2012)20)行业标准《铁路工程特殊岩土勘察规程》(TB10038-2012,J1408-2012)21)行业标准《铁路工程不良地质勘察规程》(TB10027-2012,J125-2012)22)行业标准《铁路工程物理勘探规范》(TB10013-2010,J340-2010)23)行业标准《铁路工程地质原位测试规程》(TB100(来自: 小龙文档网:城市轨道交通结构抗震设计规范gb50909-2014)41-2003,J261-2003)24)行业标准《铁路工程土工试验规程》(TB10103-2010,J1135-2010)25)行业标准《铁路工程水质分析规程》(TB10104-2003,J263-2003)26)行业标准《铁路工程水文地质勘察规范》(TB10049-2014,J339-2015)27)行业标准《建筑工程地质勘探与取样技术规程》(JGJ/T87-2012)28)行业标准《建筑基坑支护技术规程》(JGJ120-2012)29)行业标准《铁路桥涵地基和基础设计规范》(TB10002.5-2005)30)行业标准《铁路路基设计规范》(TB10001-2005)31)行业标准《铁路路基支挡结构设计规范》(TB10025-2006,J127-2006)32)行业标准《建筑桩基技术规范》(JGJ94-2008)33)行业标准《建筑地基处理技术规范》(JGJ79-2012)34)行业标准《建筑桩基检测技术规范》(JGJ106-2014)35)行业标准《建筑变形测量规范》(JGJ8-2007)36)行业标准《建筑深基坑工程施工安全技术规范》(JGJ311-2013)37)中国工程建设标准化协会《岩土工程勘察报告编制标准》(CECS99:98)38)住房和城乡建设部[2010]215号《房屋建筑和市政基础设施工程勘察文件编制深度规定》39)《工程建设标准强制性条文(房屋建筑部分)》(2013年版)40)需执行的其他地方标准篇三:2015年结构规范大全目录更新日期2015年11月。
CECS标准为城市轨道交通设计导航——协会标准《城市轨道交通上盖结构设计标准》介绍
因而,部分现有上盖结构出现了《建筑抗震设计规范》 研究,开展振动测试和理论分析,对比现有指标评价结
( GB5 0 0 1 1—2 0 1 0 ) 未提及的新体系:全框支剪力墙 果 ,提出了适用性较强的评价方法,即单值Z 振级、附
结 构 。 《标 准 》定义了全框支剪力墙结构,并针对其最 加四次方振动剂量评价。根据最新的频率计权和盖上结
构 设 计 标 准 》 (以 下 简 称 《标 准 》 )。2 0 1 9 年 1 2 月 成功突破了城市建设发展瓶颈。城市轨道交通上盖建
3 1 日, 《标 准 》编制组成立暨第一次工作会议在上海 筑 ,即利用城市轨道交通车辆基地、车站上部空间开
召开,主编单位同济大学和上海市隧道工程轨道交通设 发建造的建筑结构总称,作为一种城市轨道交通TOD
29 2 0 2 1 年 第 5 期 . 工 程 建 ® 标 准 化
计研究院与来自2 1 家参编单位的相关专家领导参加了 模 式 ,建筑理念 优 异 ,可有效地提高城市土地资源的
会 议 ,中国工程院院士、同济大学教授吕西林出席会议 集中利用率。
并发表了关于城市轨道交通上盖结构的技术难题和发展
据不完全统计,我 国 将 有 8 0 个城市同时建设轨道
前景的讲话。会议确立了《标 准 》的编制目的、工作大纲、 交 通 ,新建轨道交通车辆基地上盖开发容量将达1 .5亿
编制计划等,深入探讨了相关工程技术问题。之后的多 平方米。然 而 ,该类上盖开发模式存在较多难点,如结
次编制工作会议结合线下和线上开展,形成了多个研究 构中存在抗侧力体系不连续、竖向刚度突变和高位转换
专 题 ,编制单位组织开展了相关数值分析、试验研究和 等超限问题;同时,由于地铁列车对轨道产生冲击作用,
城市轨道交通桥梁抗震设计
城市轨道交通桥梁抗震设计周连绪;叶爱君;刘腾飞【摘要】Taking an urban rail transit simply-supported beam bridge as an example, seismic analysis of structure of the highest fortification level was conducted by using《Code for seismic design of urban bridges》and 《Code for seismic design of urban rail transit structures》 respectively, based on OpenSees platform. The comparison of the input of seismic ground motion, analysis model, seismic design method and results of the two codes were emphasized. The result shows that the peak value of acceleration response spectrum calculated by the latter code is 10% larger than what calculated by the former one and the acceleration response spectrum of latter code attenuates quickly. The main difference of two analysis model is the foundation simulation method, and the stiffness of foundation and structure calculated by the former code is larger than what calculated by the latter one so that the displacement of the key nodes calculated by the former is smaller; The seismic demand of pier top displacement of the former is 14% smaller than the latter; As for the seismic checking results, the foundation is in the state of yield according to the former code while it stays in elastic state according to the latter one.%以一座城市轨道交通简支梁桥为背景,基于OpenSees软件平台,分别根据《城市桥梁抗震设计规范》和《城市轨道交通结构抗震设计规范》进行最高设防水准的抗震分析,并着重对两本规范的地震动输入、计算模型、抗震设计方法及结果进行了比较.结果表明:后一规范加速度反应谱峰值比前一规范大10%,且其加速度反应谱衰减较快;两规范计算模型的主要区别在基础模拟上,前者采用计算模型的基础刚度和结构刚度均比后者大,因而按前者计算的结构关键节点位移均比后者小;前者桥墩墩顶位移需求比后者小14%;对于基础的验算结果,按前者基础屈服,而按后者基础处于弹性状态.【期刊名称】《土木工程与管理学报》【年(卷),期】2017(034)006【总页数】6页(P121-125,140)【关键词】轨道交通桥梁;抗震设计;探讨;OpenSees;规范【作者】周连绪;叶爱君;刘腾飞【作者单位】同济大学土木工程防灾国家重点实验室,上海 200092;同济大学土木工程防灾国家重点实验室,上海 200092;同济大学土木工程防灾国家重点实验室,上海 200092【正文语种】中文【中图分类】U442.5+5我国CJJ 166-2011《城市桥梁抗震设计规范》(以下简称《城规》)、GB 50909-2014《城市轨道交通结构抗震设计规范》(以下简称《轨规》)和GB 50111-2006《铁路工程抗震设计规范》(以下简称《铁规》)均可用于城市轨道交通桥梁的抗震设计。
城市轨道交通盾构隧道的横向抗震设计
城市轨道交通盾构隧道的横向抗震设计(郑州工业应用技术学院,河南,郑州,451150)【摘要】随着地下空间大规模的开发和利用,城市轨道交通网中城市地下铁道所占比重很大,而城市地铁区间隧道又以盾构法隧道为主。
目前国内外学者在隧道的横向抗震分析方法提出了多种分析方法,包括地震系数法、相对刚度法、响应位移法等。
本文主要介绍了盾构隧道横向抗震设计中重力作用的计算方法、反应位移法、反应加速度法和基于等效线性化的时程法,可为地铁抗震设计提供参考。
【关键词】盾构隧道;抗震设计;重力作用计算;反应位移法;基于等效线性化的时程法一、引言随着城市建设的快速发展,人们不断地向城市聚集,造成如交通堵塞、环境污染等各大问题,因地铁具有快速、高效、清洁的特点,人们逐渐意识到发展地铁系统的重要性,在这种情况下地铁应运而生。
近年来,我国各大城市的地铁建设正处在快速发展阶段,如北京、天津、上海等城市地铁已相继建成通车,南京、重庆、西安、郑州、福州等一些大中城市也正在进行地铁建设。
由于地铁具有交通客运量大、速度快、安全、方便舒适等优点,地铁将逐渐取代公交车而成为城市主要的交通工具.目前,国内还没有具体的与地下结构相关的抗震设计标准和规范,其中《地铁设计规范》和《地下铁道设计规范》只是给出了指导性条文,缺乏明确的和可操作性强的规定及具体计算原则和施工措施,导致该状况的主要原因有以往地下结构建设发展比地面建筑缓慢的多,导致工程界学者的重视度相对不足;另外人们普遍认为土体对地下结构的运动具有约束作用,地下结构的抗震稳定性随面波埋深衰减而趋于更加稳定,认为在发生地震时不会轻易遭受破坏,这就是导致地下结构抗震研究比地面结构抗震研究滞后的主要原因。
直到1995年日本阪神大地震使人们彻底改变了地下建筑结构在地震时不易发生破坏这一观点。
正是由于隧道震害不断地出现,学者开始对地下结构的抗震安全性进行了大量研究,世界各国对地下结构的抗震性能的研究日益增多,并且根据试验研究的测试结果提出相应的设计方法及抗震减震方案,因此,对盾构隧道等地下结构进行抗震性能研究具有重要的理论价值和应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《建筑抗震设计规范》GB 50011
《岩土工程勘察规范》GB50021
《 地铁设计规范》GB 50157
《混凝土结构设计规范》 《钢结构设计规范》 《地基基础设计规范》 ………
法规与标准
提纲
抗震减灾法规与技术标准 设防标准和设防目标 轨道交通地下结构抗震设计要点 复杂结构的抗震设计的难题
法规与标准
法规与标准
法规与标准
中华人民共和国《建筑法》、《防震减灾法》 国务院《建设工程质量管理条例》 国务院《建设工程勘察设计管理条例》 建设部《实施工程建设强制性标准监督规定》 住房和城乡建设部《市政公用设施抗灾设防管理规定》2008年
法规与标准
中华人民共和国主席令 第七号 《中华人民共和国防震减灾法》[1]已由中华人民共和国第十一届全国人民代 表大会常务委员会第六次会议于2008年12月27日修订通过,现将修订后的 《中华人民共和国防震减灾法》公布,自2009年5月1日起施行。 胡锦涛 2008年12月27日 (1997年12月29日第八届全国人民代表大会常务委员会第二十九次会议通过, 2008年12月27日第十一届全国人民代表大会常务委员会第六次会议修订)
2 重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按现行国家标准《中国地震动参数区划图》GB18306 规定的本 地区抗震设防要求确定;对进行过工程场地地震安全性评价的,应采用经 国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应 低于本地区抗震设防要求确定的地震作用;
设防标准和设防目标
地震作用水平(设防水准) • E1:符合地铁100年设计使用寿命; • E2:与《中国地震动参数区划图》GB18306 相一致; • E3:与“罕遇”地震发生频次相关。
控制结构性能水平 • 场地 • 地震响应
设防标准和设防目标
3.2 抗震性能要求 3.2.1 城市轨道交通结构的抗震性能要求应分成下列三个等级: 1 性能要求 I:地震后不破坏或轻微破坏,应能保持其正常使用功能;
5.7.12 场地或场地附近有滑坡、滑移、崩塌、塌陷、泥石流、采空区等不良 地质作用时,应进行专门勘察,分析评价在地震作用时的稳定性。
抗震设计要点
工程场地勘察
4.1.2 城市轨道交通结构的场地与地基的勘察和评价应至少包括下列内容: 1 确定场地土的类型和场地类别; 2 对可能产生滑坡、塌陷、崩塌和采空区等的岩土体,进行地震作用下的地基稳定
性评价; 3 对判别为液化的土层,根据液化等级提出处理方案;当不进行抗液化处理时,应
计入液化效应的影响对土层的设计参数进行修正; 4 划分场地抗震地段类别。
5.7.11 抗震设防烈度等于或大于7 度的厚层软土分布区,宜判别软土震陷的可能性 和估算震陷量。
工程场地勘察
抗震设计要点
5.7.2 在抗震设防烈度等于或大于6度的地区进行勘察时,应确定场地类别。当场 地位于抗震危险地段时,应根据现行国家标准《建筑抗麓设计规范>> GB50011 的要求,提出专门研究。
• 地震作用计算 ✓ 计算模型 ✓ 效应组合 ✓ 结构验算
抗震设计要点
抗震设计要点
工程场地勘察
4.1 一般规定 4.1.1 城市轨道交通结构的场地与地基应考虑下列宏观震害或地震反应: 1 强烈地震动造成场地、地基的失稳或失效,包括土层液化、震陷、地裂缝、滑坡等; 2 地表断裂错动,包括地表基岩断裂及构造性地裂造成的破坏; 3 局部地形、地貌、地层结构的变异引起地震动异常造成的特殊破坏。
设防标准和设防目标
提纲
抗震减灾法规与技术标准 设防标准和设防目标 轨道交通地下结构抗震设计要点 复杂结构的抗震设计的难题
工程选址与场地处理
• 工程场地勘察 ✓ 场地类别 ✓ 抗震危险性评价
• 场地处治
抗震设计
•结构选型——概念设计
• 抗震措施 ✓ 调整地震作用的效应 ✓ 抗震构造措施
工程场地勘察
抗震设计要点
《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.6 工程场地类别,应根据土层等效剪切波速和场地覆盖层厚度划分为四类,并应符 合表4.2.6 的规定。当土层等效剪切波速和覆盖层厚度处于表4.2.6 所列场地类别分界线 的界限值附近时,宜按插值方法确定地震作用计算所用的场地特征周期。
法规与标准
第四章 地震灾害预防 第三十五条 新建、扩建、改建建设工程,应当达到抗震设防要求。 重大建设工程和可能发生严重次生灾害的建设工程,应当按照国务院有关规定进行 地震安全性评价,并按照经审定的地震安全性评价报告所确定的抗震设防要求进行 抗震设防。建设工程的地震安全性评价单位应当按照国家有关标准进行地震安全性 评价,并对地震安全性评价报告的质量负责。 前款规定以外的建设工程,应当按照地震烈度区划图或者地震动参数区划图所确定 的抗震设防要求进行抗震设防;对学校、医院等人员密集场所的建设工程,应当按 照高于当地房屋建筑的抗震设防要求进行设计和施工,采取有效措施,增强抗震设 防能力。
设防标准和设防目标
多水准设防: 抗震设防烈度,一个地区抗震设防依据的地震烈度,一般情况下可采用《中国地震 区划图》规定的50年超越概率10%的地震基本烈度。
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求:
1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要 求确定;
《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.5 工程场地覆盖层厚度应按下列要求确定: 1 应按地面至剪切波速大于500m/s 且其下卧各岩土的剪切波速均不小于500m/s 的土层
5.7 场地和地基的地震效应 5.7.1 抗震设防烈度等于或大于6 度的地区,应进行场地和地基地震效应的岩土 工程勘察,井应根据国家批准的地震动参数区划和有关的规范,提出勘察场地 的抗震设防烈度、设计基本地震加速度和设计地震分组。
抗震设计要点
工程场地勘察
4.1 一般规定 4.1.1 城市轨道交通结构的场地与地基应考虑下列宏观震害或地震反应: 1 强烈地震动造成场地、地基的失稳或失效,包括土层液化、震陷、地裂缝、滑坡等; 2 地表断裂错动,包括地表基岩断裂及构造性地裂造成的破坏; 3 局部地形、地貌、地层结构的变异引起地震动异常造成的特殊破坏。
设防标准和设防目标
3.1.2 抗震设防类别的划分应符合下列规定:
1 标准设防类:除特殊设防类、重点设防类以外的其他轨道交通结构;
2 重点设防类:除特殊设防类以外的高架区间结构、高架车站主体结构、 区间隧道结构和地下车站主体结构;
3 特殊设防类:在城市轨道交通网络中占据关键地位、承担交通量大的 大跨度桥梁和车站的主体结构。
城市轨道交通结构抗震设计规范(GB50909-2014)
地下结构
袁勇
HPC Lab
Cases Challenges Solutions Summary
Risks from Earthquake
2
HPC Lab
Cases Challenges Solutions Summary
Damages from Earthquake
2 重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按现行国家标准《中国地震动参数区划图》GB18306 规定的本 地区抗震设防要求确定;对进行过工程场地地震安全性评价的,应采用经 国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应 低于本地区抗震设防要求确定的地震作用;
设防标准和设防目标
设防标准 • 分类设防——建筑重要性不同,设防标准有差别; • 多水平设防——同类建筑,应考虑不同水平的地震作用。
设防目标 • 控制不同设防水平下结构的性能
设防标准和设防目标
3.1 抗震设防要求
3.1.1 城市轨道交通结构应划分为特殊设防类、重点设防类、标准设防类 三个抗震设防类别。
3 特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高 于本地区抗震设防要求确定。
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求:
1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要 求确定;
《建筑抗震设防分类标准》GB50223-2004
第3.0.2条 甲类(特殊设防类):重大建筑工程;地震时可能发生严重次生灾害的 建筑 乙类(重点设防类):地震时使用功能不能中断的建筑或需尽快恢复的 生命线工程 丙类(标准设防类):除甲、乙、丁类建筑以外的建筑 丁类(适度设防类):使用人员稀少可适度降低
设防标准和设防目标
多水准设防: 第一设防水准:50年超越概率63%的众值烈度,重现期50年——多遇地震(小震) 第二设防水准:50年超越概率约10%的众值烈度,重现期475年,为《中国地震区 划图》规定的地震基本烈度,即抗震设防烈度——设防地震(中震); 第三设防水准:50年超越概率约2-3%的众值烈度,重现期1642-2475年——罕遇 地震(大震)。
3பைடு நூலகம்
HPC Lab
Safety of Underground Structures under Earthquake
提纲
抗震减灾法规与技术标准 设防标准和设防目标 轨道交通地下结构抗震设计要点 复杂结构的抗震设计的难题
提纲
抗震减灾法规与技术标准 设防标准和设防目标 轨道交通地下结构抗震设计要点 复杂结构的抗震设计的难题
3 特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高 于本地区抗震设防要求确定。