图形与坐标练习+知识点
初中数学知识点精讲精析 图形与坐标
23.6 图形与坐标学习目标1.会用合适的方法描述物体的位置,用坐标的方法描述图形的运动变换。
2.能运用图形的变换与坐标的内在联系解决一些简单的生活实际问题。
知识详解1.用坐标确定位置有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置。
现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等。
除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。
建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。
平面上的点也可以用一个角度来描述其位置。
2.图形的变换与坐标一个图形沿x轴左、右平移,它们的纵坐标都不变,横坐标有变化。
向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。
关于x轴或y轴成对称的对应点的坐标的关系:关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。
关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。
在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化。
【典型例题】例1:2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【答案】D【解析】根据地理上表示某个点的位的方法可知选项D符合条件.例2:如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D【答案】B【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置。
第四、五章 图形与坐标和一次函数基础练习
-2
)
A. x>﹣3 B. x≠0 C. x>﹣3 且 x≠0 D. x≠﹣3 8.已知正比例函数 y=kx(k≠0)的图像经过点(1,-2) ,则这个正比例函数的解析式为( A.y=2x B.y=-2x 1 C.y= x 2 1 D.y=- x 2
)
9.已知一次函数 y=mx+|m-1|的图象过点(0,2) ,且 y 随 x 的增大而减小,则 m 的值为( A.-1 B.3 C.-1 或 3 D.2
A. B. C. D. 12.如图, 一次函数 y=kx+b 的图象与 y 轴的交点坐标是 (0, 1) , 则关于 x 的不等式 kx+b>1 的解是 ( A. x>1 B. x<1 C. x>0 D. x<0 13.直线 y=kx+b 过点(2,2)且与直线 y=﹣3x 相交于点(1,a) ,则两直线与 x 轴所围成 的面积为( ) A. 2 B. 2.4 C. 3 D. 4.8 14.右图是韩老师早晨出门散步时离家的距离 y 与时间 x 之间的函数关系.若用黑点表示韩 老师 家的位置,则韩老师散步行走的路线可能是( )
28.如图,在△ABC,已知 AB=6,AC=BC=5,建立适当的直角坐标系, 并写出△ABC 的各顶点的坐标.
C
A
B
29.有一张图纸被损坏,但上面有如图的两个标志点 A(﹣3,1) ,B(﹣3,3)可认,而主要建筑 C(3,2) 破损,请通过建立直角坐标系找到图中 C 点的位置,并求△ ABC 的周长.
)
10.已知平面直角坐标系中两点 A(﹣1,O) 、B(1,2) .连接 AB,平移线段 AB 得到线段 A1B1,若点 A 的对应点 A1 的坐标为(2,﹣1) ,则 B 的对应点 B1 的坐标为( ) A. (4,3) B. (4,1) C. (﹣2,3) D. (﹣2,1) 11.如图,是一储水容器,当水从上方倒入容器(每秒倒入的水量相同)中时,水位高度 h 与倒水时间 t 的1,3) ,则该函数的解析式是_____________. 22.一次函数 y=2x-1 的图像与 x 轴的交点坐标是__________________. 23.下列四个图象中, y 是关于 x 的函数的是______________.
2022-2023学年浙教版数学八上期末复习专题 图形与坐标(学生版)
2022-2023学年浙教版数学八上期末复习专题图形与坐标一、单选题(每题3分,共30分)1.(2021八上·鄞州期末)根据下列表述,能够确定位置的是()A.甲地在乙地的正东方向上B.一只风筝飞到距A处20米处C.某市位于北纬30°,东经120°D.影院座位位于一楼二排2.(2022八上·西安月考)如果把电影票上3排6座记作(3,6),那么(6,5)表示()A.5排6座B.5排5座C.6排5座D.6排6座3.(2022八上·新城月考)2021年9月15日,中华人民共和国第十四届运动会开幕式在西安奥体中心举行,如图,如果将西安钟楼的位置记为直角坐标系的原点,下列哪个点的位置可以表示奥体中心的位置()A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 4.(2020八上·历下期中)如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是()A.D7,E6B.D6,E7C.E7,D6D.E6,D75.已知点A的坐标为(a+1,3−a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3 ,则a=±6D.若点A在第四象限,则a的值可以为-26.(2021八上·晋中期末)如图是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”A,B 两点的坐标分别为(-2,-3),(2,-3),则表示蝴蝶身体“尾部”C 点的坐标为()A.(0,-1)B.(1,-1)C.(-1,0)D.(2,-1)7.(2022八上·长清期中)若点P(2−m,5)在y轴上,则m的值等于()A.2B.7C.−2D.−38.(2021八上·扶风期末)已知图形A全部在x轴的上方,如果将图形A上的所有点的纵坐标都乘以-1,横坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称9.(2021八上·川汇期末)点A(2,m)向上平移2个单位后与点B(n,−1)关于y轴对称,则m n=().A.1B.12C.−18D.1 910.(2021八上·瑞安月考)在平面直角坐标系中,将点A(a,1-a)先向左平移3个单位得点A1,再将A1向上平移1个单位得点A2,若点A2落在第三象限,则a的取值范围是() A.2 <a<3B.a <3C.a >2D.a <2或a >3二、填空题(每题4分,共24分)11.(2022八上·城阳期中)如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,90°),目标B 的位置为(4,30°),现有一个目标C的位置为(3,m°),且与目标B的距离为5,则目标C的位置为.12.(2022八上·城阳期中)已知点M(2m−1,−3),点N(5,2),直线MN∥y轴,则m的值为.13.(2022八上·西安月考)点A(m−1,2m−3)在第一、三象限夹角的角平分线上,则m的值为.14.(2021八上·巴彦期末)点P(a,−3)与Q(2,b)关于y轴对称,则a b的值为.15.(2020八上·深圳期中)如图,已知A1(0,1),A2(√32,−12),A3(−√32,−12),A4(0,2),A5(√3,-1),A6(−√3,-1),A7(0,3),A8(3√32,−32),A9(−3√32,−32)……则点A2010的坐标是16.(2021八上·永吉期末)若(x+2)(x−3)=x2+bx+c,其中b,c为常数,则点P(b,c)关于x 轴的对称点的坐标为.三、解答题(共8题,共66分)17.(2021八上·平远期末)小明和朋友到人民公园游玩,回到家后,利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴,只知道游乐园D的坐标为(1,﹣3),请你帮他画出平面直角坐标系,并写出其他各景点的坐标.18.(2021八上·莲湖期中)已知点A(m﹣2,5)和B(3,n+4),A,B两点关于y轴对称,求m﹣n 的值.19.(2021八上·横县期中)如图,利用关于坐标轴对称的点的坐标的特点,画出与△ABC关于x轴对称的图形.20.(2021八上·海曙期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑴请作出⑴ABC关于y轴对称的⑴A′B′C′;⑴写出点B′的坐标.21.已知点P(3a−15,2−a).(1)若点P位于第四象限,它到x轴的距离是4 ,试求出a的值:(2)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.22.(2022八上·台州月考)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出⑴ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在⑴ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).23.(2021八上·黑山期中)如图回答下列问题:(1)如图①所示,请用有序数对写出棋盘上棋子“帅、黑车、炮”的位置(把列号写在前面,行号写在后面).(2)如图②所示把O点移动到棋子“仕”的位置时,用有序数对写出棋子“仕、相、黑马”的位置(把列号写在前面,行号写在后面)(3)如图②,已知棋子“将”的位置是(2,8),棋子“黑马”的位置是(4,3),规定列在前,行在后,请你在棋盘上确定A(0,0)点的位置,棋子“红马”的位置是什么?24.(2021八上·佛山月考)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请在图中的网格平面内建立平面直角坐标系,并将△ABC画出来.(2)在图中找一点D,使AD=√26,CD=√13,并将点D标记出来.(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.(4)在y轴上是否存在点Q,使得S△AOQ=12S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.答案解析部分1.【答案】C【知识点】用坐标表示地理位置【解析】【解答】解:根据题意可得,A.甲地在乙地的正东方向上,无法确定位置,故答案为:A不合题意;B.一只风筝飞到距A处20米处,无法确定位置,故答案为:B不合题意;C.某市位于北纬30°,东经120°可以确定一点的位置,故答案为:C符合题意;D.影院座位位于一楼二排,无法确定位置,故答案为:D不合题意.故答案为:C.【分析】根据在平面内要确定一个点的位置,必须是一对有序数对,再对各选项逐一判断即可. 2.【答案】C【知识点】有序数对【解析】【解答】解:把3排6号的电影票记作(3,6),那么(6,5)表示的电影票号是:6排5号.故答案为:C.【分析】根据题意可得数对中的第一个数表示排,第二个数表示号,据此解答.3.【答案】B【知识点】用坐标表示地理位置【解析】【解答】解:由题意可得:奥体中心的位置可以为(2,3).故答案为:B.【分析】由于奥体中心在第一象限,而第一象限的坐标符号为正正,据此解答即可.4.【答案】C【知识点】有序数对【解析】【解答】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故答案为:C.【分析】直接利用已知网格得出“故宫”、“颐和园”所在的位置。
图形在坐标系中的平移重难点题型
图形在坐标系中的平移-重难点题型【北师大版】【知识点1 点在坐标系中的平移】平面直角坐标内点的平移规律,设a >0,b >0(1)一次平移:P (x ,y ) P '(x +a ,y )P (x ,y ) P '(x ,y -b )(2)二次平移: 【题型1 点在坐标系中的平移】 【例1】(2021春•开福区校级期中)在平面直角坐标系中,将点A (x ,y )向左平移3个单位长度,再向上平移5个单位长度后与点B (﹣3,2)重合,则点A 的坐标是( )A .(2,5)B .(0,﹣3)C .(﹣2,5)D .(5,﹣3) 【变式1-1】(2021春•重庆期中)在平面直角坐标系中,点A (m ,n )经过平移后得到的对应点A ′(m +3,n ﹣4)在第二象限,则点A 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【变式1-2】(2021春•江夏区期末)已知△ABC 内任意一点P (a ,b )经过平移后对应点P 1(a +2,b ﹣6),如果点A 在经过此次平移后对应点A 1(4,﹣3),则A 点坐标为( )A .(6,﹣1)B .(2,﹣6)C .(﹣9,6)D .(2,3)【变式1-3】(2021春•新罗区期末)在平面直角坐标系中,将A (n 2,1)沿着x 的正方向向右平移3+n 2个单位后得到B 点.有四个点M (﹣2n 2,1)、N (3n 2,1)、P (n 2,n 2+4)、Q (n 2+1,1),一定在线段AB 上的是( )A .点MB .点QC .点PD .点N【知识点2 图形在坐标系中的平移】 P (x ,y ) P (x - a ,y +b )向左平移a 个单位 再向上平移b 个单向下平移b 个单位向右平移a 个单位在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)【题型2 图形在坐标系中的平移】【例2】(2021春•深圳校级期中)如图,△ABC经过一定的平移得到△A′B′C′,如果△ABC上的点P的坐标为(a,b),那么这个点在△A′B′C′上的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【变式2-1】(2021•邛崃市模拟)如图,在平面直角坐标系中,已知点M(2,1),N(1,﹣1),平移线段MN,使点M落在点M'(﹣1,2)处,则点N对应的点N'的坐标为()A.(﹣2,0)B.(0,﹣2)C.(﹣1,1)D.(﹣3,﹣1)【变式2-2】(2021春•东湖区期末)如图,点A、B的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,A1与B1坐标分别是(m,4)和(3,n),则线段AB在平移过程中扫过的图形面积为()A.18B.20C.28D.36【变式2-3】(2020春•凉州区校级期中)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)【题型3 图形在网格中的平移变换】【例3】(2021春•锦江区校级月考)如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)连接BC',直接写出∠CBC'与∠B'C'O之间的数量关系.(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-1】(2020春•江汉区月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-2】(2020春•江岸区校级月考)在如图的直角坐标系中,将△ABC平移后得到△A′B′C′,它们的三个顶点坐标如表所示:△ABC A(a,0)B(5,3)C(2,1)△A′B′C′A′(3,4)B′(7,b)C′(c,d)(1)观察表中各对应点坐标的变化,并填空:△ABC向右平移个单位长度,再向上平移个单位长度可以得到△A′B′C′;a=,b=.(2)求出线段AB在整个平移的过程中在坐标平面上扫过的面积.(3)若点M(m,n)为线段AB上的一点,则m、n满足的关系式是.【变式3-3】(2020春•金乡县期末)在平面直角坐标系中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为3,若存在,请直接写出点P的坐标;若不存在,请说明理由.【题型4 坐标系内的平移变换与角度计算综合】【例4】(2020春•通山县期末)如图,在平面直角坐标系中,点A(2,6),B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A',B',连接AA'交y轴于点C,BB'交x轴于点D.(1)线段A'B'可以由线段AB经过怎样的平移得到?并写出A',B'的坐标;(2)求四边形AA'B'B的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A'DB'的数量关系,给出结论并说明理由.【变式4-1】(2021春•庆阳期末)如图①,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0),(3,0),现同时将点A、B向上平移2个单位长度,再向右平移1个单位长度,得到A、B的对应点C、D,连接AC、BD、CD.(1)直接写出点C、D的坐标;(2)如图②,点P是线段BD上的一个动点,连接PC、PO,当点P在线段BD上运动时,试探究∠OPC、∠PCD、∠POB的数量关系,并证明你的结论.【变式4-2】(2020春•大同期末)综合与实践问题背景如图,在平面直角坐标系中,点A的坐标为(﹣3,5),点B的坐标为(0,1),点C 的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)画出AB平移后的线段CD,直接写出B的对应点D的坐标;探究证明(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;拓展延伸(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.【变式4-3】(2020春•鞍山期末)如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.。
八年级数学上第四章《图形与坐标》
第 12 讲 《图形与坐标》(叶胤均)一、知识要点: 1.平面内表示点的位置有两种方法:一是有序实数对,二是距离加方向,这两种方法都需要两个量. 2.平面直角坐标系由两条有公共原点、且互相垂直的数轴构成.点的坐标表示为(x,y) 3.各个象限的符号:(+,+);(-,+);(-,-);(+,-).坐标轴上的点不在象限内. 4.点(x,y)到 x 轴的距离:∣y∣,到 y 轴的距离:∣x∣点 M(x,y)到原点的距离:OM= x2 y2x 轴上 M(x1,0),N(x2,0)之间的距离:MN=∣x1-x2∣平面内任意两点 A(x1,y1)、B(x2,y2)之间的距离:AB= x1 x2 2 y1 y2 25.如果 M(x1,a),N(x2,a),则 MN∥x 轴;反之成立.6.点 M(x,y)①关于 x 轴的对称点的坐标为(x,-y);②关于 y 轴的对称点的坐标为(-x,y);③关于原点的对称点的坐标为(-x,-y);7、①一、三象限的角平分线上的点的坐标为(a,a);②二、四象限的角平分线上的点的坐标为(a,-a)8、坐标平面内点的平移:方向加距离.9、坐标平面内的点与有序实数对一一对应.10、关于一、三象限的角平分线,二、四象限的角平分线对称的点的坐标.二、例题精选:例 1、在如图所示的正方形网格(小正方形的边长为 1) A 中,△ABC 的顶点 A,C 的坐标分别为(-4,5),(-1,3).(1)画出相应的直角坐标系;C(2)作出△ABC 关于 y 轴对称的△A′B′C′;(3)写出点 B′的坐标. B例 2、根据给出的已知点的坐标求四边形 ABCO 的面积.yA(-2,8) B(-11,6)1/7C(-14,0) 例 2Ox例 3、平面直角坐标系中有两点 M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d), 则称点 Q(a+c,b+d)为 M,N 的“和点”,若以坐标原点 O 与任意两点及它们的和点为顶点能组 成四边形,则称这个四边形为和点四边形.现在点 A(2,5),B(-1,3),若以 O,A,B,C 四点为 顶点的四边形是“和点四边形”,求点 C 的坐标.例 4.(1)已知 A(2,4),B(-3,-8),求 A,B 两点间的距离. (2)已知△ABC 各顶点坐标为 A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗? 说明理由.例 5、平面直角坐标系中,点 A 的坐标是(3a-5,a+1) (1)若点 A 在 y 轴上,求点 A 的坐标; (2)若点 A 到 x 轴的距离与到 y 轴的距离相等,求点 A 的坐标.例 6、平面直角坐标系中,等腰△ABC 的两个顶点的坐标 分别为 A(1,0),B(4,4),如果第三个顶点在坐标轴 上,那么点 C 可能的不同位置有多少个(画图说明)?2/7例 7、已知点 A(2a-b,5+a),B(2b-1,-a+b). (1)若点 A,B 关于 x 轴对称,求 a,b 的值; (2)若点 A,B 关于 y 轴对称,求(4a+b)2017 的值例 8、如图,平面直角坐标系中,一颗棋子从点 P 处开始 依次关于点 A,B,C 作循环对称跳动,即第一次跳到点 P 关于点 A 的对称点 M 处,接着跳到点 M 关于点 B 的对 称点 N 处,第三次再跳到点 N 关于点 C 的对称点处...... 如此下去. (1)在图中画出点 M,N,并写出点 M,N 的坐标; (2)求经过第 2017 次跳动后,棋子的落点与点 P 的距离.yB• C•OxA••P例 9.平面直角坐标系中,点 M 的坐标是(a,-2a).将点 M 向左平移 2 个单位,再向上平移 1 个 单位后得到点 N.若点 N 在第三象限,求 a 的取值范围.例 10、如图①,将射线 Ox 按逆时针方向旋转β,得到射线 Oy,如果 P为射线 Oy 上一点,且 OP=a,那么我们规定用(a,β)表示点 P 在平面内的位置,并记为(a,β).例如,图②中,如果 OM=8,∠xOM=110°,那么点 M 在平面内的位置记为 M(8,110°),根据图形,解答下列问题:(1)如图,如果点 N 在平面内的位置记为(6,30°),那么 ON=,∠xON=.(2)如果点 A,B 在平面内的位置分别记为 A(5,30°),B(12,120°),求 A,B 两点之间的距离.yaPβ O 图① xM(8,110°) •110° O 图② xN(6•,30°)3/7O 图③x三、学生练习:(一)选择题(每小题 3 分,共 30 分)1. 若点 P(a,-b)在第三象限,则 M(ab,-a)应在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 在 x 轴上到点 A(3,0)的距离为 4 的点是( ).A. (7,0) B. (-1,0) C. (7,0)或(-1,0) D. 以上都不对3. 点 M 到 x 轴的距离为 3,到 y 的距离为 4,则点 A 的坐标为( ).A. (3,4)B. (4,3)C. (4,3),(-4,3)D. (4,3),(-4,3)(-4,-3),(4,-3)4. 如果点 P(m+3,2m+4)在 y 轴上,那么点 P 的坐标为( ).A. (-2,0) B. (0,-2) C. (1,0)D. (0,1)5. 点 M 在 x 轴的上方,距离 x 轴 5 个单位长度,距离 y 轴 3 个单位长度,则 M 点的坐标为( ).A. (5,3) B. (-5,3)或(5,3) C. (3,5) D. (-3,5)或(3,5)6. 平面直角坐标系中,一个四边形各顶点坐标分别为 A(1, 2) ,B((4, 2) ,C(4,3) ,D((1,3) ,则四边形 ABCD 的形状是( ).A. 梯形B. 平行四边形C. 正方形D. 无法确定7. 设点 A(m,n)在 x 轴上,位于原点的左侧,则下列结论正确的是( ).A. m=0,n 为一切数B. m=O,n<0C. m 为一切数,n=0D. m<0,n=08. 在坐标轴上与点 M(3,-4)距离等于 5 的点共有( ).A. 4 个B. 3 个C. 2 个D. 1 个9. 直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数 a(a>1),那么所得的图案与原来图案相比( ).A. 形状不变,大小扩大到原来的 a2 倍B. 图案向右平移了 a 个单位C. 图案向上平移了 a 个单位D. 图案沿纵向拉长为 a 倍10. 若 y 0 ,则点 P(x,y)的位置是( ). xA. 在横轴上B. 在去掉原点的横轴上C. 在纵轴上D. 在去掉原点的纵轴上(二)填空题(每小题 3 分,共 30 分)11. 如果将电影票上“6 排 3 号”简记为(6,3),(7,1)表示的含义是.12. 点(-4,0)在轴上,距坐标原点个单位长度.13. 点 P 在 y 轴上且距原点 1 个单位长度,则点 P 的坐标是.14. 已知点 M(a,3-a)是第二象限的点,则 a 的取值范围是.15. 点 A、点 B 同在平行于 x 轴的一条直线上,则点 A 与点 B 的坐标相等.16. 点 M(-3,4)与点 N(-3,-4)关于对称.17. 点 A(3,b)与点 B(a,-2)关于原点对称则 a=,b=.18. 若点 P(x,y)在第二象限角平分线上,则 x 与 y 的关系是.4/719. 已知点 P(-3,2),则点 P 到 x 轴的距离为,到 y 轴的距离为20. 已知点 A(x,4)到原点的距离为 5,则点 A 的坐标为.(三)解答题(计 60 分)21.等腰梯形 ABCD 的上底 AD=2,下底 BC=4,底角 B=45°,A建立适当的直角坐标系,求各顶点的坐标.B.D C22.正方形的边长为 2,建立适当的直角坐标系,使它的一个顶点的坐标为( 2 ,0),并写出另外三个顶点的坐标.23. 四边形 ABCD 在直角坐标中的位置如图 1 所示,按下列步骤操作并画出变化后的图形:(1)将四边形 ABCD 各点的横纵坐标都乘以12 ,把得到的四边形 A1B1C1D1 画在图 2 的坐标系中; (2)将四边形 A1B1C1D1 各点的横坐标都乘以-1,纵坐标都乘以-1 后再加上 1,把得到的四边形 A2B2C2D2 画在图 3 的坐标系中.(图中每个方格的边长均为 1)yADyyoxoBCxox(图 1)(图 2)24.如图所示,OA=8,OB=6,∠XOA=45°,∠XOB=120°, 求 A、B 的坐标.(图 3)5/725. 根据指令[S,A](S≥0,0°<A<180°,机器人在平面上能完成下列动作:先原地逆时针旋转角度 A,再朝其面对的方向沿直线行走距离 S,现机器人在直角坐标系坐标原点,且面对 x 轴正方向.(1)若给机器人下了一个指令[4,60],则机器人应移动到点;(2)请你给机器人下一个指令,使其移到点(-5,5).26. 观察图形由(1)→(2)→(3)→(4)的变化过程,写出每一步图形是如何变化的,图形中各顶点的坐标是如何变化的.y A(1,2)y A(2,2)yOxO B(2,0) OB(4,0)x(1)(2)B(4,0) xA(2,- 2) (3)yO (0,-1)x B(4,-1)(4) A(2,-5)4)27、如图,在平面直角坐标系中,长方形 OABC 的顶点 A, C 的坐标分别为(10,0),(0,4),D 为 OA 的中点,P 为 BC 边上一点.若△POD 为等腰三角形,求所有满足条件的 点 P 的坐标.yC •P•ODB Ax6/7八年级上四章《图形与坐标》第 12 讲答案例 1、(1)(2)略;(3)坐标是(2,1)例 2、作 BD⊥x 轴,AE⊥x 轴,面积为 80例 3、(1,8)或(-3,-2)或(3,2)例 4、(1)AB=13;(2)AB=AC=5,BC=6 等腰三角形例 5、(1)(0, 8 );(2)a=3,(4,4)或 a=1,(-2,2) 3例 6、如图,9 个点 例 7、(1)a=-8,b=-5;(2)-1•• • • C1 • OAB C•2 C• 5 C7例 8、(1)M(-2,0),N(4,4) (2)PM=2 2例 9、 1 a 2 2例 10.(2)画出图形,得∠AOB=90°,∴AB=13 学生练习:•例6BCDB DCDB AB 11、7 排 1 号; 12、x 的负半轴, 4; 13、(0,1),(0,-1); 14、a<0; 15 纵; 16、y 轴; 17、a=-3,b=2; 18、x+y=0; 19、2,3; 20、(3,4)或(-3,4)21、略; 22、(0, 2 ),(- 2 ,0),(0,- 2 );23、(1,2),(1,0),(2,0),(3,2)(2)(-2,-4),(-2,0),(-4,0),(-6,-4)24、A(4 2 ,4 2 ),B(-3,3 3 ); 25、(1)(2,2 3 );(2)[5 2 ,135]横×2纵×(-1)纵-126、(1)(2)(3)(4)27(1)当 PO=PD 时,P(2.5,4); y (2)当 OP=OD=5 时,P(3,4); C(3)当 DP=OD=5 时,分两种情况:如图 P(2,4)或 P(8,4)O•P•D图(1)B AxyC •P•OD图(2)B AxyC •P45•OD图(3)①B AxyCP• B54•ODAx图(3)②7/7。
初中数学图形的坐标与变换知识点归纳
初中数学图形的坐标与变换知识点归纳初中数学中,图形的坐标与变换是一个重要且基础的知识点。
它涉及到平面直角坐标系、图形的平移、旋转、翻转等概念和运算。
下面,我们将对初中数学中相关的知识点进行归纳,帮助大家更好地理解和掌握这些内容。
1. 平面直角坐标系平面直角坐标系是研究平面上点的位置关系的工具。
它由两条互相垂直的数轴(x轴和y轴)组成,原点为坐标原点,分别与x轴和y轴的正方向上的单位长度为1的线段为坐标轴。
2. 点的坐标表示在平面直角坐标系中,每个点都可以表示为一个有序数对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。
这种用数对表示点的方法称为点的坐标。
3. 图形的平移平移是指图形在平面上沿着一定的方向移动一定的距离,但形状和大小保持不变。
平移可以用坐标表示,对于平移向量(a, b),图形上的每个点(x, y)移动到新位置(x+a, y+b)。
4. 图形的旋转旋转是指图形绕一个固定点旋转一定的角度。
对于顺时针旋转θ度的情况,图形上的每个点(x, y)绕旋转中心点O旋转θ度后的新位置为(x', y'),通过一定的数学公式可以得到旋转后的新坐标。
5. 图形的翻转翻转是指图形相对于某个轴对称的操作。
包括水平翻转和垂直翻转两种情况。
水平翻转是指图形相对于x轴对称,垂直翻转是指图形相对于y轴对称。
翻转后图形上的每个点(x, y)的新坐标可以通过一定的变换公式得到。
6. 点的对称性在平面直角坐标系中,点的对称性也是一个重要的概念。
对称点是指两个在坐标系中关于某个点对称的点,就是它们关于这个点的连线的中点。
7. 图形的对称性除了点的对称性,图形的对称性也是一种重要的性质。
图形如果存在一个中心对称轴,当图形上的每一个点关于该对称轴与对应的对称点重合时,我们说图形具有中心对称性。
如果一个图形既有中心对称性,又有轴对称性,则称为既有中心对称性又有轴对称性。
通过对初中数学中图形的坐标与变换知识点的归纳,我们可以更好地理解和应用这些知识,解决与图形相关的问题。
第11章《图形与坐标》复习课
第十一章《图形与坐标》复习教案复习目标:1.能运用不同的方式确定物体的位置;会根据坐标确定点的位置、由点的位置写出坐标。
2.在同一直角坐标系中,感受图形变化后点的坐标变化。
3.通过显示生活中的实例,体会函数的表示方法,能结合徐昂对简单的实际问题中的函数关系进行分析。
4.能理解一次函数的意义,绘画依次函数的图像,能根据图像与函数关系式,理解一次函数与正比例函数的性质。
5.经历探索和建立直角坐标系的过程,感受数与形的相互转化,发展空间观念、形象思维能力和用数学的意识。
复习重点:1.确定物体位置的思想方法以及平面直角坐标系的有关概念。
2.直角坐标系中图形的变化与图形上点的坐标的变化之间的关系。
3.一次函数的定义、图像与性质。
复习难点:丛函数图像中正确读取信息,根据图像分析函数的性质。
用描点法画出函数图像。
复习过程:一、知识归纳(二)1、一次函数图象(1)一次函数y=kx+b(k≠0)的图象是一条直线,通常也称直线y=kx+b,由于两点确定一条直线,所以画一次函数图象通常取与x轴、y 轴的交点比较方便。
在作一次函数的图象时,一般简短地选取(0,b ),(-b,0)。
k(2)正比例函数y=kx(k≠0)的图象是过原点的一条直线,通常画正比例函数y=kx (k≠0)的图象只要取原点(0,0)和(1,k),然后过这两点画一条直线。
2、利用一次函数图象求关系式:一次函数y=kx+b(k≠0)的图象是一条直线,知道直线上两点坐标,可设函数关系式为y=kx+b,把两点坐标代入,得到关于k、b的二元一次方程组,解出k、b,确定关系式。
3、一次函数图象的位置:在直角坐标系中,①从左到右,像上山越走越高那样:一次函数y=kx+b中,k>0,y的值随x增大而增大;②从左到右,像下山越走越低那样:一次函数y=kx+b中,k<0,y的值随x增大而减小。
当b>0时,直线与y轴的交点在x轴的上方;当b<0时,直线与y 轴的交点在x轴的下方。
初一数学图形与坐标试题答案及解析
初一数学图形与坐标试题答案及解析1.点P(-2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.【考点】点的坐标2.已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a= 。
【答案】-5【解析】根据第四象限内点的纵坐标是负数解答即可.【考点】坐标与图形性质3.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.【答案】(1)图形见解析;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).【解析】(1)以火车站向左2个单位,向下1个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系写出体育场、市场、超市的坐标即可.试题解析:(1)建立平面直角坐标系如图所示;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).【考点】坐标确定位置.4.点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,-8)B.(1,-2 )C.(-6,-1 )D.( 0 ,-1)【答案】C.【解析】点A(-3,-5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(-3-3,-5+4);则点B的坐标为(-6,-1).故选C.【考点】坐标与图形变化——平移.5.下列各点中,在第二象限的点是()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)【答案】C.【解析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故符合此条件的只有(-2,3).故选C.【考点】平面直角坐标系中各象限点的特征.6.已知点P ()在轴上,则P点的坐标为.【答案】(3,.0).【解析】∵点P ()在轴上,∴.∴.∴P点的坐标为(3,.0).【考点】轴上点的特征.7.在平面直角坐标系中,点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵点(-1,m2+1)它的横坐标-1<0,纵坐标m2+1>0,.∴符合点在第二象限的条件,故点(-1,m2+1)一定在第二象限.故选B.【考点】点的坐标.8.某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.8【答案】D【解析】如图,可选择的不同路线条数有:A→C→D→G→H→B;A→C→D→G→N→B;A→C→F→G→H→B;A→C→F→G→N→B;A→C→F→M→N→B;A→E→F→G→H→B;A→E→F→G→N→B;A→E→F→M→N→B.共有8条不同路线.9.丽丽家的坐标为(﹣2,﹣1),红红家的坐标为(1,2),则红红家在丽丽家的()A.东南方向B.东北方向C.西南方向D.西北方向【答案】B【解析】根据已知点坐标得出所在直线解析式,进而根据图象与坐标轴交点坐标得出两家的位置关系.解:∵丽丽家的坐标为(﹣2,﹣1),红红家的坐标为(1,2),∴设过这两点的直线解析式为:y=ax+b,则,解得:,∴直线解析式为:y=x+1,∴图象过(0,1),(﹣1,0)点,则红红家在丽丽家的东北方向.故选:B.点评:此题主要考查了坐标确定位置,根据已知得出两点与坐标轴交点坐标是解题关键.10.已知点A(1,2a+2)到x轴的距离是到y轴距离的2倍,则a的值为.【答案】0或﹣2【解析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列出方程,然后求解即可.解:∵点A(1,2a+2)到x轴的距离是到y轴距离的2倍,∴|2a+2|=2×1,∴2a+2=2或2a+2=﹣2,解得a=0或a=﹣2.故答案为:0或﹣2.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度并列出绝对值方程是解题的关键.11.如图,“马”所处的位置为(2,3),其中“马”走的规则是沿着“日”字形的对角线走.(1)用坐标表示图中“象”的位置是.(2)写出“马”下一步可以到达的所有位置的坐标.【答案】(1)(5,3)(2)【解析】(1)根据象在马的左边3个单位,结合图形写出即可;(2)根据网格结构找出与马现在的位置成“日”字的点,然后写出即可.解:(1)(5,3);(2)如图,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).点评:本题考查了坐标确定位置,熟练掌握网格结构,类比点的坐标的确定方法求解是解题的关键.12.点P(3-a,a-1)在y轴上,则点Q(2-a,a-6)在第______象限。
图形与坐标--知识讲解
图形与坐标—知识讲解【学习目标】1.能建立适当的平面直角坐标系确定物体的位置;2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】要点一、用坐标确定位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、图形的变换与坐标1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标确定位置1.如图,已知长方形ABCD的边长AB=6,BC=3,建立适当的坐标系并求A、B、C、D 的坐标.【思路点拨】本题建立直角坐标系的方法有多种,属于开放型题型,要充分运用矩形的四个角为直角,对边平行且相等,轴对称性,建立适当的坐标系,并能方便地写出A、B、C、D 四个点的坐标.【答案与解析】解:如图:A(0,0),B(6,0),C(6,3),D(0,3).【总结升华】建立平面直角坐标系的关键是先确定原点,再确定x轴、y轴,建立不同的平面直角坐标系,各顶点的坐标也不同.2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-1000,600)、B(-800,600)、C(0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B点为坐标原点更贴切一些.举一反三:【变式】一个探险家在日记上记录了宝藏的位置,从海岛的一块大圆石O出发,向东1000m,向北1000m,向西500m,再向南750m,到达点P,即为宝藏的位置.(1)画出坐标系确定宝藏的位置;(2)确定点P的坐标.【答案】解:根据数据的特点,选择250作为单位长度,以大圆石O为原点,建立平面直角坐标系.(1)如图,中心带有箭头的线是行动路线,点P的位置如图所示.(2)点P的坐标是(500,250).类型二、图形的变换与坐标3. (荆门)将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P的坐标是.【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用.【答案】(1,2).【解析】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P,即点P的横坐标是-1+2=1,纵坐标为3-1=2.则点P的坐标是(1,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【变式】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).4.在A市北300km处有B市,以A市为原点,东西方向的直线为x轴,南北方向的直线为y轴,并以50km为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C(10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km,问经几小时后,B市将受到台风影响?并画出示意图.【思路点拨】当台风中心移动到据B点200千米时,B市将受到台风影响,从而求出台风中心的移动距离,除以速度,即可求出所需时间.【答案与解析】解:∵台风影响范围半径为200km,∴当台风中心移动到点(4,6)时,B市将受到台风的影响.所用的时间为:50×(10-4)÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)【总结升华】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.5.在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y 轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.【思路点拨】(1)根据关于y轴对称点的坐标特点是横坐标互为相反数,纵坐标相同可以得到△A1B1C1各点坐标,又关于直线l的对称图形点的坐标特点是纵坐标相同,横坐标之和等于3的二倍,由此求出△A2B2C1的三个顶点的坐标;(2)P与P1关于y轴对称,利用关于y轴对称点的特点:纵坐标不变,横坐标变为相反数,求出P1的坐标,再由直线l的方程为直线x=3,利用对称的性质求出P2的坐标,即可PP2的长.【答案与解析】(1)∵A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,∴A1(2,0),B2(1,0),C2(1,2)∵直线l过点M(3,0),且平行于y轴,∴△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2);(2)如图1,当0<a≤3时,∵P与P1关于y轴对称,P(-a,0),∴P1(a,0),又∵P 1与P 2关于l :直线x=3对称,设P 2(x ,0),可得:2x a +=3, 即x=6-a ,∴P 2(6-a ,0),则PP 2=6-a-(-a )=6-a+a=6.如图2,当a >3时,∵P 与P 1关于y 轴对称,P (-a ,0),∴P 1(a ,0),又∵P 1与P 2关于l :直线x=3对称,设P 2(x ,0),可得:2x a +=3,即x=6-a , ∴P 2(6-a ,0),则PP 2=6-a-(-a )=6-a+a=6.【总结升华】考查了学生关于变换与坐标知识的综合运用能力.其解决的过程体现了数学内在的和谐美,体现了对学生“操作--发现--猜想”的能力的考查.举一反三:【变式】(2012•孝感)如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,则顶点A 2的坐标是( ).A .(-3,2)B .(2,-3)C .(1,-2)D .(3,-1)【答案】B.。
知识点4 坐标与图形的变化(含解析)
知识点4 坐标与图形的变化知识链接1、坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)2、坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)⇒P(x+a,y)向左平移a个单位,坐标P(x,y)⇒P(x-a,y)向上平移b个单位,坐标P(x,y)⇒P(x,y+b)向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n 为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O (0,0),A (1,3),线段OA 向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y =−34x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B ′的横坐标等于OA +OB ,而纵坐标等于OA ,进而得出B ′的坐标.解答:直线y =-34x +4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O ′AO =90°,∠B ′O ′A =90°∴OA =O ′A ,OB =O ′B ′,O ′B ′∥x 轴,∴点B ′的纵坐标为OA 长,即为3,横坐标为OA +OB =OA +O ′B ′=3+4=7,故点B ′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B ′位置的特殊性,以及点B ′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P =153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2,则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2). 故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是-3,则点A ′表示的数是______;若点B ′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.。
图形与坐标复习
请谈谈这堂课你学 会了什么? 会了什么?
想一想
1.已知一个点到x轴的距离是1 1.已知一个点到x轴的距离是1,到y轴的距离 已知一个点到 是3,试在直角坐标系中作出符合这个条件的 所有点,并写出它们的坐标。 所有点,并写出它们的坐标。 在直角坐标系中,已知点A 2.在直角坐标系中,已知点A(2,2),B(2, 试在y轴上找一点P APB为直角三 -2)。试在y轴上找一点P,使△APB为直角三 角形,求点P的坐标。 角形,求点P的坐标。
6.一个直四棱柱的俯视图如下,建立适当的坐 一个直四棱柱的俯视图如下, 一个直四棱柱的俯视图如下 标系,在直角坐标系中作出俯视图, 标系,在直角坐标系中作出俯视图,并写出各 顶点的坐标,并求这个四边形的面积。 顶点的坐标,并求这个四边形的面积。
D
D 200 3
y(cm)
4
C
150
2 1 -1 A O 1 2
12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 A 6 7 8 9 10 11 12 P '( A' '
P(a,b) 关 于 第 一 象 限 角 平 分 线 对 称
)
思考: 思考
1.你能从图中再找几对关于第一象限角平分 你能从图中再找几对关于第一象限角平分 线对称的对称点吗? 线对称的对称点吗? 2.根据以上对称点的规律,你能说出点P(a,b) 根据以上对称点的规律,你能说出点 ( ) 根据以上对称点的规律 关于第一象限角平分线的对称点P'的坐标吗? 关于第一象限角平分线的对称点 '的坐标吗?
变式
. 对于点P(x , y ) 对于点P (1)若xy>0 ,则点 在( 若 则点P在 则点 则点P在 (2)若xy<0, 则点 在( xy=0,则点 则点P (3)若xy=0,则点P 在( (4)若
知识点165 坐标与图形性质(解答)解剖
知识点165 坐标与图形性质(解答)1. (2010•内江)阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(x1+x2/2,y1+y2/2).观察应用:(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为(1,1);(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B 的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为(-5.2,1.2)、(2,3).拓展延伸:(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.考点:坐标与图形性质;中心对称.专题:阅读型.分析:(1)直接利用题目所给公式即可求出点A的坐标;(2)首先利用题目所给公式求出P2的坐标,然后利用公式求出对称点P3的坐标,依此类推即可求出P8的坐标;(3)由于P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3),由此得到P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点P2012的坐标,也可以根据图形求出在x轴上与点P2012、点C构成等腰三角形的点的坐标.解答:解:(1)(1,1);(2)P3、P8的坐标分别为(-5.2,1.2),(2,3);(3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3);∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环.∵2012÷6=335…2.∴P2012的坐标与P2的坐标相同,为P2012(2,3);在x轴上与点P2012、点C构成等腰三角形的点的坐标为(-32-1,0),(2,0),(32-1,0),(5,0).点评:此题是一个阅读材料的题目,读懂题目,利用题目所给公式是解题的关键,利用公式可以解决后面的所有问题.2. (2010•常州)小明在研究苏教版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图,该坐标系以O为原点,直线OA为x轴,直线OE为y轴,以正六边形OABCDE的边长为一个单位长.坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为点P的坐标.坐标系中点的坐标的确定方法如下:(ⅰ)x轴上点M的坐标为(m,0),其中m为M点在x轴上表示的实数;(ⅱ)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数;(ⅲ)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x 轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数.则:(1)分别写出点A、B、C的坐标;(2)标出点M(2,3)的位置;(3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式.考点:坐标与图形性质.分析:本题要充分考虑题中所给的提示,注意“不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x 轴平行的直线与y轴的交点在y轴上表示的实数.”这和我们以往所认识平面直角坐标系不同,因此我们要理解好题意,由题意可得A、B、C坐标分别为A(1,0),B(2,1),C(2,2);再去标注M位置即可.解答:解:(1)由图示可知各点的坐标为:A(1,0),B(2,1),C(2,2);(2)如图:(3)设射线OD上点K的横、纵坐标满足的关系式为y=kx;由图知:D(1,2),则:k=2,即x与y所满足的关系式为:y=2x.点评:本题考查了对平面直角坐标系的理解,在做题过程中要开放思维,弄清题意.3. (2009•佳木斯)如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.考点:坐标与图形性质;平行四边形的性质.分析:(1)本题应从BC为对角线、AC为对角线、AB为对角线三种情况入手讨论,即可得出第四个点的坐标.(2)解本题时应将三角形进行分化,化为几个直角三角形的和,解出面积和,乘以2即为平行四边形的面积.解答:解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3-1/2(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC 面积=8.点评:此题主要考查了平行四边形的性质和判定,难易程度适中.4. (2008•岳阳)如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)(1)求点C,D的坐标;(2)若一次函数y=kx-2(k≠0)的图象过C点,求k的值.(3)若y=kx-2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k 的值.考点:坐标与图形性质;待定系数法求一次函数解析式;正方形的性质.专题:代数几何综合题.分析:根据正方形的定义得到正方形的边长是4,C,D的坐标容易求出;把C点坐标代入一次函数y=kx-2(k≠0)的解析式,就可以求出k的值;根据△OMN的面积等于2,就可以求出k的值.解答:解:(1)∵ABCD为正方形,又A (1,2),B(5,2)则AB=4,∴C(5,6),D(1,6)(2分)(2)∵y=kx-2经过C点,∴6=5k-2,∴k=1.6 (4分)(3)y=kx-2与x轴的交点为My=0时,kx-2=0,x=2/k,M(2/k,0),N(0,-2)又S△OMA=12|OM|•|ON|=1/2×|-2|•|2/k|=2∴|K|=1,k=±1故k=±1时,△OMN的面积为2个单位(少一个k值扣1分)(6分).点评:本题结合坐标考查了函数的性质,注意结合图形是解决本题的关键.5. (2007•陕西)在下列直角坐标系中,(1)请写出在平行四边形ABCD内(不包括边界)横、纵坐标均为整数的点,且和为零的点的坐标;(2)在平行四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求该点的横、纵坐标之和为零的概率.考点:坐标与图形性质;平行四边形的性质;概率公式.分析:(1)横、纵坐标均为整数,且和为零的点的坐标应在一三象限坐标轴角平分线上;(2)应找完在平行四边形内的所有整数点.解答:解:(1)看图可知A(-2,2),B(-3,-2),C(2,-2)D(3,2),在其内部横、纵坐标均为整数,且和为零的点的坐标有(-1,1),(0,0),(1,-1).(3分)(2)由图可知:∵在平行四边形ABCD内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个.(6分)∴P=3/15=1/5.(8分)点评:解决本题的关键是理解横、纵坐标均为整数,且和为零的点的坐标在一三象限坐标轴角平分线上,范围是平行四边形内.用到的知识点为:概率=所求情况数与总情况数之比.6. (2006•锦州)如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:(1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)(2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标.考点:坐标与图形性质;平移的性质;旋转的性质.专题:网格型.分析:(1)对应点是C、F,△ABC应先向右平移到F,BC转到EF位置,可看出是逆时针旋转90°,(2)可任意建立平面直角坐标系,得到相应三点的坐标.解答:解:(1)答案不唯一,只要合理即可得(2分).如:将△ABC向右平移3个格得到△A1B1C1,再将△A1B1C1以点C1为旋转中心,按逆时针方向旋转90°就得到了△DEF;(2)答案不唯一,只要正确建立直角坐标系并正确写出各点坐标,即可得(3分).如:方法一:如图①建立直角坐标系,则点D(0,0)、E(2,-1)、F(2,3);方法二:如图②建立直角坐标系,则点D(-2,0)、E(0,-1)、F(0,3);方法三:如图③建立直角坐标系,则点D(-2,-3)、E(0,-4)、F(0,0);方法四:如图④建立直角坐标系,则点D(-2,1)、E(0,0)、F(0,4).点评:图形的转换应找到关键点,关键线段的变化,原点位置不同,得到点的坐标也不同.7. (2005•绍兴)如图,在平面直角坐标系中,已知点A(-2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.考点:坐标与图形性质;等腰三角形的性质.分析:(1)由题意可得,AB的中垂线是y轴,则在y轴上任取一点即可;(2)根据所画情况而定,如(0,3)解答:解:(1)如图;(2)C(0,3)或(0,5)都可以(答案不唯一).本题综合考查了图形的性质和坐标的性质及等腰三角形的性质;发现并利用AB的中垂线是y轴是正确解答本题的关键8. (2005•杭州)在平面直角坐标系内,已知点A(2,1),O为坐标原点.请你在坐标轴上确定点P,使得△AOP成为等腰三角形.在给出的坐标系中把所有这样的点P都找出来,画上实心点,并在旁边标上P1,P2,…,PK的坐标(有k个就标到PK为止,不必写出画法).考点:坐标与图形性质;等腰三角形的判定;勾股定理.专题:规律型.分析:本题应先求出OA的长,再分别讨论OA=OP、AP=OA、AP=OP的各种情况,即可得出答案.解答:解:OA=12+22=5,OA=OP时,x轴上有(5,0),(-5,0);y轴上有(0,5),(0,-5);AP=OA时,x轴上有(4,0),y轴上(0,2);AP=OP时,x轴上有(54,0)y轴上有(0,52)∴p1(4,0),p2(0,2),p2(5,0),p4(-5,0),p5(0,5),p6(0,-5),p7(54,0),p8(0,52)点评:△AOP为等腰三角形,那么任意一对邻边可为等腰三角形,注意分情况讨论.9. (2002•青海)已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,求D点坐标.考点:坐标与图形性质;矩形的性质;翻折变换(折叠问题);特殊角的三角函数值.专题:几何图形问题.分析:利用三角函数可得到OB长,根据翻折得到的对应线段相等,也就得到了AD、AC 长度,过D向y轴引垂线后,利用三角函数,可得到点D的横坐标,AE的值,进而求得OE的长,点E的纵坐标.解答:解:由题意得OA=3,∠OAB=60°,∴OB=3×tan60°=33∵△ACB≌△ADB∴AD=AC=OB,过D作DE⊥y轴于点E∵∠OAD=30°∴ED=332∵cos30°=OA+EOAD那么OE=33×3/2-3=1.5D(33/2,-1.5).点评:翻折前后对应角相等;对应边相等,注意构造直角三角形利用相应的三角函数值求解.10. (2001•金华)如图,在直角坐标系中,点A的坐标为(-4,0),点C为y轴上一动点,连接AC,过点C作CB⊥AC,交x轴于B.(1)当点B坐标为(1,0)时,求点C的坐标;(2)如果sinA和cosA是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.考点:坐标与图形性质;根与系数的关系;勾股定理;锐角三角函数的定义.专题:动点型.分析:(1)在直角三角形AOC、BOC、ABC中,根据数量关系利用勾股定理可求出点C的坐标;(2)先利用根与系数的关系确定a、b的数量关系,再利用三角函数和三角形的面积公式求出a2的值.解答:解:(1)在Rt△AOC中,AO2+OC2=AC2,∴42+OC2=AC2.①在Rt△BOC中,BO2+OC2=BC2,∴12+OC2=BC2.②在Rt△ABC中,AC2+BC2=AB2,∴AC2+BC2=52.③由①、②两式可得AC2-BC2=15,与第③式联立可解得BC=5,AC=25.∴OC=2.∴点C的坐标为(0,2).(2)∵sinA和cosA是关于x的一元二次方程x2+ax+b=0的两个实数根,∴sinA+cosA=-a,sinA•cosA=b.又∵sinA2+cosA2=1,则sinA2+cosA2=(sinA+cosA)2-2sinA•cosA=a2-2b=1.∵sinA=ODAO=BCAB,∴OD4=5/5.解得OD=45/5.∵cosA=ADAO=ACAB,∴AD4=25/5.解得AD=85/5.在Rt△AOD中:AO•DE=OD•AD,又∵点D的纵坐标为a2,∴4a2=45/5•85/5,∴a2=8/5.则a2-2b=8/5-2b=1.解得b=3/10.点评:此题综合考查了一元二次方程与解直角三角形的关系,难度较大.11. 如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?考点:坐标与图形性质;多边形.分析:利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积,或补直角三角形成长方形.解答:解:(1)过点B,A分别作BF,AE垂直于x轴,所以四边形的面积=1/2×3×6+1/2×(6+8)×9+1/2×2×8=80.(2)根据平移的性质可知,平移后的图形形状和大小不变,所以所得的四边形面积是80.点评:主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式有机的和图形结合起来求解的方法.12. 如图,描出A(-3,-2)、B(2,-2)、C(3,1)、D(-2,1)四个点,线段AB、CD有什么关系?顺次连接A、B、C、D四点组成的图形是什么图形?考点:坐标与图形性质;平行四边形的性质.分析:根据四点的坐标可以得到AB∥CD,且AB=CD,就可以确定四边形的形状.解答:解:AB∥CD,且AB=CD,因而四边形ABCD是平行四边形.点评:纵坐标相同的点的连线一定平行于x轴,然后令一组对边相等即可.13. 如图:在直角坐标系中,第一次将△AOB变换成△OA1B1,第二次将三角形变换成△OA2B2,第三次将△OA2B2,变换成△OA3B3,已知A(1,3),A1(3,3),A2(5,3),A3(7,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是(9,3),B4的坐标是(32,0).(2)若按(1)找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点有何变化,找出规律,推测A的坐标是(2n+1,3),B的坐标是(2n+1,0).考点:坐标与图形性质.专题:规律型.分析:对于A1,A2,An坐标找规律可将其写成竖列,比较从而发现An的横坐标为2n+1,而纵坐标都是3,同理B1,B2,Bn也一样找规律.解答:解:已知A(1,3),A1(3,3),A2(5,3),A3(7,3);对于A1,A2,An坐标找规律比较从而发现An的横坐标为2n+1,而纵坐标都是3;同理B1,B2,Bn也一样找规律,规律为Bn的横坐标为2n+1,纵坐标为0.由上规律可知:(1)A4的坐标是(9,3),B4的坐标是(32,0);(2)A的坐标是(2n+1,3),B的坐标是(2n+1,0)点评:本题是观察坐标规律的问题,需要分别从横坐标,纵坐标两方面观察规律,写出答案.14. 请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(-2,0);(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.考点:坐标与图形性质;等腰三角形的性质.专题:网格型.分析:(1)根据A点坐标为(0,2),B点坐标为(-2,0),则点A所在的纵线一定是y轴,B所在的横线一定是x轴.(2)分AB时底边或腰两种情况进行讨论.解答:解:(1)在网格中建立平面直角坐标系如图所示:(2)满足条件的点有4个:C1:(2,0);C2:(22-2,0);C3:(0,0);C4:(-22-2,0).点评:本题考查了等腰三角形的性质及坐标与图形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.15. 附加题:请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:A(-4,4),B(-2,2),C(3,-3),D(5,-5),E(-3,3),F(0,0)你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)考点:坐标与图形性质.分析:本题可根据“横纵坐标互为相反数,那么这些点在一条直线上”来解题.解答:解:由上图所示,这些点在同一直线上,在二四象限的角平分线上.类似的点还有如:(1,-1)、(-1,1)、(2,-2)等.点评:用的知识点为:二四象限角平分线上的点的横纵坐标互为相反数.16. 已知边长为2的正方形OABC在直角坐标系中,(如图)OA与y轴的夹角为30°,求点A、点C、点B的坐标.考点:坐标与图形性质;正方形的性质.专题:综合题.分析:由OA与y轴的夹角为30°,正方形的边长,根据三角函数值可将点A和点C的坐标直接求出,将点B的坐标设出,根据点B到点A和点O的距离,列出方程组,可将点B的坐标求出.解答:解:∵OA与y轴的夹角为30°,OA=OC=2∴OC与x轴的夹角为30°,OA在x轴方向的分量为:2×cos60°=1,在y轴方向的分量为:2×sin60°=3,故点A的坐标为(1,3);OC在x轴方向上的分量为:2×cos30°=3,在y轴方向的分量为:2×sin30°=1,故点C的坐标为(-3,1).设点B的坐标为(a,b)∵DA=2,OD=22∴{a2+b2=(22)2(a-1)2+(b-3)2=22解得:b=3+1(舍负值),a=1-3∴点B的坐标为(1-3,1+3)∴A(1,3)、B(1-3,1+3)、C(-3,1).点评:本题主要是根据三角函数值将点A和点C的值求出,在根据两点之间的距离,列出方程组可将点B的坐标求出.17. 在平面直角坐标系中,顺次连接(-2,1),(-2,-1),(2,-2),(2,3)各点,你会得到一个什么图形?试求出该图形的面积.考点:坐标与图形性质.分析:本题需要根据点的坐标特点,分别描点、顺次连线,再观察整个图形的形状.由于点(-2,1),(-2,-1)和点(2,-2),(2,3)的横坐标分别相同两点的连线都垂直于x轴,故图形是梯形,再根据梯形面积公式求面积.解:如图依次连接可得:图形是梯形,面积为:1/2×(2+5)×4=14.点评:本题主要是对点的坐标的表示及正确描点、连线等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.18. 如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?考点:坐标与图形性质.分析:从A(0,0)到B(1,1)可以看出,每一级台阶的横坐标、纵坐标都比前一个依次增加1,由此即可得解.解答:解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.点评:本题也可以用坐标平移的观点来解,即向右平移1个单位,再向上平移1个单位,依次类推.19. 在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,求a的值及点的坐标.考点:坐标与图形性质.分析:根据第三象限角平分线上点的特点解答即可.解答:解:∵点(1-2a,a-2)在第三象限的角平分线上,∴1-2a=a-2,解得a=1,故此点坐标为(-1,-1).点评:本题主要考查第三象限角平分线上点的特点:点的横纵坐标相等.20. 如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.考点:坐标与图形性质.分析:本题应利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积.解答:解:过D,C分别做DE,CF垂直于AB,则有:S=S△OED+SEFCD+S△CFB=1/2×2×7+1/2×(7+5)×5+1/2×2×5=42.故四边形ABCD的面积为42平方单位.点评:主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式和图形有机结合起来的解题方法.21. 如图所示,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.考点:坐标与图形性质;多边形.分析:分别过B、C作x轴的垂线,利用分割法求面积和即可.解答:解:分别过B、C作x轴的垂线BE、CG,垂足为E,G.所以SABCD=S△ABE+S梯形BEGC+S△CGD=1/2×3×6+1/2×(6+8)×11+1/2×2×8=94.点评:主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法.22. 在平面直角坐标系内,A、B、C三点的坐标分别是A(5,0)、B(0,3)、C(5,3),O为坐标原点,点E在线段BC上,若△AEO为等腰三角形,求点E的坐标.(画出图象,不需要写计算过程)考点:坐标与图形性质;等腰三角形的性质.专题:作图题.分析:要根据题意描点画图,设计等腰三角形时,可以按A,O,E都有可能作为等腰三角形的顶点,分类画图,根据勾股定理计算点的坐标,注意点E在线段BC上这个限制条件.解答:解:图形如下:(1)若等腰△AEO以A为顶角所在的顶点,则E(1,3);(2)若等腰△AEO以E为顶角所在的顶点,则E(2.5,3);(3)若等腰△AEO以O为顶角所在的顶点,则E(4,3).点评:本题考查了等腰三角形的性质及坐标与图形的性质;在设计等腰三角形时,用到了分类思想,每次分类的标准只能有一个,或者按边,或者按角,本题是按顶角来分类的.23. Rt△AOB在平面直角坐标系内的位置如图所示,点O为原点,点A(0,8),点B(6,0),点P在线段AB上,且AP=6.(1)求点P的坐标;(2)x轴上是否存在点Q,使得以B、P、Q为顶点的三角形与△AOB相似.若存在,请求出点Q的坐标,若不存在,请说明理由.考点:坐标与图形性质;勾股定理;相似三角形的判定与性质.专题:分类讨论.分析:本题需要用到勾股定理以及三角形相似等方面的知识点,在求坐标的时候用方程思想可以更方便些.问题一可直接运用三角形相似求出结果,问题二则需要分情况讨论,Q点坐标不止一个.解答:解:(1)由勾股定理得AB=10,设p点坐标为(x,y),则有三角形相似可得APAB=xOB代入数值可得x=3.6.AB-APAB=yOA解得y=3.2故P点坐标为(3.6,3.2).(2)假设Q点坐标为(q,0),若BP为斜边则q=3.6.若BQ为斜边,则BPOB=BQAB解得BQ=203,因为OB=6,所以q=-23.故Q点坐标为(3.6,0)或(-23,0).点评:本题第一问可以直接运用相似性来求得,而第二问则需要分类讨论,这点是容易忽略掉的.24. 一个菱形、相邻的内角比是1:2,对角线长是6,取两条对角线所在的直线为坐标轴,求四个顶点坐标.考点:坐标与图形性质;菱形的性质.专题:分类讨论.分析:本题应分两种情况讨论,当AC=6,或BC=6两种情况讨论.解答:解:当AC=6时,A(-3,0),C(3,0),又内角比为1:2,∴B(0,-3),D(0,3)或当BD=6时,B(0,-3),D(0,3),又内角比为1:2,∴C(3,0),A(-3,0).故答案为A(-3,0),B(0,-3),C(3,0),D(0,3)或A(-3,0),B(0,-3),C(3,0),D(0,3).点评:菱形的问题可以转化为直角三角形的问题.25. 建立适当的直角坐标系,表示边长为3的正方形各顶点的坐标.考点:坐标与图形性质;正方形的性质.专题:作图题;开放型.分析:根据正方形的性质,在x轴以1.5和-1.5处作垂线,在y轴处1.5,-1.5作垂线,较为简单.解答:解:故正方形各点的坐标为:A(1.5,1.5);B(-1.5,1.5);C(-1.5,-1.5);D(1.5,-1.5).点评:本题考查了点的坐标的确定,直角坐标系的建立及正方形的性质.26. 如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,1/2),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.考点:坐标与图形性质;非负数的性质:绝对值;非负数的性质:偶次方.专题:开放型.分析:(1)用非负数的性质求解;(2)把四边形ABOP的面积看成两个三角形面积和,用m来表示;(3)△ABC可求,是已知量,根据题意,方程即可.解答:解:(1)由已知|a-2|+(b-3)2=0,(c-4)2≤0及(c-4)2≥0可得:a=2,b=3,c=4;(2)∵S△ABO=1/2×2×3=3,S△APO=1/2×2×(-m)=-m,∴S四边形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)因为S△ABC=1/2×4×3=6,若S四边形ABOP=S△ABC=3-m=6,则m=-3,所以存在点P(-3,12)使S四边形ABOP=S△ABC.点评:本题考查了非负数的性质,三角形及四边形面积的求法,根据题意容易解答.27. 如图,平行四边形ABCD的边长AB=4,BC=2,若把它放在直角坐标系内,使AB在x 轴上,点C在y轴上,点A的坐标是(-3,0),求点B、C、D的坐标.考点:坐标与图形性质;平行四边形的性质.分析:已知A的坐标,AB的长,就可以求出B的坐标;根据勾股定理得到OC,OB,从而求出C、D点的坐标.解答:解:A的坐标是(-3,0),AB=4,因而B点的坐标是(1,0);在直角△OBC中利用勾股定理得到OC=3.则C(0,3),D(-4,3).点评:本题就是本求点的坐标的问题一般要转化为求线段的长度的问题.28. 已知直角三角形ABC的顶点A(2,0),B(2,3),A是直角顶点,斜边长为5,求顶点C的坐标.考点:坐标与图形性质;勾股定理.专题:分类讨论.分析:可在坐标系内画出草图分析求解.解答:解:易知AB=3.A是直角顶点,斜边长为5,可得AC=4.则点C在x轴.当点C在点A左边时,点C的横坐标为2-4=-2,点C(-2,0);当点C在点A右边时,点C的横坐标为2+4=6,点C(6,0).点评:解决本题的关键是根据勾股定理得到直角三角形的另一直角边,需注意点C的位置的两种情况.29. 求符合条件的B点的坐标.(1)已知A(2,0),AB=4,B点和A点在同一坐标轴上,求B点坐标.(2)已知A(0,0),AB=4,B点和A点在同一坐标轴上,求B点坐标.考点:坐标与图形性质.专题:分类讨论.分析:(1)A在x轴,那么B也在x轴,但有可能在A点的左侧,或者A点的右侧;(2)A在原点,B就有可能在x轴,或y轴,那么就有4个点.解答:解:(1)根据题意,得B点在x轴上,①当B点在A点的左侧时,∵A(2,0),且AB=4,∴B的坐标为(-2,0);②当B点在A点的右侧时,∵A(2,0),且AB=4,∴B点坐标为(6,0).(2)根据题意,点B可以在x轴上,也可以在y轴上.①当点B在x轴上时,B点坐标为(4,0)或(-4,0);②当点B在y轴上时,B点坐标为(0,4)或(0,-4).点评:本题需要注意的是距离同一坐标轴上的点为定值,也在坐标轴上的点应分情况进行讨论.30. (1)在平面直角坐标系中画出下列各点:A(-2,-1)、B(4,0)、C(3,2)、D(0,2)(2)顺次连接ABCD,计算四边形ABCD的面积.考点:坐标与图形性质.专题:作图题.分析:(1)选取适当的点作为坐标原点,经过原点的两条互相垂直的直线分别作为x轴,y 轴,建立坐标系,分别描出点A、点B、点C、点D.如确定(3,6)表示的位置,先在x 轴上找出表示3的点,再在y轴上找出表示6的点,过这两个点分别做x轴和y轴的垂线,垂线的交点即所要表示的位置.(2)把不规则的四边形,利用割补的方法求面积.解答:解:(1)各点的位置如图所示:(2)如图所示,四边形ABCD的面积=6×3-3-3-1=11.点评:主要考查了直角坐标系的建立.在平面直角坐标系中,一定要理解点与坐标的对应关系,是解决此类问题的关键.31. 已知A(a,-21),B(-13,b),且A,B两点所在直线平行于x轴.求a,b的值.考点:坐标与图形性质.分析:根据直线平行于x轴的特点解答.解答:解:∵A(a,-21),B(-13,b),且A,B两点所在直线平行于x轴,∴a≠-13,b=-21.点评:本题主要考查了直线平行于x轴的上两不同点的特点是:纵坐标相等,横坐标不相等.32. 如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B(16,0).观察每次变换前后的三角形有何变化,按照变换规律,求第五次变换后得到的三角形A5的坐标和B5的坐标.考点:坐标与图形性质.专题:规律型.分析:观察A、B的横、纵坐标,观察坐标变化规律,得出一般结论.解答:解:观察给出的各点的坐标可知:对A、A1,A2,A3而言,后面各点的横坐标分别是前面点的横坐标的2倍,为2n(其中n为各点的下标序数)、而纵坐标不变都为3;对B、B1,B2,B3而言后面各点的横坐标分别是前面点的横坐标的2倍,为2n+1(其中n 为各点的下标序数),纵坐标不变都为0;由此可知第五次变换后A5的坐标为(32,3),B5的坐标为(64,0).点评:本题考查了学生观察图形及总结规律的能力,涉及的知识点为:平行于x轴的直线上所有点纵坐标相等,x轴上所有点的纵坐标为0.33. 在图中描出点A(-3,-2),B(2,-2),C(-2,1),D(3,1)四个点.问:①线段AB、CD有什么关系?②四边形ABDC是什么图形?考点:坐标与图形性质.分析:①A、B两点纵坐标都是-2,AB∥x轴,同理,CD∥x轴,故AB∥CD;②用横坐标作差,分别计算AB、CD的长度,根据平行四边形的判定定理进行判断.解答:解:①∵A(-3,-2),B(2,-2)纵坐标相等,∴AB∥x轴,同理,CD∥x轴,∴AB∥CD;②∵AB=2-(-3)=5,CD=3-(-2)=5,∴AB=CD,∴四边形ABDC为平行四边形,如图所示.。
初中坐标知识点总结
初中坐标知识点总结一、直角坐标系1. 直角坐标系的概念:以两条相互垂直的直线为坐标轴,取定原点,便构成了直角坐标系。
2. 第一象限、第二象限、第三象限、第四象限:根据坐标轴的正负,将平面分成四个部分,分别为第一象限、第二象限、第三象限、第四象限。
3. 坐标的表示:平面上的任意点都可以用坐标表示,一般用(x, y)来表示,其中x表示横坐标,y表示纵坐标。
4. 设点的坐标:求一个点在坐标系中的坐标,要数出横坐标和纵坐标的位置,然后用逗号隔开。
二、坐标系与图形1. 点的位置关系:通过坐标系中点的坐标,可以判断点的位置关系,如同一直线上的点、同一象限中的点、对称点等。
2. 线段的长度:根据坐标系中两点的坐标,可以求出两点之间的距离,即线段的长度。
3. 正方形、矩形、平行四边形:利用坐标系可以判断图形的形状和位置关系,如判断一个四边形是不是正方形、矩形或平行四边形等。
三、平面直角坐标系上的点的对称1. 关于横坐标轴的对称:一个点关于横坐标轴对称的点,横坐标不变,纵坐标变号。
2. 关于纵坐标轴的对称:一个点关于纵坐标轴对称的点,纵坐标不变,横坐标变号。
3. 关于原点的对称:一个点关于原点对称的点,横纵坐标变号。
四、平移、旋转、镜面对称和轴对称的关系1. 平移:平行于坐标轴的平移,横坐标或纵坐标加上一个常数。
2. 旋转:绕原点逆时针旋转θ度的公式为:x'=x*cosθ-y*sinθ,y'=x*sinθ+y*cosθ。
3. 镜面对称:关于x轴的镜面对称,横坐标不变,纵坐标变号;关于y轴的镜面对称,纵坐标不变,横坐标变号。
4. 轴对称:与y轴对称,x坐标不变,y坐标变为相反数;与x轴对称,y坐标不变,x坐标变为相反数。
五、坐标系中的直线、直线方程1. 点斜式方程:直线方程y=kx+b中,k是直线的斜率,b是截距。
2. 斜率的性质:斜率为正,代表线向上倾斜;斜率为负,代表线向下倾斜;当斜率为0,代表水平线;当斜率不存在,代表竖直线。
初二数学图形与坐标试题答案及解析
初二数学图形与坐标试题答案及解析1.在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3, 4)D.(3,﹣4)【答案】B【解析】根据在平面直角坐标中任意一点关于x轴的对称点,横坐标不变,纵坐标变成相反数即可求.【考点】关于x轴、y轴对称的点的坐标.2.如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C(﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.【答案】1.;2.A1(1,5),C1(4,3)【解析】(1)根据图形找出A、B、C三点关于y轴的对称点A1、B1、C1,再顺次连接A1B1C1;(2)写出点A1和C1的坐标即可.试题解析:(1)所作图形如图所示:;(2)点A1的坐标为(1,5),点C1的坐标为(4,3).【考点】作图-轴对称变换3.若点P(a,2)与Q(-1,b)关于坐标原点对称,则a,b分别为()A.-1,2B.1,-2C.1,2D.-1,-2【答案】B.【解析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),那么,即可求得a与b的值.∵点P(a,2)与Q(-1,b)关于坐标原点对称,∴a,b分别为1,-2;故本题选B.【考点】关于原点对称的点的坐标.4.已知点P(,2)为平面直角坐标系中一点,则点P到原点的距离为.【答案】3.【解析】求出与2的平方和的算术平方根即可.试题解析:点P(,2)到原点的距离是.【考点】两点间的距离公式.5.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,则所得的图案与原来图案相比()A.形状不变,大小扩大到原来的倍B.图案向右平移了个单位C.图案向上平移了个单位D.图案向右平移了个单位,并且向上平移了个单位【答案】D【解析】一个图案上各点的坐标,纵坐标和横坐标都分别增加正数a(a>0),那么所得的图案与原图案相比图案向上平移了a个单位,图案向右平移了a个单位,形状与大小均不变,故选:D.【考点】坐标与图形变化-平移.6..观察图形由(1)→(2)的变化过程,写出A、B对应点的坐标分别为.【答案】(2,-3),(4-1).【解析】观察图形,找出图中图形坐标的变化情况,总结出规律.试题解析:根据图形和坐标的变化规律可知图形由(1)→(2),关于x轴作轴对称图形⇒向下平移1个单位长度.所以A、B对应点的坐标分别为(2,-3),(4-1).【考点】1.坐标与图形变化-旋转;2.坐标与图形变化-平移.7.在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案:(1)若这四个点的纵坐标若保持不变,横坐标变为原来的,所得图案与原来的图案相比有什么变化?(2)横坐标不变,纵坐标分别减3,所得图案与原来图案相比有什么变化?(3)横坐标、纵坐标分别变为原来的2倍,所得图形与原图形相比有什么变化?【答案】(1)与原图案相比,图案纵向未变,横向被压缩为原来的一半;(2)与与原图案相比,图案大小没有变化,向下平移3个单位;(3)与原图案相比,图案纵向未变,横向被拉长为原来的2倍.【解析】(1)将纵坐标不变,横坐标变成原来的,重新描点、连线,观察图象的变化;(2)横坐标不变,纵坐标分别减3,所得图案向下平移3个单位;(3)将四个点的横坐标扩大2倍,重新描点、连线,与原图形进行比较.试题解析:画图形如下所示:原图为▱OABC.(1)与原图案相比,图案纵向未变,横向被压缩为原来的一半;(2)与与原图案相比,图案大小没有变化,向下平移3个单位;(3)与原图案相比,图案纵向未变,横向被拉长为原来的2倍.【考点】坐标与图形变化-平移.8.若A(-3,2)关于原点对称的点是B,B关于轴对称的点是C,则点C的坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-2,3)【答案】A【解析】点A(-3,2)关于原点对称的点B的坐标是(3,-2),则点B关于轴对称的点C的坐标是(3,2),故选A.9.点和点关于轴对称,而点与点关于轴对称,那么_______,_______,点和点的位置关系是__________.【答案】;;关于原点对称【解析】因为点和点关于轴对称,所以点的坐标为;因为点与点关于轴对称,所以点的坐标为,所以,点和点关于原点对称.10.已知两点、,如果,则、两点关于________对称.【答案】轴【解析】∵,∴,,∴两点关于轴对称.11.等腰梯形的上底,下底,底角∠,建立适当的直角坐标系,求各顶点的坐标.【答案】(0,1),(,0),(3,0),(2,1)【解析】解:如图,作⊥,⊥,则,.在直角△中,∠°,则其为等腰直角三角形,因而,.以所在的直线为轴,由向的方向为正方向,所在的直线为轴,由向的方向为正方向建立坐标系,则(0,1),(,0),(3,0),(2,1).12.如图,,,∠,∠,求、两点的坐标.【答案】(,)(,)【解析】解:如图,过点作轴的垂线,垂足为.在Rt△中,∵,∠°,∴.∴(,).过点作轴的垂线,垂足为.在Rt△中,∵,∠,∴,.∴(,).13.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标:.【答案】(2,2).【解析】由题意点P(x,y)的坐标满足x+y=xy,当x=2时,代入得到2+y=2y,求出y即可.∵点P(x,y)的坐标满足x+y=xy,当x=2时,代入得:2+y=2y,∴y=2,故答案为:(2,2).【考点】点的坐标.14.例:说明代数式的几何意义,并求它的最小值.解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=,即原式的最小值为。
图形与坐标练习+知识点
图形与坐标练习+知识点1、有序数对:我们把这种有顺序的两个数a 与b 组成的数队,叫做有序实数对。
记作(a ,b ); 注意:a 、b 的先后顺序对位置的影响。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向 竖直的数轴称为y 轴或纵轴,取向上方向为正方向 两坐标轴的交点为平面直角坐标系的原点 3、象限:坐标轴上的点不属于任何象限 P (x ,y )第一象限:x>0,y>0 即(+,+) 第二象限:x<0,y>0 即(-,+) 第三象限:x<0,y<0 即(-,-) 第四象限:x>0,y<0 即(+,-) 横坐标轴上的点:(x,0) 即:x 轴上的点,纵坐标y 等于0; 纵坐标轴上的点:(0,y ) 即:y 轴上的点,横坐标x 等于0; 坐标轴上的点不属于任何象限;平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。
4、距离问题:点(x,y )距x 轴的距离为︱y ︱距y 轴的距离为︱x ︱距原点的距离为22x y +坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为 ︱x 1-x 2︱点A (0,y 1)点B (0,y 2),则AB 距离为 ︱y 1-y 2︱坐标系中任意两点(x 1,y 1),(x 2,y 2)之间距离为22)()(2121y y x x -+-6、角平分线问题:若点(x,y )在一、三象限角平分线上,则x=y (第一、三象限角平分线上的点的横纵坐标相同;)若点(x,y )在二、四象限角平分线上,则x=-y (第二、四象限角平分线上的点的横纵坐标相反。
)7、对称问题:两点关于x 轴对称,则x 同,y 反(关于x 轴对称的点的横坐标相同,纵坐标互为相反数)关于y 轴对称,则y 同,x 反(关于y 轴对称的点的纵坐标相同,横坐标互为相反数)关于原点对称,则x 反,y 反(关于原点对称的点的横坐标、纵坐标都互为相反数 8、中点坐标 :点A (x 1,0)点B (x 2,0),则AB 中点坐标为 (2x 21x + ,0)点A (x 1,y 1)点B (x 2,y 2),则AB 中点坐标为 (2x 21x + ,2y 21y +) 9、平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a,y )向左平移a 个单位长度,可以得到对应点(x-a,y ) 向上平移a 个单位长度,可以得到对应点(x,y+a ) 向下平移a 个单位长度,可以得到对应点(x,y-a ) 10、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:建立坐标系,按条件选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
图形与坐标常考知识点
例 1 ( ) 平 面 直 角 坐 标 系 中 , P( 1 3 位 于 ( 1在 点 一 ,)
( 0 0年 金 华 卷 ) 21
) .
A. 一 象 限 第 C. 三 象 限 第
B. 二 象 限 第 D. 四象 限 第 ) 21 .( 0 0年 泉 州卷 )
D.( , ) 3 5
( ) 角 坐 标 系 内点 P 一 3 关 于 原 点 的 对 称 点 p 的 坐标 为 2直 ( 2, ) ( ) 21 .( 0 0年 綦 江 卷 )
A.( 一 2, 3) C 一 ,) .( 2 3 B 2, ) .( 3 D 一 一 ) .( 2, 3
位 , 向右 平 移 3个 单 位 , Ⅳ 的 坐标 为 ( 4 . 再 点 2, )
温 馨 ,提 示 : 图 形 的 平 移 中 . j 、 在 图形 上每 点 移 动 的 力 向 和 离
当 ㈣的 .
囡‘ 幽
目■囡■衄
考 点 四 图形 的旋 转 与点 的 坐标 例 4 . ( 0 0年 毕 节 卷 )正 方 形 21
解 ( ) D; 2 选 A. 1选 ()
温 馨 小提 示 : 称 点 的 坐标 问题 , 于 容 易题 .点 P “ b) 对 属 (, 关
于 轴 对 称 的 点 的 坐 标 为 (1 一 , 美 于 v轴 对 称 的 点 的 坐 标 为 e, b)
( , b) 关 于 原 点 的 对 称 点 的 坐 标 为 ( , ) 一,, , 一 一
( 如 果 点 P在 第 二 象 限 内 , P到 轴 的 距 离 是 4, Y轴 2) 点 到 的距 离 是 3 那 么 点 P的坐 标 为 ( ,
第四章 图形与坐标(综合复习,满分必刷题)(原卷版)
第四章图形与坐标(综合复习)一、知识点梳理二、知识点巩固1.探索确定位置的方法确定物体在平面上的位置有两种常用的方法:①有序数对法:用一对有序实数确定物体的位置。
这种确定方法要注意有序,要规定将什么写在前,什么写在后。
②方向、距离法:用方向和距离确定物体的位置(或称方位)。
这种确定方法要注意参照物的选择,语言表达要准确、清楚。
满分必刷题:1.如图,一艘船在A处遇险后向相距50海里位于B处的救生船报警.用方向和距离描述遇险船相对于救生船的位置()A.南偏西75°,50海里B.南偏西15°,50海里C.北偏东15°,50海里D.北偏东75°,50海里2.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(﹣1,﹣2),“象”位于(1,﹣2),则“炮”位于点()A.(﹣4,1 )B.(﹣3,2)C.(﹣2,1)D.(﹣1,﹣2 )3.如图,一束光线从点A(4,5)出发,经y轴上的点C反射后经过点B(1,0),则点C的坐标是()A.B.C.(0,1)D.(0,2)4.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)5.我校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,其中[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0,并且,称第k棵树的位置为“第y k行第x k列”.五个同学得出了下面一些结论:甲:k=5时,;乙:k=11时,;丙:第6棵树种植在点P0(6,2)处;丁:每一行种植5棵树;戊:第2022棵树的位置为“第404行第2列”.以上结论正确的个数是()A.2个B.3个C.4个D.5个6.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,下列能从邮局出发走到小杰家的走法是()A.向北直走300米,再向西直走400米B.向北直走400米,再向东直走300米C.向北直走100米,再向东直走700米D.向北直走700米,再向西直走100米7.如图是一组密码的一部分,为了保密,许多情况下会采用不同的密码,请你运用所学知识找到破译的“密钥”.目前已破译出“守初心”的对应口令是“担使命”.根据你发现的“密钥”,破译出“找差距”的对应口令是.2.平面直角坐标系知识点:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。
浙教版八年级数学图形与坐标知识内容汇总知识点总结
浙教版八年级数学图形与坐标知识内容汇总知识点总结
在考试中,图形与坐标类题目不难,一般以选择题和填空题的形式出现,掌握相关概念就可以求解,八年级数学图形与坐标知识内容及时整理给大家_
第一节:探索确定位置的方法
掌握平面内点的坐标的表示方法及求法,知道有序数对与平面直角坐标系中的点的对应关系,八年级数学探索确定位置的方法知识点解析是您所需要的!
第二节:平面直角坐标系
1.所需能力:
1深刻理解平面直角坐标系和点坐标的意义
2探索各个象限的点和坐标轴上的点其坐标符号规律——八年级上册平面直角坐标系知识点_
第三节:坐标平面内图形的轴对称和平移
1.轴对称变换的定义:由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。
2.轴对称变换的性质:轴对称变换不改变原图形的形状和大小。
数学是其他学科的学习基础,知识点对朋友们的学习非常重要,大家一定要认真掌握,八年级数学图形与坐标知识内容希望大家能够使用_初二数学上册图形与坐标家庭作业题也是不能忽略的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章平面直角坐标系知识点归纳
1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序实数对。
记作(a ,b);注意:a、b的先后顺序对位置的影响。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向
竖直的数轴称为y轴或纵轴,取向上方向为正方向
两坐标轴的交点为平面直角坐标系的原点
3、象限:坐标轴上的点不属于任何象限 P(x ,y)
第一象限:x>0,y>0 即(+,+)
第二象限:x<0,y>0 即(-,+)
第三象限:x<0,y<0 即(-,-)
第四象限:x>0,y<0 即(+,-)
横坐标轴上的点:(x,0)即:x轴上的点,纵坐标y等于0;
纵坐标轴上的点:(0,y ) 即:y 轴上的点,横坐标x 等于0;
坐标轴上的点不属于任何象限;
平行于x 轴(或横轴)的直线上的点的纵坐标相同;
平行于y 轴(或纵轴)的直线上的点的横坐标相同。
4、距离问题:点(x ,y )距x 轴的距离为︱y ︱
距y 轴的距离为︱x ︱
距原点的距离为22x y + 坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为 ︱
x 1-x 2︱
点A (0,y 1)点B (0,y 2),则AB 距离为 ︱
y 1-y 2︱
坐标系中任意两点(x 1,y 1),(x 2,y 2)之间距离为
22)()(2121y y x x -+-
6、角平分线问题:若点(x ,y )在一、三象限角平分线上,则x=y (第一、三象限角平分线上的点的横纵坐标相同;)
若点(x ,y )在二、四象限角平分线上,则x=-y (第二、四象限角平分线上的点的横纵坐标相反。
)
7、对称问题:两点关于x 轴对称,则x 同,y 反(关于x 轴对称的点的横坐标相同,纵坐标互为相反数)
关于y 轴对称,则y 同,x 反(关于y 轴对称的点的纵坐标相同,横坐标互为相反数)关于原点对称,则x 反,y 反(关于原点对称的点的横坐标、纵坐标都互为相反数
8、中点坐标 :点A (x 1,0)点B (x 2,0),则AB 中点坐标为 (
2x 21x + ,0)
点A (x 1,y 1)点B (x 2,y 2),则AB 中点坐标为 (
2
x 21x + ,2y 21y +) 9、平移:
在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x+a ,y )
向左平移a 个单位长度,可以得
到对应点(x-a,y)
向上平移a个单位长度,可以得到对应点(x,y+a)
向下平移a个单位长度,可以得到对应点(x,y-a)
10、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:
建立坐标系,按条件选择一个适当的参照点为原点,确定x 轴、y轴的正方向;
根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
练习:
1.平面直角坐标系中点P(1 ,2)所在的象限是()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.点P的横坐标是3
-,且到x轴的距离是5,则P点的坐标是()
A.(5,3
-,5
-)
-,5) 或(3
-) 或(5
-,3
-) B.(3
C.(3
-)
-,5
-,5) D.(3
3.在平面直角坐标系中,点P(3
-,4)关于
y轴对称点的坐标为()
A.(3
-,4) B.(3,4) C.(3,-4)
D.(3
-,-4)
4.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错.误.的是
A.炎陵位于株洲市区南偏东约35︒的方向上
B.醴陵位于攸县的北偏东约16︒的方向上
C.株洲县位于茶陵的南偏东约40︒的方向上
D.株洲市区位于攸县的北偏西约21︒的方向上
5.如图,若将直角坐标系中“鱼”的每个“顶点”
的横坐标保持不变,纵坐标分别变为原来的一半,
则点A的对应点的坐标是()
A.(4-,3)
B.(4,3)
C.(2-,6)
D.(2-,3)
6.如图,把△ABC 经过一定的变换得到△A /B /C /,如果△ABC
上的点P 的坐标为(a ,b ),那么这个点在△A /B /C /上的对
应点P /的坐标为( )
A.(2-a ,3-b )
B.(3-a ,2-b )
C.(3+a ,2+b )
D.(2+a ,3+b )
7.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是( )
A .男生在13岁时身高增长速度最快
B .女生在10岁以后身高增长速度放慢
C .11岁时男女生身高增长速度基本相同
D .女生身高增长的速度总比男生慢
8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 第5题
8
7
B A
是两格点,如果C也是图中的格点,且使得ABC
∆为等腰三角形
.....,则点C的个数是()
A.6 B.7 C.8 D.9
9.在平面直角坐标系中,点P(1-
a,a)是第二象限内的点,则a 的取值范围是。
10.已知点A(a,4
-),B(3,b)关于原点对称,则a= ,b= 。
11.将点P(2
-,1)先向左平移1个单位长度,再向上平移2个单位长度得到点Q,则Q点的坐标是。
12.点M(2
-)到x轴的距离是,
-,4
到y轴的距离是,到原点的距离
是。
13.在平面直角坐标系中,△ABC的顶点坐标
分别为A(6,6),B(-3,3),C(3,3)△ABC
的面积是。
14.如图,12时我鱼政船在H岛30海里的A处,渔政船以每小时40海里的速度向东航行,13时到达B处,并测得H岛的方向是北偏西54°。
则BC= 海里,此时渔政船在H岛南偏东°的方向,距H岛海里。
15.如图,在平面直角坐标系中,△ABC是边长
为2的等边三角形,则A、B、C三个顶点的坐标
分别是A ,B ,C 。
16.在平面直角坐标系中,已知点A(2,2)、B(2,3),点P在y轴上,且三角形APB为直角三角形,则点P的坐标是。
简答题:
17.如图,写出平面直角坐标系中点A,
B,C,D,E,F的坐标。
18.孔明和爸爸、妈妈到人民公园游玩,
回到家后,他利用平面直角坐标系画出公
园的景区地图,如图所示,可是他忘记了
在图中标出原点和x轴、y轴。
只知道游乐
园D的坐标为(2,2
),请你为他画出坐
标系,并求写出各景点的坐标。
19.在如图所示的平面直角坐标系中,描出A(2,1),
B(0,3
-),C(4,4
-)三点,依次连接各点得到△ABC,分别作出△ABC关于x轴和y轴对称的图形,并写出它们各顶点的坐标。
20.如图,已知A(3,4
-),C
-),B(4,3
(5,0),求四边形ABCO的面积。