实验指导书2
2012互换性-实验指导书(二)新
实验二几何误差测量(1)(圆度、圆柱度、平面度误差测量)一、实验目的明确圆度、圆柱度、平面度公差带形状及含义;掌握圆度、圆柱度、平面度误差的测量方法。
二、实验内容圆度、圆柱度、平面度误差测量。
三、实验设备百分表架、百分表、平台、小千斤顶、平板等。
四、实验方法(一)圆度与圆柱度误差测量1.圆度误差及测量、评定方法图2-1 圆度误差的定义圆度误差为包容同一横截面实际轮廓,且半径差为最小的两同心圆间的距离f,如图2-1所示。
圆度误差最小包容区域的判别方法是:由两同心圆包容被测实际轮廓时,至少有4个实测点内、外相间地在两个圆周上(即同心圆的内、外接点至少两次交替发生),如图2-1所示。
圆度误差最小区域的同心圆圆心,通常是和零件的测量回转中心不一致。
图中,O点是测量时的回转中心,O′测量点是圆度误差的评定中心。
在测量旋转面的若干个横截面中,取其中最大的圆度误差值作为被测旋转面的圆度误差。
目前通常采用四种圆度误差的评定方法:最小外接圆法、最大内切圆法、最小二乘圆法、最小区域法。
其中以最小区域法评定的圆度误差值为最小,能最大限度地通过合格品,是我国标准的定义法。
测量圆度误差的方法,主要有:圆度仪测量,两点法测量圆度误差,三点法测量圆度误差。
这里只介绍两点法测量圆度误差。
两点法测量圆度误差用千分尺在垂直于轴线的固定截面的直径方向进行测量,测量截面一周中直径最大差一半即为单个截面的圆度误差。
如此测量若干个截面,取其最大的误差值作为该零件的圆度误差。
此种测量方法,由于在测量截面内是两点接触,所以称为两点法。
如图2-2所示。
两点法测得的圆度误差f和各直径的测量最大读数差F有如下关系:f=F/K=F/2,K是反映系数。
2.圆柱度误差的检测与评定方法圆柱度误差是指包容实际表面且半径差为最小的两同轴圆柱面间的半径差f。
圆柱度误差综合地反映了圆柱面轴线的直线度误差、圆度误差和圆柱面相对素线间的平行度误差。
用它来综合评定圆柱面的形状误差是比较全面的,常用在精度要求比较高的圆柱面。
机械原理实验指导书 2
机械原理实验指导书班级姓名学号徐州工程学院机电工程学院机电教研室实验一机构运动简图测绘一、实验目的与实验要求1.学会根据各种机械实物或模型,绘制机构运动简图;2.分析和验证机构自由度;进一步理解机构自由度的概念,掌握机构自由度的计算方法。
二、实验原理我们知道:机构的运动仅与机构中所有构件的数目和构件所组成的运动副的数目、类型、相对位置有关。
因此,在绘制机构运动简图时,可以不考虑构件的具体形状和运动副的具体构造。
而用一些简单的符号〔见教材中机构运动简图常用符号〕来代替构件和运动副,并选择适当的比例尺表示运动副的相对位置,以此表示机构的运动特征。
绘制机构运动简图的目的是:以便对机构进行结构、轨迹、位移、速度、加速度和动力等分析研究。
它是工程技术人员从事机构研究的一个重要的工具。
三、实验设备、工具1.典型机械的实物(如:缝纫机、牛头刨床、插齿机等);2.典型机械的模型(如:内燃机模型、油泵模型、牛头刨床模型等〕;3.钢卷尺、内外卡钳、量角器;4.三角板、铅笔,橡皮、草稿纸等。
四、实验步骤及测绘方法(1)正确选择投影面对于机械实物的测绘,为了将机构运动表示清楚,要洽当地选择测绘投影面。
为此,一般选择机构中多数构件的运动平面为投影面。
(2)确定机构的构件数目测绘时,首先找到原动件并使机构缓慢地运动,从原动件开始仔细观察机构的运动,分清各个运动单元,从而确定组成机构的构件数目。
(3)确定机构运动副的类型和数目从原动件开始,根据相互连接的两构件间的接触情况及相对运动的特点。
依此确定运动副的类型及数目:(4)画机构运动简图仔细测量与机构运动有关的尺寸,如转动副间的中心距和移动副导路的方向等,选定原动件的位置,在纸上按规定的符号及构件的连接次序,从原动件开始,并按确定的比例尺逐步画出机构的运动简图。
比例尺μl =实际长度L AB(m)/图上长度AB(mm)(5)标注各构件及各运动副从原动件开始,用数字l、2、3…分别标注各构件,用英文字母A、B、C…分别标注各运动副。
有机化学实验2指导书
有机化学实验2指导书实验一溴乙烷的制备一、实验目的(1)学习从醇制备溴代烷的原理和方法;(2)学习蒸馏装置和分液漏斗的使用法。
二、实验试剂溴化钠、95%乙醇、浓硫酸、饱和亚硫酸氢钠溶液三、反应原理四、实验仪器和装置五、实验步骤与操作1、在50mL圆底烧瓶中加入6.5g研细的溴化钠,然后放入4.5mL水,振荡使之溶解,再加入5mL 95%乙醇,在冷却和不断摇荡下慢慢地加入9.5mL浓硫酸,同时用冰水浴冷却烧瓶。
2、投入2~3粒沸石,将烧瓶用75度弯管与直形冷凝管相连,冷凝管下端连接引管。
为了避免挥发损失,在接受器中加10mL冷水及5mL饱和亚硫酸氢钠溶液,放在冰水浴中冷却,并使接引管的末端刚浸没在接受器的水溶液中。
3、在石棉网上用很小的火焰加热烧瓶,瓶中物质开始发泡。
控制火焰大小,使油状物质逐渐蒸馏出去。
约30min后慢慢加大火焰,到无油滴蒸出为止。
馏出物为乳白色油状物,沉于瓶底。
4、将接受器中的液体倒入分液漏斗中。
静置分层后,将下层的粗制溴乙烷放入干燥的小锥形瓶中。
将锥形瓶浸于冰水浴中冷却,逐滴往瓶中加入浓硫酸,同时振荡,直到溴乙烷变得澄清透明,而且瓶底有液层分出(约需2mL浓硫酸)。
用干燥的分液漏斗仔细地分去下面的硫酸层,将溴乙烷层从分液漏斗的上口倒入30 mL蒸馏瓶中。
5、装配蒸馏装置,加2~3粒沸石,用水浴加热,蒸馏溴乙烷。
收集37~40℃的馏分(收集产物的接受器要用冰水浴冷却)。
注意事项:[1]溴化钠要先研细,在搅拌下加入,以防止结块而影响反应进行;[2]反应结束后趁热将残液倒出,防止NaHSO4结块而不易倒出;[3]避免将水带入溴乙烷中,以免加浓硫酸放热损失产物。
六、思考题1、制备溴乙烷时,反应混合物中如果不加水,会有什么结果?2、粗产物中可能有什么杂质?是如何除去的?3、如果你的实验结果产率不高,试分析其原因。
实验二、肉桂酸的制备一、实验目的1. 通过肉桂酸的制备学习并掌握Perkin反应及其基本操作。
控制工程基础实验指导书(答案) 2讲解
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
2022互换性-实验指导书(二)-图文
2022互换性-实验指导书(二)-图文实验二用内径百分表或卧式测长仪测量内径一、实验目的1.熟悉测量内经常用的计量器具和测量原理及使用方法。
2.加深对内径尺寸测量特点的了解。
二、实验内容1.用内径百分比测量内径。
2.用卧式测长仪测量内径。
三、测量原理及计量器具说明内径可用内径千分尺直接测量。
但对深孔或公差的等级较高的孔,则常用内径百分表或卧式测长仪作比较测量(一)内径百分表1.百分表的结构和传动原理百分表是应用杠杆、齿轮、齿条等机械传动,将测量杆的微小直线位移经放大后转变为指针的偏转,从而指示出相应测量值的量具。
图2-1所示是百分表的外形和传动原理。
如图2-1(b)所示,有齿条的测量杆上、下移动,带动齿轮22传动,与齿轮22同轴的齿轮23也随之转动,而齿轮23又带动中心齿轮Z,及其同轴上的指针偏转。
游丝的作用力保证齿轮在正反转时在同一齿面啮合,从而消除齿轮啮合间隙所引起的误差。
弹簧是用来控制测量力的。
百分表的刻度盘上刻成100等份,当测量杆移动1mm时指针转一圈,因此百分表的分度值为0.01mm。
百分表的测量范围有0~3mm、0~5mm、0~10mm三种,可在百分表表盘中的小刻度盘上来体现。
22.内径百分表内径百分表是测量内孔的一种常用量仪,其分度值为0.01mm,测量范围一般为6~10mm、10~18mm、18~35mm、35~50mm、50~160mm、160~250mm、250~400mm等。
图2-2所示为内径百分表的结构图。
内径百分表是用它的可换测头3(测量中固定不动)和活动测头2与被测孔壁接触进行测量的。
仪器盒内有几个长短不同的可换测头,使用时可按被测尺寸的大小来选择。
测量时,活动测头2受到一定的压力,向内推动镶在等臂直角杠杆1上的钢球4,使杠杆1绕支轴6回转,并通过长接杆5推动百分表的测杆而进行读数。
在活动测头的两侧,有对称的定位板8,装上测头2后,即与定位板连成一个整体。
定位板在弹簧9的作用下,对称地压靠在被测孔壁上,以保证测头的轴线处于被测孔的直径截面内。
实验2指导书 戴维宁定理的研究与应用
实验2指导书 戴维宁定理的研究与应用预习内容阅读课本中戴维宁定理章节,预习实验的内容,手写预习报告。
一、实验目的1、熟悉电路实验箱。
2、验证戴维宁定理,加深对该定理的理解。
3、掌握常用测量仪表的正确使用方法。
二、实验原理介绍1、戴维宁定理一个含独立电源、线性电阻和受控源的一端口电路(如图2-1(a )),对外电路来说,可以用一个电压源U S 和电阻R S 的串联组合等效置换(如图2-1(b )),此电压源的电压等于一端口电路的开路电压U OC ,电阻等于一端口电路的全部独立电源置零(电压源短路、电流源开路)后的等效电阻。
图2-12、有源二端网络等效参数的测量方法 (1)开路电压、短路电流法在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC ,然后再将其输出端短路,测其短路电流I SC ,则内阻为:SCOCS I U R =。
若有源二端网络的内阻值很低时,则不宜测其短路电流。
(2)伏安法一种方法是用电压表、电流表测出有源二端网络的外特性曲线,如图2-2所示。
图2-2开路电压为U OC ,根据外特性曲线求出斜率tg φ,则内阻为:IUR ∆∆==φtg S另一种方法是测量有源二端网络的开路电压U OC,以及额定电流I N和对应的输出端额定电压U N,如图2-1所示,则内阻为:N NOC S I UU R -=。
(3)半电压法如图2-3所示,当负载电压为被测网络开路电压U OC一半时,负载电阻R L的大小(由电阻箱的读数确定)即为被测有源二端网络的等效内阻R S数值。
图2-3(4)零示法在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图2-4所示。
零示法测量原理是用一低内阻的恒压源与被测有源二端网络进行比较,当恒压源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后将电路断开,测量此时恒压源的输出电压U,即为被测有源二端网络的开路电压。
《流体力学》实验指导书
实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。
雷诺数的物理意义,可表征为惯性力与粘滞力之比。
在实验过程中,保持水箱中的水位恒定,即水头H 不变。
如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。
此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。
如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。
如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。
图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。
tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。
三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。
启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。
2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。
3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。
材料工程实验指导书(2)
实验一沉淀强化铝合金的等时时效前言许多不同的铝合金,他们的强度取决于沉淀硬化。
本实验所提供的样品是一种用于协和式飞机结构件的合金。
这是一种复杂的铝合金,含有Cu,Mg,Ni,Fe,Si 和Ti 元素,最初是由劳斯莱斯在第二次世界大战期间以锻件的形式开发的,主要用于燃气涡轮发动机,当时它被称为RR58。
英国和法国政府选择用它制造协和飞机的决定,导致了对SST应用的要求,也就是明显的抗蠕变性能。
在民用运输飞机中,通常不考虑此属性。
但是当马赫数为2.2和2.5时,飞机表面温度在摩擦加热下分别升高到120℃和150℃;另一方面,由于协和飞机的寿命要求在20000小时到30000小时之间,所以蠕变性能成为关键。
这种合金可以与常见的包括杜拉铝在内的2000多种合金作比较,这2000多种合金的强化原因是形成Cu的析出物CuAl2。
Ni的作用是优先形成NiAl3和复杂的A1CuNi化合物,这两者在高温下均能保持高稳定性;Fe具有与Ni类似的效果;Si的作用是形成Mg2Si,以提高强度;Ti的作用是晶粒细化。
最优的机械性能的组合是通过以下热处理过程获得的:在530℃下进行20小时的固溶处理,再放入冷水中淬火,然后在190℃下进行19小时的沉淀硬化。
根据协和式飞机产品规范CM00I,这种处理应该产生以下性能:* PS = Proof stress** El = Elongation当然,服役温度必须参考沉淀强化温度。
在寿命期限内,服役温度必须低到足以防止过时效。
由于这一限制,飞机似乎不可能以大于2.2马赫的速度飞行。
在本实验中,不可能按照工业热处理的工艺进行,因为那需要一个下午的漫长时间。
但是我们注意到一个规律:随着时效温度的升高,所需的时效时间会相应缩短。
因此,本实验采用在恒定时效时间内确定性能与温度的关系,代替在恒定温度下确定保温时间与性能关系的做法。
图中显示了一些铝合金的典型时效曲线。
注意使用的是对数时间标度。
2气体定压比热测定实验指导书
气体定压比热测定实验指导书气体定压比热容的测定实验是工程热力学基本实验之一,实验中涉及温度、压力、热量(电功率)、流量等基本量的测量,计算中用到比热及混合气体(湿空气)方面的基本知识。
本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,有利于培养分析问题和解决问题的能力。
.一、实验要求1. 了解气体比热测定装置的基本原理和构思。
2. 熟悉本实验中测温、测压、测热、测流量的方法。
3. 掌握由基本数据计算出比热值和比热公式的方法。
4. 分析本实验产生误差的原因及减小误差的可能途径。
二、实验装置介绍1、实验所用的设备和仪器仪表由风机、流量计,比热仪本体、电功率调节测量系统共四部分组成,实验装置系统如图1所示。
2、装置中采用湿式流量计测定气流流量,流量计出口的恒温槽用以控制测定仪器出口气流的温度。
装置可以采用小型单级压缩机或其它设备作为气源设备,并用钟罩型气罐维持供气压力稳定。
气流流量用调节阀1调整。
3、比热容测定仪本体(图2)由内壁镀银的多层杜瓦瓶2,进口温度计1和出口温度计8(铂电阻温度计或精度较高的水银温度计)电加热器3和均流网4,绝缘垫5,旋流片6和混流网7组成。
4、气体自进口管引入,进口温度计4测量其初始温度,离开电加热器的气体经均流网4均流均温,出口温度计8测量加热终了温度,后被引出。
5、该比热仪可测300℃以下气体的定压比热。
三、实验方法及数据处理实验中需要测定干空气的质量流量g m 、水蒸气的质量流量w m 、电加热器的加热量(即气流吸热量)'p Q 和气流温度等数据,测定方法如下:1.干空气的质量流量g m 和水蒸气的质量流量w m电加热器不投入,摘下流量计出口与恒温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流干球温度0t 和湿球温度w t 温度(或由流量计上的温度计测量和相对湿度ϕ),根据0t 与w t (或0t 与ϕ值)由湿空气的焓-湿图确定含湿量d (g /k g ),并计算出水蒸气的容积成分水蒸气的容积成分计算式:622/1622/d d y w += (1)d --- 克水蒸汽/千克干空气. 图1测定空气定压比热容的实验装置系统1-节流阀;2-流量计;3-比热仪本体;4-温控仪;5功率表;6开关;7-风机。
过程控制系统实验指导书第二版
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:
2 实验指导书(2010.4)
页眉内容《数学实验》实验指导书龚劬重庆大学数学实验教学示范中心目录预备实验——桥梁分析.............................................................. 错误!未定义书签。
实验1 MATLAB软件入门.......................................................... 错误!未定义书签。
实验2 方程模型及其求解算法............................................... 错误!未定义书签。
实验3 收敛与混沌——迭代................................................... 错误!未定义书签。
实验4 微分方程模型、求解及稳定性分析........................... 错误!未定义书签。
实验5 插值方法....................................................................... 错误!未定义书签。
实验6 数据拟合及参数辨识方法........................................... 错误!未定义书签。
实验7 回归分析模型、求解及检验....................................... 错误!未定义书签。
实验8 连续系统与离散系统的计算机模拟........................... 错误!未定义书签。
实验9 线性规划模型、求解及灵敏度分析........................... 错误!未定义书签。
实验10 非线性规划与多目标规划模型及其求解................. 错误!未定义书签。
实验11 如何表示二元关系—图的模型及矩阵表示............. 错误!未定义书签。
实验2指导书 基尔霍夫定律与电位的研究(电工)
基尔霍夫定律与电位的研究一、实验目的1.验证基尔霍夫定律,加深对基尔霍夫定律的理解。
2.研究电路中各点电位与参考点的关系。
3.掌握电工仪表的使用和直流电路的实验方法,学习检查、分析电路简单故障的能力。
二、实验预习1.打印实验指导书,预习实验的内容,了解本实验的目的、原理和方法。
2.计算各表中要求的电压、电流理论值,写出计算过程。
三、实验设备与仪器NEEL-II 型电工电子实验装置。
四、实验原理1.基尔霍夫电流定律和电压定律是电路的基本定律,它们分别用来描述结点电流和回路电压。
对电路中的任一结点而言,在设定电流的参考方向下,应有ΣI =0,一般定义流入结点的电流相加,流出结点的电流相减。
对任何一个闭合回路而言,在设定电压的参考方向下,绕行一周,应有ΣU =0,一般定义方向与绕行方向一致的电压相加,电压方向与绕行方向相反的电压相减。
在实验前,必须设定电路中所有电流、电压的参考方向,其中电阻上的电压参考方向应与电流参考方向一致。
2.电位:在直流电路中,任一点的电位是以参考点的电位为零来确定的,不同的参考点对应不同的电位值,而电位差值与参考点无关。
五、实验内容本实验在直流电路实验单元中进行,按图1接好线路。
其中1S U (12V )和2S U (18V )由直流稳压电源调出,数值以直流数字电压表测量读数为准。
开关1S 投向1S U 侧,开关2S 投向2S U 侧,开关3S 投向3R 侧。
以A 节点验证KCL ,以ADEF 构成回路I 和ABCD 构成回路Ⅱ验证KVL ,实验前先设定三条支路的电流参考方向,如图中的1I 、2I 、3I 所示,并熟悉线路结构,掌握各开关的操作使用方法。
图1 基尔霍夫定律实验电路1.验证KCL定理:使用直流电流表按表1的要求测量,以验证KCL定理。
(1)熟悉电流测量电缆的结构,将电缆插头的红接线端接到电流表的红(正)接线端,电缆插头的黑接线端接到电流表的黑(负)接线端。
研学实验指导书
研学实验指导书
摘要:
一、实验背景与目的
二、实验原理与方法
三、实验器材与材料
四、实验步骤与操作
五、实验数据处理与分析
六、实验报告撰写要求
七、实验安全注意事项
正文:
研学实验指导书
实验是科学探究的重要环节,通过实验,我们可以直观地观察到现象,验证理论,锻炼实践能力。
本实验指导书旨在为同学们提供一个研学实验的参考,帮助大家顺利完成实验任务。
一、实验背景与目的
随着科学技术的不断发展,研学实验在我国教育领域越来越受到重视。
通过实验,学生可以培养动手能力、观察能力、思维能力、团队协作能力等多方面的素质。
本实验旨在帮助同学们了解实验的基本原理,掌握实验方法,提高实验技能。
二、实验原理与方法
实验原理:
本实验涉及到的原理为XXX。
实验方法:
本实验采用XXX 方法进行。
三、实验器材与材料
实验器材:
1.XXX
2.XXX
...
实验材料:
1.XXX
2.XXX
...
四、实验步骤与操作
1.准备工作
2.实验步骤
3.实验操作
...
五、实验数据处理与分析
1.数据记录
2.数据处理
3.数据分析
...
六、实验报告撰写要求
1.报告格式要求
2.报告内容要求
3.报告提交时间
...
七、实验安全注意事项
1.实验室安全规定
2.实验操作注意事项
3.实验意外处理方法
...
通过本实验指导书,我们希望同学们能够在实验过程中,充分发挥主观能动性,培养科学精神和探索精神。
多维数据分析实验指导书-2
多维数据分析基本操作实验指导书信息管理系北京交通大学经济管理学院实验二多维数据集的处理和建立父子维度的多维数据集一、实验目的掌握处理多维数据集的方法,能够自由浏览多维数据集的数据。
理解父子维度,并掌握建立父子维度的方法。
二、实验任务1、设计存储和处理多维数据集2、浏览多维数据集数据3、建立具有父子维度的多维数据集4、浏览维度数据三、实验要求在Microsoft SQL Server 2000 Analysis Services下,以FoodMart Corporation 的数据库管理员的身份。
设计存储和处理Sales多维数据集,浏览数据集数据。
建立父子维度,并将其添加入数据集,并浏览维度数据。
四、实验学时安排课堂内2学时完成实验内容,并在课外自行上机进一步熟悉掌握。
五、实验内容与步骤任务一:设计存储和处理多维数据集可以设计多维数据集中的数据和聚合的存储选项。
在使用或浏览多维数据集中的数据之前,必须先进行处理。
设计好Sales 多维数据集的结构之后,需要选择要使用的存储模式并指定要存储的预先计算好的值的数量。
完成此项操作之后,需要用数据填充多维数据集。
本节中将选择MOLAP 作为存储模式,创建Sales 多维数据集的聚合设计,然后处理该多维数据集。
处理Sales 多维数据集时将从ODBC 源中装载数据并按照聚合设计中的定义计算汇总值。
1.1如何使用存储设计向导设计存储1、在Analysis Manager 树窗格中,在“教程”数据库下展开“多维数据集”文件夹,右击“Sales”多维数据集,然后单击“编辑”命令。
2、在“欢迎”步骤中单击“下一步”按钮。
3、选择“MOLAP”作为数据存储类型,然后单击“下一步”按钮。
4、在“设置聚合选项”下单击“性能提升达到”。
在此框中输入“40”作为指定百分比。
5、此操作指示Analysis Services 将性能提升到40%,而不管需要多大的磁盘空间。
管理员可以用此优化能力平衡查询性能需求和存储聚合数据所需磁盘空间大小。
《高分子材料》实验指导书_2
实验一热塑性塑料熔融指数的测定一、实验目的1、测定高压聚乙烯的熔融指数;2、了解热塑性塑料在熔融状态时的流动黏性及其重要性;3、熟悉测定塑料熔体流动指数的原理及操作。
二、实验原理衡量高聚物流动性难易程度的指标有: 熔融指数、表观黏度、流动长度等多种方法。
这里介绍熔融指数。
熔融指数是指热塑性高聚物在规定的温度、压力条件下, 塑料熔体每10min通过标准口模的质量或体积, 习惯用MFR(MI)或MVR表示。
在塑料成型加工中, 熔融指数是用来衡量熔体流动性的一个重要指标, 其测试仪器通常称为熔体流动速率测试仪(熔融指数仪)。
对一定结构的塑料熔体, 可用MI来比较其相对分子质量的大小, MI越小, 其相对分子质量越高, 反之MI越大, 其相对分子量越小, 说明它的流动性越好, 其加工性能就相应好一些, 但其它性能如断裂强度、硬度、耐老化稳定性等将差一些。
此法测定熔体流动速率简便易行, 对材料的选择和成型工艺条件的确定有其重要的实用价值, 工业生产上得到广泛采用。
三、实验仪器与材料1、试样: ABS粉料或颗粒, 测试前进行干燥处理仪器:塑料熔体流动速率测试仪, 天平, 秒表, 装料漏斗, 锋利刮刀, 玻璃镜, 液体石蜡, 绸布和棉砂, 镊子, 清洗杆和铜丝。
四、实验步骤1、准备。
熟悉仪器结构和操作规程。
接通电源, 选择测试条件, 安装好口模, 在料筒插入料杆。
调节加热控制系统使温度达到要求温度, 恒温至少15min。
加料。
取出料杆将试料加入料筒, 把料杆再插入料筒并压紧试料, 预热4min使炉温回复至要求温度。
2、注意: 取出料杆后置于耐高温物体上, 避免料杆头部与其它坚硬物体碰撞;3、切勿用料杆去压紧物料, 避免损伤;4、在料杆顶托盘上加上砝码, 随即用手轻轻压下, 促使料杆在1min内降至下环形标记距料筒口5-10mm处。
待料杆(不用手)继续降至下环形标记与料筒口相平行时, 切除已流出的样条, 并按规定的切样时间间隔开始切样, 保留连续切取的无气泡样条三个。
《Java程序设计》实验指导书-2_[1]...
Java语言程序设计实验指导书目录实验一 JDK的安装和运行环境变量的设置 (3)实验二 JA V A语言基础实验 (3)实验三 JA V A面向对象特性实验 (5)实验四 Java输入输出实验 (6)实验五基于AWT及SWING的GUI及事件处理实验 (8)实验六Applet (11)附录Ⅰ (14)附录Ⅱ (15)实验一 JDK的安装和运行环境变量的设置实验目的1.通过实验使学生掌握J2SDK安装和运行环境设置。
2.掌握java最简单的程序结构,会使用javac和java命令。
实验内容1.下载j2sdk1.4.2。
在网站的download链接中选择J2SE1.4.2链接,选择j2sdk-1.4.2-04-windows-i586.exe下载。
2.安装该程序。
默认安装路径为c:\jdk1.4.2。
3.设置环境变量。
主要有path和classpath两个环境变量需设置。
在windows98中的设置方式为:使用记事本打开autoexec.bat文件,加入:SET PA TH=%PATH%;c:\jdk1.4.2\binSET CLASSPATH=.; c:\jdk1.4.2\lib在windows2000按如下方法设置:进入“控制面板”->“系统”->“高级”->“环境变量”->“系统变量”后,双击path,在后面添加:c:\jdk1.4.2\bin,双击classpath,在后面添加:c:\jdk1.4.2\lib。
重新启动系统。
4、编写一个输出“这是我的第一个JA V A程序”程序。
5、示例程序:public class HelloWorld{public static void main(String [ ] args){System.out.println(“Hello World”);}}在记事本中编写该程序,并保存为d:\my\HelloWorld.java。
运行过程为:进入dos环境,切换到保存路径,然后在命令行中输入下列命令:javac HelloWorld.java编译通过后,在命令行中输入下面的命令java HelloWorld运行结果应该为:Hello World实验二 JA V A语言基础实验实验目的1.通过实验使学生掌握JA V A变量、标识符以及语法规则。
热工实验指导书-2
实验一理想气体比热比的测定一、实验装置图图1实验装置图1.测压计2.气体容器3.洗耳球4.连接软管5.阀门二、实验原理刚性容器中的理想气体在绝热放气过程中,容器内剩余气体经历的过程可视为定熵过程。
原因说明如下:理想气体状态方程:R TPV=mg其微分方程可以表示为:dp dV dm dT+=+p V m T对于刚性容器dV=0,故上式变形为:dm dp dT=-(1)m p T由开口系统能量方程e Q=dU+h e i i s m h m W δδδδ-+对于实验装置Q δ=0 s W δ=0 i m δ=0上式中: dU=d(mu)=mdu+udme m δ=-dm e T T =因此: e mdu=h dm-u dmTdm c Tdm c dT mc v p v 000-=0001()1v p v c dT dm dTm c c T k T==-- (2) 将(2)带入(1):1(1)11dp dT dT k p T k T k =+=-- 积分有:1k kT C p-= (3)将理想气体状态方程:Pv=g R T 带入(3)式消去T ,可以得到k pv C = (4)(4)式其实就是理想气体定熵过程的过程方程式,故刚性容器绝热放气时,剩余气体经历的是定熵过程:2112()k p vp v = (5) 若气体再经历一个闭口系统中的定容吸热过程2-3,并使31T T = 由于 111g p v R T = 333g p v R T =可以得到3113p v p v = (6) 考虑到23v v =,(5)(6)式联立后有:32111231()()()k k k p p v vp v v p === 故2131lnln p p k p p = (7)通过以上分析可以看出让刚性容器中的理想气体先经历一个绝热放气过程,再让剩下的气体经历一个质量不变的定容过程,并让气体末状态的温度与实验开始时气体的温度相同,那么只需要分别测定实验开始时、放气之后、实验末状态三个状态的压力即可得到理想气体比热比k 的值.三、实验方法与步骤1.测定并记录环境温度t 0,环境压力p 0;2.用洗耳球3向容器2中充入气体,观察测压计1使容器中的压力p 1略高于p 0,温度t 1等于t 0,为使两个温度达到相同,进行该操作后需等待3分钟再记录p 1; 3.打开阀门5,慢慢放出一些气体,当容器中压力p 2等于p 0后关闭阀门5; 4.等待5分钟使容器中气体温度升高到t 0,记录此时压力p 2; 5.重复以上步骤,再做一次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高频电路》实验指导书(试用)高频电路课程组以及武汉凌特电子技术有限公司编写安徽新华学院电子通信工程学院审定安徽新华学院电子通信工程学院二零一三年八月前言实验是学习电子技术的一个重要环节,对巩固和加强课堂教学内容,提高学生实际工作技能,培养科学作风,为学习后续课程和从事实践技术工作奠定基础具有重要作用。
为适应电子科学技术的迅猛发展和教学改革不断深入的需要,在教学实践的基础上我们编写了此指导书。
它适用于电子信息工程、通信工程与电子信息科学与技术等专业。
此指导书首先介绍高频电子线路实验箱,以此为基础,介绍六项实验项目。
实验一为高频小信号调谐放大器实验,主要熟悉高频电路实验箱,掌握高频小信号谐振回路的调谐方法及测试方法,掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
实验二为非线性丙类功率放大器实验,了解激励信号变化对功率放大器工作状态的影响,掌握丙类放大器的调谐特性、负载改变时的动态特性以及丙类放大器的计算与设计方法。
实验三为三点式正弦波振荡器实验,通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响,研究外界温度、电源电压、负载等条件变化对振荡器频率稳定度的影响。
实验四为模拟乘法器调幅(AM、DSB、SSB)实验,学习用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与输入信号的关系,学习测量调幅系数的方法以及通过实验中的波形的变换,学会分析实验现象。
实验五为包络检波及同步检波实验,了解调幅波的原理,学习调幅波的解调方法,了解二极管包络检波的主要指标,检波效率及波形失真,掌握用集成电路实现同步检波的方法。
实验六为超外差中波调幅收音机实验,在模块实验的基础上掌握调幅收音机组成原理,建立调幅系统概念,掌握调幅收音机系统联调的方法,培养解决实际问题的能力。
由于编者水平有限,错误及欠缺之处希望大家批评指正。
2013年08月实验要求1.试验前必须充分预习,完成指定的预习任务。
预习要求如下:(1)认真阅读实验指导书,结合课本和笔记,分析、掌握实验电路的结构和工作原理。
(2)根据实验内容,明确实验任务和实验器材,熟悉实验步骤,制作实验中所需表格、图形等。
(3)预习实验中所用器材的使用方法及注意事项。
2.实验过程中应做到以下几点:(1)实验时应注意观察,若发现有异常现象(例如有元件冒烟,发烫或有异味)应尽快关断电源,报告指导老师,找出原因,排除故障,经指导老师同意再继续实验。
(2)实验过程中需要拆接线时,在关闭各模块电源之后,方可进行连线。
连线时在保证接触良好的前提下应尽量轻插轻放,检查无误后方可通电实验。
拆线时若遇到连线与孔连接过紧的情况,应用手捏住线端的金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。
(3)各实验模块功能厂家出厂前已调至最佳状态,实验过程中无需另行调节电位器,否则将会对实验结果造成严重影响。
若已调动请尽快复原;若无法复原,请向指导老师反映。
(4)实验过程中按动开关或转动电位器时,切勿用力过猛,以免造成元件损坏。
(5)实验过程中应仔细观察实验现象,认真纪录实验结果(数据、波行、现象),实验线路应在指导老师审查纪录结果签字后拆除。
(6)实验结束后,必须关断电源,并将实验器材(仪器、设备、工具、导线等)按规定整理。
3.实验报告要求语句通顺,简明扼要,字迹端正,图表清晰,结论正确,分析合理,讨论深入。
特别是对实验当中出现的故障和错误的处理,要详细阐明。
实验报告具体要求如下:(1)写明实验名称、实验目的、实验内容、实验器材。
(2)阐述实验原理和步骤。
(3)整理实验结果(数据、波行、现象),得出结论。
(4)总结实验心得和收获。
目录高频电子线路实验箱简介 (7)实验一高频小信号调谐放大器实验 (15)实验二非线性丙类功率放大器实验 (23)实验三三点式正弦波振荡器 (31)实验四模拟乘法器调幅(AM、DSB、SSB) (34)实验五包络检波及同步检波实验 (40)实验六超外差中波调幅收音机 (48)高频电子线路实验箱简介一、产品组成该产品由2个实验仪器模块和8个实验模块及实验箱体(含电源)组成。
1、实验仪器及主要指标如下:1)频率计(模块6):频率测量范围:5Hz~2400MHz输入电平范围:100mVrms~2Vrms测量误差:≤±20ppm(频率低端≤±1Hz)输入阻抗:1MΩ/10pF2)信号源(模块1):输出频率范围:400KHz~45MHz(连续可调)频率稳定度:10E-4输出波形:正弦波,谐波≤-30dBc输出幅度:1mVp-p~1Vp-p(连续可调)输出阻抗:50Ω3)低频信号源(模块1):输出频率范围:200Hz~10KHz(连续可调,方波频率可达250KHz)频率稳定度:10E-4输出波形:正弦波、方波、三角波输出幅度:10mVp-p~5Vp-p(连续可调)输出阻抗:100Ω2、实验模块及电路组成如下:1)模块2:小信号选频放大模块包含单调谐放大电路、电容耦合双调谐放大电路、集成选频放大电路、自动增益控制电路(AGC)等四种电路。
2)模块3:正弦波振荡及VCO模块包含LC振荡电路、石英晶体振荡电路、压控LC振荡电路、变容二极管调频电路等四种电路。
3)模块4:AM调制及检波模块包含模拟乘法器调幅(AM、DSB、SSB)电路、二极管峰值包络检波电路、三极管小信号包络检波电路、模拟乘法器同步检波电路等四种电路。
4)模块5:FM鉴频模块一包含正交鉴频(乘积型相位鉴频)电路、锁相鉴频电路、基本锁相环路等三种电路。
5)模块7:混频及变频模块包含二极管双平衡混频电路、模拟乘法器混频电路。
6)模块8:高频功放模块包含非线性丙类功放电路、线性宽带功放电路、集成线性宽带功放电路、集电极调幅电路等四种电路。
7)模块9:收音机模块包含三极管变频、AM收音机、FM收音机。
8)模块10:综合实验模块包含话筒及音乐片放大电路、音频功放电路、天线及半双工电路、分频器电路等四种电路。
二、产品主要特点1、采用模块化设计,使用者可以根据需要选择模块,既可节约经费又方便今后升级。
2、产品集成了多种高频电路设计及调试所必备的仪器,既可使学生在做实验时观察实验现象、调整电路时更加全面、更加有效,同时又可为学生在进行高频电路设计及调试时提供工具。
3、实验箱各模块有良好的系统性,八个模块可组合成五种典型系统:⑴中波调幅发射机(525KHz~1605KHz)。
⑵超外差中波调幅接收机(525KHz~1605KHz,中频465KHz)。
⑶半双工调频无线对讲机(10MHz~15MHz,中频4.5MHz,信道间隔200KHz)。
⑷锁相频率合成器(频率步进40KHz~4MHz可变)。
⑸超外差FM收音机(88MHz~108MHz,中频10.7MHz)。
4、实验内容非常丰富,单元实验包含了高频电子线路课程的大部分知识点,并有丰富的、有一定复杂性的综合实验。
5、电路板采用贴片工艺制造,高频特性良好,性能稳定可靠。
三、实验内容1、小信号调谐(单、双调谐)放大器实验(模块2)2、集成选频放大器实验(模块2)3、二极管双平衡混频器实验(模块7)4、模拟乘法器混频实验(模块7)5、三点式正弦波振荡器(LC、晶体)实验(模块3)6、晶体振荡器与压控振荡器实验(模块3)7、非线性丙类功率放大器实验(模块8)8、线性宽带功率放大器实验(模块8)9、集电极调幅实验(模块8)10、模拟乘法器调幅(AM、DSB、SSB)实验(模块4)11、包络检波及同步检波实验(模块4)12、变容二极管调频实验(模块3)13、正交鉴频及锁相鉴频实验(模块5)14、模拟锁相环实验(模块5)15、自动增益控制(AGC)实验(模块2)16、中波调幅发射机组装及调试实验(模块4、8、10)17、超外差中波调幅接收机组装及调试实验(模块2、4、9、10)18、锁相频率合成器组装及调试实验(模块5、10)19、半双工调频无线对讲机组装及调试实验(模块2、3、5、7、8、10)20、超外差式FM收音机实验(模块2、5、9、10)四、需另配设备1、实验桌2、20M双踪示波器(数字或模拟)3、万用表(数字或模拟)五、附:综合实验方框图 附:综合实验方框图1、自动增益控制 增益可调放大器选频回路放大线性化检波比较基准电压2、中波调幅发射机话筒或音乐IC 音频放大高频功放AM调制3、超外差中波调幅接收机 465K 谐振放大本振调谐回路磁棒天线检波音频功放耳机AM 广播:525—1605KHz 混频双联可调电容4、锁相频率合成器参考分频器(1-1/99)鉴相器VCO环路滤波器时基分频器(1-1/999)5、半双工调频无线对讲机单调谐小信号放大模拟乘法混频集成选频放大正交鉴频音频放大耳机高频功率放大双工器双平衡二极管混频变容二极管调频音频放大音源6.2M 本振4.5M 10.7M10.7M4.5M电源控制电源控制6、超外差FM 收音机天线调谐回路高放本振98.7—118.7M10.7M中放鉴频音频功放耳机FM 广播:88—108M混频中频滤波器调节电压仪器介绍一、信号源本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1)高频信号源输出频率范围:400KHz~45MHz(连续可调);频率稳定度:10E-4;输出波形:正弦波,谐波≤-30dBc;输出幅度:1mVp-p~1Vp-p(连续可调);输出阻抗:50Ω。
2)音频信号源:输出频率范围:200Hz~10KHz(连续可调,方波频率可达250KHz)频率稳定度:10E-4输出波形:正弦波、方波、三角波输出幅度:10mVp-p~5Vp-p(连续可调)输出阻抗:100Ω信号源面板如下图所示:高频部分低频部分信号源分高频和低频两部分,图中虚线左边为高频信号源,右边为低频信号源。
使用时,将最右边的“POWER”开关拨置下方,指示灯点亮。
高频信号源频率调节有四个档位:1KHz,10KHz,100KHz和1MHz档。
按下面板左上的“频率调节”旋钮可在各档位间切换,为1KHz,10KHz和100KHz档时,相对应绿灯点亮,当三灯齐亮,即为1MHz档。
调节该旋钮可改变输出高频信号的频率。
音频信号源通过“波形选择”按键切换输出波形,并用相应的指示灯指示,如选择正弦波,则“正弦波”指示灯亮。
通过“+”“-”按键可以增大、减小信号的频率。
调节“RF幅度”旋钮可改变输出高频信号源的幅度,顺时针旋转幅度增加;调节“幅度调节”旋钮可改变输出音频信号源的幅度。
本信号源有内调制功能,“FM调制开关”拨置“ON”,对应的“FM”指示灯点亮,输出调频波,调制信号为信号源音频正弦波信号,载波信号为信号源高频信号;“FM调制开关”拨置“OFF”,“FM”指示灯点灭,输出无调制的高频信号。