气相色谱课件
合集下载
《气相色谱》课件
特点
高分离效能、高灵敏度、高选择性、应用范围广等。
气相色谱法的应用领域
环境监测
用于检测空气、水体、 土壤等环境样品中的有 机污染物和有害气体。
食品检测
用于检测食品中的农药 残留、添加剂、营养成
分等。
医药分析
用于药物成分分析、药 物代谢产物检测等。
化工分析
用于石油、化工、香料 、化妆品等行业的组分
分析和质量控制。
详细描述
气相色谱可以检测环境样品中的挥发性有机物、半挥发性有机物、农药残留等污 染物,为环境监测和污染治理提供有力支持。
食品与药物分析
总结词
气相色谱在食品和药物分析中具有高灵敏度、高分离效能和 低检测限的特点。
详细描述
气相色谱可以用于食品中农药残留、添加剂、风味组分的分 析,以及药物中有效成分、溶剂残留等的分析,保障食品安 全和药物质量。
06
气相色谱的挑战与展望
当前挑战
样品复杂性
随着样品多样性的增加,如何有效地分离和检测复杂样品 成为气相色谱技术面临的重要挑战。
灵敏度与特异性
对于痕量组分的检测,提高气相色谱的灵敏度和特异性是 当前面临的关键问题。
快速分析
在许多应用中,如环境监测和临床诊断,需要快速、实时 地进行分析,这对气相色谱技术的响应速度提出了更高的 要求。
气相色谱法的历史与发展
起源
01
气相色谱法的起源可以追溯到20世纪初,当时英国科学家第一
次使用气体通过色谱柱的方法进行实验。
初步发展
02
经过几十年的研究和发展,气相色谱法逐渐成熟,并成为一种
重要的分析方法。
现ห้องสมุดไป่ตู้发展
03
随着科技的不断进步,气相色谱法的技术和仪器不断得到改进
高分离效能、高灵敏度、高选择性、应用范围广等。
气相色谱法的应用领域
环境监测
用于检测空气、水体、 土壤等环境样品中的有 机污染物和有害气体。
食品检测
用于检测食品中的农药 残留、添加剂、营养成
分等。
医药分析
用于药物成分分析、药 物代谢产物检测等。
化工分析
用于石油、化工、香料 、化妆品等行业的组分
分析和质量控制。
详细描述
气相色谱可以检测环境样品中的挥发性有机物、半挥发性有机物、农药残留等污 染物,为环境监测和污染治理提供有力支持。
食品与药物分析
总结词
气相色谱在食品和药物分析中具有高灵敏度、高分离效能和 低检测限的特点。
详细描述
气相色谱可以用于食品中农药残留、添加剂、风味组分的分 析,以及药物中有效成分、溶剂残留等的分析,保障食品安 全和药物质量。
06
气相色谱的挑战与展望
当前挑战
样品复杂性
随着样品多样性的增加,如何有效地分离和检测复杂样品 成为气相色谱技术面临的重要挑战。
灵敏度与特异性
对于痕量组分的检测,提高气相色谱的灵敏度和特异性是 当前面临的关键问题。
快速分析
在许多应用中,如环境监测和临床诊断,需要快速、实时 地进行分析,这对气相色谱技术的响应速度提出了更高的 要求。
气相色谱法的历史与发展
起源
01
气相色谱法的起源可以追溯到20世纪初,当时英国科学家第一
次使用气体通过色谱柱的方法进行实验。
初步发展
02
经过几十年的研究和发展,气相色谱法逐渐成熟,并成为一种
重要的分析方法。
现ห้องสมุดไป่ตู้发展
03
随着科技的不断进步,气相色谱法的技术和仪器不断得到改进
《气相色谱法》课件
定义
气相色谱法是一种分离和分析复杂混 合物中各组分的方法,利用不同物质 在固定相和流动相之间的分配系数差 异进行分离。
原理
通过将待测样品中的各组分在两相之 间进行吸附、脱附、溶解、挥发的过 程,使各组分在两相中具有不同的分 配系数,从而实现分离。
发展历程与现状
发展历程
气相色谱法自20世纪50年代问世以来,经历了不断改进和完 善的过程,逐渐成为一种高效、快速、灵敏的分析方法。
气相色谱法的优缺点
优点
高分离效能
气相色谱法具有很高的分离效能,能够分离复杂 混合物中的各种组分。
快速分析
通过优化色谱条件,可以实现快速分析,提高工 作效率。
ABCD
高灵敏度
通过先进的检测技术,气相色谱法能够检测出低 浓度的物质,满足痕量分析的要求。
应用广泛
气相色谱法可以应用于各种领域,如环境监测、 食品检测、药物分析等。
分离柱
常用的分离柱有填充柱和 毛细管柱,选择合适的分 离柱是关键。
分离温度
温度对分离效果影响较大 ,需根据被测物质性质选 择合适的温度范围。
检测技术
热导检测器
基于热导原理,对气体或蒸气进行检测。
氢火焰离子化检测器
用于检测有机化合物,具有高灵敏度和选择性。
电子捕获检测器
用于检测电负性物质,如有机氯、有机磷等。
信号处理
检测器输出的信号需要经过放大、处 理和记录,以便准确测量各组分的浓 度。
进样系统
功能
进样系统负责将样品引入色谱柱。
类型
常见类型有直接进样、分流进样和不分流 进样等。
进样量控制
进样方式
进样量的大小和准确度对实验结果有重要 影响,因此需要精确控制进样量。
气相色谱法是一种分离和分析复杂混 合物中各组分的方法,利用不同物质 在固定相和流动相之间的分配系数差 异进行分离。
原理
通过将待测样品中的各组分在两相之 间进行吸附、脱附、溶解、挥发的过 程,使各组分在两相中具有不同的分 配系数,从而实现分离。
发展历程与现状
发展历程
气相色谱法自20世纪50年代问世以来,经历了不断改进和完 善的过程,逐渐成为一种高效、快速、灵敏的分析方法。
气相色谱法的优缺点
优点
高分离效能
气相色谱法具有很高的分离效能,能够分离复杂 混合物中的各种组分。
快速分析
通过优化色谱条件,可以实现快速分析,提高工 作效率。
ABCD
高灵敏度
通过先进的检测技术,气相色谱法能够检测出低 浓度的物质,满足痕量分析的要求。
应用广泛
气相色谱法可以应用于各种领域,如环境监测、 食品检测、药物分析等。
分离柱
常用的分离柱有填充柱和 毛细管柱,选择合适的分 离柱是关键。
分离温度
温度对分离效果影响较大 ,需根据被测物质性质选 择合适的温度范围。
检测技术
热导检测器
基于热导原理,对气体或蒸气进行检测。
氢火焰离子化检测器
用于检测有机化合物,具有高灵敏度和选择性。
电子捕获检测器
用于检测电负性物质,如有机氯、有机磷等。
信号处理
检测器输出的信号需要经过放大、处 理和记录,以便准确测量各组分的浓 度。
进样系统
功能
进样系统负责将样品引入色谱柱。
类型
常见类型有直接进样、分流进样和不分流 进样等。
进样量控制
进样方式
进样量的大小和准确度对实验结果有重要 影响,因此需要精确控制进样量。
气相色谱法PPT课件
平缓。如A 前延峰(leading peak): 前沿平缓,后
沿陡峭。如B
A
B
对称因子[ƒs (symmetry factor)]
即拖尾因子(tailing factor):
用来描述峰形对称程度的。
计算公式为:
fs
W0.05h 2A
一、气相色谱法的分类和特点
(一)分类 按固定相的聚集状态分: 气固色谱法(GSC),属吸附色谱 气液色谱法(GLC),属分配色谱
按操作形式分,气相色谱属柱色谱.
按柱的粗细不同分:
填充柱色谱法:将固定相填充在金属
或玻璃管中(内径4mm~6mm)
毛细管柱色谱:毛细管柱(0.1mm~0.5mm)
分为
开口毛细管柱
和固体。(沸点在500℃以下,热稳定性 好,分子量在400以下的物质)。 目前气相色谱法所能分析的有机物,约 占全部有机物(约300万种)的20%。
气相色谱两大弱点: a.受试样蒸汽压限制 b.定性困难
二、气相色谱仪 gas chromatographic instruments
气相色谱仪
气相色谱仪
柱制备对柱效有较大影响,填料装填 太紧,柱前压力大,流速慢或将 柱堵 死;反之空隙体积大,柱效低。
4.检测系统(detection system) 色谱仪的眼睛。包括检测器、控温装 置;若作制备,则在检测器后面接分 步收集器。 作用:按组分浓度或质量随时间的变化,
转化成相应电信号
检测器:
广普型——对所有物质均有响应;
气化室: 将液体试样瞬间气化的 装置。无催化作用。
3.色谱柱系统(column system) 包括恒温控制装置,是色谱仪的心脏部
分。
柱材质:不锈钢管或玻璃管,内径3-6 毫米。长度可根据需要确定。
沿陡峭。如B
A
B
对称因子[ƒs (symmetry factor)]
即拖尾因子(tailing factor):
用来描述峰形对称程度的。
计算公式为:
fs
W0.05h 2A
一、气相色谱法的分类和特点
(一)分类 按固定相的聚集状态分: 气固色谱法(GSC),属吸附色谱 气液色谱法(GLC),属分配色谱
按操作形式分,气相色谱属柱色谱.
按柱的粗细不同分:
填充柱色谱法:将固定相填充在金属
或玻璃管中(内径4mm~6mm)
毛细管柱色谱:毛细管柱(0.1mm~0.5mm)
分为
开口毛细管柱
和固体。(沸点在500℃以下,热稳定性 好,分子量在400以下的物质)。 目前气相色谱法所能分析的有机物,约 占全部有机物(约300万种)的20%。
气相色谱两大弱点: a.受试样蒸汽压限制 b.定性困难
二、气相色谱仪 gas chromatographic instruments
气相色谱仪
气相色谱仪
柱制备对柱效有较大影响,填料装填 太紧,柱前压力大,流速慢或将 柱堵 死;反之空隙体积大,柱效低。
4.检测系统(detection system) 色谱仪的眼睛。包括检测器、控温装 置;若作制备,则在检测器后面接分 步收集器。 作用:按组分浓度或质量随时间的变化,
转化成相应电信号
检测器:
广普型——对所有物质均有响应;
气化室: 将液体试样瞬间气化的 装置。无催化作用。
3.色谱柱系统(column system) 包括恒温控制装置,是色谱仪的心脏部
分。
柱材质:不锈钢管或玻璃管,内径3-6 毫米。长度可根据需要确定。
气相色谱分析法ppt课件
1970年代至今
GC技术不断完善,出现了毛细管柱、高效液相色谱(HPLC)等新技 术。
现状
目前,气相色谱法已经成为化学分析领域中最常用的分离和分析方法 之一,广泛应用于环境、食品、医药、石油化工等领域。
应用领域与意义
01 环境监测
02 食品安全
03 医药分析
04 石油化工
05 意义
用于大气、水、土壤等环 境中污染物的检测和分析 。
载气系统
01
02
03
载气种类
常用的载气有氢气、氮气 、氦气等,选择载气需考 虑样品的性质和分析要求 。
载气纯度
高纯度的载气可以减少杂 质对分析结果的影响,提 高分析的准确性和灵敏度 。
载气流速
适当的载气流速可以保证 样品在色谱柱中得到充分 分离,同时避免色谱峰展 宽。
进样系统
进样方式
包括手动进样和自动进样 两种方式,自动进样可以 提高分析效率和重复性。
02
根据分析要求选择合适 的色谱柱长度和内径。
03
考虑色谱柱的耐用性和 使用寿命,选择质量可 靠的色谱柱品牌。
04
对于复杂样品的分析, 可采用多维色谱技术以 提高分离效果和分析准 确性。
05
气相色谱操作条件优化 与实验设计
载气流速对分离效果影响研究
载气流速对色谱峰的影响
流速过快可能导致峰形变宽,流速过慢则可能使峰形变窄或产生 前沿峰。
凝收集。
顶空分析法
将样品置于密闭容器中 ,加热使挥发性成分挥 发至容器顶部空间,然
后进行分析。
进样方式及技巧
01
02
03
04
手动进样
使用微量注射器将样品注入进 样口,注意注射速度、注射量
GC技术不断完善,出现了毛细管柱、高效液相色谱(HPLC)等新技 术。
现状
目前,气相色谱法已经成为化学分析领域中最常用的分离和分析方法 之一,广泛应用于环境、食品、医药、石油化工等领域。
应用领域与意义
01 环境监测
02 食品安全
03 医药分析
04 石油化工
05 意义
用于大气、水、土壤等环 境中污染物的检测和分析 。
载气系统
01
02
03
载气种类
常用的载气有氢气、氮气 、氦气等,选择载气需考 虑样品的性质和分析要求 。
载气纯度
高纯度的载气可以减少杂 质对分析结果的影响,提 高分析的准确性和灵敏度 。
载气流速
适当的载气流速可以保证 样品在色谱柱中得到充分 分离,同时避免色谱峰展 宽。
进样系统
进样方式
包括手动进样和自动进样 两种方式,自动进样可以 提高分析效率和重复性。
02
根据分析要求选择合适 的色谱柱长度和内径。
03
考虑色谱柱的耐用性和 使用寿命,选择质量可 靠的色谱柱品牌。
04
对于复杂样品的分析, 可采用多维色谱技术以 提高分离效果和分析准 确性。
05
气相色谱操作条件优化 与实验设计
载气流速对分离效果影响研究
载气流速对色谱峰的影响
流速过快可能导致峰形变宽,流速过慢则可能使峰形变窄或产生 前沿峰。
凝收集。
顶空分析法
将样品置于密闭容器中 ,加热使挥发性成分挥 发至容器顶部空间,然
后进行分析。
进样方式及技巧
01
02
03
04
手动进样
使用微量注射器将样品注入进 样口,注意注射速度、注射量
气相色谱法色谱图分析化学课件
原理
基于样品中各组分在固定相和流动相 之间的分配平衡,利用不同组分在色 谱柱中的保留时间差异实现分离。
发展历程及应用领域
发展历程
自20世纪50年代问世以来,气相色谱法经历了从填充柱到毛细管柱、从热导检 测到各种高灵敏度检测器的发展历程。
应用领域
广泛应用于环境、食品、医药、化工等领域中挥发性有机物、气体样品的分析 。
进样口温度设置
根据样品的性质和色谱柱的要求设置进样口温度 ,避免样品分解或色谱柱过载。
ABCD
自动进样
使用自动进样器进行进样,需设置合适的进样参 数和序列。
进样量控制
根据色谱柱的容量和检测器的灵敏度控制进样量 ,避免色谱峰过宽或检测不到目标化合物。
案例分析:实际样品前处理与进样过程演示
样品前处理
以某农药残留检测为例,首先使用溶 剂萃取法将农药从农产品中萃取出来 ,然后使用固相萃取法进一步净化样 品。
内标法
在样品中加入已知量的内标物质,通过测量 内标物质和待测组分的色谱峰面积之比,计 算待测组分的含量。内标法可以消除实验操 作过程中可能引入的误差,提高定量分析的
准确性。
07
实验操作规范与安全注意事项
实验室安全规章制度解读
实验室准入制度
进入实验室前需接受安全培训,了解实验室安全规章制度和应急 处理措施。
01
数据采集
使用专业色谱数据工作站进行数 据采集,确保数据的准确性和完 整性。
数据存储
02
03
数据导出
将采集到的数据以特定格式存储 在计算机中,以便后续处理和分 析。
根据需要,将数据导出为常见的 数据格式,如CSV、Excel等,方 便数据共享和交换。
定性分析方法:保留时间法、峰面积法等
基于样品中各组分在固定相和流动相 之间的分配平衡,利用不同组分在色 谱柱中的保留时间差异实现分离。
发展历程及应用领域
发展历程
自20世纪50年代问世以来,气相色谱法经历了从填充柱到毛细管柱、从热导检 测到各种高灵敏度检测器的发展历程。
应用领域
广泛应用于环境、食品、医药、化工等领域中挥发性有机物、气体样品的分析 。
进样口温度设置
根据样品的性质和色谱柱的要求设置进样口温度 ,避免样品分解或色谱柱过载。
ABCD
自动进样
使用自动进样器进行进样,需设置合适的进样参 数和序列。
进样量控制
根据色谱柱的容量和检测器的灵敏度控制进样量 ,避免色谱峰过宽或检测不到目标化合物。
案例分析:实际样品前处理与进样过程演示
样品前处理
以某农药残留检测为例,首先使用溶 剂萃取法将农药从农产品中萃取出来 ,然后使用固相萃取法进一步净化样 品。
内标法
在样品中加入已知量的内标物质,通过测量 内标物质和待测组分的色谱峰面积之比,计 算待测组分的含量。内标法可以消除实验操 作过程中可能引入的误差,提高定量分析的
准确性。
07
实验操作规范与安全注意事项
实验室安全规章制度解读
实验室准入制度
进入实验室前需接受安全培训,了解实验室安全规章制度和应急 处理措施。
01
数据采集
使用专业色谱数据工作站进行数 据采集,确保数据的准确性和完 整性。
数据存储
02
03
数据导出
将采集到的数据以特定格式存储 在计算机中,以便后续处理和分 析。
根据需要,将数据导出为常见的 数据格式,如CSV、Excel等,方 便数据共享和交换。
定性分析方法:保留时间法、峰面积法等
气相色谱法PPT课件
根据需要检测的物质性质和浓度范围, 选择合适的色谱柱和检测器,以确保
最佳的分离和检测效果。
设计实验流程
根据气相色谱法的原理和特点,设计 合理的实验流程,包括样品处理、进 样、分离、检测等步骤。
优化实验条件
通过调整实验参数,如温度、压力、 流量等,优化实验条件,提高实验效 率和准确性。
实验操作技巧
样品处理
数据处理系统
功能
数据处理系统用于采集、处理和分析实验数 据,生成报告。
软件要求
需具备强大的数据处理功能,能进行基线校 正、峰识别、定量计算等操作。
硬件配置
数据处理系统的硬件配置需满足数据处理速 度和存储需求。
输出方式
数据处理系统应支持多种数据输出方式,如 文本、图表等,方便结果展示和交流。
03 气相色谱法的操作流程
气相色谱法ppt课件
contents
目录
• 气相色谱法简介 • 气相色谱法的基本构成 • 气相色谱法的操作流程 • 气相色谱法的实验技术 • 气相色谱法的应用实例 • 气相色谱法的未来发展与展望
01 气相色谱法简介
定义与原理
定义
气相色谱法是一种分离和分析复 杂混合物中各组分的方法,通过 不同物质在固定相和流动相之间 的分配系数差异实现分离。
样品前处理
样品收集
确保样品具有代表性,避免交叉污染和误差。
样品浓缩
将样品中的待测组分进行浓缩,以便后续分析。
样品净化
去除样品中的干扰物质,提高分析的准确性和可靠性。
样品衍生化
将某些不易检测的化合物通过化学反应转化为更易检测的化合物。
气化与进样
气化
将样品加热使其变成气体,以便进入色谱柱进行分离。
进样
最佳的分离和检测效果。
设计实验流程
根据气相色谱法的原理和特点,设计 合理的实验流程,包括样品处理、进 样、分离、检测等步骤。
优化实验条件
通过调整实验参数,如温度、压力、 流量等,优化实验条件,提高实验效 率和准确性。
实验操作技巧
样品处理
数据处理系统
功能
数据处理系统用于采集、处理和分析实验数 据,生成报告。
软件要求
需具备强大的数据处理功能,能进行基线校 正、峰识别、定量计算等操作。
硬件配置
数据处理系统的硬件配置需满足数据处理速 度和存储需求。
输出方式
数据处理系统应支持多种数据输出方式,如 文本、图表等,方便结果展示和交流。
03 气相色谱法的操作流程
气相色谱法ppt课件
contents
目录
• 气相色谱法简介 • 气相色谱法的基本构成 • 气相色谱法的操作流程 • 气相色谱法的实验技术 • 气相色谱法的应用实例 • 气相色谱法的未来发展与展望
01 气相色谱法简介
定义与原理
定义
气相色谱法是一种分离和分析复 杂混合物中各组分的方法,通过 不同物质在固定相和流动相之间 的分配系数差异实现分离。
样品前处理
样品收集
确保样品具有代表性,避免交叉污染和误差。
样品浓缩
将样品中的待测组分进行浓缩,以便后续分析。
样品净化
去除样品中的干扰物质,提高分析的准确性和可靠性。
样品衍生化
将某些不易检测的化合物通过化学反应转化为更易检测的化合物。
气化与进样
气化
将样品加热使其变成气体,以便进入色谱柱进行分离。
进样
气相色谱基本原理及应用PPT课件
根据采样后处理方法不同,固体吸附剂管可分为溶 剂解吸型和热解吸型。如下图
固体吸附剂采样管的规格
类型
管长,mm
固体吸附剂量,mg
内径,mm 外径,mm 活性炭管
硅胶管
前段 后段 前段 后段
溶剂解吸型 70~80
3.5~4.0
5.5~6.0 100 50 200 100
热解吸型
120
3.5~4.0
6.0+0.1
检测器根据组份的物理化学特性,将各组份按顺序检测出来。
气相色谱法的分析流程
1、气路系统 包括气源、气体净化、气体流量控制和 测量装置。
2、进样系统 包括进样器、汽化室和控温装置。 3、分离系统 包括色谱柱、柱箱和控温装置。 4、检测系统 包括检测器和控温装置。 5、数据采集和处理系统 包括放大器、色谱工作站或
电子捕获检测器ECD
原理:载气分子在63Ni辐射源中所产生的β粒子的 作用下离子化,在电场中形成稳定的基流,当含 电负性基团的组分通过时,俘获电子使基流减小 而产生电信号。
ECD是一种高选择性、高灵敏度的检测器,对含有 较强电负性元素的物质,如含有卤素、氧、硫、 氮等的化合物有响应,元素的电负性越强,检测 器的灵敏度越高。
毛细管柱
填充柱
检测器的分类
根据检测器的响应原理,可将其分为浓度型和 质量型检测器。 浓度型:检测的是载气中组分浓度的瞬间变化,即
响应值与浓度成正比。 质量型:检测的是载气中组分进入检测器中速度变
化,即响应值与单位时间进入检 测器的量 成正比。
气相色谱常用检测器
1. FID(氢火焰离子化检测器) 2. ECD(电子捕获检测器) 3. TCD(热导检测器) 4. FPD(火焰光度检测器)
《气相色谱法》课件
检测限D 定义:产生二倍噪音信号时单位体积载气中被
测 物 的 量 (Dc,mg/ml) 或 单 位 时 间 进 入 检 测 器的量(Dm,g/s)
D = 2RN / S
D = 2RN / S RN:检测器的噪声,指基线在短时间内上下偏差
的数值(单位为mV) D值越小,则说明仪器越敏感。
(3) 线性范围
d. 对于强腐蚀性组分,可选用氟载体.
3、固定液
气相色谱固定液主要是由高沸点有机物组成,在操作 温度下呈液态,有特定的使用温度范围(最高使用温度极 限)。
① 对固定液的要求
a. 蒸气压低,不流失 b. 热稳定性好,在操作柱温下呈液态,不分解,不聚
合,规定了最高使用温度。 c. 化学稳定性好,不与待测组分起化学反应 d. 溶解度大,对待测物质各组分有适当的溶解能力。 e. 选择性好,对两个沸点相同或相近但属于不同类型
R1 R4 R2 R3
A、B点电位相同,∆EAB = 0 无信号输出,记录仪记录的是 一条直线。
当样品组分随载气通过测量臂时,组分与载气组
成的二元体系的热导系数与纯载气的热导系数不同,
由于热传导带走测量臂的热量,引起热丝温度的变化
,使电阻值改变,而参比臂电阻值保持不便。这时R1
、R4导热系数不同 散热不同
汽化室温度应使试样瞬间汽化 而不分解,通常选在试样沸点或稍 高于沸点。一般汽化室温度比柱温 高10~50℃。
3.3 分离系统
1、色谱柱
种类:填充柱 / 毛细管柱 材料:不锈钢,铜,玻璃,聚四氟乙烯 / 石英玻璃 大小:内径2-6mm,长1-6m / 0.1-0.5mm,长10-10单位时间内进入检测器的某组分的量有关
R∝dm/dt
R = Smdm/dt
测 物 的 量 (Dc,mg/ml) 或 单 位 时 间 进 入 检 测 器的量(Dm,g/s)
D = 2RN / S
D = 2RN / S RN:检测器的噪声,指基线在短时间内上下偏差
的数值(单位为mV) D值越小,则说明仪器越敏感。
(3) 线性范围
d. 对于强腐蚀性组分,可选用氟载体.
3、固定液
气相色谱固定液主要是由高沸点有机物组成,在操作 温度下呈液态,有特定的使用温度范围(最高使用温度极 限)。
① 对固定液的要求
a. 蒸气压低,不流失 b. 热稳定性好,在操作柱温下呈液态,不分解,不聚
合,规定了最高使用温度。 c. 化学稳定性好,不与待测组分起化学反应 d. 溶解度大,对待测物质各组分有适当的溶解能力。 e. 选择性好,对两个沸点相同或相近但属于不同类型
R1 R4 R2 R3
A、B点电位相同,∆EAB = 0 无信号输出,记录仪记录的是 一条直线。
当样品组分随载气通过测量臂时,组分与载气组
成的二元体系的热导系数与纯载气的热导系数不同,
由于热传导带走测量臂的热量,引起热丝温度的变化
,使电阻值改变,而参比臂电阻值保持不便。这时R1
、R4导热系数不同 散热不同
汽化室温度应使试样瞬间汽化 而不分解,通常选在试样沸点或稍 高于沸点。一般汽化室温度比柱温 高10~50℃。
3.3 分离系统
1、色谱柱
种类:填充柱 / 毛细管柱 材料:不锈钢,铜,玻璃,聚四氟乙烯 / 石英玻璃 大小:内径2-6mm,长1-6m / 0.1-0.5mm,长10-10单位时间内进入检测器的某组分的量有关
R∝dm/dt
R = Smdm/dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.实验步骤
• 熟悉实验仪器,设定实验参数;
• 单标检测,记录目标物的保留时间和峰面 积;
• 待测样品的测定,记录各物质的保留时间 和峰面积
5.结果与分析
• 判断各物质的保留时间;
• 计算各物质的相对相应因子 • 对待测样中的目标物进行定量分析
6.问题与讨论
• 1.
• 2. • 3.进样口、柱箱及检测器温度设置的原则及 它们的作用 • 4.内标法与外标法的区别
Ax C is Ais C x
Ax C is RRF Ais
Ax、Ais分别代表目标物、内标物的峰面积; Cx、பைடு நூலகம்is分别代表目标物、内标物的浓度
2.仪器与试剂
• Agilent 7890A气相色谱仪(ECD检测器)
• 毛细管柱:HP-5(Agilent) 30 m×0.32 mm i.d.,0.25μm
• 微量注射器:5 μL
• 2个单标、一个内标物和三个待测样品(任 选其一) • (1)δ-六六六 • (2)p,p'-DDT • (3)PCB103 • (4)洗液A(丙酮) • (5)洗液B(正己烷) • (6)待测样1、待测样2、待测样3
3.仪器参数
• • • • • 进样方式:手动进样、不分流模式 进样量1μL 进样口温度: 检测器温度: 升温程序:
气相色谱法对样品中农药的定 性定量分析
实验地点:环生楼C401 实验时间:
1.实验目的
• 1.根据保留时间对样品中的目标物进行定性 分析;
• 2.利用内标法对样品中的目标物进行定量分 析
内标法
• 测量内标物及被测组分的峰面积,通过其 相对相应因子来对目标物进行定量 • 相对相应因子(RRF)
RRFx/is Cx