热力学公式总结汇编

合集下载

热力学公式汇总

热力学公式汇总

物理化学主要公式及使用条件第一章 气体的 pVT 关系 主要公式及使用条件1. 理想气体状态方程式pV (m/M )RT nRT 或 pV m p (V /n ) RT式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。

V m V /n 称为气体的摩尔体 积,其单位为m 3・mol -1。

R=8.314510 J mol -1 K 1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 ( 1) 组成摩尔分数式中 n A 为混合气体总的物质的量。

Vm,A 表示在一定T , p 下纯气体A 的摩A尔体积。

y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。

A( 2) 摩尔质量述各式适用于任意的气体混合物(3)y B n B /n p B / p V B /V式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。

V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。

y B (或 x B ) = n B / n AA体积分数B y B Vm,B /yAV m,AAy B M B m/nM B /n BBBB式中 mm B 为混合气体的总质量, nBn B 为混合气体总的物质的量。

上M mixB叮叮小文库3. 道尔顿定律p B = y B p, p P BB上式适用于任意气体。

对于理想气体P B n B RT/V4. 阿马加分体积定律V B ri B RT/V此式只适用于理想气体。

第二章热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式U Q W或dU 8Q SW 9Q P amb dV SW'规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中P amb为环境的压力,W为非体积功。

上式适用于封闭体系的一切过程。

2. 焓的定义式H U pV3. 焓变(1)H U (PV)式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。

第一章 化学热力学基础 公式总结

第一章  化学热力学基础  公式总结

第一章 化学热力学基础 公式总结 1。

体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程。

定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5。

摩尔热容 Cm ( J ·K-1·mol —1 ):定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv ,m = 1。

5R , Cp,m = 2。

5R 双原子理想气体: Cv,m = 2。

5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4RCp,m = Cv ,m + R6。

理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结7。

定义:△fHm θ(kJ ·mol-1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。

8。

热效应的计算1221ln ln P PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = —∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 — T1)10。

热力学公式汇总

热力学公式汇总

物理化学主要公式及使用条件第一章 气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。

m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。

R = J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B*=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。

Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。

∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。

上述各式适用于任意的气体混合物。

(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。

*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。

对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

物理高中热学公式

物理高中热学公式

物理高中热学公式1. 热力学第一定律:ΔU = Q + W,其中ΔU为内能变化,Q为系统与外界交换的热量,W为系统所做的功。

2. 热力学第二定律:ΔS = Q/T,其中ΔS为系统熵的变化,Q为热量,T为温度。

3. 热容:C = Q/ΔT,其中C为热容,Q为系统吸收或释放的热量,ΔT为温度变化量。

4. 比热容:c = C/m,其中m为物体的质量。

5. 热传导定律:Q = kAΔT/x,其中Q为热量,k为热导率,A为面积,ΔT为温度差,x为导热距离。

6. 热辐射定律:P = σA(T^4 – T0^4),其中P为单位时间内辐射的能量,σ为斯蒂芬—玻尔兹曼常数,A为发射体参考面积,T为发射体温度,T0为参考温度。

7. 热力学循环效率:η = (W净 / Q热) × 100%,其中W净为系统净工作量,Q热为系统吸收的热量。

8. 热力学效率公式:η = (T1 – T2) / T1,其中T1为热源温度,T2为冷源温度。

9. 热平衡方程:m1c1ΔT1 = m2c2ΔT2,其中m为物体的质量,c为比热容,ΔT为温差。

10. 热力学势公式:G = H – TS,其中G为吉布斯自由能,H为焓,T为温度,S为熵。

11. 熵变公式:ΔS = Qrev / T,其中ΔS为系统的熵变,Qrev为可逆过程吸放热量,T为温度。

12. 等温过程:Q = W,即等温过程中外界对系统所做的功等于系统吸收的热量。

13. 等体过程:W = 0,即等体过程中系统不做功,热量全部转化为内能。

14. 等压过程:W = PΔV,即等压过程中外界对系统所做的功等于压力乘以体积的变化量。

15. 等焓过程:Q = ΔH,即等焓过程中外界与系统的热交换量等于系统焓的变化量。

化工热力学公式总结

化工热力学公式总结

化工热力学公式总结1.热平衡公式:对于封闭系统,内能变化等于热变化和功变化之和。

即:ΔU=Q-W其中,ΔU表示内能变化,Q表示系统吸收或放出的热量,W表示系统对外做功。

2.热容公式:热容是单位质量物质温度变化1°C所吸收或放出的热量。

Q=mCΔT其中,Q表示吸收或放出的热量,m表示物质的质量,C表示热容,ΔT表示温度变化。

3.平衡常数(K)公式:对于化学反应:aA+bB↔cC+dD反应的平衡常数(K)定义为反应物浓度的乘积与生成物浓度的乘积之比:K=[C]^c[D]^d/[A]^a[B]^b其中,[A]、[B]、[C]、[D]表示反应物和生成物的摩尔浓度。

4.反应焓变(ΔH)公式:反应焓变是化学反应进行过程中吸热或放热的量。

根据焓守恒定律,反应焓变可以通过反应物和生成物焓变的差值表示:ΔH=ΣnΔHf(生成物)-ΣmΔHf(反应物)其中,n和m为反应物和生成物的系数,ΔHf表示物质的标准生成焓。

5.反应熵变(ΔS)公式:反应熵变是化学反应进行过程中熵的变化。

根据熵守恒定律,反应熵变可以通过反应物和生成物熵变的差值表示:ΔS=ΣnS(生成物)-ΣmS(反应物)其中,n和m为反应物和生成物的系数,S表示物质的熵。

6.反应自由能变(ΔG)公式:反应自由能变是化学反应进行过程中自由能的变化,可以通过反应物和生成物的自由能差值表示:ΔG=ΣnG(生成物)-ΣmG(反应物)其中,n和m为反应物和生成物的系数,G表示物质的自由能。

7.热力学平衡公式:对于可逆反应,根据吉布斯自由能变可以推导出热力学平衡公式:ΔG=ΔH-TΔS其中,ΔG为反应的吉布斯自由能变,ΔH为反应的焓变,ΔS为反应的熵变,T为温度。

以上是化工热力学中常用的公式总结,这些公式在研究和设计化工过程中起到了重要的作用。

通过应用这些公式,可以计算和预测系统的热力学性质和能量转化,从而优化化工过程的设计和操作。

同时,这些公式也为研究反应机理和确定过程条件提供了理论基础。

工程热力学的公式大全

工程热力学的公式大全

工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。

2.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的温度。

3.等温过程:Q=W在等温过程中,系统所吸收的热量等于所做的功。

4.绝热过程:P1V1^γ=P2V2^γ在绝热过程中,气体的压强与体积之积的γ次方是一个常数,γ为气体的绝热指数。

5.等容过程:ΔU=Qv在等容过程中,系统内能的变化等于吸收的热量。

6.等压过程:Q=ΔH在等压过程中,系统所吸收的热量等于焓的变化。

7.等焓过程:ΔH=Qp在等焓过程中,焓的变化等于吸收的热量。

8.热机效率:η=1-,Qc,/,Qh热机效率表示热机从高温热源吸收的热量减去放出的低温热量占高温热量的比例。

9.士温定理:η=1-(Tc/Th)士温定理是热力学第二定律的一种表述,表示热机效率与高温热源温度和低温热源温度的比值有关。

10.开尔文恒等式:η=1-(Tc/Th)=1-(,Qc,/,Qh,)开尔文恒等式是士温定理的另一种形式,表示任何热机的效率都不可能达到100%。

11.准静态过程:ΔS=∫(dQ/T)准静态过程中,系统的熵变等于系统吸收的微小热量除以系统的温度积分得到。

12.绝热可逆过程:ΔS=0在绝热可逆过程中,系统的熵不发生变化。

13.熵的增加原理:ΔS总=ΔS系统+ΔS环境≥0根据熵的增加原理,系统与环境的熵的变化之和大于等于0。

14.卡诺循环效率:η=1-(Tc/Th)卡诺循环是理想热机,其效率由高温热源温度和低温热源温度决定。

15.等温膨胀系数:β=(1/V)*(∂V/∂T)p等温膨胀系数表示单位温度升高时体积的变化与体积的比值。

16.等压热容量:Cp=(∂Q/∂T)p等压热容量表示在等压条件下单位温度升高吸收的热量与温度的比值。

17.等容热容量:Cv=(∂Q/∂T)v等容热容量表示在等容条件下单位温度升高吸收的热量与温度的比值。

热力学计算公式整理

热力学计算公式整理

热力学计算公式整理热力学是研究物质的热与能的转化关系的学科,是广泛应用于化学、物理、工程等领域的重要理论基础。

在热力学计算中,有一系列公式被广泛应用于热力学参数的计算和分析。

1.热力学基本方程:对于一个热力学系统,其内部能量U可以由其热力学状态变量来表示,常用的基本方程有:U=TS-PV+μN其中,U为内部能量,T为温度,S为熵,P为压力,V为体积,μ为化学势,N为摩尔数。

2.热力学函数的计算:(1)焓(H)的计算公式:H=U+PV其中,H为焓,U为内部能量,P为压力,V为体积。

(2)外界对系统做的功(W)计算公式:W=-∫PdV其中,W为功,P为压力,V为体积,积分为从初态到末态的过程。

(3)熵(S)的计算公式:dS=dQ/T其中,S为熵,dS为熵的微分,dQ为系统的热量变化,T为温度。

(4) Helmholtz自由能(A)的计算公式:A=U-TS其中,A为Helmholtz自由能,U为内部能量,T为温度,S为熵。

(5) Gibbs自由能(G)的计算公式:G=U-TS+PV其中,G为Gibbs自由能,U为内部能量,T为温度,S为熵,P为压力,V为体积。

3.热力学热力学参数的计算:(1)热容的计算公式:Cv=(∂U/∂T)V其中,Cv为定容热容,∂U/∂T为导数,V为体积。

Cp=(∂H/∂T)P其中,Cp为定压热容,∂H/∂T为导数,P为压力。

(2)趋近于绝对零度时的熵变ΔS的计算公式:ΔS = Cvln(T2/T1) + Rln(V2/V1)其中,ΔS为熵的变化,Cv为定容热容,T2和T1为温度的变化,R 为气体常数,V2和V1为体积的变化。

(3)等温过程中的吸热计算公式:q=ΔH=nCpΔT其中,q为吸热,ΔH为焓的变化,n为物质的摩尔数,Cp为定压热容,ΔT为温度的变化。

(4)等温过程中的做功计算公式:w=-ΔG=PΔV其中,w为做功,ΔG为Gibbs自由能的变化,P为压力,ΔV为体积的变化。

热力学四个基本关系式

热力学四个基本关系式

热力学四个基本关系式
热力学的四个基本公式:dU=TdS-PdV;dH=TdS+VdP;dF=-SdT-PdV;dG=-SdT+VdP。

热力学是从宏观角度研究物质的热运动性质及其规律的学科。

属于物理学的分支,它与统计物理学分别构成了热学理论的宏观和微观两个方面。

热力学定律,是描述物理学中热学规律的定律,包括热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律。

其中热力学第零定律又称为热平衡定律,这是因为热力学第一、第二定律发现后才认识到这一规律的重要性;热力学第一定律是能量守恒与转换定律在热现象中的应用;热力学第二定律有多种表述,也叫熵增加原理。

热力学公式总结

热力学公式总结

热力学公式总结热力学公式,作为热力学研究的基础,是描述能量转化和热力学过程的数学表达式。

它们通过简洁的符号和方程式,揭示了物质和能量之间的相互关系。

以下是几个常见的热力学公式及其含义,让我们一起来了解一下吧。

1. 热力学第一定律:ΔU = Q - W热力学第一定律是能量守恒定律在热力学中的表达,它说明了一个封闭系统内部能量的变化等于系统所吸收的热量减去对外界做功的大小。

这个公式告诉我们,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

2. 熵的定义:ΔS = Q/T熵是描述系统无序程度的物理量,它是热力学中的一个重要概念。

熵的增加代表了系统的无序性增加,而熵的减少则代表了系统的有序性增加。

这个公式告诉我们,熵的变化与系统所吸收的热量和温度有关,系统吸收的热量越多,熵的增加越大。

3. 理想气体状态方程:PV = nRT理想气体状态方程是描述理想气体性质的基本公式,它将气体的压力、体积、摩尔数和温度联系在一起。

这个公式告诉我们,当气体的压力、体积和摩尔数一定时,温度越高,气体的体积越大。

4. 热力学第二定律:ΔS ≥ 0热力学第二定律是热力学中的一个基本原理,它表明在一个孤立系统中,系统的熵不会减小,或者说系统总是趋向于更高的熵。

这个公式告诉我们,自然界中熵的增加是不可逆的,系统的有序性总是会不可避免地变差。

以上是几个常见的热力学公式,它们揭示了能量转化和热力学过程的规律。

通过理解和运用这些公式,我们可以更好地理解和分析能量转化和热力学过程,为实际问题的解决提供依据。

热力学公式的应用广泛,涵盖了能源、化学、物理等多个领域,对于推动科学技术的发展和改善人类生活质量起到了重要的作用。

希望今天的介绍能让大家对热力学公式有更深入的了解,并在实际应用中发挥出更大的作用。

热力学定律公式

热力学定律公式

热力学定律公式一、热力学定律1. 热力学第一定律:能量守恒定律(一次动力学)说明:热力学第一定律,又称能量守恒定律,是物理学中长期研究的定律之一,它解释了发生物理和化学变化时能量的守恒,即变化时物质中不能创造或者毁灭能量,只能以多种形式相互转换。

根据定律,考虑任何物理或化学变化,变化前后所有物质的总能量减少、增加或者保持不变,只要能量不会增加或减少,熵值也就守恒了。

2. 热力学第二定律:温度无差异可降低定律说明:热力学第二定律,又称温度差异可降低定律,主要指非完全开放系统的能量变化。

它描述如果将两种不同温度的物质在同一热源中结合,其能量的差异越大,它们的总热量就越小,而它们最终会趋向同一温度,这个标准温度称为热力学平衡。

3. 热力学第三定律:熵递增定律说明:这条定律表明物质的总体熵(不均匀性)在实验室可以观察到的不动变量范围内,总是递增的,熵的定义是描述一个热动力系统的守恒性的度量的物理量。

熵增加表示热动力系统脱离强有序状态,向混乱状态发展。

4. 热力学第四定律:Carnot定律:说明:Carnot定律是描述热机内热量转换机制规律的物理定律,它描述热机之间的效率。

热机是指可以利用热源能量转化为机械能和其他能源的装置,如发动机和内燃机。

简言之,Carnot定律规定热机的效率只与其温度有关,温度越高,效率越高。

二、热力学的应用1. 热量转换热量的转换由热力学的基本定律来决定,一个系统在能量变化的过程中,不可能出现能量的创造或灭活,变量时形式只会改变,典型的转换过程有热机转换、热泵、制冷机和制热机等,热力学定律是这些机器设计和运行的准则。

2. 热物理学热物理学是用来研究物质性质如热容、熵和热导率与温度、压力之间关系的物理学分支,热量动力学方程以及热容性质、熵和热导率的定义都是热力学定律的重要应用。

3. 热交换热的交换受制于热力学的定律,在热交换的过程中,热量随着能量的流动而流动,热交换要么提供也要么消耗能量,如果两个热源直接隔绝而不交换能量,最终会达到一个平衡温度。

高中热学公式

高中热学公式

二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。

气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。

温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。

三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。

(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。

Welcome !!! 欢迎您的下载,资料仅供参考!。

热力学公式总结

热力学公式总结

第一章气体的pVT关系主要公式及使用条件1.理想气体状态方程式pV (m/ M )RT nRT或pV p(V /n) RTm式中p,V,T 及n 单位分别为Pa,m3,K 及mol。

3,K 及mol。

V m V / n 称为气体的摩尔体3 积,其单位为m-1·mol 。

R=8.314510 J m·ol-1·K -1 ,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2.气体混合物(1)组成摩尔分数y B (或x B) = n B / nAA体积分数 B y V /m, BBy A V m,AA式中n为混合气体总的物质的量。

V m,A 表示在一定T,p 下纯气体 A 的摩AA尔体积。

y A V 为在一定T,p下混合之前各纯组分体积的总和。

m, A y A V 为在一定T,p下混合之前各纯组分体积的总和。

A(2)摩尔质量M m ix y M m/ n M / nB B B BB B B式中m m 为混合气体的总质量,B n n 为混合气体总的物质的量。

上BB B述各式适用于任意的气体混合物。

(3)y n / n p / p V /VB B B B式中p B 为气体B,在混合的T,V 条件下,单独存在时所产生的压力,称为 B的分压力。

VB为B 气体在混合气体的T,p 下,单独存在时所占的体积。

3.道尔顿定律p B = y B p,p pBB上式适用于任意气体。

对于理想气体p B n B RT/V4.阿马加分体积定律*/V n RT pB B此式只适用于理想气体。

第二章热力学第一定律主要公式及使用条件1.热力学第一定律的数学表示式U Q W或'd UδQδWδQ p d VδWa m b规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中p amb为环境的压力,W?为非体积功。

上式适用于封闭体系的一切过程。

2.焓的定义式H U pV3.焓变(1)H U(pV)式中(pV)为pV乘积的增量,只有在恒压下()()pV p V2V在数值上等于体1积功。

热力学公式总结

热力学公式总结

热⼒学公式总结第⼀章⽓体的pVT 关系主要公式及使⽤条件1. 理想⽓体状态⽅程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。

m /V V n =称为⽓体的摩尔体积,其单位为m 3 · mol -1。

R =8.314510 J · mol -1 · K -1,称为摩尔⽓体常数。

此式适⽤于理想⽓体,近似地适⽤于低压的真实⽓体。

2. ⽓体混合物(1)组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ?∑*AVy Am ,A式中∑AA n 为混合⽓体总的物质的量。

Am,*V表⽰在⼀定T ,p 下纯⽓体A 的摩尔体积。

∑*AA m ,A V y 为在⼀定T ,p 下混合之前各纯组分体积的总和。

(2)摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合⽓体的总质量,∑=BB n n 为混合⽓体总的物质的量。

上述各式适⽤于任意的⽓体混合物。

(3) V V p p n n y ///B B B B *式中p B 为⽓体B ,在混合的T ,V 条件下,单独存在时所产⽣的压⼒,称为B 的分压⼒。

*B V 为B ⽓体在混合⽓体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律p B = y B p ,∑=BB p p上式适⽤于任意⽓体。

对于理想⽓体V RT n p /B B =4. 阿马加分体积定律*/B B V n RT p =此式只适⽤于理想⽓体。

第⼆章热⼒学第⼀定律主要公式及使⽤条件1. 热⼒学第⼀定律的数学表⽰式W Q U +=?或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中 p amb 为环境的压⼒,W ’为⾮体积功。

热力学公式总结

热力学公式总结

第一章气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。

m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。

R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 (1) 组成摩尔分数y B (或x B ) = ∑AA B /n n体积分数/y B m,B B *=V ϕ∑*AVy Am,A式中∑AA n 为混合气体总的物质的量。

A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。

∑*AA m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。

上述各式适用于任意的气体混合物。

〔3〕V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。

*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。

对于理想气体V RT n p /B B =4. 阿马加分体积定律*/B B V n RT p =此式只适用于理想气体。

第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中p amb 为环境的压力,W ’为非体积功。

热力学公式汇总

热力学公式汇总

物理化学主要公式及使用条件第一章 气体的 pVT 关系 主要公式及使用条件1. 理想气体状态方程式pV (m/M )RT nRT 或 pV m p (V /n ) RT式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。

V m V /n 称为气体的摩尔体 积,其单位为m 3・mol -1。

R=8.314510 J mol -1 K 1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 ( 1) 组成摩尔分数式中 n A 为混合气体总的物质的量。

Vm,A 表示在一定T , p 下纯气体A 的摩A尔体积。

y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。

A( 2) 摩尔质量述各式适用于任意的气体混合物(3)y B n B /n p B /p V B /V式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。

V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。

y B (或 x B ) = n B / n AA体积分数B y B Vm,B /yAV m,AAy B M B m/nM B /n BBBB式中 mm B 为混合气体的总质量, nBn B 为混合气体总的物质的量。

上M mixB3. 道尔顿定律p B = y B p,p p BB上式适用于任意气体。

对于理想气体p B n B RT/V4. 阿马加分体积定律V B n B RT/V此式只适用于理想气体。

第二章热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式U Q W或dU 8Q SW 9Q P amb dV SW'规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中p amb 为环境的压力,W为非体积功。

上式适用于封闭体系的一切过程。

2. 焓的定义式H U PV3. 焓变(1)H U (PV)式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2 V i)在数值上等于体积功。

(完整版)工程热力学的公式大全

(完整版)工程热力学的公式大全

5.梅耶公式:R c c v p =- R c c v p 0''ρ=-0R MR Mc Mc v p ==-6.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnR c p 外储存能:1.宏观动能:221mc E k =2.重力位能:mgz E p =式中g —重力加速度。

系统总储存能:1.p k E E U E ++=或mgz mc U E ++=2212.gz c u e ++=2213.U E = 或u e =(没有宏观运动,并且高度为零)热力学能变化:1.dT c du v =,⎰=∆21dT c u v适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=∆适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.1020121221t c t c dt c dt c dt c u t vmt vmt v t v t t v ⋅-⋅=-==∆⎰⎰⎰适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)4.把()T f c v =的经验公式代入⎰=∆21dT c u v 积分。

适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=ni i i ni i n u m U U U U U 1121由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。

6.⎰-=∆21pdv q u适用于任何工质,可逆过程。

7.q u =∆适用于任何工质,可逆定容过程8.⎰=∆21pdv u适用于任何工质,可逆绝热过程。

9.0=∆U适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。

10.W Q U -=∆适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。

第一章 化学热力学基础 公式总结

第一章  化学热力学基础  公式总结

第一章 化学热力学基础 公式总结1.体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程.定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5.摩尔热容 Cm ( J ·K-1·mol-1 ): 定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R1221ln lnP PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4RCp,m = Cv,m + R6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结7.定义:△fHm θ(kJ ·mol-1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。

8.热效应的计算由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则△rHm (T2) = △rHm (T1) + △Cp ( T2 - T1)10.热机的效率为 dTC p T T ⎰∆21121211Q QQ Q Q QW+=+=-=η对于卡诺热机 1211Q Q Q Q W R +=-=η= 可逆循环过程< 不可逆循环过程11.熵变定义式 (体系经历一可逆过程的热温商之和等于该过程的熵变.)12.热力学第二定律的数学表达式(不等式中, “ > ”号表示不可逆过程 , “ = ” 号表示可逆过程 “ T ”—环境温度 , 对可逆过程也是体系温度. )13.熵增原理 (孤立体系的熵永不减少) △S 孤立 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡.对于封闭体系△S 孤立 = △S 封闭 + △S 环境 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡14.定温定压的可逆相变15.化学反应熵变的计算 △rS θm = ∑νBS θm ,B16.△rH θm 和△rS θm 与温度的关系:△rH θ m (T2) = △rH θ m (T1) +△rS θ m (T2) = △rS θ m (T1) +121T T T -=02211≤+T Q T Q RBAA B TQS S S )(δ⎰=-=∆∑≥∆ii iT Q S )(δTQdS δ≥环体环环环境T Q T Q S -==∆相变,相变T H n S m ∆=∆dTC p T T ⎰∆21d TTC p T T ∆⎰21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。

m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。

R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。

Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。

∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。

上述各式适用于任意的气体混合物。

(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。

*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。

对于理想气体V RT n p /B B =4. 阿马加分体积定律*/B B V n RT p =此式只适用于理想气体。

第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中 p amb 为环境的压力,W ’为非体积功。

上式适用于封闭体系的一切过程。

2. 焓的定义式 3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。

(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热V Q U =∆ (d 0,'0)V W == p Q H =∆ (d 0,'0)p W == 6. 热容的定义式 (1)定压热容和定容热容pVU H +=2,m 1d V U nC T∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂ ,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。

(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。

(4) ,m ,m p V C C R -= 此式只适用于理想气体。

7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p TH T H T C T ∆=∆+∆⎰或 vap m vap ,m (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

8. 体积功 (1)定义式V p W d amb -=∂或 V p W d amb ∑-=(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。

(3) )(21amb V V p W --= 适用于恒外压过程。

(4) )/ln()/ln(d 121221p p nRT V V nRT V p W V V =-=-=⎰ 适用于理想气体恒温可逆过程。

(5) ,m 21()V W U nC T T =∆=- 适用于,m V C 为常数的理想气体绝热过程。

9. 理想气体可逆绝热过程方程,m2121(/)(/)1V C R T T V V = ,m2121(/)(/)1p C R T T p p -=,m//p p p c C m CM==1)/)(/(1212=r V V p p上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。

10. 反应进度B B /νξn ∆=上式适用于反应开始时的反应进度为零的情况,B,0B B n n n -=∆,B,0n 为反应前B 的物质的量。

B ν为B 的反应计量系数,其量纲为一。

ξ的量纲为mol 。

11. 标准摩尔反应焓θθθr m B f m B c m (B,)(B,)H H H νβνβ∆=∆=-∆∑∑式中θf m (B,)H β∆及θc m (B,)H β∆分别为相态为β的物质B 的标准摩尔生成焓和标准摩尔燃烧焓。

上式适用于ξ=1 mol ,在标准状态下的反应。

12. θm r H ∆与温度的关系21θθr m2r m1r ,m ()()d T p T HT HT C T ∆=∆+∆⎰式中 r ,m ,m B (B)p p C C ν∆=∑,适用于恒压反应。

13. 节流膨胀系数的定义式J T (/)H T p μ-=∂∂T J -μ又称为焦耳-汤姆逊系数。

第三章 热力学第二定律 主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。

W 为在循环过程中热机中的工质对环境所作的功。

此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据amb sy s iso S S S ∆+∆=∆{0, 0, >=不可逆可逆式中iso, sys 和amb 分别代表隔离系统、系统和环境。

在隔离系统中,不可逆过程即自发过程。

可逆,即系统内部及系统与环境之间皆处于平衡态。

在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。

此式只适用于隔离系统。

6. 环境的熵变7. 熵变计算的主要公式222r111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切'0W δ=的可逆过程的S ∆计算式,皆可由上式导出 (1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+ ,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2) T 2112ln(/)ln(/)S nR V V nR p p ∆==此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。

(3) ,m 21ln(/)p S nC T T ∆=r d δ/S Q T =amby s amb amb amb //S T Q T Q s -==∆此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。

8. 相变过程的熵变此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。

9. 热力学第三定律或 0)0K ,(m =*完美晶体S上式中符号*代表纯物质。

上述两式只适用于完美晶体。

10. 标准摩反应熵)B (Bm B m r ∑=∆θθνS S2r m 2r m 1r ,m 1()()(/)d p S T S T C T T θθ∆=∆+∆⎰上式中r ,m p C ∆=B ,m B(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反应在任一温度下,标准摩尔反应熵的计算。

11. 亥姆霍兹函数的定义12. 亥姆霍兹函数判据V T A ,∆⎩⎨⎧=<平衡自发,0,0 只有在恒温恒容,且不做非体积功的条件下,才可用A ∆作为过程的判据。

13. 吉布斯函数的定义14. 吉布斯函数判据⎩⎨⎧=<平衡自发,,00 只有在恒温恒压,且不做非体积功的条件下,才可用G ∆作为过程的判据。

15. 热力学基本方程式0)(lim m =*→完美晶体S T 0TH S /βαβα∆=∆TSU A -=TSH G -=,T pG ∆d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。

说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V , T 变化的过程。

也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。

16. 克拉佩龙方程m m d /d /()p T H T V ββαα=∆∆ 此方程适用于纯物质的α相和β相的两相平衡。

17. 克劳修斯-克拉佩龙方程2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)p p H RT T p p H R T T =∆=∆-此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *V 与(g)m *V 相比可忽略不计,在21T T -的温度范围内摩尔蒸发焓可视为常数。

对于气-固平衡,上式vap m H ∆则应改为固体的摩尔升华焓。

第四章 多组分系统热力学 主要公式及其适用条件1. 偏摩尔量:定义: C n p,T,n X X ⎪⎪⎭⎫⎝⎛∂∂=B B (1)其中X 为广延量,如V ﹑U ﹑S ......全微分式:d ⎛⎫∂∂⎛⎫=++ ⎪ ⎪∂∂⎝⎭⎝⎭∑B B B B Bd d d p,n T,n X X X T p X n T p (2)总和: ∑=BB B X n X (3)2. 吉布斯-杜亥姆方程在T ﹑p 一定条件下,0d BB B =∑X n , 或0d BB B=∑X x。

相关文档
最新文档